xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 343de6856e16b58bcbd16d479fc633f54e22fadc)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopPass.h"
31 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils.h"
58 #include "llvm/Transforms/Utils/LoopPeel.h"
59 #include "llvm/Transforms/Utils/LoopSimplify.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <optional>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
188     OptimizationRemarkEmitter &ORE, int OptLevel,
189     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
190     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
191     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
192   TargetTransformInfo::UnrollingPreferences UP;
193 
194   // Set up the defaults
195   UP.Threshold =
196       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
197   UP.MaxPercentThresholdBoost = 400;
198   UP.OptSizeThreshold = UnrollOptSizeThreshold;
199   UP.PartialThreshold = 150;
200   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
201   UP.Count = 0;
202   UP.DefaultUnrollRuntimeCount = 8;
203   UP.MaxCount = std::numeric_limits<unsigned>::max();
204   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
205   UP.BEInsns = 2;
206   UP.Partial = false;
207   UP.Runtime = false;
208   UP.AllowRemainder = true;
209   UP.UnrollRemainder = false;
210   UP.AllowExpensiveTripCount = false;
211   UP.Force = false;
212   UP.UpperBound = false;
213   UP.UnrollAndJam = false;
214   UP.UnrollAndJamInnerLoopThreshold = 60;
215   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
216 
217   // Override with any target specific settings
218   TTI.getUnrollingPreferences(L, SE, UP, &ORE);
219 
220   // Apply size attributes
221   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
222                     // Let unroll hints / pragmas take precedence over PGSO.
223                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
224                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
225                                                  PGSOQueryType::IRPass));
226   if (OptForSize) {
227     UP.Threshold = UP.OptSizeThreshold;
228     UP.PartialThreshold = UP.PartialOptSizeThreshold;
229     UP.MaxPercentThresholdBoost = 100;
230   }
231 
232   // Apply any user values specified by cl::opt
233   if (UnrollThreshold.getNumOccurrences() > 0)
234     UP.Threshold = UnrollThreshold;
235   if (UnrollPartialThreshold.getNumOccurrences() > 0)
236     UP.PartialThreshold = UnrollPartialThreshold;
237   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
238     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
239   if (UnrollMaxCount.getNumOccurrences() > 0)
240     UP.MaxCount = UnrollMaxCount;
241   if (UnrollFullMaxCount.getNumOccurrences() > 0)
242     UP.FullUnrollMaxCount = UnrollFullMaxCount;
243   if (UnrollAllowPartial.getNumOccurrences() > 0)
244     UP.Partial = UnrollAllowPartial;
245   if (UnrollAllowRemainder.getNumOccurrences() > 0)
246     UP.AllowRemainder = UnrollAllowRemainder;
247   if (UnrollRuntime.getNumOccurrences() > 0)
248     UP.Runtime = UnrollRuntime;
249   if (UnrollMaxUpperBound == 0)
250     UP.UpperBound = false;
251   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
252     UP.UnrollRemainder = UnrollUnrollRemainder;
253   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
254     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
255 
256   // Apply user values provided by argument
257   if (UserThreshold) {
258     UP.Threshold = *UserThreshold;
259     UP.PartialThreshold = *UserThreshold;
260   }
261   if (UserCount)
262     UP.Count = *UserCount;
263   if (UserAllowPartial)
264     UP.Partial = *UserAllowPartial;
265   if (UserRuntime)
266     UP.Runtime = *UserRuntime;
267   if (UserUpperBound)
268     UP.UpperBound = *UserUpperBound;
269   if (UserFullUnrollMaxCount)
270     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
271 
272   return UP;
273 }
274 
275 namespace {
276 
277 /// A struct to densely store the state of an instruction after unrolling at
278 /// each iteration.
279 ///
280 /// This is designed to work like a tuple of <Instruction *, int> for the
281 /// purposes of hashing and lookup, but to be able to associate two boolean
282 /// states with each key.
283 struct UnrolledInstState {
284   Instruction *I;
285   int Iteration : 30;
286   unsigned IsFree : 1;
287   unsigned IsCounted : 1;
288 };
289 
290 /// Hashing and equality testing for a set of the instruction states.
291 struct UnrolledInstStateKeyInfo {
292   using PtrInfo = DenseMapInfo<Instruction *>;
293   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
294 
295   static inline UnrolledInstState getEmptyKey() {
296     return {PtrInfo::getEmptyKey(), 0, 0, 0};
297   }
298 
299   static inline UnrolledInstState getTombstoneKey() {
300     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
301   }
302 
303   static inline unsigned getHashValue(const UnrolledInstState &S) {
304     return PairInfo::getHashValue({S.I, S.Iteration});
305   }
306 
307   static inline bool isEqual(const UnrolledInstState &LHS,
308                              const UnrolledInstState &RHS) {
309     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
310   }
311 };
312 
313 struct EstimatedUnrollCost {
314   /// The estimated cost after unrolling.
315   unsigned UnrolledCost;
316 
317   /// The estimated dynamic cost of executing the instructions in the
318   /// rolled form.
319   unsigned RolledDynamicCost;
320 };
321 
322 struct PragmaInfo {
323   PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
324       : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
325         PragmaEnableUnroll(PEU) {}
326   const bool UserUnrollCount;
327   const bool PragmaFullUnroll;
328   const unsigned PragmaCount;
329   const bool PragmaEnableUnroll;
330 };
331 
332 } // end anonymous namespace
333 
334 /// Figure out if the loop is worth full unrolling.
335 ///
336 /// Complete loop unrolling can make some loads constant, and we need to know
337 /// if that would expose any further optimization opportunities.  This routine
338 /// estimates this optimization.  It computes cost of unrolled loop
339 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
340 /// dynamic cost we mean that we won't count costs of blocks that are known not
341 /// to be executed (i.e. if we have a branch in the loop and we know that at the
342 /// given iteration its condition would be resolved to true, we won't add up the
343 /// cost of the 'false'-block).
344 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
345 /// the analysis failed (no benefits expected from the unrolling, or the loop is
346 /// too big to analyze), the returned value is None.
