1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/LoopPassManager.h" 22 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Utils/UnrollLoop.h" 37 #include <climits> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-unroll" 43 44 static cl::opt<unsigned> 45 UnrollThreshold("unroll-threshold", cl::Hidden, 46 cl::desc("The baseline cost threshold for loop unrolling")); 47 48 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 49 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 50 cl::desc("The percentage of estimated dynamic cost which must be saved by " 51 "unrolling to allow unrolling up to the max threshold.")); 52 53 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 54 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 55 cl::desc("This is the amount discounted from the total unroll cost when " 56 "the unrolled form has a high dynamic cost savings (triggered by " 57 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 58 59 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 60 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 61 cl::desc("Don't allow loop unrolling to simulate more than this number of" 62 "iterations when checking full unroll profitability")); 63 64 static cl::opt<unsigned> UnrollCount( 65 "unroll-count", cl::Hidden, 66 cl::desc("Use this unroll count for all loops including those with " 67 "unroll_count pragma values, for testing purposes")); 68 69 static cl::opt<unsigned> UnrollMaxCount( 70 "unroll-max-count", cl::Hidden, 71 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 72 "testing purposes")); 73 74 static cl::opt<unsigned> UnrollFullMaxCount( 75 "unroll-full-max-count", cl::Hidden, 76 cl::desc( 77 "Set the max unroll count for full unrolling, for testing purposes")); 78 79 static cl::opt<bool> 80 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 81 cl::desc("Allows loops to be partially unrolled until " 82 "-unroll-threshold loop size is reached.")); 83 84 static cl::opt<bool> UnrollAllowRemainder( 85 "unroll-allow-remainder", cl::Hidden, 86 cl::desc("Allow generation of a loop remainder (extra iterations) " 87 "when unrolling a loop.")); 88 89 static cl::opt<bool> 90 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 91 cl::desc("Unroll loops with run-time trip counts")); 92 93 static cl::opt<unsigned> UnrollMaxUpperBound( 94 "unroll-max-upperbound", cl::init(8), cl::Hidden, 95 cl::desc( 96 "The max of trip count upper bound that is considered in unrolling")); 97 98 static cl::opt<unsigned> PragmaUnrollThreshold( 99 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 100 cl::desc("Unrolled size limit for loops with an unroll(full) or " 101 "unroll_count pragma.")); 102 103 static cl::opt<unsigned> FlatLoopTripCountThreshold( 104 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 105 cl::desc("If the runtime tripcount for the loop is lower than the " 106 "threshold, the loop is considered as flat and will be less " 107 "aggressively unrolled.")); 108 109 static cl::opt<bool> 110 UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden, 111 cl::desc("Allows loops to be peeled when the dynamic " 112 "trip count is known to be low.")); 113 114 /// A magic value for use with the Threshold parameter to indicate 115 /// that the loop unroll should be performed regardless of how much 116 /// code expansion would result. 117 static const unsigned NoThreshold = UINT_MAX; 118 119 /// Gather the various unrolling parameters based on the defaults, compiler 120 /// flags, TTI overrides and user specified parameters. 121 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 122 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 123 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 124 Optional<bool> UserRuntime, Optional<bool> UserUpperBound) { 125 TargetTransformInfo::UnrollingPreferences UP; 126 127 // Set up the defaults 128 UP.Threshold = 150; 129 UP.PercentDynamicCostSavedThreshold = 50; 130 UP.DynamicCostSavingsDiscount = 100; 131 UP.OptSizeThreshold = 0; 132 UP.PartialThreshold = UP.Threshold; 133 UP.PartialOptSizeThreshold = 0; 134 UP.Count = 0; 135 UP.PeelCount = 0; 136 UP.DefaultUnrollRuntimeCount = 8; 137 UP.MaxCount = UINT_MAX; 138 UP.FullUnrollMaxCount = UINT_MAX; 139 UP.BEInsns = 2; 140 UP.Partial = false; 141 UP.Runtime = false; 142 UP.AllowRemainder = true; 143 UP.AllowExpensiveTripCount = false; 144 UP.Force = false; 145 UP.UpperBound = false; 146 UP.AllowPeeling = false; 147 148 // Override with any target specific settings 149 TTI.getUnrollingPreferences(L, UP); 150 151 // Apply size attributes 152 if (L->getHeader()->getParent()->optForSize()) { 153 UP.Threshold = UP.OptSizeThreshold; 154 UP.PartialThreshold = UP.PartialOptSizeThreshold; 155 } 156 157 // Apply any user values specified by cl::opt 158 if (UnrollThreshold.getNumOccurrences() > 0) { 159 UP.Threshold = UnrollThreshold; 160 UP.PartialThreshold = UnrollThreshold; 161 } 162 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 163 UP.PercentDynamicCostSavedThreshold = 164 UnrollPercentDynamicCostSavedThreshold; 165 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 166 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 167 if (UnrollMaxCount.getNumOccurrences() > 0) 168 UP.MaxCount = UnrollMaxCount; 169 if (UnrollFullMaxCount.getNumOccurrences() > 0) 170 UP.FullUnrollMaxCount = UnrollFullMaxCount; 171 if (UnrollAllowPartial.getNumOccurrences() > 0) 172 UP.Partial = UnrollAllowPartial; 173 if (UnrollAllowRemainder.getNumOccurrences() > 0) 174 UP.AllowRemainder = UnrollAllowRemainder; 175 if (UnrollRuntime.getNumOccurrences() > 0) 176 UP.Runtime = UnrollRuntime; 177 if (UnrollMaxUpperBound == 0) 178 UP.UpperBound = false; 179 if (UnrollAllowPeeling.getNumOccurrences() > 0) 180 UP.AllowPeeling = UnrollAllowPeeling; 181 182 // Apply user values provided by argument 183 if (UserThreshold.hasValue()) { 184 UP.Threshold = *UserThreshold; 185 UP.PartialThreshold = *UserThreshold; 186 } 187 if (UserCount.hasValue()) 188 UP.Count = *UserCount; 189 if (UserAllowPartial.hasValue()) 190 UP.Partial = *UserAllowPartial; 191 if (UserRuntime.hasValue()) 192 UP.Runtime = *UserRuntime; 193 if (UserUpperBound.hasValue()) 194 UP.UpperBound = *UserUpperBound; 195 196 return UP; 197 } 198 199 namespace { 200 /// A struct to densely store the state of an instruction after unrolling at 201 /// each iteration. 