xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 45e4ef737d2909d0f4856570d2c90a9a70f4037d)
1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopPassManager.h"
23 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
24 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/UnrollLoop.h"
39 #include <climits>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-unroll"
45 
46 static cl::opt<unsigned>
47     UnrollThreshold("unroll-threshold", cl::Hidden,
48                     cl::desc("The baseline cost threshold for loop unrolling"));
49 
50 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
51     "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden,
52     cl::desc("The percentage of estimated dynamic cost which must be saved by "
53              "unrolling to allow unrolling up to the max threshold."));
54 
55 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
56     "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden,
57     cl::desc("This is the amount discounted from the total unroll cost when "
58              "the unrolled form has a high dynamic cost savings (triggered by "
59              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
60 
61 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
62     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
63     cl::desc("Don't allow loop unrolling to simulate more than this number of"
64              "iterations when checking full unroll profitability"));
65 
66 static cl::opt<unsigned> UnrollCount(
67     "unroll-count", cl::Hidden,
68     cl::desc("Use this unroll count for all loops including those with "
69              "unroll_count pragma values, for testing purposes"));
70 
71 static cl::opt<unsigned> UnrollMaxCount(
72     "unroll-max-count", cl::Hidden,
73     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
74              "testing purposes"));
75 
76 static cl::opt<unsigned> UnrollFullMaxCount(
77     "unroll-full-max-count", cl::Hidden,
78     cl::desc(
79         "Set the max unroll count for full unrolling, for testing purposes"));
80 
81 static cl::opt<bool>
82     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
83                        cl::desc("Allows loops to be partially unrolled until "
84                                 "-unroll-threshold loop size is reached."));
85 
86 static cl::opt<bool> UnrollAllowRemainder(
87     "unroll-allow-remainder", cl::Hidden,
88     cl::desc("Allow generation of a loop remainder (extra iterations) "
89              "when unrolling a loop."));
90 
91 static cl::opt<bool>
92     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
93                   cl::desc("Unroll loops with run-time trip counts"));
94 
95 static cl::opt<unsigned> PragmaUnrollThreshold(
96     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
97     cl::desc("Unrolled size limit for loops with an unroll(full) or "
98              "unroll_count pragma."));
99 
100 /// A magic value for use with the Threshold parameter to indicate
101 /// that the loop unroll should be performed regardless of how much
102 /// code expansion would result.
103 static const unsigned NoThreshold = UINT_MAX;
104 
105 /// Gather the various unrolling parameters based on the defaults, compiler
106 /// flags, TTI overrides and user specified parameters.
107 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
108     Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
109     Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
110     Optional<bool> UserRuntime) {
111   TargetTransformInfo::UnrollingPreferences UP;
112 
113   // Set up the defaults
114   UP.Threshold = 150;
115   UP.PercentDynamicCostSavedThreshold = 50;
116   UP.DynamicCostSavingsDiscount = 100;
117   UP.OptSizeThreshold = 0;
118   UP.PartialThreshold = UP.Threshold;
119   UP.PartialOptSizeThreshold = 0;
120   UP.Count = 0;
121   UP.DefaultUnrollRuntimeCount = 8;
122   UP.MaxCount = UINT_MAX;
123   UP.FullUnrollMaxCount = UINT_MAX;
124   UP.Partial = false;
125   UP.Runtime = false;
126   UP.AllowRemainder = true;
127   UP.AllowExpensiveTripCount = false;
128   UP.Force = false;
129 
130   // Override with any target specific settings
131   TTI.getUnrollingPreferences(L, UP);
132 
133   // Apply size attributes
134   if (L->getHeader()->getParent()->optForSize()) {
135     UP.Threshold = UP.OptSizeThreshold;
136     UP.PartialThreshold = UP.PartialOptSizeThreshold;
137   }
138 
139   // Apply any user values specified by cl::opt
140   if (UnrollThreshold.getNumOccurrences() > 0) {
141     UP.Threshold = UnrollThreshold;
142     UP.PartialThreshold = UnrollThreshold;
143   }
144   if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
145     UP.PercentDynamicCostSavedThreshold =
146         UnrollPercentDynamicCostSavedThreshold;
147   if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
148     UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
149   if (UnrollMaxCount.getNumOccurrences() > 0)
150     UP.MaxCount = UnrollMaxCount;
151   if (UnrollFullMaxCount.getNumOccurrences() > 0)
152     UP.FullUnrollMaxCount = UnrollFullMaxCount;
153   if (UnrollAllowPartial.getNumOccurrences() > 0)
154     UP.Partial = UnrollAllowPartial;
155   if (UnrollAllowRemainder.getNumOccurrences() > 0)
156     UP.AllowRemainder = UnrollAllowRemainder;
157   if (UnrollRuntime.getNumOccurrences() > 0)
158     UP.Runtime = UnrollRuntime;
159 
160   // Apply user values provided by argument
161   if (UserThreshold.hasValue()) {
162     UP.Threshold = *UserThreshold;
163     UP.PartialThreshold = *UserThreshold;
164   }
165   if (UserCount.hasValue())
166     UP.Count = *UserCount;
167   if (UserAllowPartial.hasValue())
168     UP.Partial = *UserAllowPartial;
169   if (UserRuntime.hasValue())
170     UP.Runtime = *UserRuntime;
171 
172   return UP;
173 }
174 
175 namespace {
176 /// A struct to densely store the state of an instruction after unrolling at
177 /// each iteration.