347 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
348     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
349     const SmallPtrSetImpl<const Value *> &EphValues,
350     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
351     unsigned MaxIterationsCountToAnalyze) {
352   // We want to be able to scale offsets by the trip count and add more offsets
353   // to them without checking for overflows, and we already don't want to
354   // analyze *massive* trip counts, so we force the max to be reasonably small.
355   assert(MaxIterationsCountToAnalyze <
356              (unsigned)(std::numeric_limits<int>::max() / 2) &&
357          "The unroll iterations max is too large!");
358 
359   // Only analyze inner loops. We can't properly estimate cost of nested loops
360   // and we won't visit inner loops again anyway.
361   if (!L->isInnermost())
362     return std::nullopt;
363 
364   // Don't simulate loops with a big or unknown tripcount
365   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
366     return std::nullopt;
367 
368   SmallSetVector<BasicBlock *, 16> BBWorklist;
369   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
370   DenseMap<Value *, Value *> SimplifiedValues;
371   SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
372 
373   // The estimated cost of the unrolled form of the loop. We try to estimate
374   // this by simplifying as much as we can while computing the estimate.
375   InstructionCost UnrolledCost = 0;
376 
377   // We also track the estimated dynamic (that is, actually executed) cost in
378   // the rolled form. This helps identify cases when the savings from unrolling
379   // aren't just exposing dead control flows, but actual reduced dynamic
380   // instructions due to the simplifications which we expect to occur after
381   // unrolling.
382   InstructionCost RolledDynamicCost = 0;
383 
384   // We track the simplification of each instruction in each iteration. We use
385   // this to recursively merge costs into the unrolled cost on-demand so that
386   // we don't count the cost of any dead code. This is essentially a map from
387   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
388   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
389 
390   // A small worklist used to accumulate cost of instructions from each
391   // observable and reached root in the loop.
392   SmallVector<Instruction *, 16> CostWorklist;
393 
394   // PHI-used worklist used between iterations while accumulating cost.
395   SmallVector<Instruction *, 4> PHIUsedList;
396 
397   // Helper function to accumulate cost for instructions in the loop.
398   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
399     assert(Iteration >= 0 && "Cannot have a negative iteration!");
400     assert(CostWorklist.empty() && "Must start with an empty cost list");
401     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
402     CostWorklist.push_back(&RootI);
403     TargetTransformInfo::TargetCostKind CostKind =
404       RootI.getFunction()->hasMinSize() ?
405       TargetTransformInfo::TCK_CodeSize :
406       TargetTransformInfo::TCK_SizeAndLatency;
407     for (;; --Iteration) {
408       do {
409         Instruction *I = CostWorklist.pop_back_val();
410 
411         // InstCostMap only uses I and Iteration as a key, the other two values
412         // don't matter here.
413         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
414         if (CostIter == InstCostMap.end())
415           // If an input to a PHI node comes from a dead path through the loop
416           // we may have no cost data for it here. What that actually means is
417           // that it is free.
418           continue;
419         auto &Cost = *CostIter;
420         if (Cost.IsCounted)
421           // Already counted this instruction.
422           continue;
423 
424         // Mark that we are counting the cost of this instruction now.
425         Cost.IsCounted = true;
426 
427         // If this is a PHI node in the loop header, just add it to the PHI set.
428         if (auto *PhiI = dyn_cast<PHINode>(I))
429           if (PhiI->getParent() == L->getHeader()) {
430             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
431                                   "inherently simplify during unrolling.");
432             if (Iteration == 0)
433               continue;
434 
435             // Push the incoming value from the backedge into the PHI used list
436             // if it is an in-loop instruction. We'll use this to populate the
437             // cost worklist for the next iteration (as we count backwards).
438             if (auto *OpI = dyn_cast<Instruction>(
439                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
440               if (L->contains(OpI))
441                 PHIUsedList.push_back(OpI);
442             continue;
443           }
444 
445         // First accumulate the cost of this instruction.
446         if (!Cost.IsFree) {
447           UnrolledCost += TTI.getInstructionCost(I, CostKind);
448           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
449                             << Iteration << "): ");
450           LLVM_DEBUG(I->dump());
451         }
452 
453         // We must count the cost of every operand which is not free,
454         // recursively. If we reach a loop PHI node, simply add it to the set
455         // to be considered on the next iteration (backwards!).
456         for (Value *Op : I->operands()) {
457           // Check whether this operand is free due to being a constant or
458           // outside the loop.
459           auto *OpI = dyn_cast<Instruction>(Op);
460           if (!OpI || !L->contains(OpI))
461             continue;
462 
463           // Otherwise accumulate its cost.
464           CostWorklist.push_back(OpI);
465         }
466       } while (!CostWorklist.empty());
467 
468       if (PHIUsedList.empty())
469         // We've exhausted the search.
470         break;
471 
472       assert(Iteration > 0 &&
473              "Cannot track PHI-used values past the first iteration!");
474       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
475       PHIUsedList.clear();
476     }
477   };
478 
479   // Ensure that we don't violate the loop structure invariants relied on by
480   // this analysis.
481   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
482   assert(L->isLCSSAForm(DT) &&
483          "Must have loops in LCSSA form to track live-out values.");
484 
485   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
486 
487   TargetTransformInfo::TargetCostKind CostKind =
488     L->getHeader()->getParent()->hasMinSize() ?
489     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
490   // Simulate execution of each iteration of the loop counting instructions,
491   // which would be simplified.
492   // Since the same load will take different values on different iterations,
493   // we literally have to go through all loop's iterations.
494   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
495     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
496 
497     // Prepare for the iteration by collecting any simplified entry or backedge
498     // inputs.
499     for (Instruction &I : *L->getHeader()) {
500       auto *PHI = dyn_cast<PHINode>(&I);
501       if (!PHI)
502         break;
503 
504       // The loop header PHI nodes must have exactly two input: one from the
505       // loop preheader and one from the loop latch.
506       assert(
507           PHI->getNumIncomingValues() == 2 &&
508           "Must have an incoming value only for the preheader and the latch.");
509 
510       Value *V = PHI->getIncomingValueForBlock(
511           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
512       if (Iteration != 0 && SimplifiedValues.count(V))
513         V = SimplifiedValues.lookup(V);
514       SimplifiedInputValues.push_back({PHI, V});
515     }
516 
517     // Now clear and re-populate the map for the next iteration.