202 /// 203 /// This is designed to work like a tuple of <Instruction *, int> for the 204 /// purposes of hashing and lookup, but to be able to associate two boolean 205 /// states with each key. 206 struct UnrolledInstState { 207 Instruction *I; 208 int Iteration : 30; 209 unsigned IsFree : 1; 210 unsigned IsCounted : 1; 211 }; 212 213 /// Hashing and equality testing for a set of the instruction states. 214 struct UnrolledInstStateKeyInfo { 215 typedef DenseMapInfo<Instruction *> PtrInfo; 216 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 217 static inline UnrolledInstState getEmptyKey() { 218 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 219 } 220 static inline UnrolledInstState getTombstoneKey() { 221 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 222 } 223 static inline unsigned getHashValue(const UnrolledInstState &S) { 224 return PairInfo::getHashValue({S.I, S.Iteration}); 225 } 226 static inline bool isEqual(const UnrolledInstState &LHS, 227 const UnrolledInstState &RHS) { 228 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 229 } 230 }; 231 } 232 233 namespace { 234 struct EstimatedUnrollCost { 235 /// \brief The estimated cost after unrolling. 236 unsigned UnrolledCost; 237 238 /// \brief The estimated dynamic cost of executing the instructions in the 239 /// rolled form. 240 unsigned RolledDynamicCost; 241 }; 242 } 243 244 /// \brief Figure out if the loop is worth full unrolling. 245 /// 246 /// Complete loop unrolling can make some loads constant, and we need to know 247 /// if that would expose any further optimization opportunities. This routine 248 /// estimates this optimization. It computes cost of unrolled loop 249 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 250 /// dynamic cost we mean that we won't count costs of blocks that are known not 251 /// to be executed (i.e. if we have a branch in the loop and we know that at the 252 /// given iteration its condition would be resolved to true, we won't add up the 253 /// cost of the 'false'-block). 254 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 255 /// the analysis failed (no benefits expected from the unrolling, or the loop is 256 /// too big to analyze), the returned value is None. 257 static Optional<EstimatedUnrollCost> 258 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 259 ScalarEvolution &SE, const TargetTransformInfo &TTI, 260 unsigned MaxUnrolledLoopSize) { 261 // We want to be able to scale offsets by the trip count and add more offsets 262 // to them without checking for overflows, and we already don't want to 263 // analyze *massive* trip counts, so we force the max to be reasonably small. 264 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 265 "The unroll iterations max is too large!"); 266 267 // Only analyze inner loops. We can't properly estimate cost of nested loops 268 // and we won't visit inner loops again anyway. 269 if (!L->empty()) 270 return None; 271 272 // Don't simulate loops with a big or unknown tripcount 273 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 274 TripCount > UnrollMaxIterationsCountToAnalyze) 275 return None; 276 277 SmallSetVector<BasicBlock *, 16> BBWorklist; 278 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 279 DenseMap<Value *, Constant *> SimplifiedValues; 280 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 281 282 // The estimated cost of the unrolled form of the loop. We try to estimate 283 // this by simplifying as much as we can while computing the estimate. 284 unsigned UnrolledCost = 0; 285 286 // We also track the estimated dynamic (that is, actually executed) cost in 287 // the rolled form. This helps identify cases when the savings from unrolling 288 // aren't just exposing dead control flows, but actual reduced dynamic 289 // instructions due to the simplifications which we expect to occur after 290 // unrolling. 291 unsigned RolledDynamicCost = 0; 292 293 // We track the simplification of each instruction in each iteration. We use 294 // this to recursively merge costs into the unrolled cost on-demand so that 295 // we don't count the cost of any dead code. This is essentially a map from 296 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 297 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 298 299 // A small worklist used to accumulate cost of instructions from each 300 // observable and reached root in the loop. 301 SmallVector<Instruction *, 16> CostWorklist; 302 303 // PHI-used worklist used between iterations while accumulating cost. 304 SmallVector<Instruction *, 4> PHIUsedList; 305 306 // Helper function to accumulate cost for instructions in the loop. 307 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 308 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 309 assert(CostWorklist.empty() && "Must start with an empty cost list"); 310 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 311 CostWorklist.push_back(&RootI); 312 for (;; --Iteration) { 313 do { 314 Instruction *I = CostWorklist.pop_back_val(); 315 316 // InstCostMap only uses I and Iteration as a key, the other two values 317 // don't matter here. 318 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 319 if (CostIter == InstCostMap.end()) 320 // If an input to a PHI node comes from a dead path through the loop 321 // we may have no cost data for it here. What that actually means is 322 // that it is free. 323 continue; 324 auto &Cost = *CostIter; 325 if (Cost.IsCounted) 326 // Already counted this instruction. 