1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <optional> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "loop-unroll" 76 77 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 78 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 79 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 80 " the current top-most loop. This is sometimes preferred to reduce" 81 " compile time.")); 82 83 static cl::opt<unsigned> 84 UnrollThreshold("unroll-threshold", cl::Hidden, 85 cl::desc("The cost threshold for loop unrolling")); 86 87 static cl::opt<unsigned> 88 UnrollOptSizeThreshold( 89 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 90 cl::desc("The cost threshold for loop unrolling when optimizing for " 91 "size")); 92 93 static cl::opt<unsigned> UnrollPartialThreshold( 94 "unroll-partial-threshold", cl::Hidden, 95 cl::desc("The cost threshold for partial loop unrolling")); 96 97 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 98 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 99 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 100 "to the threshold when aggressively unrolling a loop due to the " 101 "dynamic cost savings. If completely unrolling a loop will reduce " 102 "the total runtime from X to Y, we boost the loop unroll " 103 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 104 "X/Y). This limit avoids excessive code bloat.")); 105 106 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 107 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 108 cl::desc("Don't allow loop unrolling to simulate more than this number of" 109 "iterations when checking full unroll profitability")); 110 111 static cl::opt<unsigned> UnrollCount( 112 "unroll-count", cl::Hidden, 113 cl::desc("Use this unroll count for all loops including those with " 114 "unroll_count pragma values, for testing purposes")); 115 116 static cl::opt<unsigned> UnrollMaxCount( 117 "unroll-max-count", cl::Hidden, 118 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 119 "testing purposes")); 120 121 static cl::opt<unsigned> UnrollFullMaxCount( 122 "unroll-full-max-count", cl::Hidden, 123 cl::desc( 124 "Set the max unroll count for full unrolling, for testing purposes")); 125 126 static cl::opt<bool> 127 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 128 cl::desc("Allows loops to be partially unrolled until " 129 "-unroll-threshold loop size is reached.")); 130 131 static cl::opt<bool> UnrollAllowRemainder( 132 "unroll-allow-remainder", cl::Hidden, 133 cl::desc("Allow generation of a loop remainder (extra iterations) " 134 "when unrolling a loop.")); 135 136 static cl::opt<bool> 137 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 138 cl::desc("Unroll loops with run-time trip counts")); 139 140 static cl::opt<unsigned> UnrollMaxUpperBound( 141 "unroll-max-upperbound", cl::init(8), cl::Hidden, 142 cl::desc( 143 "The max of trip count upper bound that is considered in unrolling")); 144 145 static cl::opt<unsigned> PragmaUnrollThreshold( 146 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 147 cl::desc("Unrolled size limit for loops with an unroll(full) or " 148 "unroll_count pragma.")); 149 150 static cl::opt<unsigned> FlatLoopTripCountThreshold( 151 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 152 cl::desc("If the runtime tripcount for the loop is lower than the " 153 "threshold, the loop is considered as flat and will be less " 154 "aggressively unrolled.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 static cl::opt<unsigned> UnrollThresholdAggressive( 170 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 171 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 172 "optimizations")); 173 static cl::opt<unsigned> 174 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 175 cl::Hidden, 176 cl::desc("Default threshold (max size of unrolled " 177 "loop), used in all but O3 optimizations")); 178 179 /// A magic value for use with the Threshold parameter to indicate 180 /// that the loop unroll should be performed regardless of how much 181 /// code expansion would result. 182 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 183 184 /// Gather the various unrolling parameters based on the defaults, compiler 185 /// flags, TTI overrides and user specified parameters. 186 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 187 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 188 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 189 OptimizationRemarkEmitter &ORE, int OptLevel, 190 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 191 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 192 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 193 TargetTransformInfo::UnrollingPreferences UP; 194 195 // Set up the defaults 196 UP.Threshold = 197 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 198 UP.MaxPercentThresholdBoost = 400; 199 UP.OptSizeThreshold = UnrollOptSizeThreshold; 200 UP.PartialThreshold = 150; 201 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 202 UP.Count = 0; 203 UP.DefaultUnrollRuntimeCount = 8; 204 UP.MaxCount = std::numeric_limits<unsigned>::max(); 205 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 206 UP.BEInsns = 2; 207 UP.Partial = false; 208 UP.Runtime = false; 209 UP.AllowRemainder = true; 210 UP.UnrollRemainder = false; 211 UP.AllowExpensiveTripCount = false; 212 UP.Force = false; 213 UP.UpperBound = false; 214 UP.UnrollAndJam = false; 215 UP.UnrollAndJamInnerLoopThreshold = 60; 216 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 217 218 // Override with any target specific settings 219 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 220 221 // Apply size attributes 222 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 223 // Let unroll hints / pragmas take precedence over PGSO. 224 (hasUnrollTransformation(L) != TM_ForcedByUser && 225 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 226 PGSOQueryType::IRPass)); 227 if (OptForSize) { 228 UP.Threshold = UP.OptSizeThreshold; 229 UP.PartialThreshold = UP.PartialOptSizeThreshold; 230 UP.MaxPercentThresholdBoost = 100; 231 } 232 233 // Apply any user values specified by cl::opt 234 if (UnrollThreshold.getNumOccurrences() > 0) 235 UP.Threshold = UnrollThreshold; 236 if (UnrollPartialThreshold.getNumOccurrences() > 0) 237 UP.PartialThreshold = UnrollPartialThreshold; 238 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 239 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 240 if (UnrollMaxCount.getNumOccurrences() > 0) 241 UP.MaxCount = UnrollMaxCount; 242 if (UnrollFullMaxCount.getNumOccurrences() > 0) 243 UP.FullUnrollMaxCount = UnrollFullMaxCount; 244 if (UnrollAllowPartial.getNumOccurrences() > 0) 245 UP.Partial = UnrollAllowPartial; 246 if (UnrollAllowRemainder.getNumOccurrences() > 0) 247 UP.AllowRemainder = UnrollAllowRemainder; 248 if (UnrollRuntime.getNumOccurrences() > 0) 249 UP.Runtime = UnrollRuntime; 250 if (UnrollMaxUpperBound == 0) 251 UP.UpperBound = false; 252 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 253 UP.UnrollRemainder = UnrollUnrollRemainder; 254 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 255 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 256 257 // Apply user values provided by argument 258 if (UserThreshold.hasValue()) { 259 UP.Threshold = *UserThreshold; 260 UP.PartialThreshold = *UserThreshold; 261 } 262 if (UserCount.hasValue()) 263 UP.Count = *UserCount; 264 if (UserAllowPartial.hasValue()) 265 UP.Partial = *UserAllowPartial; 266 if (UserRuntime.hasValue()) 267 UP.Runtime = *UserRuntime; 268 if (UserUpperBound.hasValue()) 269 UP.UpperBound = *UserUpperBound; 270 if (UserFullUnrollMaxCount.hasValue()) 271 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 272 273 return UP; 274 } 275 276 namespace { 277 278 /// A struct to densely store the state of an instruction after unrolling at 279 /// each iteration. 