518     SimplifiedValues.clear();
519     while (!SimplifiedInputValues.empty())
520       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
521 
522     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
523 
524     BBWorklist.clear();
525     BBWorklist.insert(L->getHeader());
526     // Note that we *must not* cache the size, this loop grows the worklist.
527     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
528       BasicBlock *BB = BBWorklist[Idx];
529 
530       // Visit all instructions in the given basic block and try to simplify
531       // it.  We don't change the actual IR, just count optimization
532       // opportunities.
533       for (Instruction &I : *BB) {
534         // These won't get into the final code - don't even try calculating the
535         // cost for them.
536         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
537           continue;
538 
539         // Track this instruction's expected baseline cost when executing the
540         // rolled loop form.
541         RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
542 
543         // Visit the instruction to analyze its loop cost after unrolling,
544         // and if the visitor returns true, mark the instruction as free after
545         // unrolling and continue.
546         bool IsFree = Analyzer.visit(I);
547         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
548                                            (unsigned)IsFree,
549                                            /*IsCounted*/ false}).second;
550         (void)Inserted;
551         assert(Inserted && "Cannot have a state for an unvisited instruction!");
552 
553         if (IsFree)
554           continue;
555 
556         // Can't properly model a cost of a call.
557         // FIXME: With a proper cost model we should be able to do it.
558         if (auto *CI = dyn_cast<CallInst>(&I)) {
559           const Function *Callee = CI->getCalledFunction();
560           if (!Callee || TTI.isLoweredToCall(Callee)) {
561             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
562             return std::nullopt;
563           }
564         }
565 
566         // If the instruction might have a side-effect recursively account for
567         // the cost of it and all the instructions leading up to it.
568         if (I.mayHaveSideEffects())
569           AddCostRecursively(I, Iteration);
570 
571         // If unrolled body turns out to be too big, bail out.
572         if (UnrolledCost > MaxUnrolledLoopSize) {
573           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
574                             << "  UnrolledCost: " << UnrolledCost
575                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
576                             << "\n");
577           return std::nullopt;
578         }
579       }
580 
581       Instruction *TI = BB->getTerminator();
582 
583       auto getSimplifiedConstant = [&](Value *V) -> Constant * {
584         if (SimplifiedValues.count(V))
585           V = SimplifiedValues.lookup(V);
586         return dyn_cast<Constant>(V);
587       };
588 
589       // Add in the live successors by first checking whether we have terminator
590       // that may be simplified based on the values simplified by this call.
591       BasicBlock *KnownSucc = nullptr;
592       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593         if (BI->isConditional()) {
594           if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
595             // Just take the first successor if condition is undef
596             if (isa<UndefValue>(SimpleCond))
597               KnownSucc = BI->getSuccessor(0);
598             else if (ConstantInt *SimpleCondVal =
599                          dyn_cast<ConstantInt>(SimpleCond))
600               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
601           }
602         }
603       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
604         if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
605           // Just take the first successor if condition is undef
606           if (isa<UndefValue>(SimpleCond))
607             KnownSucc = SI->getSuccessor(0);
608           else if (ConstantInt *SimpleCondVal =
609                        dyn_cast<ConstantInt>(SimpleCond))
610             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
611         }
612       }
613       if (KnownSucc) {
614         if (L->contains(KnownSucc))
615           BBWorklist.insert(KnownSucc);
616         else
617           ExitWorklist.insert({BB, KnownSucc});
618         continue;
619       }
620 
621       // Add BB's successors to the worklist.
622       for (BasicBlock *Succ : successors(BB))
623         if (L->contains(Succ))
624           BBWorklist.insert(Succ);
625         else
626           ExitWorklist.insert({BB, Succ});
627       AddCostRecursively(*TI, Iteration);
628     }
629 
630     // If we found no optimization opportunities on the first iteration, we
631     // won't find them on later ones too.
632     if (UnrolledCost == RolledDynamicCost) {
633       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
634                         << "  UnrolledCost: " << UnrolledCost << "\n");
635       return std::nullopt;
636     }
637   }
638 
639   while (!ExitWorklist.empty()) {
640     BasicBlock *ExitingBB, *ExitBB;
641     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
642 
643     for (Instruction &I : *ExitBB) {
644       auto *PN = dyn_cast<PHINode>(&I);
645       if (!PN)
646         break;
647 
648       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
649       if (auto *OpI = dyn_cast<Instruction>(Op))
650         if (L->contains(OpI))
651           AddCostRecursively(*OpI, TripCount - 1);
652     }
653   }
654 
655   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
656          "All instructions must have a valid cost, whether the "
657          "loop is rolled or unrolled.");
658 
659   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
660                     << "UnrolledCost: " << UnrolledCost << ", "
661                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
662   return {{unsigned(*UnrolledCost.getValue()),
663            unsigned(*RolledDynamicCost.getValue())}};
664 }
665 
666 /// ApproximateLoopSize - Approximate the size of the loop.
667 InstructionCost llvm::ApproximateLoopSize(
668     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
669     const TargetTransformInfo &TTI,
670     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
671   CodeMetrics Metrics;
672   for (BasicBlock *BB : L->blocks())
673     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
674   NumCalls = Metrics.NumInlineCandidates;
675   NotDuplicatable = Metrics.notDuplicatable;
676   Convergent = Metrics.convergent;
677 
678   InstructionCost LoopSize = Metrics.NumInsts;
679 
680   // Don't allow an estimate of size zero.  This would allows unrolling of loops
681   // with huge iteration counts, which is a compile time problem even if it's
682   // not a problem for code quality. Also, the code using this size may assume
683   // that each loop has at least three instructions (likely a conditional
684   // branch, a comparison feeding that branch, and some kind of loop increment
685   // feeding that comparison instruction).
686   if (LoopSize.isValid() && LoopSize < BEInsns + 1)
687     // This is an open coded max() on InstructionCost
688     LoopSize = BEInsns + 1;
689 
690   return LoopSize;
691 }
692 
693 // Returns the loop hint metadata node with the given name (for example,
694 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
695 // returned.
696 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
697   if (MDNode *LoopID = L->getLoopID())
698     return GetUnrollMetadata(LoopID, Name);
699   return nullptr;
700 }
701 
702 // Returns true if the loop has an unroll(full) pragma.