327 continue; 328 329 // Mark that we are counting the cost of this instruction now. 330 Cost.IsCounted = true; 331 332 // If this is a PHI node in the loop header, just add it to the PHI set. 333 if (auto *PhiI = dyn_cast<PHINode>(I)) 334 if (PhiI->getParent() == L->getHeader()) { 335 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 336 "inherently simplify during unrolling."); 337 if (Iteration == 0) 338 continue; 339 340 // Push the incoming value from the backedge into the PHI used list 341 // if it is an in-loop instruction. We'll use this to populate the 342 // cost worklist for the next iteration (as we count backwards). 343 if (auto *OpI = dyn_cast<Instruction>( 344 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 345 if (L->contains(OpI)) 346 PHIUsedList.push_back(OpI); 347 continue; 348 } 349 350 // First accumulate the cost of this instruction. 351 if (!Cost.IsFree) { 352 UnrolledCost += TTI.getUserCost(I); 353 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 354 << "): "); 355 DEBUG(I->dump()); 356 } 357 358 // We must count the cost of every operand which is not free, 359 // recursively. If we reach a loop PHI node, simply add it to the set 360 // to be considered on the next iteration (backwards!). 361 for (Value *Op : I->operands()) { 362 // Check whether this operand is free due to being a constant or 363 // outside the loop. 364 auto *OpI = dyn_cast<Instruction>(Op); 365 if (!OpI || !L->contains(OpI)) 366 continue; 367 368 // Otherwise accumulate its cost. 369 CostWorklist.push_back(OpI); 370 } 371 } while (!CostWorklist.empty()); 372 373 if (PHIUsedList.empty()) 374 // We've exhausted the search. 375 break; 376 377 assert(Iteration > 0 && 378 "Cannot track PHI-used values past the first iteration!"); 379 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 380 PHIUsedList.clear(); 381 } 382 }; 383 384 // Ensure that we don't violate the loop structure invariants relied on by 385 // this analysis. 386 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 387 assert(L->isLCSSAForm(DT) && 388 "Must have loops in LCSSA form to track live-out values."); 389 390 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 391 392 // Simulate execution of each iteration of the loop counting instructions, 393 // which would be simplified. 394 // Since the same load will take different values on different iterations, 395 // we literally have to go through all loop's iterations. 396 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 397 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 398 399 // Prepare for the iteration by collecting any simplified entry or backedge 400 // inputs. 401 for (Instruction &I : *L->getHeader()) { 402 auto *PHI = dyn_cast<PHINode>(&I); 403 if (!PHI) 404 break; 405 406 // The loop header PHI nodes must have exactly two input: one from the 407 // loop preheader and one from the loop latch. 408 assert( 409 PHI->getNumIncomingValues() == 2 && 410 "Must have an incoming value only for the preheader and the latch."); 411 412 Value *V = PHI->getIncomingValueForBlock( 413 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 414 Constant *C = dyn_cast<Constant>(V); 415 if (Iteration != 0 && !C) 416 C = SimplifiedValues.lookup(V); 417 if (C) 418 SimplifiedInputValues.push_back({PHI, C}); 419 } 420 421 // Now clear and re-populate the map for the next iteration. 422 SimplifiedValues.clear(); 423 while (!SimplifiedInputValues.empty()) 424 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 425 426 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 427 428 BBWorklist.clear(); 429 BBWorklist.insert(L->getHeader()); 430 // Note that we *must not* cache the size, this loop grows the worklist. 431 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 432 BasicBlock *BB = BBWorklist[Idx]; 433 434 // Visit all instructions in the given basic block and try to simplify 435 // it. We don't change the actual IR, just count optimization 436 // opportunities. 437 for (Instruction &I : *BB) { 438 if (isa<DbgInfoIntrinsic>(I)) 439 continue; 440 441 // Track this instruction's expected baseline cost when executing the 442 // rolled loop form. 443 RolledDynamicCost += TTI.getUserCost(&I); 444 445 // Visit the instruction to analyze its loop cost after unrolling, 446 // and if the visitor returns true, mark the instruction as free after 447 // unrolling and continue. 