1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopSimplify.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-unroll" 74 75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 76 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 77 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 78 " the current top-most loop. This is somtimes preferred to reduce" 79 " compile time.")); 80 81 static cl::opt<unsigned> 82 UnrollThreshold("unroll-threshold", cl::Hidden, 83 cl::desc("The cost threshold for loop unrolling")); 84 85 static cl::opt<unsigned> UnrollPartialThreshold( 86 "unroll-partial-threshold", cl::Hidden, 87 cl::desc("The cost threshold for partial loop unrolling")); 88 89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 90 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 91 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 92 "to the threshold when aggressively unrolling a loop due to the " 93 "dynamic cost savings. If completely unrolling a loop will reduce " 94 "the total runtime from X to Y, we boost the loop unroll " 95 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 96 "X/Y). This limit avoids excessive code bloat.")); 97 98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 99 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 100 cl::desc("Don't allow loop unrolling to simulate more than this number of" 101 "iterations when checking full unroll profitability")); 102 103 static cl::opt<unsigned> UnrollCount( 104 "unroll-count", cl::Hidden, 105 cl::desc("Use this unroll count for all loops including those with " 106 "unroll_count pragma values, for testing purposes")); 107 108 static cl::opt<unsigned> UnrollMaxCount( 109 "unroll-max-count", cl::Hidden, 110 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 111 "testing purposes")); 112 113 static cl::opt<unsigned> UnrollFullMaxCount( 114 "unroll-full-max-count", cl::Hidden, 115 cl::desc( 116 "Set the max unroll count for full unrolling, for testing purposes")); 117 118 static cl::opt<unsigned> UnrollPeelCount( 119 "unroll-peel-count", cl::Hidden, 120 cl::desc("Set the unroll peeling count, for testing purposes")); 121 122 static cl::opt<bool> 123 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 124 cl::desc("Allows loops to be partially unrolled until " 125 "-unroll-threshold loop size is reached.")); 126 127 static cl::opt<bool> UnrollAllowRemainder( 128 "unroll-allow-remainder", cl::Hidden, 129 cl::desc("Allow generation of a loop remainder (extra iterations) " 130 "when unrolling a loop.")); 131 132 static cl::opt<bool> 133 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 134 cl::desc("Unroll loops with run-time trip counts")); 135 136 static cl::opt<unsigned> UnrollMaxUpperBound( 137 "unroll-max-upperbound", cl::init(8), cl::Hidden, 138 cl::desc( 139 "The max of trip count upper bound that is considered in unrolling")); 140 141 static cl::opt<unsigned> PragmaUnrollThreshold( 142 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 143 cl::desc("Unrolled size limit for loops with an unroll(full) or " 144 "unroll_count pragma.")); 145 146 static cl::opt<unsigned> FlatLoopTripCountThreshold( 147 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 148 cl::desc("If the runtime tripcount for the loop is lower than the " 149 "threshold, the loop is considered as flat and will be less " 150 "aggressively unrolled.")); 151 152 static cl::opt<bool> 153 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 154 cl::desc("Allows loops to be peeled when the dynamic " 155 "trip count is known to be low.")); 156 157 static cl::opt<bool> UnrollAllowLoopNestsPeeling( 158 "unroll-allow-loop-nests-peeling", cl::init(false), cl::Hidden, 159 cl::desc("Allows loop nests to be peeled.")); 160 161 static cl::opt<bool> UnrollUnrollRemainder( 162 "unroll-remainder", cl::Hidden, 163 cl::desc("Allow the loop remainder to be unrolled.")); 164 165 // This option isn't ever intended to be enabled, it serves to allow 166 // experiments to check the assumptions about when this kind of revisit is 167 // necessary. 168 static cl::opt<bool> UnrollRevisitChildLoops( 169 "unroll-revisit-child-loops", cl::Hidden, 170 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 171 "This shouldn't typically be needed as child loops (or their " 172 "clones) were already visited.")); 173 174 /// A magic value for use with the Threshold parameter to indicate 175 /// that the loop unroll should be performed regardless of how much 176 /// code expansion would result. 177 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 178 179 /// Gather the various unrolling parameters based on the defaults, compiler 180 /// flags, TTI overrides and user specified parameters. 181 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 182 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 183 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 184 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 185 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 186 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 187 Optional<bool> UserAllowProfileBasedPeeling, 188 Optional<unsigned> UserFullUnrollMaxCount) { 189 TargetTransformInfo::UnrollingPreferences UP; 190 191 // Set up the defaults 192 UP.Threshold = OptLevel > 2 ? 300 : 150; 193 UP.MaxPercentThresholdBoost = 400; 194 UP.OptSizeThreshold = 0; 195 UP.PartialThreshold = 150; 196 UP.PartialOptSizeThreshold = 0; 197 UP.Count = 0; 198 UP.PeelCount = 0; 199 UP.DefaultUnrollRuntimeCount = 8; 200 UP.MaxCount = std::numeric_limits<unsigned>::max(); 201 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 202 UP.BEInsns = 2; 203 UP.Partial = false; 204 UP.Runtime = false; 205 UP.AllowRemainder = true; 206 UP.UnrollRemainder = false; 207 UP.AllowExpensiveTripCount = false; 208 UP.Force = false; 209 UP.UpperBound = false; 210 UP.AllowPeeling = true; 211 UP.AllowLoopNestsPeeling = false; 212 UP.UnrollAndJam = false; 213 UP.PeelProfiledIterations = true; 214 UP.UnrollAndJamInnerLoopThreshold = 60; 215 216 // Override with any target specific settings 217 TTI.getUnrollingPreferences(L, SE, UP); 218 219 // Apply size attributes 220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 221 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 222 PGSOQueryType::IRPass); 223 if (OptForSize) { 224 UP.Threshold = UP.OptSizeThreshold; 225 UP.PartialThreshold = UP.PartialOptSizeThreshold; 226 UP.MaxPercentThresholdBoost = 100; 227 } 228 229 // Apply any user values specified by cl::opt 230 if (UnrollThreshold.getNumOccurrences() > 0) 231 UP.Threshold = UnrollThreshold; 232 if (UnrollPartialThreshold.getNumOccurrences() > 0) 233 UP.PartialThreshold = UnrollPartialThreshold; 234 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 235 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 236 if (UnrollMaxCount.getNumOccurrences() > 0) 237 UP.MaxCount = UnrollMaxCount; 238 if (UnrollFullMaxCount.getNumOccurrences() > 0) 239 