178 ///
179 /// This is designed to work like a tuple of <Instruction *, int> for the
180 /// purposes of hashing and lookup, but to be able to associate two boolean
181 /// states with each key.
182 struct UnrolledInstState {
183   Instruction *I;
184   int Iteration : 30;
185   unsigned IsFree : 1;
186   unsigned IsCounted : 1;
187 };
188 
189 /// Hashing and equality testing for a set of the instruction states.
190 struct UnrolledInstStateKeyInfo {
191   typedef DenseMapInfo<Instruction *> PtrInfo;
192   typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
193   static inline UnrolledInstState getEmptyKey() {
194     return {PtrInfo::getEmptyKey(), 0, 0, 0};
195   }
196   static inline UnrolledInstState getTombstoneKey() {
197     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
198   }
199   static inline unsigned getHashValue(const UnrolledInstState &S) {
200     return PairInfo::getHashValue({S.I, S.Iteration});
201   }
202   static inline bool isEqual(const UnrolledInstState &LHS,
203                              const UnrolledInstState &RHS) {
204     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
205   }
206 };
207 }
208 
209 namespace {
210 struct EstimatedUnrollCost {
211   /// \brief The estimated cost after unrolling.
212   int UnrolledCost;
213 
214   /// \brief The estimated dynamic cost of executing the instructions in the
215   /// rolled form.
216   int RolledDynamicCost;
217 };
218 }
219 
220 /// \brief Figure out if the loop is worth full unrolling.
221 ///
222 /// Complete loop unrolling can make some loads constant, and we need to know
223 /// if that would expose any further optimization opportunities.  This routine
224 /// estimates this optimization.  It computes cost of unrolled loop
225 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
226 /// dynamic cost we mean that we won't count costs of blocks that are known not
227 /// to be executed (i.e. if we have a branch in the loop and we know that at the
228 /// given iteration its condition would be resolved to true, we won't add up the
229 /// cost of the 'false'-block).
230 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
231 /// the analysis failed (no benefits expected from the unrolling, or the loop is
232 /// too big to analyze), the returned value is None.
233 static Optional<EstimatedUnrollCost>
234 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
235                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
236                       int MaxUnrolledLoopSize) {
237   // We want to be able to scale offsets by the trip count and add more offsets
238   // to them without checking for overflows, and we already don't want to
239   // analyze *massive* trip counts, so we force the max to be reasonably small.
240   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
241          "The unroll iterations max is too large!");
242 
243   // Only analyze inner loops. We can't properly estimate cost of nested loops
244   // and we won't visit inner loops again anyway.
245   if (!L->empty())
246     return None;
247 
248   // Don't simulate loops with a big or unknown tripcount
249   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
250       TripCount > UnrollMaxIterationsCountToAnalyze)
251     return None;
252 
253   SmallSetVector<BasicBlock *, 16> BBWorklist;
254   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
255   DenseMap<Value *, Constant *> SimplifiedValues;
256   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
257 
258   // The estimated cost of the unrolled form of the loop. We try to estimate
259   // this by simplifying as much as we can while computing the estimate.
260   int UnrolledCost = 0;
261 
262   // We also track the estimated dynamic (that is, actually executed) cost in
263   // the rolled form. This helps identify cases when the savings from unrolling
264   // aren't just exposing dead control flows, but actual reduced dynamic
265   // instructions due to the simplifications which we expect to occur after
266   // unrolling.
267   int RolledDynamicCost = 0;
268 
269   // We track the simplification of each instruction in each iteration. We use
270   // this to recursively merge costs into the unrolled cost on-demand so that
271   // we don't count the cost of any dead code. This is essentially a map from
272   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
273   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
274 
275   // A small worklist used to accumulate cost of instructions from each
276   // observable and reached root in the loop.
277   SmallVector<Instruction *, 16> CostWorklist;
278 
279   // PHI-used worklist used between iterations while accumulating cost.
280   SmallVector<Instruction *, 4> PHIUsedList;
281 
282   // Helper function to accumulate cost for instructions in the loop.