448 bool IsFree = Analyzer.visit(I); 449 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 450 (unsigned)IsFree, 451 /*IsCounted*/ false}).second; 452 (void)Inserted; 453 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 454 455 if (IsFree) 456 continue; 457 458 // Can't properly model a cost of a call. 459 // FIXME: With a proper cost model we should be able to do it. 460 if(isa<CallInst>(&I)) 461 return None; 462 463 // If the instruction might have a side-effect recursively account for 464 // the cost of it and all the instructions leading up to it. 465 if (I.mayHaveSideEffects()) 466 AddCostRecursively(I, Iteration); 467 468 // If unrolled body turns out to be too big, bail out. 469 if (UnrolledCost > MaxUnrolledLoopSize) { 470 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 471 << " UnrolledCost: " << UnrolledCost 472 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 473 << "\n"); 474 return None; 475 } 476 } 477 478 TerminatorInst *TI = BB->getTerminator(); 479 480 // Add in the live successors by first checking whether we have terminator 481 // that may be simplified based on the values simplified by this call. 482 BasicBlock *KnownSucc = nullptr; 483 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 484 if (BI->isConditional()) { 485 if (Constant *SimpleCond = 486 SimplifiedValues.lookup(BI->getCondition())) { 487 // Just take the first successor if condition is undef 488 if (isa<UndefValue>(SimpleCond)) 489 KnownSucc = BI->getSuccessor(0); 490 else if (ConstantInt *SimpleCondVal = 491 dyn_cast<ConstantInt>(SimpleCond)) 492 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 493 } 494 } 495 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 496 if (Constant *SimpleCond = 497 SimplifiedValues.lookup(SI->getCondition())) { 498 // Just take the first successor if condition is undef 499 if (isa<UndefValue>(SimpleCond)) 500 KnownSucc = SI->getSuccessor(0); 501 else if (ConstantInt *SimpleCondVal = 502 dyn_cast<ConstantInt>(SimpleCond)) 503 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 504 } 505 } 506 if (KnownSucc) { 507 if (L->contains(KnownSucc)) 508 BBWorklist.insert(KnownSucc); 509 else 510 ExitWorklist.insert({BB, KnownSucc}); 511 continue; 512 } 513 514 // Add BB's successors to the worklist. 515 for (BasicBlock *Succ : successors(BB)) 516 if (L->contains(Succ)) 517 BBWorklist.insert(Succ); 518 else 519 ExitWorklist.insert({BB, Succ}); 520 AddCostRecursively(*TI, Iteration); 521 } 522 523 // If we found no optimization opportunities on the first iteration, we 524 // won't find them on later ones too. 525 if (UnrolledCost == RolledDynamicCost) { 526 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 527 << " UnrolledCost: " << UnrolledCost << "\n"); 528 return None; 529 } 530 } 531 532 while (!ExitWorklist.empty()) { 533 BasicBlock *ExitingBB, *ExitBB; 534 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 535 536 for (Instruction &I : *ExitBB) { 537 auto *PN = dyn_cast<PHINode>(&I); 538 if (!PN) 539 break; 540 541 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 542 if (auto *OpI = dyn_cast<Instruction>(Op)) 543 if (L->contains(OpI)) 544 AddCostRecursively(*OpI, TripCount - 1); 545 } 546 } 547 548 DEBUG(dbgs() << "Analysis finished:\n" 549 << "UnrolledCost: " << UnrolledCost << ", " 550 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 551 return {{UnrolledCost, RolledDynamicCost}}; 552 } 553 554 /// ApproximateLoopSize - Approximate the size of the loop. 555 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 556 bool &NotDuplicatable, bool &Convergent, 557 const TargetTransformInfo &TTI, 558 unsigned BEInsns) { 559 SmallPtrSet<const Value *, 32> EphValues; 560 CodeMetrics::collectEphemeralValues(L, EphValues); 561 562 CodeMetrics Metrics; 563 for (BasicBlock *BB : L->blocks()) 564 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 565 NumCalls = Metrics.NumInlineCandidates; 566 NotDuplicatable = Metrics.notDuplicatable; 567 Convergent = Metrics.convergent; 568 569 unsigned LoopSize = Metrics.NumInsts; 570 571 // Don't allow an estimate of size zero. This would allows unrolling of loops 572 // with huge iteration counts, which is a compile time problem even if it's 573 // not a problem for code quality. Also, the code using this size may assume 574 // that each loop has at least three instructions (likely a conditional 575 // branch, a comparison feeding that branch, and some kind of loop increment 576 // feeding that comparison instruction). 577 LoopSize = std::max(LoopSize, BEInsns + 1); 578 579 return LoopSize; 580 } 581 582 // Returns the loop hint metadata node with the given name (for example, 583 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 584 // returned. 585 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 586 if (MDNode *LoopID = L->getLoopID()) 587 return GetUnrollMetadata(LoopID, Name); 588 return nullptr; 589 } 590 591 // Returns true if the loop has an unroll(full) pragma. 592 static bool HasUnrollFullPragma(const Loop *L) { 593 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 594 } 595 596 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 597 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 598 static bool HasUnrollEnablePragma(const Loop *L) { 599 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 600 } 601 602 // Returns true if the loop has an unroll(disable) pragma. 603 static bool HasUnrollDisablePragma(const Loop *L) { 604 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 605 } 606 607 // Returns true if the loop has an runtime unroll(disable) pragma. 608 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 609 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 610 } 611 612 // If loop has an unroll_count pragma return the (necessarily 613 // positive) value from the pragma. Otherwise return 0. 