UP.FullUnrollMaxCount = UnrollFullMaxCount; 240 if (UnrollPeelCount.getNumOccurrences() > 0) 241 UP.PeelCount = UnrollPeelCount; 242 if (UnrollAllowPartial.getNumOccurrences() > 0) 243 UP.Partial = UnrollAllowPartial; 244 if (UnrollAllowRemainder.getNumOccurrences() > 0) 245 UP.AllowRemainder = UnrollAllowRemainder; 246 if (UnrollRuntime.getNumOccurrences() > 0) 247 UP.Runtime = UnrollRuntime; 248 if (UnrollMaxUpperBound == 0) 249 UP.UpperBound = false; 250 if (UnrollAllowPeeling.getNumOccurrences() > 0) 251 UP.AllowPeeling = UnrollAllowPeeling; 252 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 253 UP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 254 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 255 UP.UnrollRemainder = UnrollUnrollRemainder; 256 257 // Apply user values provided by argument 258 if (UserThreshold.hasValue()) { 259 UP.Threshold = *UserThreshold; 260 UP.PartialThreshold = *UserThreshold; 261 } 262 if (UserCount.hasValue()) 263 UP.Count = *UserCount; 264 if (UserAllowPartial.hasValue()) 265 UP.Partial = *UserAllowPartial; 266 if (UserRuntime.hasValue()) 267 UP.Runtime = *UserRuntime; 268 if (UserUpperBound.hasValue()) 269 UP.UpperBound = *UserUpperBound; 270 if (UserAllowPeeling.hasValue()) 271 UP.AllowPeeling = *UserAllowPeeling; 272 if (UserAllowProfileBasedPeeling.hasValue()) 273 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 274 if (UserFullUnrollMaxCount.hasValue()) 275 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 276 277 return UP; 278 } 279 280 namespace { 281 282 /// A struct to densely store the state of an instruction after unrolling at 283 /// each iteration. 284 /// 285 /// This is designed to work like a tuple of <Instruction *, int> for the 286 /// purposes of hashing and lookup, but to be able to associate two boolean 287 /// states with each key. 288 struct UnrolledInstState { 289 Instruction *I; 290 int Iteration : 30; 291 unsigned IsFree : 1; 292 unsigned IsCounted : 1; 293 }; 294 295 /// Hashing and equality testing for a set of the instruction states. 296 struct UnrolledInstStateKeyInfo { 297 using PtrInfo = DenseMapInfo<Instruction *>; 298 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 299 300 static inline UnrolledInstState getEmptyKey() { 301 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 302 } 303 304 static inline UnrolledInstState getTombstoneKey() { 305 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 306 } 307 308 static inline unsigned getHashValue(const UnrolledInstState &S) { 309 return PairInfo::getHashValue({S.I, S.Iteration}); 310 } 311 312 static inline bool isEqual(const UnrolledInstState &LHS, 313 const UnrolledInstState &RHS) { 314 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 315 } 316 }; 317 318 struct EstimatedUnrollCost { 319 /// The estimated cost after unrolling. 320 unsigned UnrolledCost; 321 322 /// The estimated dynamic cost of executing the instructions in the 323 /// rolled form. 324 unsigned RolledDynamicCost; 325 }; 326 327 } // end anonymous namespace 328 329 /// Figure out if the loop is worth full unrolling. 330 /// 331 /// Complete loop unrolling can make some loads constant, and we need to know 332 /// if that would expose any further optimization opportunities. This routine 333 /// estimates this optimization. It computes cost of unrolled loop 334 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 335 /// dynamic cost we mean that we won't count costs of blocks that are known not 336 /// to be executed (i.e. if we have a branch in the loop and we know that at the 337 /// given iteration its condition would be resolved to true, we won't add up the 338 /// cost of the 'false'-block). 339 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 340 /// the analysis failed (no benefits expected from the unrolling, or the loop is 341 /// too big to analyze), the returned value is None. 342 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 343 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 344 const SmallPtrSetImpl<const Value *> &EphValues, 345 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 346 // We want to be able to scale offsets by the trip count and add more offsets 347 // to them without checking for overflows, and we already don't want to 348 // analyze *massive* trip counts, so we force the max to be reasonably small. 349 assert(UnrollMaxIterationsCountToAnalyze < 350 (unsigned)(std::numeric_limits<int>::max() / 2) && 351 "The unroll iterations max is too large!"); 352 353 // Only analyze inner loops. We can't properly estimate cost of nested loops 354 // and we won't visit inner loops again anyway. 355 if (!L->empty()) 356 return None; 357 358 // Don't simulate loops with a big or unknown tripcount 359 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 360 TripCount > UnrollMaxIterationsCountToAnalyze) 361 return None; 362 363 SmallSetVector<BasicBlock *, 16> BBWorklist; 364 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 365 DenseMap<Value *, Constant *> SimplifiedValues; 366 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 367 368 // The estimated cost of the unrolled form of the loop. We try to estimate 369 // this by simplifying as much as we can while computing the estimate. 370 unsigned UnrolledCost = 0; 371 372 // We also track the estimated dynamic (that is, actually executed) cost in 373 // the rolled form. This helps identify cases when the savings from unrolling 374 // aren't just exposing dead control flows, but actual reduced dynamic 375 // instructions due to the simplifications which we expect to occur after 376 // unrolling. 377 unsigned RolledDynamicCost = 0; 378 379 // We track the simplification of each instruction in each iteration. We use 380 // this to recursively merge costs into the unrolled cost on-demand so that 381 // we don't count the cost of any dead code. This is essentially a map from 382 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 383 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 384 385 // A small worklist used to accumulate cost of instructions from each 386 // observable and reached root in the loop. 387 SmallVector<Instruction *, 16> CostWorklist; 388 389 // PHI-used worklist used between iterations while accumulating cost. 390 SmallVector<Instruction *, 4> PHIUsedList; 391 392 // Helper function to accumulate cost for instructions in the loop. 393 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 394 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 395 assert(CostWorklist.empty() && "Must start with an empty cost list"); 396 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 397 CostWorklist.push_back(&RootI); 398 for (;; --Iteration) { 399 do { 400 Instruction *I = CostWorklist.pop_back_val(); 401 402 // InstCostMap only uses I and Iteration as a key, the other two values 403 // don't matter here. 404 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 405 if (CostIter == InstCostMap.end()) 406 // If an input to a PHI node comes from a dead path through the loop 407 // we may have no cost data for it here. What that actually means is 408 // that it is free. 409 continue; 410 auto &Cost = *CostIter; 411 if (Cost.IsCounted) 412 // Already counted this instruction. 