283   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
284     assert(Iteration >= 0 && "Cannot have a negative iteration!");
285     assert(CostWorklist.empty() && "Must start with an empty cost list");
286     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
287     CostWorklist.push_back(&RootI);
288     for (;; --Iteration) {
289       do {
290         Instruction *I = CostWorklist.pop_back_val();
291 
292         // InstCostMap only uses I and Iteration as a key, the other two values
293         // don't matter here.
294         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
295         if (CostIter == InstCostMap.end())
296           // If an input to a PHI node comes from a dead path through the loop
297           // we may have no cost data for it here. What that actually means is
298           // that it is free.
299           continue;
300         auto &Cost = *CostIter;
301         if (Cost.IsCounted)
302           // Already counted this instruction.
303           continue;
304 
305         // Mark that we are counting the cost of this instruction now.
306         Cost.IsCounted = true;
307 
308         // If this is a PHI node in the loop header, just add it to the PHI set.
309         if (auto *PhiI = dyn_cast<PHINode>(I))
310           if (PhiI->getParent() == L->getHeader()) {
311             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
312                                   "inherently simplify during unrolling.");
313             if (Iteration == 0)
314               continue;
315 
316             // Push the incoming value from the backedge into the PHI used list
317             // if it is an in-loop instruction. We'll use this to populate the
318             // cost worklist for the next iteration (as we count backwards).
319             if (auto *OpI = dyn_cast<Instruction>(
320                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
321               if (L->contains(OpI))
322                 PHIUsedList.push_back(OpI);
323             continue;
324           }
325 
326         // First accumulate the cost of this instruction.
327         if (!Cost.IsFree) {
328           UnrolledCost += TTI.getUserCost(I);
329           DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
330                        << "): ");
331           DEBUG(I->dump());
332         }
333 
334         // We must count the cost of every operand which is not free,
335         // recursively. If we reach a loop PHI node, simply add it to the set
336         // to be considered on the next iteration (backwards!).
337         for (Value *Op : I->operands()) {
338           // Check whether this operand is free due to being a constant or
339           // outside the loop.
340           auto *OpI = dyn_cast<Instruction>(Op);
341           if (!OpI || !L->contains(OpI))
342             continue;
343 
344           // Otherwise accumulate its cost.
345           CostWorklist.push_back(OpI);
346         }
347       } while (!CostWorklist.empty());
348 
349       if (PHIUsedList.empty())
350         // We've exhausted the search.
351         break;
352 
353       assert(Iteration > 0 &&
354              "Cannot track PHI-used values past the first iteration!");
355       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
356       PHIUsedList.clear();
357     }
358   };
359 
360   // Ensure that we don't violate the loop structure invariants relied on by
361   // this analysis.
362   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
363   assert(L->isLCSSAForm(DT) &&
364          "Must have loops in LCSSA form to track live-out values.");
365 
366   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
367 
368   // Simulate execution of each iteration of the loop counting instructions,
369   // which would be simplified.
370   // Since the same load will take different values on different iterations,
371   // we literally have to go through all loop's iterations.
372   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
373     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
374 
375     // Prepare for the iteration by collecting any simplified entry or backedge
376     // inputs.
377     for (Instruction &I : *L->getHeader()) {
378       auto *PHI = dyn_cast<PHINode>(&I);
379       if (!PHI)
380         break;
381 
382       // The loop header PHI nodes must have exactly two input: one from the
383       // loop preheader and one from the loop latch.
384       assert(
385           PHI->getNumIncomingValues() == 2 &&
386           "Must have an incoming value only for the preheader and the latch.");
387 
388       Value *V = PHI->getIncomingValueForBlock(
389           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
390       Constant *C = dyn_cast<Constant>(V);
391       if (Iteration != 0 && !C)
392         C = SimplifiedValues.lookup(V);
393       if (C)
394         SimplifiedInputValues.push_back({PHI, C});
395     }
396 
397     // Now clear and re-populate the map for the next iteration.
398     SimplifiedValues.clear();
399     while (!SimplifiedInputValues.empty())
400       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
401 
402     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
403 
404     BBWorklist.clear();
405     BBWorklist.insert(L->getHeader());
406     // Note that we *must not* cache the size, this loop grows the worklist.
407     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
408       BasicBlock *BB = BBWorklist[Idx];
409 
410       // Visit all instructions in the given basic block and try to simplify
411       // it.  We don't change the actual IR, just count optimization
412       // opportunities.
413       for (Instruction &I : *BB) {
414         if (isa<DbgInfoIntrinsic>(I))
415           continue;
416 
417         // Track this instruction's expected baseline cost when executing the
418         // rolled loop form.
419         RolledDynamicCost += TTI.getUserCost(&I);
420 
421         // Visit the instruction to analyze its loop cost after unrolling,
422         // and if the visitor returns true, mark the instruction as free after
423         // unrolling and continue.