280 /// 281 /// This is designed to work like a tuple of <Instruction *, int> for the 282 /// purposes of hashing and lookup, but to be able to associate two boolean 283 /// states with each key. 284 struct UnrolledInstState { 285 Instruction *I; 286 int Iteration : 30; 287 unsigned IsFree : 1; 288 unsigned IsCounted : 1; 289 }; 290 291 /// Hashing and equality testing for a set of the instruction states. 292 struct UnrolledInstStateKeyInfo { 293 using PtrInfo = DenseMapInfo<Instruction *>; 294 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 295 296 static inline UnrolledInstState getEmptyKey() { 297 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 298 } 299 300 static inline UnrolledInstState getTombstoneKey() { 301 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 302 } 303 304 static inline unsigned getHashValue(const UnrolledInstState &S) { 305 return PairInfo::getHashValue({S.I, S.Iteration}); 306 } 307 308 static inline bool isEqual(const UnrolledInstState &LHS, 309 const UnrolledInstState &RHS) { 310 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 311 } 312 }; 313 314 struct EstimatedUnrollCost { 315 /// The estimated cost after unrolling. 316 unsigned UnrolledCost; 317 318 /// The estimated dynamic cost of executing the instructions in the 319 /// rolled form. 320 unsigned RolledDynamicCost; 321 }; 322 323 struct PragmaInfo { 324 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 325 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 326 PragmaEnableUnroll(PEU) {} 327 const bool UserUnrollCount; 328 const bool PragmaFullUnroll; 329 const unsigned PragmaCount; 330 const bool PragmaEnableUnroll; 331 }; 332 333 } // end anonymous namespace 334 335 /// Figure out if the loop is worth full unrolling. 336 /// 337 /// Complete loop unrolling can make some loads constant, and we need to know 338 /// if that would expose any further optimization opportunities. This routine 339 /// estimates this optimization. It computes cost of unrolled loop 340 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 341 /// dynamic cost we mean that we won't count costs of blocks that are known not 342 /// to be executed (i.e. if we have a branch in the loop and we know that at the 343 /// given iteration its condition would be resolved to true, we won't add up the 344 /// cost of the 'false'-block). 345 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 346 /// the analysis failed (no benefits expected from the unrolling, or the loop is 347 /// too big to analyze), the returned value is None. 348 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 349 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 350 const SmallPtrSetImpl<const Value *> &EphValues, 351 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 352 unsigned MaxIterationsCountToAnalyze) { 353 // We want to be able to scale offsets by the trip count and add more offsets 354 // to them without checking for overflows, and we already don't want to 355 // analyze *massive* trip counts, so we force the max to be reasonably small. 356 assert(MaxIterationsCountToAnalyze < 357 (unsigned)(std::numeric_limits<int>::max() / 2) && 358 "The unroll iterations max is too large!"); 359 360 // Only analyze inner loops. We can't properly estimate cost of nested loops 361 // and we won't visit inner loops again anyway. 362 if (!L->isInnermost()) 363 return None; 364 365 // Don't simulate loops with a big or unknown tripcount 366 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 367 return None; 368 369 SmallSetVector<BasicBlock *, 16> BBWorklist; 370 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 371 DenseMap<Value *, Value *> SimplifiedValues; 372 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 373 374 // The estimated cost of the unrolled form of the loop. We try to estimate 375 // this by simplifying as much as we can while computing the estimate. 376 InstructionCost UnrolledCost = 0; 377 378 // We also track the estimated dynamic (that is, actually executed) cost in 379 // the rolled form. This helps identify cases when the savings from unrolling 380 // aren't just exposing dead control flows, but actual reduced dynamic 381 // instructions due to the simplifications which we expect to occur after 382 // unrolling. 383 InstructionCost RolledDynamicCost = 0; 384 385 // We track the simplification of each instruction in each iteration. We use 386 // this to recursively merge costs into the unrolled cost on-demand so that 387 // we don't count the cost of any dead code. This is essentially a map from 388 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 389 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 390 391 // A small worklist used to accumulate cost of instructions from each 392 // observable and reached root in the loop. 393 SmallVector<Instruction *, 16> CostWorklist; 394 395 // PHI-used worklist used between iterations while accumulating cost. 396 SmallVector<Instruction *, 4> PHIUsedList; 397 398 // Helper function to accumulate cost for instructions in the loop. 399 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 400 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 401 assert(CostWorklist.empty() && "Must start with an empty cost list"); 402 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 403 CostWorklist.push_back(&RootI); 404 TargetTransformInfo::TargetCostKind CostKind = 405 RootI.getFunction()->hasMinSize() ? 406 TargetTransformInfo::TCK_CodeSize : 407 TargetTransformInfo::TCK_SizeAndLatency; 408 for (;; --Iteration) { 409 do { 410 Instruction *I = CostWorklist.pop_back_val(); 411 412 // InstCostMap only uses I and Iteration as a key, the other two values 413 // don't matter here. 414 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 415 if (CostIter == InstCostMap.end()) 416 // If an input to a PHI node comes from a dead path through the loop 417 // we may have no cost data for it here. What that actually means is 418 // that it is free. 419 continue; 420 auto &Cost = *CostIter; 421 if (Cost.IsCounted) 422 // Already counted this instruction. 423 continue; 424 425 // Mark that we are counting the cost of this instruction now. 426 Cost.IsCounted = true; 427 428 // If this is a PHI node in the loop header, just add it to the PHI set. 429 if (auto *PhiI = dyn_cast<PHINode>(I)) 430 if (PhiI->getParent() == L->getHeader()) { 431 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 432 "inherently simplify during unrolling."); 433 if (Iteration == 0) 434 continue; 435 436 // Push the incoming value from the backedge into the PHI used list 437 // if it is an in-loop instruction. We'll use this to populate the 438 // cost worklist for the next iteration (as we count backwards). 439 if (auto *OpI = dyn_cast<Instruction>( 440 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 441 if (L->contains(OpI)) 442 PHIUsedList.push_back(OpI); 443 continue; 444 } 445 446 // First accumulate the cost of this instruction. 