413 continue; 414 415 // Mark that we are counting the cost of this instruction now. 416 Cost.IsCounted = true; 417 418 // If this is a PHI node in the loop header, just add it to the PHI set. 419 if (auto *PhiI = dyn_cast<PHINode>(I)) 420 if (PhiI->getParent() == L->getHeader()) { 421 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 422 "inherently simplify during unrolling."); 423 if (Iteration == 0) 424 continue; 425 426 // Push the incoming value from the backedge into the PHI used list 427 // if it is an in-loop instruction. We'll use this to populate the 428 // cost worklist for the next iteration (as we count backwards). 429 if (auto *OpI = dyn_cast<Instruction>( 430 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 431 if (L->contains(OpI)) 432 PHIUsedList.push_back(OpI); 433 continue; 434 } 435 436 // First accumulate the cost of this instruction. 437 if (!Cost.IsFree) { 438 UnrolledCost += TTI.getUserCost(I); 439 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 440 << Iteration << "): "); 441 LLVM_DEBUG(I->dump()); 442 } 443 444 // We must count the cost of every operand which is not free, 445 // recursively. If we reach a loop PHI node, simply add it to the set 446 // to be considered on the next iteration (backwards!). 447 for (Value *Op : I->operands()) { 448 // Check whether this operand is free due to being a constant or 449 // outside the loop. 450 auto *OpI = dyn_cast<Instruction>(Op); 451 if (!OpI || !L->contains(OpI)) 452 continue; 453 454 // Otherwise accumulate its cost. 455 CostWorklist.push_back(OpI); 456 } 457 } while (!CostWorklist.empty()); 458 459 if (PHIUsedList.empty()) 460 // We've exhausted the search. 461 break; 462 463 assert(Iteration > 0 && 464 "Cannot track PHI-used values past the first iteration!"); 465 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 466 PHIUsedList.clear(); 467 } 468 }; 469 470 // Ensure that we don't violate the loop structure invariants relied on by 471 // this analysis. 472 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 473 assert(L->isLCSSAForm(DT) && 474 "Must have loops in LCSSA form to track live-out values."); 475 476 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 477 478 // Simulate execution of each iteration of the loop counting instructions, 479 // which would be simplified. 480 // Since the same load will take different values on different iterations, 481 // we literally have to go through all loop's iterations. 482 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 483 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 484 485 // Prepare for the iteration by collecting any simplified entry or backedge 486 // inputs. 487 for (Instruction &I : *L->getHeader()) { 488 auto *PHI = dyn_cast<PHINode>(&I); 489 if (!PHI) 490 break; 491 492 // The loop header PHI nodes must have exactly two input: one from the 493 // loop preheader and one from the loop latch. 494 assert( 495 PHI->getNumIncomingValues() == 2 && 496 "Must have an incoming value only for the preheader and the latch."); 497 498 Value *V = PHI->getIncomingValueForBlock( 499 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 500 Constant *C = dyn_cast<Constant>(V); 501 if (Iteration != 0 && !C) 502 C = SimplifiedValues.lookup(V); 503 if (C) 504 SimplifiedInputValues.push_back({PHI, C}); 505 } 506 507 // Now clear and re-populate the map for the next iteration. 508 SimplifiedValues.clear(); 509 while (!SimplifiedInputValues.empty()) 510 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 511 512 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 513 514 BBWorklist.clear(); 515 BBWorklist.insert(L->getHeader()); 516 // Note that we *must not* cache the size, this loop grows the worklist. 517 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 518 BasicBlock *BB = BBWorklist[Idx]; 519 520 // Visit all instructions in the given basic block and try to simplify 521 // it. We don't change the actual IR, just count optimization 522 // opportunities. 523 for (Instruction &I : *BB) { 524 // These won't get into the final code - don't even try calculating the 525 // cost for them. 526 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 527 continue; 528 529 // Track this instruction's expected baseline cost when executing the 530 // rolled loop form. 531 RolledDynamicCost += TTI.getUserCost(&I); 532 533 // Visit the instruction to analyze its loop cost after unrolling, 534 // and if the visitor returns true, mark the instruction as free after 535 // unrolling and continue. 536 bool IsFree = Analyzer.visit(I); 537 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 538 (unsigned)IsFree, 539 /*IsCounted*/ false}).second; 540 (void)Inserted; 541 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 542 543 if (IsFree) 544 continue; 545 546 // Can't properly model a cost of a call. 547 // FIXME: With a proper cost model we should be able to do it. 548 if (auto *CI = dyn_cast<CallInst>(&I)) { 549 const Function *Callee = CI->getCalledFunction(); 550 if (!Callee || TTI.isLoweredToCall(Callee)) { 551 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 552 return None; 553 } 554 } 555 556 // If the instruction might have a side-effect recursively account for 557 // the cost of it and all the instructions leading up to it. 558 if (I.mayHaveSideEffects()) 559 AddCostRecursively(I, Iteration); 560 561 // If unrolled body turns out to be too big, bail out. 562 if (UnrolledCost > MaxUnrolledLoopSize) { 563 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 564 << " UnrolledCost: " << UnrolledCost 565 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 566 << "\n"); 567 return None; 568 } 569 } 570 571 Instruction *TI = BB->getTerminator(); 572 573 // Add in the live successors by first checking whether we have terminator 574 // that may be simplified based on the values simplified by this call. 575 BasicBlock *KnownSucc = nullptr; 576 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 577 if (BI->isConditional()) { 578 if (Constant *SimpleCond = 579 SimplifiedValues.lookup(BI->getCondition())) { 580 // Just take the first successor if condition is undef 581 if (isa<UndefValue>(SimpleCond)) 582 KnownSucc = BI->getSuccessor(0); 583 else if (ConstantInt *SimpleCondVal = 584 dyn_cast<ConstantInt>(SimpleCond)) 585 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 586 } 587 } 588 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 589 if (Constant *SimpleCond = 590 SimplifiedValues.lookup(SI->getCondition())) { 591 // Just take the first successor if condition is undef 592 if (isa<UndefValue>(SimpleCond)) 593 KnownSucc = SI->getSuccessor(0); 594 else if (ConstantInt *SimpleCondVal = 595 dyn_cast<ConstantInt>(SimpleCond)) 596 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 597 } 598 } 599 if (KnownSucc) { 600 if (L->contains(KnownSucc)) 601 BBWorklist.insert(KnownSucc); 602 else 603 ExitWorklist.insert({BB, KnownSucc}); 604 continue; 605 } 606 607 // Add BB's successors to the worklist. 