424         bool IsFree = Analyzer.visit(I);
425         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
426                                            (unsigned)IsFree,
427                                            /*IsCounted*/ false}).second;
428         (void)Inserted;
429         assert(Inserted && "Cannot have a state for an unvisited instruction!");
430 
431         if (IsFree)
432           continue;
433 
434         // Can't properly model a cost of a call.
435         // FIXME: With a proper cost model we should be able to do it.
436         if(isa<CallInst>(&I))
437           return None;
438 
439         // If the instruction might have a side-effect recursively account for
440         // the cost of it and all the instructions leading up to it.
441         if (I.mayHaveSideEffects())
442           AddCostRecursively(I, Iteration);
443 
444         // If unrolled body turns out to be too big, bail out.
445         if (UnrolledCost > MaxUnrolledLoopSize) {
446           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
447                        << "  UnrolledCost: " << UnrolledCost
448                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
449                        << "\n");
450           return None;
451         }
452       }
453 
454       TerminatorInst *TI = BB->getTerminator();
455 
456       // Add in the live successors by first checking whether we have terminator
457       // that may be simplified based on the values simplified by this call.
458       BasicBlock *KnownSucc = nullptr;
459       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
460         if (BI->isConditional()) {
461           if (Constant *SimpleCond =
462                   SimplifiedValues.lookup(BI->getCondition())) {
463             // Just take the first successor if condition is undef
464             if (isa<UndefValue>(SimpleCond))
465               KnownSucc = BI->getSuccessor(0);
466             else if (ConstantInt *SimpleCondVal =
467                          dyn_cast<ConstantInt>(SimpleCond))
468               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
469           }
470         }
471       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
472         if (Constant *SimpleCond =
473                 SimplifiedValues.lookup(SI->getCondition())) {
474           // Just take the first successor if condition is undef
475           if (isa<UndefValue>(SimpleCond))
476             KnownSucc = SI->getSuccessor(0);
477           else if (ConstantInt *SimpleCondVal =
478                        dyn_cast<ConstantInt>(SimpleCond))
479             KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
480         }
481       }
482       if (KnownSucc) {
483         if (L->contains(KnownSucc))
484           BBWorklist.insert(KnownSucc);
485         else
486           ExitWorklist.insert({BB, KnownSucc});
487         continue;
488       }
489 
490       // Add BB's successors to the worklist.
491       for (BasicBlock *Succ : successors(BB))
492         if (L->contains(Succ))
493           BBWorklist.insert(Succ);
494         else
495           ExitWorklist.insert({BB, Succ});
496       AddCostRecursively(*TI, Iteration);
497     }
498 
499     // If we found no optimization opportunities on the first iteration, we
500     // won't find them on later ones too.
501     if (UnrolledCost == RolledDynamicCost) {
502       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
503                    << "  UnrolledCost: " << UnrolledCost << "\n");
504       return None;
505     }
506   }
507 
508   while (!ExitWorklist.empty()) {
509     BasicBlock *ExitingBB, *ExitBB;
510     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
511 
512     for (Instruction &I : *ExitBB) {
513       auto *PN = dyn_cast<PHINode>(&I);
514       if (!PN)
515         break;
516 
517       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
518       if (auto *OpI = dyn_cast<Instruction>(Op))
519         if (L->contains(OpI))
520           AddCostRecursively(*OpI, TripCount - 1);
521     }
522   }
523 
524   DEBUG(dbgs() << "Analysis finished:\n"
525                << "UnrolledCost: " << UnrolledCost << ", "
526                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
527   return {{UnrolledCost, RolledDynamicCost}};
528 }
529 
530 /// ApproximateLoopSize - Approximate the size of the loop.
531 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
532                                     bool &NotDuplicatable, bool &Convergent,
533                                     const TargetTransformInfo &TTI,
534                                     AssumptionCache *AC) {
535   SmallPtrSet<const Value *, 32> EphValues;
536   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
537 
538   CodeMetrics Metrics;
539   for (BasicBlock *BB : L->blocks())
540     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
541   NumCalls = Metrics.NumInlineCandidates;
542   NotDuplicatable = Metrics.notDuplicatable;
543   Convergent = Metrics.convergent;
544 
545   unsigned LoopSize = Metrics.NumInsts;
546 
547   // Don't allow an estimate of size zero.  This would allows unrolling of loops
548   // with huge iteration counts, which is a compile time problem even if it's
549   // not a problem for code quality. Also, the code using this size may assume
550   // that each loop has at least three instructions (likely a conditional
551   // branch, a comparison feeding that branch, and some kind of loop increment
552   // feeding that comparison instruction).
553   LoopSize = std::max(LoopSize, 3u);
554 
555   return LoopSize;
556 }
557 
558 // Returns the loop hint metadata node with the given name (for example,
559 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
560 // returned.
561 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
562   if (MDNode *LoopID = L->getLoopID())
563     return GetUnrollMetadata(LoopID, Name);
564   return nullptr;
565 }
566 
567 // Returns true if the loop has an unroll(full) pragma.