447 if (!Cost.IsFree) { 448 UnrolledCost += TTI.getUserCost(I, CostKind); 449 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 450 << Iteration << "): "); 451 LLVM_DEBUG(I->dump()); 452 } 453 454 // We must count the cost of every operand which is not free, 455 // recursively. If we reach a loop PHI node, simply add it to the set 456 // to be considered on the next iteration (backwards!). 457 for (Value *Op : I->operands()) { 458 // Check whether this operand is free due to being a constant or 459 // outside the loop. 460 auto *OpI = dyn_cast<Instruction>(Op); 461 if (!OpI || !L->contains(OpI)) 462 continue; 463 464 // Otherwise accumulate its cost. 465 CostWorklist.push_back(OpI); 466 } 467 } while (!CostWorklist.empty()); 468 469 if (PHIUsedList.empty()) 470 // We've exhausted the search. 471 break; 472 473 assert(Iteration > 0 && 474 "Cannot track PHI-used values past the first iteration!"); 475 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 476 PHIUsedList.clear(); 477 } 478 }; 479 480 // Ensure that we don't violate the loop structure invariants relied on by 481 // this analysis. 482 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 483 assert(L->isLCSSAForm(DT) && 484 "Must have loops in LCSSA form to track live-out values."); 485 486 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 487 488 TargetTransformInfo::TargetCostKind CostKind = 489 L->getHeader()->getParent()->hasMinSize() ? 490 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 491 // Simulate execution of each iteration of the loop counting instructions, 492 // which would be simplified. 493 // Since the same load will take different values on different iterations, 494 // we literally have to go through all loop's iterations. 495 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 496 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 497 498 // Prepare for the iteration by collecting any simplified entry or backedge 499 // inputs. 500 for (Instruction &I : *L->getHeader()) { 501 auto *PHI = dyn_cast<PHINode>(&I); 502 if (!PHI) 503 break; 504 505 // The loop header PHI nodes must have exactly two input: one from the 506 // loop preheader and one from the loop latch. 507 assert( 508 PHI->getNumIncomingValues() == 2 && 509 "Must have an incoming value only for the preheader and the latch."); 510 511 Value *V = PHI->getIncomingValueForBlock( 512 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 513 if (Iteration != 0 && SimplifiedValues.count(V)) 514 V = SimplifiedValues.lookup(V); 515 SimplifiedInputValues.push_back({PHI, V}); 516 } 517 518 // Now clear and re-populate the map for the next iteration. 519 SimplifiedValues.clear(); 520 while (!SimplifiedInputValues.empty()) 521 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 522 523 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 524 525 BBWorklist.clear(); 526 BBWorklist.insert(L->getHeader()); 527 // Note that we *must not* cache the size, this loop grows the worklist. 528 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 529 BasicBlock *BB = BBWorklist[Idx]; 530 531 // Visit all instructions in the given basic block and try to simplify 532 // it. We don't change the actual IR, just count optimization 533 // opportunities. 534 for (Instruction &I : *BB) { 535 // These won't get into the final code - don't even try calculating the 536 // cost for them. 537 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 538 continue; 539 540 // Track this instruction's expected baseline cost when executing the 541 // rolled loop form. 542 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 543 544 // Visit the instruction to analyze its loop cost after unrolling, 545 // and if the visitor returns true, mark the instruction as free after 546 // unrolling and continue. 547 bool IsFree = Analyzer.visit(I); 548 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 549 (unsigned)IsFree, 550 /*IsCounted*/ false}).second; 551 (void)Inserted; 552 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 553 554 if (IsFree) 555 continue; 556 557 // Can't properly model a cost of a call. 558 // FIXME: With a proper cost model we should be able to do it. 559 if (auto *CI = dyn_cast<CallInst>(&I)) { 560 const Function *Callee = CI->getCalledFunction(); 561 if (!Callee || TTI.isLoweredToCall(Callee)) { 562 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 563 return None; 564 } 565 } 566 567 // If the instruction might have a side-effect recursively account for 568 // the cost of it and all the instructions leading up to it. 569 if (I.mayHaveSideEffects()) 570 AddCostRecursively(I, Iteration); 571 572 // If unrolled body turns out to be too big, bail out. 573 if (UnrolledCost > MaxUnrolledLoopSize) { 574 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 575 << " UnrolledCost: " << UnrolledCost 576 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 577 << "\n"); 578 return None; 579 } 580 } 581 582 Instruction *TI = BB->getTerminator(); 583 584 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 585 if (SimplifiedValues.count(V)) 586 V = SimplifiedValues.lookup(V); 587 return dyn_cast<Constant>(V); 588 }; 589 590 // Add in the live successors by first checking whether we have terminator 591 // that may be simplified based on the values simplified by this call. 592 BasicBlock *KnownSucc = nullptr; 593 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 594 if (BI->isConditional()) { 595 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 596 // Just take the first successor if condition is undef 597 if (isa<UndefValue>(SimpleCond)) 598 KnownSucc = BI->getSuccessor(0); 599 else if (ConstantInt *SimpleCondVal = 600 dyn_cast<ConstantInt>(SimpleCond)) 601 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 602 } 603 } 604 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 605 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 606 // Just take the first successor if condition is undef 607 if (isa<UndefValue>(SimpleCond)) 608 KnownSucc = SI->getSuccessor(0); 609 else if (ConstantInt *SimpleCondVal = 610 dyn_cast<ConstantInt>(SimpleCond)) 611 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 612 } 613 } 614 if (KnownSucc) { 615 if (L->contains(KnownSucc)) 616 BBWorklist.insert(KnownSucc); 617 else 618 ExitWorklist.insert({BB, KnownSucc}); 619 continue; 620 } 621 622 // Add BB's successors to the worklist. 