608 for (BasicBlock *Succ : successors(BB)) 609 if (L->contains(Succ)) 610 BBWorklist.insert(Succ); 611 else 612 ExitWorklist.insert({BB, Succ}); 613 AddCostRecursively(*TI, Iteration); 614 } 615 616 // If we found no optimization opportunities on the first iteration, we 617 // won't find them on later ones too. 618 if (UnrolledCost == RolledDynamicCost) { 619 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 620 << " UnrolledCost: " << UnrolledCost << "\n"); 621 return None; 622 } 623 } 624 625 while (!ExitWorklist.empty()) { 626 BasicBlock *ExitingBB, *ExitBB; 627 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 628 629 for (Instruction &I : *ExitBB) { 630 auto *PN = dyn_cast<PHINode>(&I); 631 if (!PN) 632 break; 633 634 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 635 if (auto *OpI = dyn_cast<Instruction>(Op)) 636 if (L->contains(OpI)) 637 AddCostRecursively(*OpI, TripCount - 1); 638 } 639 } 640 641 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 642 << "UnrolledCost: " << UnrolledCost << ", " 643 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 644 return {{UnrolledCost, RolledDynamicCost}}; 645 } 646 647 /// ApproximateLoopSize - Approximate the size of the loop. 648 unsigned llvm::ApproximateLoopSize( 649 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 650 const TargetTransformInfo &TTI, 651 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 652 CodeMetrics Metrics; 653 for (BasicBlock *BB : L->blocks()) 654 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 655 NumCalls = Metrics.NumInlineCandidates; 656 NotDuplicatable = Metrics.notDuplicatable; 657 Convergent = Metrics.convergent; 658 659 unsigned LoopSize = Metrics.NumInsts; 660 661 // Don't allow an estimate of size zero. This would allows unrolling of loops 662 // with huge iteration counts, which is a compile time problem even if it's 663 // not a problem for code quality. Also, the code using this size may assume 664 // that each loop has at least three instructions (likely a conditional 665 // branch, a comparison feeding that branch, and some kind of loop increment 666 // feeding that comparison instruction). 667 LoopSize = std::max(LoopSize, BEInsns + 1); 668 669 return LoopSize; 670 } 671 672 // Returns the loop hint metadata node with the given name (for example, 673 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 674 // returned. 675 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 676 if (MDNode *LoopID = L->getLoopID()) 677 return GetUnrollMetadata(LoopID, Name); 678 return nullptr; 679 } 680 681 // Returns true if the loop has an unroll(full) pragma. 682 static bool HasUnrollFullPragma(const Loop *L) { 683 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 684 } 685 686 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 687 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 688 static bool HasUnrollEnablePragma(const Loop *L) { 689 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 690 } 691 692 // Returns true if the loop has an runtime unroll(disable) pragma. 693 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 694 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 695 } 696 697 // If loop has an unroll_count pragma return the (necessarily 698 // positive) value from the pragma. Otherwise return 0. 699 static unsigned UnrollCountPragmaValue(const Loop *L) { 700 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 701 if (MD) { 702 assert(MD->getNumOperands() == 2 && 703 "Unroll count hint metadata should have two operands."); 704 unsigned Count = 705 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 706 assert(Count >= 1 && "Unroll count must be positive."); 707 return Count; 708 } 709 return 0; 710 } 711 712 // Computes the boosting factor for complete unrolling. 713 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 714 // be beneficial to fully unroll the loop even if unrolledcost is large. We 715 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 716 // the unroll threshold. 717 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 718 unsigned MaxPercentThresholdBoost) { 719 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 720 return 100; 721 else if (Cost.UnrolledCost != 0) 722 // The boosting factor is RolledDynamicCost / UnrolledCost 723 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 724 MaxPercentThresholdBoost); 725 else 726 return MaxPercentThresholdBoost; 727 } 728 729 // Returns loop size estimation for unrolled loop. 730 static uint64_t getUnrolledLoopSize( 731 unsigned LoopSize, 732 TargetTransformInfo::UnrollingPreferences &UP) { 733 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 734 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 735 } 736 737 // Returns true if unroll count was set explicitly. 738 // Calculates unroll count and writes it to UP.Count. 739 // Unless IgnoreUser is true, will also use metadata and command-line options 740 // that are specific to to the LoopUnroll pass (which, for instance, are 741 // irrelevant for the LoopUnrollAndJam pass). 742 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 743 // many LoopUnroll-specific options. The shared functionality should be 744 // refactored into it own function. 745 bool llvm::computeUnrollCount( 746 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 747 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 748 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 749 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 750 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 751 752 // Check for explicit Count. 753 // 1st priority is unroll count set by "unroll-count" option. 754 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 755 if (UserUnrollCount) { 756 UP.Count = UnrollCount; 757 UP.AllowExpensiveTripCount = true; 758 UP.Force = true; 759 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 760 return true; 761 } 762 763 // 2nd priority is unroll count set by pragma. 764 unsigned PragmaCount = UnrollCountPragmaValue(L); 765 if (PragmaCount > 0) { 766 UP.Count = PragmaCount; 767 UP.Runtime = true; 768 UP.AllowExpensiveTripCount = true; 769 UP.Force = true; 770 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 771 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 772 return true; 773 } 774 bool PragmaFullUnroll = HasUnrollFullPragma(L); 775 if (PragmaFullUnroll && TripCount != 0) { 776 UP.Count = TripCount; 777 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 778 return false; 779 } 780 781 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 782 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 783 PragmaEnableUnroll || UserUnrollCount; 784 785 if (ExplicitUnroll && TripCount != 0) { 786 // If the loop has an unrolling pragma, we want to be more aggressive with 787 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 788 // value which is larger than the default limits. 