614 static unsigned UnrollCountPragmaValue(const Loop *L) { 615 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 616 if (MD) { 617 assert(MD->getNumOperands() == 2 && 618 "Unroll count hint metadata should have two operands."); 619 unsigned Count = 620 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 621 assert(Count >= 1 && "Unroll count must be positive."); 622 return Count; 623 } 624 return 0; 625 } 626 627 // Remove existing unroll metadata and add unroll disable metadata to 628 // indicate the loop has already been unrolled. This prevents a loop 629 // from being unrolled more than is directed by a pragma if the loop 630 // unrolling pass is run more than once (which it generally is). 631 static void SetLoopAlreadyUnrolled(Loop *L) { 632 MDNode *LoopID = L->getLoopID(); 633 // First remove any existing loop unrolling metadata. 634 SmallVector<Metadata *, 4> MDs; 635 // Reserve first location for self reference to the LoopID metadata node. 636 MDs.push_back(nullptr); 637 638 if (LoopID) { 639 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 640 bool IsUnrollMetadata = false; 641 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 642 if (MD) { 643 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 644 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 645 } 646 if (!IsUnrollMetadata) 647 MDs.push_back(LoopID->getOperand(i)); 648 } 649 } 650 651 // Add unroll(disable) metadata to disable future unrolling. 652 LLVMContext &Context = L->getHeader()->getContext(); 653 SmallVector<Metadata *, 1> DisableOperands; 654 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 655 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 656 MDs.push_back(DisableNode); 657 658 MDNode *NewLoopID = MDNode::get(Context, MDs); 659 // Set operand 0 to refer to the loop id itself. 660 NewLoopID->replaceOperandWith(0, NewLoopID); 661 L->setLoopID(NewLoopID); 662 } 663 664 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 665 unsigned PercentDynamicCostSavedThreshold, 666 unsigned DynamicCostSavingsDiscount, 667 uint64_t UnrolledCost, 668 uint64_t RolledDynamicCost) { 669 if (Threshold == NoThreshold) { 670 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 671 return true; 672 } 673 674 if (UnrolledCost <= Threshold) { 675 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 676 << UnrolledCost << "<=" << Threshold << "\n"); 677 return true; 678 } 679 680 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 681 assert(RolledDynamicCost >= UnrolledCost && 682 "Cannot have a higher unrolled cost than a rolled cost!"); 683 684 // Compute the percentage of the dynamic cost in the rolled form that is 685 // saved when unrolled. If unrolling dramatically reduces the estimated 686 // dynamic cost of the loop, we use a higher threshold to allow more 687 // unrolling. 688 unsigned PercentDynamicCostSaved = 689 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 690 691 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 692 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 693 (int64_t)Threshold) { 694 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 695 "expected dynamic cost by " 696 << PercentDynamicCostSaved << "% (threshold: " 697 << PercentDynamicCostSavedThreshold << "%)\n" 698 << " and the unrolled cost (" << UnrolledCost 699 << ") is less than the max threshold (" 700 << DynamicCostSavingsDiscount << ").\n"); 701 return true; 702 } 703 704 DEBUG(dbgs() << " Too large to fully unroll:\n"); 705 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 706 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 707 DEBUG(dbgs() << " Percent cost saved threshold: " 708 << PercentDynamicCostSavedThreshold << "%\n"); 709 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 710 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 711 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 712 << "\n"); 713 return false; 714 } 715 716 // Returns loop size estimation for unrolled loop. 717 static uint64_t getUnrolledLoopSize( 718 unsigned LoopSize, 719 TargetTransformInfo::UnrollingPreferences &UP) { 720 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 721 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 722 } 723 724 // Returns true if unroll count was set explicitly. 725 // Calculates unroll count and writes it to UP.Count. 726 static bool computeUnrollCount( 727 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 728 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount, 729 unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize, 730 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 731 // Check for explicit Count. 732 // 1st priority is unroll count set by "unroll-count" option. 733 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 734 if (UserUnrollCount) { 735 UP.Count = UnrollCount; 736 UP.AllowExpensiveTripCount = true; 737 UP.Force = true; 738 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 739 return true; 740 } 741 742 // 2nd priority is unroll count set by pragma. 743 unsigned PragmaCount = UnrollCountPragmaValue(L); 744 if (PragmaCount > 0) { 745 UP.Count = PragmaCount; 746 UP.Runtime = true; 747 UP.AllowExpensiveTripCount = true; 748 UP.Force = true; 749 if (UP.AllowRemainder && 750 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 751 return true; 752 } 753 bool PragmaFullUnroll = HasUnrollFullPragma(L); 754 if (PragmaFullUnroll && TripCount != 0) { 755 UP.Count = TripCount; 756 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 757 return false; 758 } 759 760 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 761 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 762 PragmaEnableUnroll || UserUnrollCount; 763 764 if (ExplicitUnroll && TripCount != 0) { 765 // If the loop has an unrolling pragma, we want to be more aggressive with 766 // unrolling limits. Set thresholds to at least the PragmaThreshold value 767 // which is larger than the default limits. 