623 for (BasicBlock *Succ : successors(BB)) 624 if (L->contains(Succ)) 625 BBWorklist.insert(Succ); 626 else 627 ExitWorklist.insert({BB, Succ}); 628 AddCostRecursively(*TI, Iteration); 629 } 630 631 // If we found no optimization opportunities on the first iteration, we 632 // won't find them on later ones too. 633 if (UnrolledCost == RolledDynamicCost) { 634 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 635 << " UnrolledCost: " << UnrolledCost << "\n"); 636 return None; 637 } 638 } 639 640 while (!ExitWorklist.empty()) { 641 BasicBlock *ExitingBB, *ExitBB; 642 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 643 644 for (Instruction &I : *ExitBB) { 645 auto *PN = dyn_cast<PHINode>(&I); 646 if (!PN) 647 break; 648 649 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 650 if (auto *OpI = dyn_cast<Instruction>(Op)) 651 if (L->contains(OpI)) 652 AddCostRecursively(*OpI, TripCount - 1); 653 } 654 } 655 656 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 657 "All instructions must have a valid cost, whether the " 658 "loop is rolled or unrolled."); 659 660 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 661 << "UnrolledCost: " << UnrolledCost << ", " 662 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 663 return {{unsigned(*UnrolledCost.getValue()), 664 unsigned(*RolledDynamicCost.getValue())}}; 665 } 666 667 /// ApproximateLoopSize - Approximate the size of the loop. 668 unsigned llvm::ApproximateLoopSize( 669 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 670 const TargetTransformInfo &TTI, 671 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 672 CodeMetrics Metrics; 673 for (BasicBlock *BB : L->blocks()) 674 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 675 NumCalls = Metrics.NumInlineCandidates; 676 NotDuplicatable = Metrics.notDuplicatable; 677 Convergent = Metrics.convergent; 678 679 unsigned LoopSize = Metrics.NumInsts; 680 681 // Don't allow an estimate of size zero. This would allows unrolling of loops 682 // with huge iteration counts, which is a compile time problem even if it's 683 // not a problem for code quality. Also, the code using this size may assume 684 // that each loop has at least three instructions (likely a conditional 685 // branch, a comparison feeding that branch, and some kind of loop increment 686 // feeding that comparison instruction). 687 LoopSize = std::max(LoopSize, BEInsns + 1); 688 689 return LoopSize; 690 } 691 692 // Returns the loop hint metadata node with the given name (for example, 693 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 694 // returned. 695 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 696 if (MDNode *LoopID = L->getLoopID()) 697 return GetUnrollMetadata(LoopID, Name); 698 return nullptr; 699 } 700 701 // Returns true if the loop has an unroll(full) pragma. 702 static bool hasUnrollFullPragma(const Loop *L) { 703 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 704 } 705 706 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 707 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 708 static bool hasUnrollEnablePragma(const Loop *L) { 709 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 710 } 711 712 // Returns true if the loop has an runtime unroll(disable) pragma. 713 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 714 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 715 } 716 717 // If loop has an unroll_count pragma return the (necessarily 718 // positive) value from the pragma. Otherwise return 0. 719 static unsigned unrollCountPragmaValue(const Loop *L) { 720 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 721 if (MD) { 722 assert(MD->getNumOperands() == 2 && 723 "Unroll count hint metadata should have two operands."); 724 unsigned Count = 725 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 726 assert(Count >= 1 && "Unroll count must be positive."); 727 return Count; 728 } 729 return 0; 730 } 731 732 // Computes the boosting factor for complete unrolling. 733 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 734 // be beneficial to fully unroll the loop even if unrolledcost is large. We 735 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 736 // the unroll threshold. 737 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 738 unsigned MaxPercentThresholdBoost) { 739 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 740 return 100; 741 else if (Cost.UnrolledCost != 0) 742 // The boosting factor is RolledDynamicCost / UnrolledCost 743 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 744 MaxPercentThresholdBoost); 745 else 746 return MaxPercentThresholdBoost; 747 } 748 749 // Produce an estimate of the unrolled cost of the specified loop. This 750 // is used to a) produce a cost estimate for partial unrolling and b) to 751 // cheaply estimate cost for full unrolling when we don't want to symbolically 752 // evaluate all iterations. 753 class UnrollCostEstimator { 754 const unsigned LoopSize; 755 756 public: 757 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {} 758 759 // Returns loop size estimation for unrolled loop, given the unrolling 760 // configuration specified by UP. 761 uint64_t 762 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP, 763 const unsigned CountOverwrite = 0) const { 764 assert(LoopSize >= UP.BEInsns && 765 "LoopSize should not be less than BEInsns!"); 766 if (CountOverwrite) 767 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite + 768 UP.BEInsns; 769 else 770 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count + 771 UP.BEInsns; 772 } 773 }; 774 775 static Optional<unsigned> 776 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 777 const unsigned TripMultiple, const unsigned TripCount, 778 const UnrollCostEstimator UCE, 779 const TargetTransformInfo::UnrollingPreferences &UP) { 780 781 // Using unroll pragma 782 // 1st priority is unroll count set by "unroll-count" option. 783 784 if (PInfo.UserUnrollCount) { 785 if (UP.AllowRemainder && 786 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 787 return (unsigned)UnrollCount; 788 } 789 790 // 2nd priority is unroll count set by pragma. 791 if (PInfo.PragmaCount > 0) { 792 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)) && 793 UCE.getUnrolledLoopSize(UP, PInfo.PragmaCount) < PragmaUnrollThreshold) 794 return PInfo.PragmaCount; 795 } 796 797 if (PInfo.PragmaFullUnroll && TripCount != 0) { 798 if (UCE.getUnrolledLoopSize(UP, TripCount) < PragmaUnrollThreshold) 799 return TripCount; 800 } 801 // if didn't return until here, should continue to other priorties 802 return None; 803 } 804 805 static Optional<unsigned> shouldFullUnroll( 806 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 807 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 808 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 809 const TargetTransformInfo::UnrollingPreferences &UP) { 810 811 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 812 // When computing the unrolled size, note that BEInsns are not replicated 813 // like the rest of the loop body. 814 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) { 815 return FullUnrollTripCount; 816 817 } else { 818 // The loop isn't that small, but we still can fully unroll it if that 819 // helps to remove a significant number of instructions. 820 // To check that, run additional analysis on the loop. 821 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 822 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 823 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 824 UP.MaxIterationsCountToAnalyze)) { 825 unsigned Boost = 826 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 827 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 828 return FullUnrollTripCount; 829 } 830 } 831 } 832 } 833 return None; 834 } 835 836 static Optional<unsigned> 837 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 838 const UnrollCostEstimator UCE, 839 const TargetTransformInfo::UnrollingPreferences &UP) { 840 841 unsigned count = UP.Count; 842 if (TripCount) { 843 if (!UP.Partial) { 844 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 845 << "-unroll-allow-partial not given\n"); 846 count = 0; 847 return count; 848 } 849 if (count == 0) 850 count = TripCount; 851 if (UP.PartialThreshold != NoThreshold) { 852 // Reduce unroll count to be modulo of TripCount for partial unrolling. 