789 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 790 UP.PartialThreshold = 791 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 792 } 793 794 // 3rd priority is full unroll count. 795 // Full unroll makes sense only when TripCount or its upper bound could be 796 // statically calculated. 797 // Also we need to check if we exceed FullUnrollMaxCount. 798 // If using the upper bound to unroll, TripMultiple should be set to 1 because 799 // we do not know when loop may exit. 800 801 // We can unroll by the upper bound amount if it's generally allowed or if 802 // we know that the loop is executed either the upper bound or zero times. 803 // (MaxOrZero unrolling keeps only the first loop test, so the number of 804 // loop tests remains the same compared to the non-unrolled version, whereas 805 // the generic upper bound unrolling keeps all but the last loop test so the 806 // number of loop tests goes up which may end up being worse on targets with 807 // constrained branch predictor resources so is controlled by an option.) 808 // In addition we only unroll small upper bounds. 809 unsigned FullUnrollMaxTripCount = MaxTripCount; 810 if (!(UP.UpperBound || MaxOrZero) || 811 FullUnrollMaxTripCount > UnrollMaxUpperBound) 812 FullUnrollMaxTripCount = 0; 813 814 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 815 // compute the former when the latter is zero. 816 unsigned ExactTripCount = TripCount; 817 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 818 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 819 820 unsigned FullUnrollTripCount = 821 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 822 UP.Count = FullUnrollTripCount; 823 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 824 // When computing the unrolled size, note that BEInsns are not replicated 825 // like the rest of the loop body. 826 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 827 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 828 TripCount = FullUnrollTripCount; 829 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 830 return ExplicitUnroll; 831 } else { 832 // The loop isn't that small, but we still can fully unroll it if that 833 // helps to remove a significant number of instructions. 834 // To check that, run additional analysis on the loop. 835 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 836 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 837 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 838 unsigned Boost = 839 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 840 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 841 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 842 TripCount = FullUnrollTripCount; 843 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 844 return ExplicitUnroll; 845 } 846 } 847 } 848 } 849 850 // 4th priority is loop peeling. 851 computePeelCount(L, LoopSize, UP, TripCount, SE); 852 if (UP.PeelCount) { 853 UP.Runtime = false; 854 UP.Count = 1; 855 return ExplicitUnroll; 856 } 857 858 // 5th priority is partial unrolling. 859 // Try partial unroll only when TripCount could be statically calculated. 860 if (TripCount) { 861 UP.Partial |= ExplicitUnroll; 862 if (!UP.Partial) { 863 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 864 << "-unroll-allow-partial not given\n"); 865 UP.Count = 0; 866 return false; 867 } 868 if (UP.Count == 0) 869 UP.Count = TripCount; 870 if (UP.PartialThreshold != NoThreshold) { 871 // Reduce unroll count to be modulo of TripCount for partial unrolling. 872 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 873 UP.Count = 874 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 875 (LoopSize - UP.BEInsns); 876 if (UP.Count > UP.MaxCount) 877 UP.Count = UP.MaxCount; 878 while (UP.Count != 0 && TripCount % UP.Count != 0) 879 UP.Count--; 880 if (UP.AllowRemainder && UP.Count <= 1) { 881 // If there is no Count that is modulo of TripCount, set Count to 882 // largest power-of-two factor that satisfies the threshold limit. 883 // As we'll create fixup loop, do the type of unrolling only if 884 // remainder loop is allowed. 885 UP.Count = UP.DefaultUnrollRuntimeCount; 886 while (UP.Count != 0 && 887 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 888 UP.Count >>= 1; 889 } 890 if (UP.Count < 2) { 891 if (PragmaEnableUnroll) 892 ORE->emit([&]() { 893 return OptimizationRemarkMissed(DEBUG_TYPE, 894 "UnrollAsDirectedTooLarge", 895 L->getStartLoc(), L->getHeader()) 896 << "Unable to unroll loop as directed by unroll(enable) " 897 "pragma " 898 "because unrolled size is too large."; 899 }); 900 UP.Count = 0; 901 } 902 } else { 903 UP.Count = TripCount; 904 } 905 if (UP.Count > UP.MaxCount) 906 UP.Count = UP.MaxCount; 907 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 908 UP.Count != TripCount) 909 ORE->emit([&]() { 910 return OptimizationRemarkMissed(DEBUG_TYPE, 911 "FullUnrollAsDirectedTooLarge", 912 L->getStartLoc(), L->getHeader()) 913 << "Unable to fully unroll loop as directed by unroll pragma " 914 "because " 915 "unrolled size is too large."; 916 }); 917 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 918 << "\n"); 919 return ExplicitUnroll; 920 } 921 assert(TripCount == 0 && 922 "All cases when TripCount is constant should be covered here."); 923 if (PragmaFullUnroll) 924 ORE->emit([&]() { 925 return OptimizationRemarkMissed( 926 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 927 L->getStartLoc(), L->getHeader()) 928 << "Unable to fully unroll loop as directed by unroll(full) " 929 "pragma " 930 "because loop has a runtime trip count."; 931 }); 932 933 // 6th priority is runtime unrolling. 934 // Don't unroll a runtime trip count loop when it is disabled. 935 if (HasRuntimeUnrollDisablePragma(L)) { 936 UP.Count = 0; 937 return false; 938 } 939 940 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 941 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 942 UP.Count = 0; 943 return false; 944 } 945 946 // Check if the runtime trip count is too small when profile is available. 947 if (L->getHeader()->getParent()->hasProfileData()) { 948 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 949 if (*ProfileTripCount < FlatLoopTripCountThreshold) 950 return false; 951 else 952 UP.AllowExpensiveTripCount = true; 953 } 954 } 955 956 // Reduce count based on the type of unrolling and the threshold values. 957 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 958 if (!UP.Runtime) { 959 LLVM_DEBUG( 960 dbgs() << " will not try to unroll loop with runtime trip count " 961 << "-unroll-runtime not given\n"); 962 UP.Count = 0; 963 return false; 964 } 965 if (UP.Count == 0) 966 UP.Count = UP.DefaultUnrollRuntimeCount; 967 968 // Reduce unroll count to be the largest power-of-two factor of 969 // the original count which satisfies the threshold limit. 