568 static bool HasUnrollFullPragma(const Loop *L) {
569   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
570 }
571 
572 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
573 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
574 static bool HasUnrollEnablePragma(const Loop *L) {
575   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
576 }
577 
578 // Returns true if the loop has an unroll(disable) pragma.
579 static bool HasUnrollDisablePragma(const Loop *L) {
580   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
581 }
582 
583 // Returns true if the loop has an runtime unroll(disable) pragma.
584 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
585   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
586 }
587 
588 // If loop has an unroll_count pragma return the (necessarily
589 // positive) value from the pragma.  Otherwise return 0.
590 static unsigned UnrollCountPragmaValue(const Loop *L) {
591   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
592   if (MD) {
593     assert(MD->getNumOperands() == 2 &&
594            "Unroll count hint metadata should have two operands.");
595     unsigned Count =
596         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
597     assert(Count >= 1 && "Unroll count must be positive.");
598     return Count;
599   }
600   return 0;
601 }
602 
603 // Remove existing unroll metadata and add unroll disable metadata to
604 // indicate the loop has already been unrolled.  This prevents a loop
605 // from being unrolled more than is directed by a pragma if the loop
606 // unrolling pass is run more than once (which it generally is).
607 static void SetLoopAlreadyUnrolled(Loop *L) {
608   MDNode *LoopID = L->getLoopID();
609   // First remove any existing loop unrolling metadata.
610   SmallVector<Metadata *, 4> MDs;
611   // Reserve first location for self reference to the LoopID metadata node.
612   MDs.push_back(nullptr);
613 
614   if (LoopID) {
615     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
616       bool IsUnrollMetadata = false;
617       MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
618       if (MD) {
619         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
620         IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
621       }
622       if (!IsUnrollMetadata)
623         MDs.push_back(LoopID->getOperand(i));
624     }
625   }
626 
627   // Add unroll(disable) metadata to disable future unrolling.
628   LLVMContext &Context = L->getHeader()->getContext();
629   SmallVector<Metadata *, 1> DisableOperands;
630   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
631   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
632   MDs.push_back(DisableNode);
633 
634   MDNode *NewLoopID = MDNode::get(Context, MDs);
635   // Set operand 0 to refer to the loop id itself.
636   NewLoopID->replaceOperandWith(0, NewLoopID);
637   L->setLoopID(NewLoopID);
638 }
639 
640 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
641                                 unsigned PercentDynamicCostSavedThreshold,
642                                 unsigned DynamicCostSavingsDiscount,
643                                 uint64_t UnrolledCost,
644                                 uint64_t RolledDynamicCost) {
645   if (Threshold == NoThreshold) {
646     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
647     return true;
648   }
649 
650   if (UnrolledCost <= Threshold) {
651     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
652                  << UnrolledCost << "<=" << Threshold << "\n");
653     return true;
654   }
655 
656   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
657   assert(RolledDynamicCost >= UnrolledCost &&
658          "Cannot have a higher unrolled cost than a rolled cost!");
659 
660   // Compute the percentage of the dynamic cost in the rolled form that is
661   // saved when unrolled. If unrolling dramatically reduces the estimated
662   // dynamic cost of the loop, we use a higher threshold to allow more
663   // unrolling.
664   unsigned PercentDynamicCostSaved =
665       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
666 
667   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
668       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
669           (int64_t)Threshold) {
670     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
671                     "expected dynamic cost by "
672                  << PercentDynamicCostSaved << "% (threshold: "
673                  << PercentDynamicCostSavedThreshold << "%)\n"
674                  << "  and the unrolled cost (" << UnrolledCost
675                  << ") is less than the max threshold ("
676                  << DynamicCostSavingsDiscount << ").\n");
677     return true;
678   }
679 
680   DEBUG(dbgs() << "  Too large to fully unroll:\n");
681   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
682   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
683   DEBUG(dbgs() << "    Percent cost saved threshold: "
684                << PercentDynamicCostSavedThreshold << "%\n");
685   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
686   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
687   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
688                << "\n");
689   return false;
690 }
691 
692 // Returns true if unroll count was set explicitly.
693 // Calculates unroll count and writes it to UP.Count.
694 static bool computeUnrollCount(Loop *L, const TargetTransformInfo &TTI,
695                                DominatorTree &DT, LoopInfo *LI,
696                                ScalarEvolution *SE,
697                                OptimizationRemarkEmitter *ORE,
698                                unsigned TripCount, unsigned TripMultiple,
699                                unsigned LoopSize,
700                                TargetTransformInfo::UnrollingPreferences &UP) {
701   // BEInsns represents number of instructions optimized when "back edge"
702   // becomes "fall through" in unrolled loop.