703 static bool hasUnrollFullPragma(const Loop *L) {
704   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
705 }
706 
707 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
708 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
709 static bool hasUnrollEnablePragma(const Loop *L) {
710   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
711 }
712 
713 // Returns true if the loop has an runtime unroll(disable) pragma.
714 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
715   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
716 }
717 
718 // If loop has an unroll_count pragma return the (necessarily
719 // positive) value from the pragma.  Otherwise return 0.
720 static unsigned unrollCountPragmaValue(const Loop *L) {
721   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
722   if (MD) {
723     assert(MD->getNumOperands() == 2 &&
724            "Unroll count hint metadata should have two operands.");
725     unsigned Count =
726         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
727     assert(Count >= 1 && "Unroll count must be positive.");
728     return Count;
729   }
730   return 0;
731 }
732 
733 // Computes the boosting factor for complete unrolling.
734 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
735 // be beneficial to fully unroll the loop even if unrolledcost is large. We
736 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
737 // the unroll threshold.
738 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
739                                             unsigned MaxPercentThresholdBoost) {
740   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
741     return 100;
742   else if (Cost.UnrolledCost != 0)
743     // The boosting factor is RolledDynamicCost / UnrolledCost
744     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
745                     MaxPercentThresholdBoost);
746   else
747     return MaxPercentThresholdBoost;
748 }
749 
750 // Produce an estimate of the unrolled cost of the specified loop.  This
751 // is used to a) produce a cost estimate for partial unrolling and b) to
752 // cheaply estimate cost for full unrolling when we don't want to symbolically
753 // evaluate all iterations.
754 class UnrollCostEstimator {
755   const unsigned LoopSize;
756 
757 public:
758   UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
759 
760   // Returns loop size estimation for unrolled loop, given the unrolling
761   // configuration specified by UP.
762   uint64_t
763   getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
764                       const unsigned CountOverwrite = 0) const {
765     assert(LoopSize >= UP.BEInsns &&
766            "LoopSize should not be less than BEInsns!");
767     if (CountOverwrite)
768       return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
769              UP.BEInsns;
770     else
771       return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
772              UP.BEInsns;
773   }
774 };
775 
776 static std::optional<unsigned>
777 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
778                    const unsigned TripMultiple, const unsigned TripCount,
779                    const UnrollCostEstimator UCE,
780                    const TargetTransformInfo::UnrollingPreferences &UP) {
781 
782   // Using unroll pragma
783   // 1st priority is unroll count set by "unroll-count" option.
784 
785   if (PInfo.UserUnrollCount) {
786     if (UP.AllowRemainder &&
787         UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
788       return (unsigned)UnrollCount;
789   }
790 
791   // 2nd priority is unroll count set by pragma.
792   if (PInfo.PragmaCount > 0) {
793     if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
794       return PInfo.PragmaCount;
795   }
796 
797   if (PInfo.PragmaFullUnroll && TripCount != 0)
798     return TripCount;
799 
800   // if didn't return until here, should continue to other priorties
801   return std::nullopt;
802 }
803 
804 static std::optional<unsigned> shouldFullUnroll(
805     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
806     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
807     const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
808     const TargetTransformInfo::UnrollingPreferences &UP) {
809   assert(FullUnrollTripCount && "should be non-zero!");
810 
811   if (FullUnrollTripCount > UP.FullUnrollMaxCount)
812     return std::nullopt;
813 
814   // When computing the unrolled size, note that BEInsns are not replicated
815   // like the rest of the loop body.
816   if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
817     return FullUnrollTripCount;
818 
819   // The loop isn't that small, but we still can fully unroll it if that
820   // helps to remove a significant number of instructions.
821   // To check that, run additional analysis on the loop.
822   if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
823           L, FullUnrollTripCount, DT, SE, EphValues, TTI,
824           UP.Threshold * UP.MaxPercentThresholdBoost / 100,
825           UP.MaxIterationsCountToAnalyze)) {
826     unsigned Boost =
827       getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
828     if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
829       return FullUnrollTripCount;
830   }
831   return std::nullopt;
832 }
833 
834 static std::optional<unsigned>
835 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
836                     const UnrollCostEstimator UCE,
837                     const TargetTransformInfo::UnrollingPreferences &UP) {
838 
839   if (!TripCount)
840     return std::nullopt;
841 
842   if (!UP.Partial) {
843     LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
844                << "-unroll-allow-partial not given\n");
845     return 0;
846   }
847   unsigned count = UP.Count;
848   if (count == 0)
849     count = TripCount;
850   if (UP.PartialThreshold != NoThreshold) {
851     // Reduce unroll count to be modulo of TripCount for partial unrolling.
852     if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
853       count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
854         (LoopSize - UP.BEInsns);
855     if (count > UP.MaxCount)
856       count = UP.MaxCount;
857     while (count != 0 && TripCount % count != 0)
858       count--;
859     if (UP.AllowRemainder && count <= 1) {
860       // If there is no Count that is modulo of TripCount, set Count to
861       // largest power-of-two factor that satisfies the threshold limit.
862       // As we'll create fixup loop, do the type of unrolling only if
863       // remainder loop is allowed.
864       count = UP.DefaultUnrollRuntimeCount;
865       while (count != 0 &&
866              UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
867         count >>= 1;
868     }
869     if (count < 2) {
870       count = 0;
871     }
872   } else {
873     count = TripCount;
874   }
875   if (count > UP.MaxCount)
876     count = UP.MaxCount;
877 
878   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << count << "\n");
879 
880   return count;
881 }
882 // Returns true if unroll count was set explicitly.
883 // Calculates unroll count and writes it to UP.Count.
884 // Unless IgnoreUser is true, will also use metadata and command-line options
885 // that are specific to to the LoopUnroll pass (which, for instance, are
886 // irrelevant for the LoopUnrollAndJam pass).
887 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
888 // many LoopUnroll-specific options. The shared functionality should be
889 // refactored into it own function.