970 while (UP.Count != 0 && 971 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 972 UP.Count >>= 1; 973 974 #ifndef NDEBUG 975 unsigned OrigCount = UP.Count; 976 #endif 977 978 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 979 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 980 UP.Count >>= 1; 981 LLVM_DEBUG( 982 dbgs() << "Remainder loop is restricted (that could architecture " 983 "specific or because the loop contains a convergent " 984 "instruction), so unroll count must divide the trip " 985 "multiple, " 986 << TripMultiple << ". Reducing unroll count from " << OrigCount 987 << " to " << UP.Count << ".\n"); 988 989 using namespace ore; 990 991 if (PragmaCount > 0 && !UP.AllowRemainder) 992 ORE->emit([&]() { 993 return OptimizationRemarkMissed(DEBUG_TYPE, 994 "DifferentUnrollCountFromDirected", 995 L->getStartLoc(), L->getHeader()) 996 << "Unable to unroll loop the number of times directed by " 997 "unroll_count pragma because remainder loop is restricted " 998 "(that could architecture specific or because the loop " 999 "contains a convergent instruction) and so must have an " 1000 "unroll " 1001 "count that divides the loop trip multiple of " 1002 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1003 << NV("UnrollCount", UP.Count) << " time(s)."; 1004 }); 1005 } 1006 1007 if (UP.Count > UP.MaxCount) 1008 UP.Count = UP.MaxCount; 1009 1010 if (MaxTripCount && UP.Count > MaxTripCount) 1011 UP.Count = MaxTripCount; 1012 1013 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1014 << "\n"); 1015 if (UP.Count < 2) 1016 UP.Count = 0; 1017 return ExplicitUnroll; 1018 } 1019 1020 static LoopUnrollResult tryToUnrollLoop( 1021 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1022 const TargetTransformInfo &TTI, AssumptionCache &AC, 1023 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1024 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1025 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1026 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1027 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1028 Optional<bool> ProvidedAllowPeeling, 1029 Optional<bool> ProvidedAllowProfileBasedPeeling, 1030 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1031 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1032 << L->getHeader()->getParent()->getName() << "] Loop %" 1033 << L->getHeader()->getName() << "\n"); 1034 TransformationMode TM = hasUnrollTransformation(L); 1035 if (TM & TM_Disable) 1036 return LoopUnrollResult::Unmodified; 1037 if (!L->isLoopSimplifyForm()) { 1038 LLVM_DEBUG( 1039 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1040 return LoopUnrollResult::Unmodified; 1041 } 1042 1043 // When automtatic unrolling is disabled, do not unroll unless overridden for 1044 // this loop. 1045 if (OnlyWhenForced && !(TM & TM_Enable)) 1046 return LoopUnrollResult::Unmodified; 1047 1048 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1049 unsigned NumInlineCandidates; 1050 bool NotDuplicatable; 1051 bool Convergent; 1052 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1053 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1054 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1055 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1056 ProvidedFullUnrollMaxCount); 1057 1058 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1059 // as threshold later on. 1060 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1061 !OptForSize) 1062 return LoopUnrollResult::Unmodified; 1063 1064 SmallPtrSet<const Value *, 32> EphValues; 1065 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1066 1067 unsigned LoopSize = 1068 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1069 TTI, EphValues, UP.BEInsns); 1070 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1071 if (NotDuplicatable) { 1072 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1073 << " instructions.\n"); 1074 return LoopUnrollResult::Unmodified; 1075 } 1076 1077 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1078 // later), to (fully) unroll loops, if it does not increase code size. 1079 if (OptForSize) 1080 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1081 1082 if (NumInlineCandidates != 0) { 1083 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1084 return LoopUnrollResult::Unmodified; 1085 } 1086 1087 // Find trip count and trip multiple if count is not available 1088 unsigned TripCount = 0; 1089 unsigned TripMultiple = 1; 1090 // If there are multiple exiting blocks but one of them is the latch, use the 1091 // latch for the trip count estimation. Otherwise insist on a single exiting 1092 // block for the trip count estimation. 1093 BasicBlock *ExitingBlock = L->getLoopLatch(); 1094 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1095 ExitingBlock = L->getExitingBlock(); 1096 if (ExitingBlock) { 1097 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1098 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1099 } 1100 1101 // If the loop contains a convergent operation, the prelude we'd add 1102 // to do the first few instructions before we hit the unrolled loop 1103 // is unsafe -- it adds a control-flow dependency to the convergent 1104 // operation. Therefore restrict remainder loop (try unrollig without). 1105 // 1106 // TODO: This is quite conservative. In practice, convergent_op() 1107 // is likely to be called unconditionally in the loop. In this 1108 // case, the program would be ill-formed (on most architectures) 1109 // unless n were the same on all threads in a thread group. 1110 // Assuming n is the same on all threads, any kind of unrolling is 1111 // safe. But currently llvm's notion of convergence isn't powerful 1112 // enough to express this. 1113 if (Convergent) 1114 UP.AllowRemainder = false; 1115 1116 // Try to find the trip count upper bound if we cannot find the exact trip 1117 // count. 1118 unsigned MaxTripCount = 0; 1119 bool MaxOrZero = false; 1120 if (!TripCount) { 1121 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1122 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1123 } 1124 1125 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1126 // fully unroll the loop. 1127 bool UseUpperBound = false; 1128 bool IsCountSetExplicitly = computeUnrollCount( 1129 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1130 TripMultiple, LoopSize, UP, UseUpperBound); 1131 if (!UP.Count) 1132 return LoopUnrollResult::Unmodified; 1133 // Unroll factor (Count) must be less or equal to TripCount. 1134 if (TripCount && UP.Count > TripCount) 1135 UP.Count = TripCount; 1136 1137 // Save loop properties before it is transformed. 