703   // For now we count a conditional branch on a backedge and a comparison
704   // feeding it.
705   unsigned BEInsns = 2;
706   // Check for explicit Count.
707   // 1st priority is unroll count set by "unroll-count" option.
708   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
709   if (UserUnrollCount) {
710     UP.Count = UnrollCount;
711     UP.AllowExpensiveTripCount = true;
712     UP.Force = true;
713     if (UP.AllowRemainder &&
714         (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold)
715       return true;
716   }
717 
718   // 2nd priority is unroll count set by pragma.
719   unsigned PragmaCount = UnrollCountPragmaValue(L);
720   if (PragmaCount > 0) {
721     UP.Count = PragmaCount;
722     UP.Runtime = true;
723     UP.AllowExpensiveTripCount = true;
724     UP.Force = true;
725     if (UP.AllowRemainder &&
726         (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
727       return true;
728   }
729   bool PragmaFullUnroll = HasUnrollFullPragma(L);
730   if (PragmaFullUnroll && TripCount != 0) {
731     UP.Count = TripCount;
732     if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
733       return false;
734   }
735 
736   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
737   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
738                         PragmaEnableUnroll || UserUnrollCount;
739 
740   uint64_t UnrolledSize;
741 
742   if (ExplicitUnroll && TripCount != 0) {
743     // If the loop has an unrolling pragma, we want to be more aggressive with
744     // unrolling limits. Set thresholds to at least the PragmaThreshold value
745     // which is larger than the default limits.
746     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
747     UP.PartialThreshold =
748         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
749   }
750 
751   // 3rd priority is full unroll count.
752   // Full unroll make sense only when TripCount could be staticaly calculated.
753   // Also we need to check if we exceed FullUnrollMaxCount.
754   if (TripCount && TripCount <= UP.FullUnrollMaxCount) {
755     // When computing the unrolled size, note that BEInsns are not replicated
756     // like the rest of the loop body.
757     UnrolledSize = (uint64_t)(LoopSize - BEInsns) * TripCount + BEInsns;
758     if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
759                             UnrolledSize, UnrolledSize)) {
760       UP.Count = TripCount;
761       return ExplicitUnroll;
762     } else {
763       // The loop isn't that small, but we still can fully unroll it if that
764       // helps to remove a significant number of instructions.
765       // To check that, run additional analysis on the loop.
766       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
767               L, TripCount, DT, *SE, TTI,
768               UP.Threshold + UP.DynamicCostSavingsDiscount))
769         if (canUnrollCompletely(L, UP.Threshold,
770                                 UP.PercentDynamicCostSavedThreshold,
771                                 UP.DynamicCostSavingsDiscount,
772                                 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
773           UP.Count = TripCount;
774           return ExplicitUnroll;
775         }
776     }
777   }
778 
779   // 4rd priority is partial unrolling.
780   // Try partial unroll only when TripCount could be staticaly calculated.
781   if (TripCount) {
782     if (UP.Count == 0)
783       UP.Count = TripCount;
784     UP.Partial |= ExplicitUnroll;
785     if (!UP.Partial) {
786       DEBUG(dbgs() << "  will not try to unroll partially because "
787                    << "-unroll-allow-partial not given\n");
788       UP.Count = 0;
789       return false;
790     }
791     if (UP.PartialThreshold != NoThreshold) {
792       // Reduce unroll count to be modulo of TripCount for partial unrolling.
793       UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns;
794       if (UnrolledSize > UP.PartialThreshold)
795         UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) /
796                    (LoopSize - BEInsns);
797       if (UP.Count > UP.MaxCount)
798         UP.Count = UP.MaxCount;
799       while (UP.Count != 0 && TripCount % UP.Count != 0)
800         UP.Count--;
801       if (UP.AllowRemainder && UP.Count <= 1) {
802         // If there is no Count that is modulo of TripCount, set Count to
803         // largest power-of-two factor that satisfies the threshold limit.
804         // As we'll create fixup loop, do the type of unrolling only if
805         // remainder loop is allowed.
806         UP.Count = UP.DefaultUnrollRuntimeCount;
807         UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
808         while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
809           UP.Count >>= 1;
810           UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
811         }
812       }
813       if (UP.Count < 2) {
814         if (PragmaEnableUnroll)
815           ORE->emit(
816               OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
817                                        L->getStartLoc(), L->getHeader())
818               << "Unable to unroll loop as directed by unroll(enable) pragma "
819                  "because unrolled size is too large.");
820         UP.Count = 0;
821       }
822     } else {
823       UP.Count = TripCount;
824     }
825     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
826         UP.Count != TripCount)
827       ORE->emit(
828           OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
829                                    L->getStartLoc(), L->getHeader())
830           << "Unable to fully unroll loop as directed by unroll pragma because "
831              "unrolled size is too large.");
832     return ExplicitUnroll;
833   }
834   assert(TripCount == 0 &&
835          "All cases when TripCount is constant should be covered here.");
836   if (PragmaFullUnroll)
837     ORE->emit(
838         OptimizationRemarkMissed(DEBUG_TYPE,
839                                  "CantFullUnrollAsDirectedRuntimeTripCount",
840                                  L->getStartLoc(), L->getHeader())
841         << "Unable to fully unroll loop as directed by unroll(full) pragma "
842            "because loop has a runtime trip count.");
843 
844   // 5th priority is runtime unrolling.