853 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 854 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 855 (LoopSize - UP.BEInsns); 856 if (count > UP.MaxCount) 857 count = UP.MaxCount; 858 while (count != 0 && TripCount % count != 0) 859 count--; 860 if (UP.AllowRemainder && count <= 1) { 861 // If there is no Count that is modulo of TripCount, set Count to 862 // largest power-of-two factor that satisfies the threshold limit. 863 // As we'll create fixup loop, do the type of unrolling only if 864 // remainder loop is allowed. 865 count = UP.DefaultUnrollRuntimeCount; 866 while (count != 0 && 867 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 868 count >>= 1; 869 } 870 if (count < 2) { 871 count = 0; 872 } 873 } else { 874 count = TripCount; 875 } 876 if (count > UP.MaxCount) 877 count = UP.MaxCount; 878 879 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 880 881 return count; 882 } 883 884 // if didn't return until here, should continue to other priorties 885 return None; 886 } 887 // Returns true if unroll count was set explicitly. 888 // Calculates unroll count and writes it to UP.Count. 889 // Unless IgnoreUser is true, will also use metadata and command-line options 890 // that are specific to to the LoopUnroll pass (which, for instance, are 891 // irrelevant for the LoopUnrollAndJam pass). 892 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 893 // many LoopUnroll-specific options. The shared functionality should be 894 // refactored into it own function. 895 bool llvm::computeUnrollCount( 896 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 897 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 898 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 899 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize, 900 TargetTransformInfo::UnrollingPreferences &UP, 901 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 902 903 UnrollCostEstimator UCE(*L, LoopSize); 904 Optional<unsigned> UnrollFactor; 905 906 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 907 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 908 const unsigned PragmaCount = unrollCountPragmaValue(L); 909 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 910 911 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 912 PragmaEnableUnroll || UserUnrollCount; 913 914 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 915 PragmaEnableUnroll); 916 // Use an explicit peel count that has been specified for testing. In this 917 // case it's not permitted to also specify an explicit unroll count. 918 if (PP.PeelCount) { 919 if (UnrollCount.getNumOccurrences() > 0) { 920 report_fatal_error("Cannot specify both explicit peel count and " 921 "explicit unroll count"); 922 } 923 UP.Count = 1; 924 UP.Runtime = false; 925 return true; 926 } 927 // Check for explicit Count. 928 // 1st priority is unroll count set by "unroll-count" option. 929 // 2nd priority is unroll count set by pragma. 930 UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, UCE, UP); 931 932 if (UnrollFactor) { 933 UP.Count = *UnrollFactor; 934 935 if (UserUnrollCount || (PragmaCount > 0)) { 936 UP.AllowExpensiveTripCount = true; 937 UP.Force = true; 938 } 939 UP.Runtime |= (PragmaCount > 0); 940 return ExplicitUnroll; 941 } else { 942 if (ExplicitUnroll && TripCount != 0) { 943 // If the loop has an unrolling pragma, we want to be more aggressive with 944 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 945 // value which is larger than the default limits. 946 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 947 UP.PartialThreshold = 948 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 949 } 950 } 951 952 // 3rd priority is full unroll count. 953 // Full unroll makes sense only when TripCount or its upper bound could be 954 // statically calculated. 955 // Also we need to check if we exceed FullUnrollMaxCount. 956 957 // We can unroll by the upper bound amount if it's generally allowed or if 958 // we know that the loop is executed either the upper bound or zero times. 959 // (MaxOrZero unrolling keeps only the first loop test, so the number of 960 // loop tests remains the same compared to the non-unrolled version, whereas 961 // the generic upper bound unrolling keeps all but the last loop test so the 962 // number of loop tests goes up which may end up being worse on targets with 963 // constrained branch predictor resources so is controlled by an option.) 964 // In addition we only unroll small upper bounds. 965 unsigned FullUnrollMaxTripCount = MaxTripCount; 966 if (!(UP.UpperBound || MaxOrZero) || 967 FullUnrollMaxTripCount > UnrollMaxUpperBound) 968 FullUnrollMaxTripCount = 0; 969 970 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 971 // compute the former when the latter is zero. 972 unsigned ExactTripCount = TripCount; 973 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 974 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 975 976 unsigned FullUnrollTripCount = 977 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 978 UP.Count = FullUnrollTripCount; 979 980 UnrollFactor = 981 shouldFullUnroll(L, TTI, DT, SE, EphValues, FullUnrollTripCount, UCE, UP); 982 983 // if shouldFullUnroll can do the unrolling, some side parameteres should be 984 // set 985 if (UnrollFactor) { 986 UP.Count = *UnrollFactor; 987 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 988 TripCount = FullUnrollTripCount; 989 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 990 return ExplicitUnroll; 991 } else { 992 UP.Count = FullUnrollTripCount; 993 } 994 995 // 4th priority is loop peeling. 996 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold); 997 if (PP.PeelCount) { 998 UP.Runtime = false; 999 UP.Count = 1; 1000 return ExplicitUnroll; 1001 } 1002 1003 // Before starting partial unrolling, set up.partial to true, 1004 // if user explicitly asked for unrolling 1005 if (TripCount) 1006 UP.Partial |= ExplicitUnroll; 1007 1008 // 5th priority is partial unrolling. 1009 // Try partial unroll only when TripCount could be statically calculated. 1010 UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP); 1011 1012 if (UnrollFactor) { 1013 UP.Count = *UnrollFactor; 1014 1015 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 1016 UP.Count != TripCount) 1017 ORE->emit([&]() { 1018 return OptimizationRemarkMissed(DEBUG_TYPE, 1019 "FullUnrollAsDirectedTooLarge", 1020 L->getStartLoc(), L->getHeader()) 1021 << "Unable to fully unroll loop as directed by unroll pragma " 1022 "because " 1023 "unrolled size is too large."; 1024 }); 1025 1026 if (UP.PartialThreshold != NoThreshold) { 1027 if (UP.Count == 0) { 1028 if (PragmaEnableUnroll) 1029 ORE->emit([&]() { 1030 return OptimizationRemarkMissed(DEBUG_TYPE, 1031 "UnrollAsDirectedTooLarge", 1032 L->getStartLoc(), L->getHeader()) 1033 << "Unable to unroll loop as directed by unroll(enable) " 1034 "pragma " 1035 "because unrolled size is too large."; 1036 }); 1037 } 1038 } 1039 return ExplicitUnroll; 1040 } 1041 assert(TripCount == 0 && 1042 "All cases when TripCount is constant should be covered here."); 1043 if (PragmaFullUnroll) 1044 ORE->emit([&]() { 1045 return OptimizationRemarkMissed( 1046 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1047 L->getStartLoc(), L->getHeader()) 1048 << "Unable to fully unroll loop as directed by unroll(full) " 1049 "pragma " 1050 "because loop has a runtime trip count."; 1051 }); 1052 1053 // 6th priority is runtime unrolling. 1054 // Don't unroll a runtime trip count loop when it is disabled. 