1138 MDNode *OrigLoopID = L->getLoopID(); 1139 1140 // Unroll the loop. 1141 Loop *RemainderLoop = nullptr; 1142 LoopUnrollResult UnrollResult = UnrollLoop( 1143 L, 1144 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1145 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1146 ForgetAllSCEV}, 1147 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1148 if (UnrollResult == LoopUnrollResult::Unmodified) 1149 return LoopUnrollResult::Unmodified; 1150 1151 if (RemainderLoop) { 1152 Optional<MDNode *> RemainderLoopID = 1153 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1154 LLVMLoopUnrollFollowupRemainder}); 1155 if (RemainderLoopID.hasValue()) 1156 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1157 } 1158 1159 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1160 Optional<MDNode *> NewLoopID = 1161 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1162 LLVMLoopUnrollFollowupUnrolled}); 1163 if (NewLoopID.hasValue()) { 1164 L->setLoopID(NewLoopID.getValue()); 1165 1166 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1167 // explicitly. 1168 return UnrollResult; 1169 } 1170 } 1171 1172 // If loop has an unroll count pragma or unrolled by explicitly set count 1173 // mark loop as unrolled to prevent unrolling beyond that requested. 1174 // If the loop was peeled, we already "used up" the profile information 1175 // we had, so we don't want to unroll or peel again. 1176 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1177 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1178 L->setLoopAlreadyUnrolled(); 1179 1180 return UnrollResult; 1181 } 1182 1183 namespace { 1184 1185 class LoopUnroll : public LoopPass { 1186 public: 1187 static char ID; // Pass ID, replacement for typeid 1188 1189 int OptLevel; 1190 1191 /// If false, use a cost model to determine whether unrolling of a loop is 1192 /// profitable. If true, only loops that explicitly request unrolling via 1193 /// metadata are considered. All other loops are skipped. 1194 bool OnlyWhenForced; 1195 1196 /// If false, when SCEV is invalidated, only forget everything in the 1197 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1198 /// Otherwise, forgetAllLoops and rebuild when needed next. 1199 bool ForgetAllSCEV; 1200 1201 Optional<unsigned> ProvidedCount; 1202 Optional<unsigned> ProvidedThreshold; 1203 Optional<bool> ProvidedAllowPartial; 1204 Optional<bool> ProvidedRuntime; 1205 Optional<bool> ProvidedUpperBound; 1206 Optional<bool> ProvidedAllowPeeling; 1207 Optional<bool> ProvidedAllowProfileBasedPeeling; 1208 Optional<unsigned> ProvidedFullUnrollMaxCount; 1209 1210 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1211 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1212 Optional<unsigned> Count = None, 1213 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1214 Optional<bool> UpperBound = None, 1215 Optional<bool> AllowPeeling = None, 1216 Optional<bool> AllowProfileBasedPeeling = None, 1217 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1218 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1219 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1220 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1221 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1222 ProvidedAllowPeeling(AllowPeeling), 1223 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1224 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1225 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1226 } 1227 1228 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1229 if (skipLoop(L)) 1230 return false; 1231 1232 Function &F = *L->getHeader()->getParent(); 1233 1234 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1235 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1236 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1237 const TargetTransformInfo &TTI = 1238 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1239 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1240 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1241 // pass. Function analyses need to be preserved across loop transformations 1242 // but ORE cannot be preserved (see comment before the pass definition). 1243 OptimizationRemarkEmitter ORE(&F); 1244 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1245 1246 LoopUnrollResult Result = tryToUnrollLoop( 1247 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1248 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1249 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1250 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1251 ProvidedFullUnrollMaxCount); 1252 1253 if (Result == LoopUnrollResult::FullyUnrolled) 1254 LPM.markLoopAsDeleted(*L); 1255 1256 return Result != LoopUnrollResult::Unmodified; 1257 } 1258 1259 /// This transformation requires natural loop information & requires that 1260 /// loop preheaders be inserted into the CFG... 1261 void getAnalysisUsage(AnalysisUsage &AU) const override { 1262 AU.addRequired<AssumptionCacheTracker>(); 1263 AU.addRequired<TargetTransformInfoWrapperPass>(); 1264 // FIXME: Loop passes are required to preserve domtree, and for now we just 1265 // recreate dom info if anything gets unrolled. 1266 getLoopAnalysisUsage(AU); 1267 } 1268 }; 1269 1270 } // end anonymous namespace 1271 1272 char LoopUnroll::ID = 0; 1273 1274 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1275 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1276 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1277 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1278 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1279 1280 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1281 bool ForgetAllSCEV, int Threshold, int Count, 1282 int AllowPartial, int Runtime, int UpperBound, 1283 int AllowPeeling) { 1284 // TODO: It would make more sense for this function to take the optionals 1285 // directly, but that's dangerous since it would silently break out of tree 1286 // callers. 1287 return new LoopUnroll( 1288 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1289 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1290 Count == -1 ? None : Optional<unsigned>(Count), 1291 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1292 Runtime == -1 ? None : Optional<bool>(Runtime), 1293 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1294 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1295 } 1296 1297 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1298 bool ForgetAllSCEV) { 1299 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1300 0, 0, 0, 0); 1301 } 1302 1303 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1304 LoopStandardAnalysisResults &AR, 1305 LPMUpdater &Updater) { 1306 const auto &FAM = 1307 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1308 Function *F = L.getHeader()->getParent(); 1309 1310 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1311 // FIXME: This should probably be optional rather than required. 1312 if (!ORE) 1313 report_fatal_error( 1314 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1315 "cached at a higher level"); 1316 1317 // Keep track of the previous loop structure so we can identify new loops 1318 // created by unrolling. 