845   // Don't unroll a runtime trip count loop when it is disabled.
846   if (HasRuntimeUnrollDisablePragma(L)) {
847     UP.Count = 0;
848     return false;
849   }
850   // Reduce count based on the type of unrolling and the threshold values.
851   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
852   if (!UP.Runtime) {
853     DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
854                  << "-unroll-runtime not given\n");
855     UP.Count = 0;
856     return false;
857   }
858   if (UP.Count == 0)
859     UP.Count = UP.DefaultUnrollRuntimeCount;
860   UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
861 
862   // Reduce unroll count to be the largest power-of-two factor of
863   // the original count which satisfies the threshold limit.
864   while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
865     UP.Count >>= 1;
866     UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
867   }
868 
869 #ifndef NDEBUG
870   unsigned OrigCount = UP.Count;
871 #endif
872 
873   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
874     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
875       UP.Count >>= 1;
876     DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
877                     "specific or because the loop contains a convergent "
878                     "instruction), so unroll count must divide the trip "
879                     "multiple, "
880                  << TripMultiple << ".  Reducing unroll count from "
881                  << OrigCount << " to " << UP.Count << ".\n");
882     using namespace ore;
883     if (PragmaCount > 0 && !UP.AllowRemainder)
884       ORE->emit(
885           OptimizationRemarkMissed(DEBUG_TYPE,
886                                    "DifferentUnrollCountFromDirected",
887                                    L->getStartLoc(), L->getHeader())
888           << "Unable to unroll loop the number of times directed by "
889              "unroll_count pragma because remainder loop is restricted "
890              "(that could architecture specific or because the loop "
891              "contains a convergent instruction) and so must have an unroll "
892              "count that divides the loop trip multiple of "
893           << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
894           << NV("UnrollCount", UP.Count) << " time(s).");
895   }
896 
897   if (UP.Count > UP.MaxCount)
898     UP.Count = UP.MaxCount;
899   DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count << "\n");
900   if (UP.Count < 2)
901     UP.Count = 0;
902   return ExplicitUnroll;
903 }
904 
905 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
906                             ScalarEvolution *SE, const TargetTransformInfo &TTI,
907                             AssumptionCache &AC, OptimizationRemarkEmitter &ORE,
908                             bool PreserveLCSSA,
909                             Optional<unsigned> ProvidedCount,
910                             Optional<unsigned> ProvidedThreshold,
911                             Optional<bool> ProvidedAllowPartial,
912                             Optional<bool> ProvidedRuntime) {
913   DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
914                << "] Loop %" << L->getHeader()->getName() << "\n");
915   if (HasUnrollDisablePragma(L)) {
916     return false;
917   }
918 
919   unsigned NumInlineCandidates;
920   bool NotDuplicatable;
921   bool Convergent;
922   unsigned LoopSize = ApproximateLoopSize(
923       L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
924   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
925   if (NotDuplicatable) {
926     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
927                  << " instructions.\n");
928     return false;
929   }
930   if (NumInlineCandidates != 0) {
931     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
932     return false;
933   }
934   if (!L->isLoopSimplifyForm()) {
935     DEBUG(
936         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
937     return false;
938   }
939 
940   // Find trip count and trip multiple if count is not available
941   unsigned TripCount = 0;
942   unsigned TripMultiple = 1;
943   // If there are multiple exiting blocks but one of them is the latch, use the
944   // latch for the trip count estimation. Otherwise insist on a single exiting
945   // block for the trip count estimation.
946   BasicBlock *ExitingBlock = L->getLoopLatch();
947   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
948     ExitingBlock = L->getExitingBlock();
949   if (ExitingBlock) {
950     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
951     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
952   }
953 
954   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
955       L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
956       ProvidedRuntime);
957 
958   // Exit early if unrolling is disabled.
959   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
960     return false;
961 
962   // If the loop contains a convergent operation, the prelude we'd add
963   // to do the first few instructions before we hit the unrolled loop
964   // is unsafe -- it adds a control-flow dependency to the convergent
965   // operation.  Therefore restrict remainder loop (try unrollig without).
966   //
967   // TODO: This is quite conservative.  In practice, convergent_op()
968   // is likely to be called unconditionally in the loop.  In this
969   // case, the program would be ill-formed (on most architectures)
970   // unless n were the same on all threads in a thread group.