1055 if (hasRuntimeUnrollDisablePragma(L)) { 1056 UP.Count = 0; 1057 return false; 1058 } 1059 1060 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1061 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 1062 UP.Count = 0; 1063 return false; 1064 } 1065 1066 // Check if the runtime trip count is too small when profile is available. 1067 if (L->getHeader()->getParent()->hasProfileData()) { 1068 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1069 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1070 return false; 1071 else 1072 UP.AllowExpensiveTripCount = true; 1073 } 1074 } 1075 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1076 if (!UP.Runtime) { 1077 LLVM_DEBUG( 1078 dbgs() << " will not try to unroll loop with runtime trip count " 1079 << "-unroll-runtime not given\n"); 1080 UP.Count = 0; 1081 return false; 1082 } 1083 if (UP.Count == 0) 1084 UP.Count = UP.DefaultUnrollRuntimeCount; 1085 1086 // Reduce unroll count to be the largest power-of-two factor of 1087 // the original count which satisfies the threshold limit. 1088 while (UP.Count != 0 && 1089 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1090 UP.Count >>= 1; 1091 1092 #ifndef NDEBUG 1093 unsigned OrigCount = UP.Count; 1094 #endif 1095 1096 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1097 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1098 UP.Count >>= 1; 1099 LLVM_DEBUG( 1100 dbgs() << "Remainder loop is restricted (that could architecture " 1101 "specific or because the loop contains a convergent " 1102 "instruction), so unroll count must divide the trip " 1103 "multiple, " 1104 << TripMultiple << ". Reducing unroll count from " << OrigCount 1105 << " to " << UP.Count << ".\n"); 1106 1107 using namespace ore; 1108 1109 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1110 ORE->emit([&]() { 1111 return OptimizationRemarkMissed(DEBUG_TYPE, 1112 "DifferentUnrollCountFromDirected", 1113 L->getStartLoc(), L->getHeader()) 1114 << "Unable to unroll loop the number of times directed by " 1115 "unroll_count pragma because remainder loop is restricted " 1116 "(that could architecture specific or because the loop " 1117 "contains a convergent instruction) and so must have an " 1118 "unroll " 1119 "count that divides the loop trip multiple of " 1120 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1121 << NV("UnrollCount", UP.Count) << " time(s)."; 1122 }); 1123 } 1124 1125 if (UP.Count > UP.MaxCount) 1126 UP.Count = UP.MaxCount; 1127 1128 if (MaxTripCount && UP.Count > MaxTripCount) 1129 UP.Count = MaxTripCount; 1130 1131 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1132 << "\n"); 1133 if (UP.Count < 2) 1134 UP.Count = 0; 1135 return ExplicitUnroll; 1136 } 1137 1138 static LoopUnrollResult tryToUnrollLoop( 1139 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1140 const TargetTransformInfo &TTI, AssumptionCache &AC, 1141 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1142 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1143 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1144 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1145 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1146 Optional<bool> ProvidedAllowPeeling, 1147 Optional<bool> ProvidedAllowProfileBasedPeeling, 1148 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1149 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1150 << L->getHeader()->getParent()->getName() << "] Loop %" 1151 << L->getHeader()->getName() << "\n"); 1152 TransformationMode TM = hasUnrollTransformation(L); 1153 if (TM & TM_Disable) 1154 return LoopUnrollResult::Unmodified; 1155 if (!L->isLoopSimplifyForm()) { 1156 LLVM_DEBUG( 1157 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1158 return LoopUnrollResult::Unmodified; 1159 } 1160 1161 // When automatic unrolling is disabled, do not unroll unless overridden for 1162 // this loop. 1163 if (OnlyWhenForced && !(TM & TM_Enable)) 1164 return LoopUnrollResult::Unmodified; 1165 1166 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1167 unsigned NumInlineCandidates; 1168 bool NotDuplicatable; 1169 bool Convergent; 1170 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1171 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1172 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1173 ProvidedFullUnrollMaxCount); 1174 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1175 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1176 1177 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1178 // as threshold later on. 1179 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1180 !OptForSize) 1181 return LoopUnrollResult::Unmodified; 1182 1183 SmallPtrSet<const Value *, 32> EphValues; 1184 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1185 1186 unsigned LoopSize = 1187 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1188 TTI, EphValues, UP.BEInsns); 1189 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1190 if (NotDuplicatable) { 1191 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1192 << " instructions.\n"); 1193 return LoopUnrollResult::Unmodified; 1194 } 1195 1196 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1197 // later), to (fully) unroll loops, if it does not increase code size. 1198 if (OptForSize) 1199 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1200 1201 if (NumInlineCandidates != 0) { 1202 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1203 return LoopUnrollResult::Unmodified; 1204 } 1205 1206 // Find the smallest exact trip count for any exit. This is an upper bound 1207 // on the loop trip count, but an exit at an earlier iteration is still 1208 // possible. An unroll by the smallest exact trip count guarantees that all 1209 // brnaches relating to at least one exit can be eliminated. This is unlike 1210 // the max trip count, which only guarantees that the backedge can be broken. 1211 unsigned TripCount = 0; 1212 unsigned TripMultiple = 1; 1213 SmallVector<BasicBlock *, 8> ExitingBlocks; 1214 L->getExitingBlocks(ExitingBlocks); 1215 for (BasicBlock *ExitingBlock : ExitingBlocks) 1216 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1217 if (!TripCount || TC < TripCount) 1218 TripCount = TripMultiple = TC; 1219 1220 if (!TripCount) { 1221 // If no exact trip count is known, determine the trip multiple of either 1222 // the loop latch or the single exiting block. 1223 // TODO: Relax for multiple exits. 1224 BasicBlock *ExitingBlock = L->getLoopLatch(); 1225 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1226 ExitingBlock = L->getExitingBlock(); 1227 if (ExitingBlock) 1228 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1229 } 1230 1231 // If the loop contains a convergent operation, the prelude we'd add 1232 // to do the first few instructions before we hit the unrolled loop 1233 // is unsafe -- it adds a control-flow dependency to the convergent 1234 // operation. Therefore restrict remainder loop (try unrolling without). 1235 // 1236 // TODO: This is quite conservative. In practice, convergent_op() 1237 // is likely to be called unconditionally in the loop. In this 1238 // case, the program would be ill-formed (on most architectures) 1239 // unless n were the same on all threads in a thread group. 1240 // Assuming n is the same on all threads, any kind of unrolling is 1241 // safe. But currently llvm's notion of convergence isn't powerful 1242 // enough to express this. 1243 if (Convergent) 1244 UP.AllowRemainder = false; 1245 1246 // Try to find the trip count upper bound if we cannot find the exact trip 1247 // count. 