1319 Loop *ParentL = L.getParentLoop(); 1320 SmallPtrSet<Loop *, 4> OldLoops; 1321 if (ParentL) 1322 OldLoops.insert(ParentL->begin(), ParentL->end()); 1323 else 1324 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1325 1326 std::string LoopName = L.getName(); 1327 1328 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1329 /*BFI*/ nullptr, /*PSI*/ nullptr, 1330 /*PreserveLCSSA*/ true, OptLevel, 1331 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1332 /*Threshold*/ None, /*AllowPartial*/ false, 1333 /*Runtime*/ false, /*UpperBound*/ false, 1334 /*AllowPeeling*/ false, 1335 /*AllowProfileBasedPeeling*/ false, 1336 /*FullUnrollMaxCount*/ None) != 1337 LoopUnrollResult::Unmodified; 1338 if (!Changed) 1339 return PreservedAnalyses::all(); 1340 1341 // The parent must not be damaged by unrolling! 1342 #ifndef NDEBUG 1343 if (ParentL) 1344 ParentL->verifyLoop(); 1345 #endif 1346 1347 // Unrolling can do several things to introduce new loops into a loop nest: 1348 // - Full unrolling clones child loops within the current loop but then 1349 // removes the current loop making all of the children appear to be new 1350 // sibling loops. 1351 // 1352 // When a new loop appears as a sibling loop after fully unrolling, 1353 // its nesting structure has fundamentally changed and we want to revisit 1354 // it to reflect that. 1355 // 1356 // When unrolling has removed the current loop, we need to tell the 1357 // infrastructure that it is gone. 1358 // 1359 // Finally, we support a debugging/testing mode where we revisit child loops 1360 // as well. These are not expected to require further optimizations as either 1361 // they or the loop they were cloned from have been directly visited already. 1362 // But the debugging mode allows us to check this assumption. 1363 bool IsCurrentLoopValid = false; 1364 SmallVector<Loop *, 4> SibLoops; 1365 if (ParentL) 1366 SibLoops.append(ParentL->begin(), ParentL->end()); 1367 else 1368 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1369 erase_if(SibLoops, [&](Loop *SibLoop) { 1370 if (SibLoop == &L) { 1371 IsCurrentLoopValid = true; 1372 return true; 1373 } 1374 1375 // Otherwise erase the loop from the list if it was in the old loops. 1376 return OldLoops.count(SibLoop) != 0; 1377 }); 1378 Updater.addSiblingLoops(SibLoops); 1379 1380 if (!IsCurrentLoopValid) { 1381 Updater.markLoopAsDeleted(L, LoopName); 1382 } else { 1383 // We can only walk child loops if the current loop remained valid. 1384 if (UnrollRevisitChildLoops) { 1385 // Walk *all* of the child loops. 1386 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1387 Updater.addChildLoops(ChildLoops); 1388 } 1389 } 1390 1391 return getLoopPassPreservedAnalyses(); 1392 } 1393 1394 template <typename RangeT> 1395 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1396 SmallVector<Loop *, 8> Worklist; 1397 // We use an internal worklist to build up the preorder traversal without 1398 // recursion. 1399 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1400 1401 for (Loop *RootL : Loops) { 1402 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1403 assert(PreOrderWorklist.empty() && 1404 "Must start with an empty preorder walk worklist."); 1405 PreOrderWorklist.push_back(RootL); 1406 do { 1407 Loop *L = PreOrderWorklist.pop_back_val(); 1408 PreOrderWorklist.append(L->begin(), L->end()); 1409 PreOrderLoops.push_back(L); 1410 } while (!PreOrderWorklist.empty()); 1411 1412 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1413 PreOrderLoops.clear(); 1414 } 1415 return Worklist; 1416 } 1417 1418 PreservedAnalyses LoopUnrollPass::run(Function &F, 1419 FunctionAnalysisManager &AM) { 1420 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1421 auto &LI = AM.getResult<LoopAnalysis>(F); 1422 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1423 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1424 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1425 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1426 1427 LoopAnalysisManager *LAM = nullptr; 1428 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1429 LAM = &LAMProxy->getManager(); 1430 1431 const ModuleAnalysisManager &MAM = 1432 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1433 ProfileSummaryInfo *PSI = 1434 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1435 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1436 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1437 1438 bool Changed = false; 1439 1440 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1441 // Since simplification may add new inner loops, it has to run before the 1442 // legality and profitability checks. This means running the loop unroller 1443 // will simplify all loops, regardless of whether anything end up being 1444 // unrolled. 1445 for (auto &L : LI) { 1446 Changed |= 1447 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1448 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1449 } 1450 1451 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1452 1453 while (!Worklist.empty()) { 1454 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1455 // from back to front so that we work forward across the CFG, which 1456 // for unrolling is only needed to get optimization remarks emitted in 1457 // a forward order. 1458 Loop &L = *Worklist.pop_back_val(); 1459 #ifndef NDEBUG 1460 Loop *ParentL = L.getParentLoop(); 1461 #endif 1462 1463 // Check if the profile summary indicates that the profiled application 1464 // has a huge working set size, in which case we disable peeling to avoid 1465 // bloating it further. 1466 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1467 if (PSI && PSI->hasHugeWorkingSetSize()) 1468 LocalAllowPeeling = false; 1469 std::string LoopName = L.getName(); 1470 // The API here is quite complex to call and we allow to select some 1471 // flavors of unrolling during construction time (by setting UnrollOpts). 1472 LoopUnrollResult Result = tryToUnrollLoop( 1473 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1474 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1475 UnrollOpts.ForgetSCEV, /*Count*/ None, 1476 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1477 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1478 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1479 Changed |= Result != LoopUnrollResult::Unmodified; 1480 1481 // The parent must not be damaged by unrolling! 1482 #ifndef NDEBUG 1483 if (Result != LoopUnrollResult::Unmodified && ParentL) 1484 ParentL->verifyLoop(); 1485 #endif 1486 1487 // Clear any cached analysis results for L if we removed it completely. 1488 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1489 LAM->clear(L, LoopName); 1490 } 1491 1492 if (!Changed) 1493 return PreservedAnalyses::all(); 1494 1495 return getLoopPassPreservedAnalyses(); 1496 } 1497