971   // Assuming n is the same on all threads, any kind of unrolling is
972   // safe.  But currently llvm's notion of convergence isn't powerful
973   // enough to express this.
974   if (Convergent)
975     UP.AllowRemainder = false;
976 
977   bool IsCountSetExplicitly = computeUnrollCount(
978       L, TTI, DT, LI, SE, &ORE, TripCount, TripMultiple, LoopSize, UP);
979   if (!UP.Count)
980     return false;
981   // Unroll factor (Count) must be less or equal to TripCount.
982   if (TripCount && UP.Count > TripCount)
983     UP.Count = TripCount;
984 
985   // Unroll the loop.
986   if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
987                   UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC,
988                   &ORE, PreserveLCSSA))
989     return false;
990 
991   // If loop has an unroll count pragma or unrolled by explicitly set count
992   // mark loop as unrolled to prevent unrolling beyond that requested.
993   if (IsCountSetExplicitly)
994     SetLoopAlreadyUnrolled(L);
995   return true;
996 }
997 
998 namespace {
999 class LoopUnroll : public LoopPass {
1000 public:
1001   static char ID; // Pass ID, replacement for typeid
1002   LoopUnroll(Optional<unsigned> Threshold = None,
1003              Optional<unsigned> Count = None,
1004              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
1005       : LoopPass(ID), ProvidedCount(std::move(Count)),
1006         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1007         ProvidedRuntime(Runtime) {
1008     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1009   }
1010 
1011   Optional<unsigned> ProvidedCount;
1012   Optional<unsigned> ProvidedThreshold;
1013   Optional<bool> ProvidedAllowPartial;
1014   Optional<bool> ProvidedRuntime;
1015 
1016   bool runOnLoop(Loop *L, LPPassManager &) override {
1017     if (skipLoop(L))
1018       return false;
1019 
1020     Function &F = *L->getHeader()->getParent();
1021 
1022     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1023     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1024     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1025     const TargetTransformInfo &TTI =
1026         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1027     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1028     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1029     // pass.  Function analyses need to be preserved across loop transformations
1030     // but ORE cannot be preserved (see comment before the pass definition).
1031     OptimizationRemarkEmitter ORE(&F);
1032     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1033 
1034     return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA,
1035                            ProvidedCount, ProvidedThreshold,
1036                            ProvidedAllowPartial, ProvidedRuntime);
1037   }
1038 
1039   /// This transformation requires natural loop information & requires that
1040   /// loop preheaders be inserted into the CFG...
1041   ///
1042   void getAnalysisUsage(AnalysisUsage &AU) const override {
1043     AU.addRequired<AssumptionCacheTracker>();
1044     AU.addRequired<TargetTransformInfoWrapperPass>();
1045     // FIXME: Loop passes are required to preserve domtree, and for now we just
1046     // recreate dom info if anything gets unrolled.
1047     getLoopAnalysisUsage(AU);
1048   }
1049 };
1050 }
1051 
1052 char LoopUnroll::ID = 0;
1053 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1054 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1055 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1056 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1057 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1058 
1059 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
1060                                  int Runtime) {
1061   // TODO: It would make more sense for this function to take the optionals
1062   // directly, but that's dangerous since it would silently break out of tree
1063   // callers.
1064   return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
1065                         Count == -1 ? None : Optional<unsigned>(Count),
1066                         AllowPartial == -1 ? None
1067                                            : Optional<bool>(AllowPartial),
1068                         Runtime == -1 ? None : Optional<bool>(Runtime));
1069 }
1070 
1071 Pass *llvm::createSimpleLoopUnrollPass() {
1072   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
1073 }
1074 
1075 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) {
1076   const auto &FAM =
1077       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
1078   Function *F = L.getHeader()->getParent();
1079 
1080 
1081   DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
1082   LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F);
1083   ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
1084   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
1085   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
1086   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1087   if (!DT)
1088     report_fatal_error("LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level");
1089   if (!LI)
1090     report_fatal_error("LoopUnrollPass: LoopAnalysis not cached at a higher level");
1091   if (!SE)
1092     report_fatal_error("LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level");
1093   if (!TTI)
1094     report_fatal_error("LoopUnrollPass: TargetIRAnalysis not cached at a higher level");
1095   if (!AC)
1096     report_fatal_error("LoopUnrollPass: AssumptionAnalysis not cached at a higher level");
1097   if (!ORE)
1098     report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not "
1099                        "cached at a higher level");
1100 
1101   bool Changed = tryToUnrollLoop(
1102       &L, *DT, LI, SE, *TTI, *AC, *ORE, /*PreserveLCSSA*/ true, ProvidedCount,
1103       ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime);
1104 
1105   if (!Changed)
1106     return PreservedAnalyses::all();
1107   return getLoopPassPreservedAnalyses();
1108 }
1109