890 bool llvm::computeUnrollCount(
891     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
892     AssumptionCache *AC,
893     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
894     OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
895     bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
896     TargetTransformInfo::UnrollingPreferences &UP,
897     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
898 
899   UnrollCostEstimator UCE(*L, LoopSize);
900 
901   const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
902   const bool PragmaFullUnroll = hasUnrollFullPragma(L);
903   const unsigned PragmaCount = unrollCountPragmaValue(L);
904   const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
905 
906   const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
907                               PragmaEnableUnroll || UserUnrollCount;
908 
909   PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
910                    PragmaEnableUnroll);
911   // Use an explicit peel count that has been specified for testing. In this
912   // case it's not permitted to also specify an explicit unroll count.
913   if (PP.PeelCount) {
914     if (UnrollCount.getNumOccurrences() > 0) {
915       report_fatal_error("Cannot specify both explicit peel count and "
916                          "explicit unroll count", /*GenCrashDiag=*/false);
917     }
918     UP.Count = 1;
919     UP.Runtime = false;
920     return true;
921   }
922   // Check for explicit Count.
923   // 1st priority is unroll count set by "unroll-count" option.
924   // 2nd priority is unroll count set by pragma.
925   if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
926                                              UCE, UP)) {
927     UP.Count = *UnrollFactor;
928 
929     if (UserUnrollCount || (PragmaCount > 0)) {
930       UP.AllowExpensiveTripCount = true;
931       UP.Force = true;
932     }
933     UP.Runtime |= (PragmaCount > 0);
934     return ExplicitUnroll;
935   } else {
936     if (ExplicitUnroll && TripCount != 0) {
937       // If the loop has an unrolling pragma, we want to be more aggressive with
938       // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
939       // value which is larger than the default limits.
940       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
941       UP.PartialThreshold =
942           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
943     }
944   }
945 
946   // 3rd priority is exact full unrolling.  This will eliminate all copies
947   // of some exit test.
948   UP.Count = 0;
949   if (TripCount) {
950     UP.Count = TripCount;
951     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
952                                              TripCount, UCE, UP)) {
953       UP.Count = *UnrollFactor;
954       UseUpperBound = false;
955       return ExplicitUnroll;
956     }
957   }
958 
959   // 4th priority is bounded unrolling.
960   // We can unroll by the upper bound amount if it's generally allowed or if
961   // we know that the loop is executed either the upper bound or zero times.
962   // (MaxOrZero unrolling keeps only the first loop test, so the number of
963   // loop tests remains the same compared to the non-unrolled version, whereas
964   // the generic upper bound unrolling keeps all but the last loop test so the
965   // number of loop tests goes up which may end up being worse on targets with
966   // constrained branch predictor resources so is controlled by an option.)
967   // In addition we only unroll small upper bounds.
968   // Note that the cost of bounded unrolling is always strictly greater than
969   // cost of exact full unrolling.  As such, if we have an exact count and
970   // found it unprofitable, we'll never chose to bounded unroll.
971   if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
972       MaxTripCount <= UnrollMaxUpperBound) {
973     UP.Count = MaxTripCount;
974     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
975                                              MaxTripCount, UCE, UP)) {
976       UP.Count = *UnrollFactor;
977       UseUpperBound = true;
978       return ExplicitUnroll;
979     }
980   }
981 
982   // 5th priority is loop peeling.
983   computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
984   if (PP.PeelCount) {
985     UP.Runtime = false;
986     UP.Count = 1;
987     return ExplicitUnroll;
988   }
989 
990   // Before starting partial unrolling, set up.partial to true,
991   // if user explicitly asked  for unrolling
992   if (TripCount)
993     UP.Partial |= ExplicitUnroll;
994 
995   // 6th priority is partial unrolling.
996   // Try partial unroll only when TripCount could be statically calculated.
997   if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
998     UP.Count = *UnrollFactor;
999 
1000     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1001         UP.Count != TripCount)
1002       ORE->emit([&]() {
1003         return OptimizationRemarkMissed(DEBUG_TYPE,
1004                                         "FullUnrollAsDirectedTooLarge",
1005                                         L->getStartLoc(), L->getHeader())
1006                << "Unable to fully unroll loop as directed by unroll pragma "
1007                   "because "
1008                   "unrolled size is too large.";
1009       });
1010 
1011     if (UP.PartialThreshold != NoThreshold) {
1012       if (UP.Count == 0) {
1013         if (PragmaEnableUnroll)
1014           ORE->emit([&]() {
1015             return OptimizationRemarkMissed(DEBUG_TYPE,
1016                                             "UnrollAsDirectedTooLarge",
1017                                             L->getStartLoc(), L->getHeader())
1018                    << "Unable to unroll loop as directed by unroll(enable) "
1019                       "pragma "
1020                       "because unrolled size is too large.";
1021           });
1022       }
1023     }
1024     return ExplicitUnroll;
1025   }
1026   assert(TripCount == 0 &&
1027          "All cases when TripCount is constant should be covered here.");
1028   if (PragmaFullUnroll)
1029     ORE->emit([&]() {
1030       return OptimizationRemarkMissed(
1031                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1032                  L->getStartLoc(), L->getHeader())
1033              << "Unable to fully unroll loop as directed by unroll(full) "
1034                 "pragma "
1035                 "because loop has a runtime trip count.";
1036     });
1037 
1038   // 7th priority is runtime unrolling.
1039   // Don't unroll a runtime trip count loop when it is disabled.
1040   if (hasRuntimeUnrollDisablePragma(L)) {
1041     UP.Count = 0;
1042     return false;
1043   }
1044 
1045   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1046   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
1047     UP.Count = 0;
1048     return false;
1049   }
1050 
1051   // Check if the runtime trip count is too small when profile is available.
1052   if (L->getHeader()->getParent()->hasProfileData()) {
1053     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1054       if (*ProfileTripCount < FlatLoopTripCountThreshold)
1055         return false;
1056       else
1057         UP.AllowExpensiveTripCount = true;
1058     }
1059   }
1060   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1061   if (!UP.Runtime) {
1062     LLVM_DEBUG(
1063         dbgs() << "  will not try to unroll loop with runtime trip count "
1064                << "-unroll-runtime not given\n");
1065     UP.Count = 0;
1066     return false;
1067   }
1068   if (UP.Count == 0)
1069     UP.Count = UP.DefaultUnrollRuntimeCount;
1070 
1071   // Reduce unroll count to be the largest power-of-two factor of
1072   // the original count which satisfies the threshold limit.