768 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 769 UP.PartialThreshold = 770 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 771 } 772 773 // 3rd priority is full unroll count. 774 // Full unroll makes sense only when TripCount or its upper bound could be 775 // statically calculated. 776 // Also we need to check if we exceed FullUnrollMaxCount. 777 // If using the upper bound to unroll, TripMultiple should be set to 1 because 778 // we do not know when loop may exit. 779 // MaxTripCount and ExactTripCount cannot both be non zero since we only 780 // compute the former when the latter is zero. 781 unsigned ExactTripCount = TripCount; 782 assert((ExactTripCount == 0 || MaxTripCount == 0) && 783 "ExtractTripCound and MaxTripCount cannot both be non zero."); 784 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 785 UP.Count = FullUnrollTripCount; 786 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 787 // When computing the unrolled size, note that BEInsns are not replicated 788 // like the rest of the loop body. 789 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 790 getUnrolledLoopSize(LoopSize, UP), 791 getUnrolledLoopSize(LoopSize, UP))) { 792 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 793 TripCount = FullUnrollTripCount; 794 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 795 return ExplicitUnroll; 796 } else { 797 // The loop isn't that small, but we still can fully unroll it if that 798 // helps to remove a significant number of instructions. 799 // To check that, run additional analysis on the loop. 800 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 801 L, FullUnrollTripCount, DT, *SE, TTI, 802 UP.Threshold + UP.DynamicCostSavingsDiscount)) 803 if (canUnrollCompletely(L, UP.Threshold, 804 UP.PercentDynamicCostSavedThreshold, 805 UP.DynamicCostSavingsDiscount, 806 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 807 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 808 TripCount = FullUnrollTripCount; 809 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 810 return ExplicitUnroll; 811 } 812 } 813 } 814 815 // 4rd priority is partial unrolling. 816 // Try partial unroll only when TripCount could be staticaly calculated. 817 if (TripCount) { 818 UP.Partial |= ExplicitUnroll; 819 if (!UP.Partial) { 820 DEBUG(dbgs() << " will not try to unroll partially because " 821 << "-unroll-allow-partial not given\n"); 822 UP.Count = 0; 823 return false; 824 } 825 if (UP.Count == 0) 826 UP.Count = TripCount; 827 if (UP.PartialThreshold != NoThreshold) { 828 // Reduce unroll count to be modulo of TripCount for partial unrolling. 829 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 830 UP.Count = 831 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 832 (LoopSize - UP.BEInsns); 833 if (UP.Count > UP.MaxCount) 834 UP.Count = UP.MaxCount; 835 while (UP.Count != 0 && TripCount % UP.Count != 0) 836 UP.Count--; 837 if (UP.AllowRemainder && UP.Count <= 1) { 838 // If there is no Count that is modulo of TripCount, set Count to 839 // largest power-of-two factor that satisfies the threshold limit. 840 // As we'll create fixup loop, do the type of unrolling only if 841 // remainder loop is allowed. 842 UP.Count = UP.DefaultUnrollRuntimeCount; 843 while (UP.Count != 0 && 844 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 845 UP.Count >>= 1; 846 } 847 if (UP.Count < 2) { 848 if (PragmaEnableUnroll) 849 ORE->emit( 850 OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge", 851 L->getStartLoc(), L->getHeader()) 852 << "Unable to unroll loop as directed by unroll(enable) pragma " 853 "because unrolled size is too large."); 854 UP.Count = 0; 855 } 856 } else { 857 UP.Count = TripCount; 858 } 859 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 860 UP.Count != TripCount) 861 ORE->emit( 862 OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge", 863 L->getStartLoc(), L->getHeader()) 864 << "Unable to fully unroll loop as directed by unroll pragma because " 865 "unrolled size is too large."); 866 return ExplicitUnroll; 867 } 868 assert(TripCount == 0 && 869 "All cases when TripCount is constant should be covered here."); 870 if (PragmaFullUnroll) 871 ORE->emit( 872 OptimizationRemarkMissed(DEBUG_TYPE, 873 "CantFullUnrollAsDirectedRuntimeTripCount", 874 L->getStartLoc(), L->getHeader()) 875 << "Unable to fully unroll loop as directed by unroll(full) pragma " 876 "because loop has a runtime trip count."); 877 878 // 5th priority is loop peeling 879 computePeelCount(L, LoopSize, UP); 880 if (UP.PeelCount) { 881 UP.Runtime = false; 882 UP.Count = 1; 883 return ExplicitUnroll; 884 } 885 886 // 6th priority is runtime unrolling. 887 // Don't unroll a runtime trip count loop when it is disabled. 888 if (HasRuntimeUnrollDisablePragma(L)) { 889 UP.Count = 0; 890 return false; 891 } 892 893 // Check if the runtime trip count is too small when profile is available. 894 if (L->getHeader()->getParent()->getEntryCount()) { 895 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 896 if (*ProfileTripCount < FlatLoopTripCountThreshold) 897 return false; 898 else 899 UP.AllowExpensiveTripCount = true; 900 } 901 } 902 903 // Reduce count based on the type of unrolling and the threshold values. 904 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 905 if (!UP.Runtime) { 906 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 907 << "-unroll-runtime not given\n"); 908 UP.Count = 0; 909 return false; 910 } 911 if (UP.Count == 0) 912 UP.Count = UP.DefaultUnrollRuntimeCount; 913 914 // Reduce unroll count to be the largest power-of-two factor of 915 // the original count which satisfies the threshold limit. 