1248 unsigned MaxTripCount = 0; 1249 bool MaxOrZero = false; 1250 if (!TripCount) { 1251 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1252 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1253 } 1254 1255 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1256 // fully unroll the loop. 1257 bool UseUpperBound = false; 1258 bool IsCountSetExplicitly = computeUnrollCount( 1259 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1260 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1261 if (!UP.Count) 1262 return LoopUnrollResult::Unmodified; 1263 1264 if (PP.PeelCount) { 1265 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1266 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1267 << " with iteration count " << PP.PeelCount << "!\n"); 1268 ORE.emit([&]() { 1269 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1270 L->getHeader()) 1271 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1272 << " iterations"; 1273 }); 1274 1275 if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) { 1276 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1277 // If the loop was peeled, we already "used up" the profile information 1278 // we had, so we don't want to unroll or peel again. 1279 if (PP.PeelProfiledIterations) 1280 L->setLoopAlreadyUnrolled(); 1281 return LoopUnrollResult::PartiallyUnrolled; 1282 } 1283 return LoopUnrollResult::Unmodified; 1284 } 1285 1286 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1287 // However, we only want to actually perform it if we don't know the trip 1288 // count and the unroll count doesn't divide the known trip multiple. 1289 // TODO: This decision should probably be pushed up into 1290 // computeUnrollCount(). 1291 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1292 1293 // Save loop properties before it is transformed. 1294 MDNode *OrigLoopID = L->getLoopID(); 1295 1296 // Unroll the loop. 1297 Loop *RemainderLoop = nullptr; 1298 LoopUnrollResult UnrollResult = UnrollLoop( 1299 L, 1300 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1301 UP.UnrollRemainder, ForgetAllSCEV}, 1302 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1303 if (UnrollResult == LoopUnrollResult::Unmodified) 1304 return LoopUnrollResult::Unmodified; 1305 1306 if (RemainderLoop) { 1307 Optional<MDNode *> RemainderLoopID = 1308 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1309 LLVMLoopUnrollFollowupRemainder}); 1310 if (RemainderLoopID.hasValue()) 1311 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1312 } 1313 1314 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1315 Optional<MDNode *> NewLoopID = 1316 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1317 LLVMLoopUnrollFollowupUnrolled}); 1318 if (NewLoopID.hasValue()) { 1319 L->setLoopID(NewLoopID.getValue()); 1320 1321 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1322 // explicitly. 1323 return UnrollResult; 1324 } 1325 } 1326 1327 // If loop has an unroll count pragma or unrolled by explicitly set count 1328 // mark loop as unrolled to prevent unrolling beyond that requested. 1329 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1330 L->setLoopAlreadyUnrolled(); 1331 1332 return UnrollResult; 1333 } 1334 1335 namespace { 1336 1337 class LoopUnroll : public LoopPass { 1338 public: 1339 static char ID; // Pass ID, replacement for typeid 1340 1341 int OptLevel; 1342 1343 /// If false, use a cost model to determine whether unrolling of a loop is 1344 /// profitable. If true, only loops that explicitly request unrolling via 1345 /// metadata are considered. All other loops are skipped. 1346 bool OnlyWhenForced; 1347 1348 /// If false, when SCEV is invalidated, only forget everything in the 1349 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1350 /// Otherwise, forgetAllLoops and rebuild when needed next. 1351 bool ForgetAllSCEV; 1352 1353 Optional<unsigned> ProvidedCount; 1354 Optional<unsigned> ProvidedThreshold; 1355 Optional<bool> ProvidedAllowPartial; 1356 Optional<bool> ProvidedRuntime; 1357 Optional<bool> ProvidedUpperBound; 1358 Optional<bool> ProvidedAllowPeeling; 1359 Optional<bool> ProvidedAllowProfileBasedPeeling; 1360 Optional<unsigned> ProvidedFullUnrollMaxCount; 1361 1362 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1363 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1364 Optional<unsigned> Count = None, 1365 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1366 Optional<bool> UpperBound = None, 1367 Optional<bool> AllowPeeling = None, 1368 Optional<bool> AllowProfileBasedPeeling = None, 1369 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1370 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1371 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1372 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1373 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1374 ProvidedAllowPeeling(AllowPeeling), 1375 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1376 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1377 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1378 } 1379 1380 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1381 if (skipLoop(L)) 1382 return false; 1383 1384 Function &F = *L->getHeader()->getParent(); 1385 1386 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1387 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1388 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1389 const TargetTransformInfo &TTI = 1390 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1391 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1392 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1393 // pass. Function analyses need to be preserved across loop transformations 1394 // but ORE cannot be preserved (see comment before the pass definition). 1395 OptimizationRemarkEmitter ORE(&F); 1396 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1397 1398 LoopUnrollResult Result = tryToUnrollLoop( 1399 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1400 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1401 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1402 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1403 ProvidedFullUnrollMaxCount); 1404 1405 if (Result == LoopUnrollResult::FullyUnrolled) 1406 LPM.markLoopAsDeleted(*L); 1407 1408 return Result != LoopUnrollResult::Unmodified; 1409 } 1410 1411 /// This transformation requires natural loop information & requires that 1412 /// loop preheaders be inserted into the CFG... 1413 void getAnalysisUsage(AnalysisUsage &AU) const override { 1414 AU.addRequired<AssumptionCacheTracker>(); 1415 AU.addRequired<TargetTransformInfoWrapperPass>(); 1416 // FIXME: Loop passes are required to preserve domtree, and for now we just 1417 // recreate dom info if anything gets unrolled. 1418 getLoopAnalysisUsage(AU); 1419 } 1420 }; 1421 1422 } // end anonymous namespace 1423 1424 char LoopUnroll::ID = 0; 1425 1426 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1427 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1428 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1429 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1430 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1431 1432 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1433 bool ForgetAllSCEV, int Threshold, int Count, 1434 int AllowPartial, int Runtime, int UpperBound, 1435 int AllowPeeling) { 1436 // TODO: It would make more sense for this function to take the optionals 1437 // directly, but that's dangerous since it would silently break out of tree 1438 // callers. 