1073   while (UP.Count != 0 &&
1074          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1075     UP.Count >>= 1;
1076 
1077 #ifndef NDEBUG
1078   unsigned OrigCount = UP.Count;
1079 #endif
1080 
1081   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1082     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1083       UP.Count >>= 1;
1084     LLVM_DEBUG(
1085         dbgs() << "Remainder loop is restricted (that could architecture "
1086                   "specific or because the loop contains a convergent "
1087                   "instruction), so unroll count must divide the trip "
1088                   "multiple, "
1089                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1090                << " to " << UP.Count << ".\n");
1091 
1092     using namespace ore;
1093 
1094     if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1095       ORE->emit([&]() {
1096         return OptimizationRemarkMissed(DEBUG_TYPE,
1097                                         "DifferentUnrollCountFromDirected",
1098                                         L->getStartLoc(), L->getHeader())
1099                << "Unable to unroll loop the number of times directed by "
1100                   "unroll_count pragma because remainder loop is restricted "
1101                   "(that could architecture specific or because the loop "
1102                   "contains a convergent instruction) and so must have an "
1103                   "unroll "
1104                   "count that divides the loop trip multiple of "
1105                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1106                << NV("UnrollCount", UP.Count) << " time(s).";
1107       });
1108   }
1109 
1110   if (UP.Count > UP.MaxCount)
1111     UP.Count = UP.MaxCount;
1112 
1113   if (MaxTripCount && UP.Count > MaxTripCount)
1114     UP.Count = MaxTripCount;
1115 
1116   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1117                     << "\n");
1118   if (UP.Count < 2)
1119     UP.Count = 0;
1120   return ExplicitUnroll;
1121 }
1122 
1123 static LoopUnrollResult tryToUnrollLoop(
1124     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1125     const TargetTransformInfo &TTI, AssumptionCache &AC,
1126     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1127     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1128     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1129     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1130     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1131     Optional<bool> ProvidedAllowPeeling,
1132     Optional<bool> ProvidedAllowProfileBasedPeeling,
1133     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1134   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1135                     << L->getHeader()->getParent()->getName() << "] Loop %"
1136                     << L->getHeader()->getName() << "\n");
1137   TransformationMode TM = hasUnrollTransformation(L);
1138   if (TM & TM_Disable)
1139     return LoopUnrollResult::Unmodified;
1140 
1141   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1142   // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1143   // automatic unrolling from interfering with the user requested
1144   // transformation.
1145   Loop *ParentL = L->getParentLoop();
1146   if (ParentL != nullptr &&
1147       hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1148       hasUnrollTransformation(L) != TM_ForcedByUser) {
1149     LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1150                       << " llvm.loop.unroll_and_jam.\n");
1151     return LoopUnrollResult::Unmodified;
1152   }
1153 
1154   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1155   // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1156   // unrolling from interfering with the user requested transformation.
1157   if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1158       hasUnrollTransformation(L) != TM_ForcedByUser) {
1159     LLVM_DEBUG(
1160         dbgs()
1161         << "  Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1162     return LoopUnrollResult::Unmodified;
1163   }
1164 
1165   if (!L->isLoopSimplifyForm()) {
1166     LLVM_DEBUG(
1167         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1168     return LoopUnrollResult::Unmodified;
1169   }
1170 
1171   // When automatic unrolling is disabled, do not unroll unless overridden for
1172   // this loop.
1173   if (OnlyWhenForced && !(TM & TM_Enable))
1174     return LoopUnrollResult::Unmodified;
1175 
1176   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1177   unsigned NumInlineCandidates;
1178   bool NotDuplicatable;
1179   bool Convergent;
1180   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1181       L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1182       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1183       ProvidedFullUnrollMaxCount);
1184   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1185       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1186 
1187   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1188   // as threshold later on.
1189   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1190       !OptForSize)
1191     return LoopUnrollResult::Unmodified;
1192 
1193   SmallPtrSet<const Value *, 32> EphValues;
1194   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1195 
1196   InstructionCost LoopSizeIC =
1197       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1198                           TTI, EphValues, UP.BEInsns);
1199   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSizeIC << "\n");
1200 
1201   if (!LoopSizeIC.isValid()) {
1202     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains instructions"
1203                       << " with invalid cost.\n");
1204     return LoopUnrollResult::Unmodified;
1205   }
1206   unsigned LoopSize = *LoopSizeIC.getValue();
1207 
1208   if (NotDuplicatable) {
1209     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1210                       << " instructions.\n");
1211     return LoopUnrollResult::Unmodified;
1212   }
1213 
1214   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1215   // later), to (fully) unroll loops, if it does not increase code size.
1216   if (OptForSize)
1217     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1218 
1219   if (NumInlineCandidates != 0) {
1220     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1221     return LoopUnrollResult::Unmodified;
1222   }
1223 
1224   // Find the smallest exact trip count for any exit. This is an upper bound
1225   // on the loop trip count, but an exit at an earlier iteration is still
1226   // possible. An unroll by the smallest exact trip count guarantees that all
1227   // branches relating to at least one exit can be eliminated. This is unlike
1228   // the max trip count, which only guarantees that the backedge can be broken.
1229   unsigned TripCount = 0;
1230   unsigned TripMultiple = 1;
1231   SmallVector<BasicBlock *, 8> ExitingBlocks;
1232   L->getExitingBlocks(ExitingBlocks);
1233   for (BasicBlock *ExitingBlock : ExitingBlocks)
1234     if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1235       if (!TripCount || TC < TripCount)
1236         TripCount = TripMultiple = TC;
1237 
1238   if (!TripCount) {
1239     // If no exact trip count is known, determine the trip multiple of either
1240     // the loop latch or the single exiting block.
1241     // TODO: Relax for multiple exits.
1242     BasicBlock *ExitingBlock = L->getLoopLatch();
1243     if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1244       ExitingBlock = L->getExitingBlock();
1245     if (ExitingBlock)
1246       TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1247   }
1248 
1249   // If the loop contains a convergent operation, the prelude we'd add
1250   // to do the first few instructions before we hit the unrolled loop
1251   // is unsafe -- it adds a control-flow dependency to the convergent
1252   // operation.  Therefore restrict remainder loop (try unrolling without).