916 while (UP.Count != 0 && 917 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 918 UP.Count >>= 1; 919 920 #ifndef NDEBUG 921 unsigned OrigCount = UP.Count; 922 #endif 923 924 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 925 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 926 UP.Count >>= 1; 927 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture " 928 "specific or because the loop contains a convergent " 929 "instruction), so unroll count must divide the trip " 930 "multiple, " 931 << TripMultiple << ". Reducing unroll count from " 932 << OrigCount << " to " << UP.Count << ".\n"); 933 using namespace ore; 934 if (PragmaCount > 0 && !UP.AllowRemainder) 935 ORE->emit( 936 OptimizationRemarkMissed(DEBUG_TYPE, 937 "DifferentUnrollCountFromDirected", 938 L->getStartLoc(), L->getHeader()) 939 << "Unable to unroll loop the number of times directed by " 940 "unroll_count pragma because remainder loop is restricted " 941 "(that could architecture specific or because the loop " 942 "contains a convergent instruction) and so must have an unroll " 943 "count that divides the loop trip multiple of " 944 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 945 << NV("UnrollCount", UP.Count) << " time(s)."); 946 } 947 948 if (UP.Count > UP.MaxCount) 949 UP.Count = UP.MaxCount; 950 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n"); 951 if (UP.Count < 2) 952 UP.Count = 0; 953 return ExplicitUnroll; 954 } 955 956 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 957 ScalarEvolution *SE, const TargetTransformInfo &TTI, 958 OptimizationRemarkEmitter &ORE, 959 bool PreserveLCSSA, 960 Optional<unsigned> ProvidedCount, 961 Optional<unsigned> ProvidedThreshold, 962 Optional<bool> ProvidedAllowPartial, 963 Optional<bool> ProvidedRuntime, 964 Optional<bool> ProvidedUpperBound) { 965 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName() 966 << "] Loop %" << L->getHeader()->getName() << "\n"); 967 if (HasUnrollDisablePragma(L)) 968 return false; 969 if (!L->isLoopSimplifyForm()) { 970 DEBUG( 971 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 972 return false; 973 } 974 975 unsigned NumInlineCandidates; 976 bool NotDuplicatable; 977 bool Convergent; 978 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 979 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 980 ProvidedRuntime, ProvidedUpperBound); 981 // Exit early if unrolling is disabled. 982 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 983 return false; 984 unsigned LoopSize = ApproximateLoopSize( 985 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, UP.BEInsns); 986 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 987 if (NotDuplicatable) { 988 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 989 << " instructions.\n"); 990 return false; 991 } 992 if (NumInlineCandidates != 0) { 993 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 994 return false; 995 } 996 997 // Find trip count and trip multiple if count is not available 998 unsigned TripCount = 0; 999 unsigned MaxTripCount = 0; 1000 unsigned TripMultiple = 1; 1001 // If there are multiple exiting blocks but one of them is the latch, use the 1002 // latch for the trip count estimation. Otherwise insist on a single exiting 1003 // block for the trip count estimation. 1004 BasicBlock *ExitingBlock = L->getLoopLatch(); 1005 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1006 ExitingBlock = L->getExitingBlock(); 1007 if (ExitingBlock) { 1008 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 1009 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 1010 } 1011 1012 // If the loop contains a convergent operation, the prelude we'd add 1013 // to do the first few instructions before we hit the unrolled loop 1014 // is unsafe -- it adds a control-flow dependency to the convergent 1015 // operation. Therefore restrict remainder loop (try unrollig without). 1016 // 1017 // TODO: This is quite conservative. In practice, convergent_op() 1018 // is likely to be called unconditionally in the loop. In this 1019 // case, the program would be ill-formed (on most architectures) 1020 // unless n were the same on all threads in a thread group. 1021 // Assuming n is the same on all threads, any kind of unrolling is 1022 // safe. But currently llvm's notion of convergence isn't powerful 1023 // enough to express this. 1024 if (Convergent) 1025 UP.AllowRemainder = false; 1026 1027 // Try to find the trip count upper bound if we cannot find the exact trip 1028 // count. 1029 bool MaxOrZero = false; 1030 if (!TripCount) { 1031 MaxTripCount = SE->getSmallConstantMaxTripCount(L); 1032 MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); 1033 // We can unroll by the upper bound amount if it's generally allowed or if 1034 // we know that the loop is executed either the upper bound or zero times. 1035 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1036 // loop tests remains the same compared to the non-unrolled version, whereas 1037 // the generic upper bound unrolling keeps all but the last loop test so the 1038 // number of loop tests goes up which may end up being worse on targets with 1039 // constriained branch predictor resources so is controlled by an option.) 1040 // In addition we only unroll small upper bounds. 