1439 return new LoopUnroll( 1440 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1441 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1442 Count == -1 ? None : Optional<unsigned>(Count), 1443 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1444 Runtime == -1 ? None : Optional<bool>(Runtime), 1445 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1446 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1447 } 1448 1449 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1450 bool ForgetAllSCEV) { 1451 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1452 0, 0, 0, 1); 1453 } 1454 1455 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1456 LoopStandardAnalysisResults &AR, 1457 LPMUpdater &Updater) { 1458 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1459 // pass. Function analyses need to be preserved across loop transformations 1460 // but ORE cannot be preserved (see comment before the pass definition). 1461 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1462 1463 // Keep track of the previous loop structure so we can identify new loops 1464 // created by unrolling. 1465 Loop *ParentL = L.getParentLoop(); 1466 SmallPtrSet<Loop *, 4> OldLoops; 1467 if (ParentL) 1468 OldLoops.insert(ParentL->begin(), ParentL->end()); 1469 else 1470 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1471 1472 std::string LoopName = std::string(L.getName()); 1473 1474 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1475 /*BFI*/ nullptr, /*PSI*/ nullptr, 1476 /*PreserveLCSSA*/ true, OptLevel, 1477 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1478 /*Threshold*/ None, /*AllowPartial*/ false, 1479 /*Runtime*/ false, /*UpperBound*/ false, 1480 /*AllowPeeling*/ true, 1481 /*AllowProfileBasedPeeling*/ false, 1482 /*FullUnrollMaxCount*/ None) != 1483 LoopUnrollResult::Unmodified; 1484 if (!Changed) 1485 return PreservedAnalyses::all(); 1486 1487 // The parent must not be damaged by unrolling! 1488 #ifndef NDEBUG 1489 if (ParentL) 1490 ParentL->verifyLoop(); 1491 #endif 1492 1493 // Unrolling can do several things to introduce new loops into a loop nest: 1494 // - Full unrolling clones child loops within the current loop but then 1495 // removes the current loop making all of the children appear to be new 1496 // sibling loops. 1497 // 1498 // When a new loop appears as a sibling loop after fully unrolling, 1499 // its nesting structure has fundamentally changed and we want to revisit 1500 // it to reflect that. 1501 // 1502 // When unrolling has removed the current loop, we need to tell the 1503 // infrastructure that it is gone. 1504 // 1505 // Finally, we support a debugging/testing mode where we revisit child loops 1506 // as well. These are not expected to require further optimizations as either 1507 // they or the loop they were cloned from have been directly visited already. 1508 // But the debugging mode allows us to check this assumption. 1509 bool IsCurrentLoopValid = false; 1510 SmallVector<Loop *, 4> SibLoops; 1511 if (ParentL) 1512 SibLoops.append(ParentL->begin(), ParentL->end()); 1513 else 1514 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1515 erase_if(SibLoops, [&](Loop *SibLoop) { 1516 if (SibLoop == &L) { 1517 IsCurrentLoopValid = true; 1518 return true; 1519 } 1520 1521 // Otherwise erase the loop from the list if it was in the old loops. 1522 return OldLoops.contains(SibLoop); 1523 }); 1524 Updater.addSiblingLoops(SibLoops); 1525 1526 if (!IsCurrentLoopValid) { 1527 Updater.markLoopAsDeleted(L, LoopName); 1528 } else { 1529 // We can only walk child loops if the current loop remained valid. 1530 if (UnrollRevisitChildLoops) { 1531 // Walk *all* of the child loops. 1532 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1533 Updater.addChildLoops(ChildLoops); 1534 } 1535 } 1536 1537 return getLoopPassPreservedAnalyses(); 1538 } 1539 1540 PreservedAnalyses LoopUnrollPass::run(Function &F, 1541 FunctionAnalysisManager &AM) { 1542 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1543 auto &LI = AM.getResult<LoopAnalysis>(F); 1544 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1545 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1546 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1547 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1548 1549 LoopAnalysisManager *LAM = nullptr; 1550 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1551 LAM = &LAMProxy->getManager(); 1552 1553 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1554 ProfileSummaryInfo *PSI = 1555 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1556 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1557 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1558 1559 bool Changed = false; 1560 1561 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1562 // Since simplification may add new inner loops, it has to run before the 1563 // legality and profitability checks. This means running the loop unroller 1564 // will simplify all loops, regardless of whether anything end up being 1565 // unrolled. 1566 for (auto &L : LI) { 1567 Changed |= 1568 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1569 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1570 } 1571 1572 // Add the loop nests in the reverse order of LoopInfo. See method 1573 // declaration. 1574 SmallPriorityWorklist<Loop *, 4> Worklist; 1575 appendLoopsToWorklist(LI, Worklist); 1576 1577 while (!Worklist.empty()) { 1578 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1579 // from back to front so that we work forward across the CFG, which 1580 // for unrolling is only needed to get optimization remarks emitted in 1581 // a forward order. 1582 Loop &L = *Worklist.pop_back_val(); 1583 #ifndef NDEBUG 1584 Loop *ParentL = L.getParentLoop(); 1585 #endif 1586 1587 // Check if the profile summary indicates that the profiled application 1588 // has a huge working set size, in which case we disable peeling to avoid 1589 // bloating it further. 1590 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1591 if (PSI && PSI->hasHugeWorkingSetSize()) 1592 LocalAllowPeeling = false; 1593 std::string LoopName = std::string(L.getName()); 1594 // The API here is quite complex to call and we allow to select some 1595 // flavors of unrolling during construction time (by setting UnrollOpts). 1596 LoopUnrollResult Result = tryToUnrollLoop( 1597 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1598 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1599 UnrollOpts.ForgetSCEV, /*Count*/ None, 1600 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1601 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1602 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1603 Changed |= Result != LoopUnrollResult::Unmodified; 1604 1605 // The parent must not be damaged by unrolling! 1606 #ifndef NDEBUG 1607 if (Result != LoopUnrollResult::Unmodified && ParentL) 1608 ParentL->verifyLoop(); 1609 #endif 1610 1611 // Clear any cached analysis results for L if we removed it completely. 1612 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1613 LAM->clear(L, LoopName); 1614 } 1615 1616 if (!Changed) 1617 return PreservedAnalyses::all(); 1618 1619 return getLoopPassPreservedAnalyses(); 1620 } 1621