1253   //
1254   // TODO: This is quite conservative.  In practice, convergent_op()
1255   // is likely to be called unconditionally in the loop.  In this
1256   // case, the program would be ill-formed (on most architectures)
1257   // unless n were the same on all threads in a thread group.
1258   // Assuming n is the same on all threads, any kind of unrolling is
1259   // safe.  But currently llvm's notion of convergence isn't powerful
1260   // enough to express this.
1261   if (Convergent)
1262     UP.AllowRemainder = false;
1263 
1264   // Try to find the trip count upper bound if we cannot find the exact trip
1265   // count.
1266   unsigned MaxTripCount = 0;
1267   bool MaxOrZero = false;
1268   if (!TripCount) {
1269     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1270     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1271   }
1272 
1273   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1274   // fully unroll the loop.
1275   bool UseUpperBound = false;
1276   bool IsCountSetExplicitly = computeUnrollCount(
1277     L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1278       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1279   if (!UP.Count)
1280     return LoopUnrollResult::Unmodified;
1281 
1282   if (PP.PeelCount) {
1283     assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1284     LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1285                       << " with iteration count " << PP.PeelCount << "!\n");
1286     ORE.emit([&]() {
1287       return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1288                                 L->getHeader())
1289              << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1290              << " iterations";
1291     });
1292 
1293     if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) {
1294       simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1295       // If the loop was peeled, we already "used up" the profile information
1296       // we had, so we don't want to unroll or peel again.
1297       if (PP.PeelProfiledIterations)
1298         L->setLoopAlreadyUnrolled();
1299       return LoopUnrollResult::PartiallyUnrolled;
1300     }
1301     return LoopUnrollResult::Unmodified;
1302   }
1303 
1304   // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1305   // However, we only want to actually perform it if we don't know the trip
1306   // count and the unroll count doesn't divide the known trip multiple.
1307   // TODO: This decision should probably be pushed up into
1308   // computeUnrollCount().
1309   UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1310 
1311   // Save loop properties before it is transformed.
1312   MDNode *OrigLoopID = L->getLoopID();
1313 
1314   // Unroll the loop.
1315   Loop *RemainderLoop = nullptr;
1316   LoopUnrollResult UnrollResult = UnrollLoop(
1317       L,
1318       {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1319        UP.UnrollRemainder, ForgetAllSCEV},
1320       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1321   if (UnrollResult == LoopUnrollResult::Unmodified)
1322     return LoopUnrollResult::Unmodified;
1323 
1324   if (RemainderLoop) {
1325     Optional<MDNode *> RemainderLoopID =
1326         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1327                                         LLVMLoopUnrollFollowupRemainder});
1328     if (RemainderLoopID)
1329       RemainderLoop->setLoopID(RemainderLoopID.value());
1330   }
1331 
1332   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1333     Optional<MDNode *> NewLoopID =
1334         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1335                                         LLVMLoopUnrollFollowupUnrolled});
1336     if (NewLoopID) {
1337       L->setLoopID(NewLoopID.value());
1338 
1339       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1340       // explicitly.
1341       return UnrollResult;
1342     }
1343   }
1344 
1345   // If loop has an unroll count pragma or unrolled by explicitly set count
1346   // mark loop as unrolled to prevent unrolling beyond that requested.
1347   if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1348     L->setLoopAlreadyUnrolled();
1349 
1350   return UnrollResult;
1351 }
1352 
1353 namespace {
1354 
1355 class LoopUnroll : public LoopPass {
1356 public:
1357   static char ID; // Pass ID, replacement for typeid
1358 
1359   int OptLevel;
1360 
1361   /// If false, use a cost model to determine whether unrolling of a loop is
1362   /// profitable. If true, only loops that explicitly request unrolling via
1363   /// metadata are considered. All other loops are skipped.
1364   bool OnlyWhenForced;
1365 
1366   /// If false, when SCEV is invalidated, only forget everything in the
1367   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1368   /// Otherwise, forgetAllLoops and rebuild when needed next.
1369   bool ForgetAllSCEV;
1370 
1371   Optional<unsigned> ProvidedCount;
1372   Optional<unsigned> ProvidedThreshold;
1373   Optional<bool> ProvidedAllowPartial;
1374   Optional<bool> ProvidedRuntime;
1375   Optional<bool> ProvidedUpperBound;
1376   Optional<bool> ProvidedAllowPeeling;
1377   Optional<bool> ProvidedAllowProfileBasedPeeling;
1378   Optional<unsigned> ProvidedFullUnrollMaxCount;
1379 
1380   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1381              bool ForgetAllSCEV = false,
1382              Optional<unsigned> Threshold = std::nullopt,
1383              Optional<unsigned> Count = std::nullopt,
1384              Optional<bool> AllowPartial = std::nullopt,
1385              Optional<bool> Runtime = std::nullopt,
1386              Optional<bool> UpperBound = std::nullopt,
1387              Optional<bool> AllowPeeling = std::nullopt,
1388              Optional<bool> AllowProfileBasedPeeling = std::nullopt,
1389              Optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1390       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1391         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1392         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1393         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1394         ProvidedAllowPeeling(AllowPeeling),
1395         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1396         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1397     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1398   }
1399 
1400   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1401     if (skipLoop(L))
1402       return false;
1403 
1404     Function &F = *L->getHeader()->getParent();
1405 
1406     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1407     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1408     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1409     const TargetTransformInfo &TTI =
1410         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1411     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1412     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1413     // pass.  Function analyses need to be preserved across loop transformations
1414     // but ORE cannot be preserved (see comment before the pass definition).
1415     OptimizationRemarkEmitter ORE(&F);
1416     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1417 
1418     LoopUnrollResult Result = tryToUnrollLoop(
1419         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1420         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1421         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1422         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1423         ProvidedFullUnrollMaxCount);
1424 
1425     if (Result == LoopUnrollResult::FullyUnrolled)
1426       LPM.markLoopAsDeleted(*L);
1427 
1428     return Result != LoopUnrollResult::Unmodified;
1429   }
1430 
1431   /// This transformation requires natural loop information & requires that
1432   /// loop preheaders be inserted into the CFG...