1041 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1042 MaxTripCount = 0; 1043 } 1044 } 1045 1046 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1047 // fully unroll the loop. 1048 bool UseUpperBound = false; 1049 bool IsCountSetExplicitly = 1050 computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount, 1051 TripMultiple, LoopSize, UP, UseUpperBound); 1052 if (!UP.Count) 1053 return false; 1054 // Unroll factor (Count) must be less or equal to TripCount. 1055 if (TripCount && UP.Count > TripCount) 1056 UP.Count = TripCount; 1057 1058 // Unroll the loop. 1059 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime, 1060 UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero, 1061 TripMultiple, UP.PeelCount, LI, SE, &DT, &ORE, 1062 PreserveLCSSA)) 1063 return false; 1064 1065 // If loop has an unroll count pragma or unrolled by explicitly set count 1066 // mark loop as unrolled to prevent unrolling beyond that requested. 1067 // If the loop was peeled, we already "used up" the profile information 1068 // we had, so we don't want to unroll or peel again. 1069 if (IsCountSetExplicitly || UP.PeelCount) 1070 SetLoopAlreadyUnrolled(L); 1071 1072 return true; 1073 } 1074 1075 namespace { 1076 class LoopUnroll : public LoopPass { 1077 public: 1078 static char ID; // Pass ID, replacement for typeid 1079 LoopUnroll(Optional<unsigned> Threshold = None, 1080 Optional<unsigned> Count = None, 1081 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1082 Optional<bool> UpperBound = None) 1083 : LoopPass(ID), ProvidedCount(std::move(Count)), 1084 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1085 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) { 1086 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1087 } 1088 1089 Optional<unsigned> ProvidedCount; 1090 Optional<unsigned> ProvidedThreshold; 1091 Optional<bool> ProvidedAllowPartial; 1092 Optional<bool> ProvidedRuntime; 1093 Optional<bool> ProvidedUpperBound; 1094 1095 bool runOnLoop(Loop *L, LPPassManager &) override { 1096 if (skipLoop(L)) 1097 return false; 1098 1099 Function &F = *L->getHeader()->getParent(); 1100 1101 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1102 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1103 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1104 const TargetTransformInfo &TTI = 1105 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1106 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1107 // pass. Function analyses need to be preserved across loop transformations 1108 // but ORE cannot be preserved (see comment before the pass definition). 1109 OptimizationRemarkEmitter ORE(&F); 1110 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1111 1112 return tryToUnrollLoop(L, DT, LI, SE, TTI, ORE, PreserveLCSSA, 1113 ProvidedCount, ProvidedThreshold, 1114 ProvidedAllowPartial, ProvidedRuntime, 1115 ProvidedUpperBound); 1116 } 1117 1118 /// This transformation requires natural loop information & requires that 1119 /// loop preheaders be inserted into the CFG... 1120 /// 1121 void getAnalysisUsage(AnalysisUsage &AU) const override { 1122 AU.addRequired<TargetTransformInfoWrapperPass>(); 1123 // FIXME: Loop passes are required to preserve domtree, and for now we just 1124 // recreate dom info if anything gets unrolled. 1125 getLoopAnalysisUsage(AU); 1126 } 1127 }; 1128 } 1129 1130 char LoopUnroll::ID = 0; 1131 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1132 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1134 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1135 1136 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 1137 int Runtime, int UpperBound) { 1138 // TODO: It would make more sense for this function to take the optionals 1139 // directly, but that's dangerous since it would silently break out of tree 1140 // callers. 1141 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 1142 Count == -1 ? None : Optional<unsigned>(Count), 1143 AllowPartial == -1 ? None 1144 : Optional<bool>(AllowPartial), 1145 Runtime == -1 ? None : Optional<bool>(Runtime), 1146 UpperBound == -1 ? None : Optional<bool>(UpperBound)); 1147 } 1148 1149 Pass *llvm::createSimpleLoopUnrollPass() { 1150 return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0); 1151 } 1152 1153 PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM) { 1154 const auto &FAM = 1155 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 1156 Function *F = L.getHeader()->getParent(); 1157 1158 1159 DominatorTree *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 1160 LoopInfo *LI = FAM.getCachedResult<LoopAnalysis>(*F); 1161 ScalarEvolution *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 1162 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 1163 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1164 if (!DT) 1165 report_fatal_error( 1166 "LoopUnrollPass: DominatorTreeAnalysis not cached at a higher level"); 1167 if (!LI) 1168 report_fatal_error( 1169 "LoopUnrollPass: LoopAnalysis not cached at a higher level"); 1170 if (!SE) 1171 report_fatal_error( 1172 "LoopUnrollPass: ScalarEvolutionAnalysis not cached at a higher level"); 1173 if (!TTI) 1174 report_fatal_error( 1175 "LoopUnrollPass: TargetIRAnalysis not cached at a higher level"); 1176 if (!ORE) 1177 report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not " 1178 "cached at a higher level"); 1179 1180 bool Changed = 1181 tryToUnrollLoop(&L, *DT, LI, SE, *TTI, *ORE, /*PreserveLCSSA*/ true, 1182 ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1183 ProvidedRuntime, ProvidedUpperBound); 1184 1185 if (!Changed) 1186 return PreservedAnalyses::all(); 1187 return getLoopPassPreservedAnalyses(); 1188 } 1189