1433   void getAnalysisUsage(AnalysisUsage &AU) const override {
1434     AU.addRequired<AssumptionCacheTracker>();
1435     AU.addRequired<TargetTransformInfoWrapperPass>();
1436     // FIXME: Loop passes are required to preserve domtree, and for now we just
1437     // recreate dom info if anything gets unrolled.
1438     getLoopAnalysisUsage(AU);
1439   }
1440 };
1441 
1442 } // end anonymous namespace
1443 
1444 char LoopUnroll::ID = 0;
1445 
1446 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1447 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1448 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1450 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1451 
1452 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1453                                  bool ForgetAllSCEV, int Threshold, int Count,
1454                                  int AllowPartial, int Runtime, int UpperBound,
1455                                  int AllowPeeling) {
1456   // TODO: It would make more sense for this function to take the optionals
1457   // directly, but that's dangerous since it would silently break out of tree
1458   // callers.
1459   return new LoopUnroll(
1460       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1461       Threshold == -1 ? std::nullopt : Optional<unsigned>(Threshold),
1462       Count == -1 ? std::nullopt : Optional<unsigned>(Count),
1463       AllowPartial == -1 ? std::nullopt : Optional<bool>(AllowPartial),
1464       Runtime == -1 ? std::nullopt : Optional<bool>(Runtime),
1465       UpperBound == -1 ? std::nullopt : Optional<bool>(UpperBound),
1466       AllowPeeling == -1 ? std::nullopt : Optional<bool>(AllowPeeling));
1467 }
1468 
1469 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1470                                        bool ForgetAllSCEV) {
1471   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1472                               0, 0, 0, 1);
1473 }
1474 
1475 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1476                                           LoopStandardAnalysisResults &AR,
1477                                           LPMUpdater &Updater) {
1478   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1479   // pass. Function analyses need to be preserved across loop transformations
1480   // but ORE cannot be preserved (see comment before the pass definition).
1481   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1482 
1483   // Keep track of the previous loop structure so we can identify new loops
1484   // created by unrolling.
1485   Loop *ParentL = L.getParentLoop();
1486   SmallPtrSet<Loop *, 4> OldLoops;
1487   if (ParentL)
1488     OldLoops.insert(ParentL->begin(), ParentL->end());
1489   else
1490     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1491 
1492   std::string LoopName = std::string(L.getName());
1493 
1494   bool Changed =
1495       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1496                       /*BFI*/ nullptr, /*PSI*/ nullptr,
1497                       /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
1498                       ForgetSCEV, /*Count*/ std::nullopt,
1499                       /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1500                       /*Runtime*/ false, /*UpperBound*/ false,
1501                       /*AllowPeeling*/ true,
1502                       /*AllowProfileBasedPeeling*/ false,
1503                       /*FullUnrollMaxCount*/ std::nullopt) !=
1504       LoopUnrollResult::Unmodified;
1505   if (!Changed)
1506     return PreservedAnalyses::all();
1507 
1508   // The parent must not be damaged by unrolling!
1509 #ifndef NDEBUG
1510   if (ParentL)
1511     ParentL->verifyLoop();
1512 #endif
1513 
1514   // Unrolling can do several things to introduce new loops into a loop nest:
1515   // - Full unrolling clones child loops within the current loop but then
1516   //   removes the current loop making all of the children appear to be new
1517   //   sibling loops.
1518   //
1519   // When a new loop appears as a sibling loop after fully unrolling,
1520   // its nesting structure has fundamentally changed and we want to revisit
1521   // it to reflect that.
1522   //
1523   // When unrolling has removed the current loop, we need to tell the
1524   // infrastructure that it is gone.
1525   //
1526   // Finally, we support a debugging/testing mode where we revisit child loops
1527   // as well. These are not expected to require further optimizations as either
1528   // they or the loop they were cloned from have been directly visited already.
1529   // But the debugging mode allows us to check this assumption.
1530   bool IsCurrentLoopValid = false;
1531   SmallVector<Loop *, 4> SibLoops;
1532   if (ParentL)
1533     SibLoops.append(ParentL->begin(), ParentL->end());
1534   else
1535     SibLoops.append(AR.LI.begin(), AR.LI.end());
1536   erase_if(SibLoops, [&](Loop *SibLoop) {
1537     if (SibLoop == &L) {
1538       IsCurrentLoopValid = true;
1539       return true;
1540     }
1541 
1542     // Otherwise erase the loop from the list if it was in the old loops.
1543     return OldLoops.contains(SibLoop);
1544   });
1545   Updater.addSiblingLoops(SibLoops);
1546 
1547   if (!IsCurrentLoopValid) {
1548     Updater.markLoopAsDeleted(L, LoopName);
1549   } else {
1550     // We can only walk child loops if the current loop remained valid.
1551     if (UnrollRevisitChildLoops) {
1552       // Walk *all* of the child loops.
1553       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1554       Updater.addChildLoops(ChildLoops);
1555     }
1556   }
1557 
1558   return getLoopPassPreservedAnalyses();
1559 }
1560 
1561 PreservedAnalyses LoopUnrollPass::run(Function &F,
1562                                       FunctionAnalysisManager &AM) {
1563   auto &LI = AM.getResult<LoopAnalysis>(F);
1564   // There are no loops in the function. Return before computing other expensive
1565   // analyses.
1566   if (LI.empty())
1567     return PreservedAnalyses::all();
1568   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1569   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1570   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1571   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1572   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1573 
1574   LoopAnalysisManager *LAM = nullptr;
1575   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1576     LAM = &LAMProxy->getManager();
1577 
1578   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1579   ProfileSummaryInfo *PSI =
1580       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1581   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1582       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1583 
1584   bool Changed = false;
1585 
1586   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1587   // Since simplification may add new inner loops, it has to run before the
1588   // legality and profitability checks. This means running the loop unroller
1589   // will simplify all loops, regardless of whether anything end up being
1590   // unrolled.
1591   for (const auto &L : LI) {
1592     Changed |=
1593         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1594     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1595   }
1596 
1597   // Add the loop nests in the reverse order of LoopInfo. See method
1598   // declaration.
1599   SmallPriorityWorklist<Loop *, 4> Worklist;
1600   appendLoopsToWorklist(LI, Worklist);
1601 
1602   while (!Worklist.empty()) {
1603     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1604     // from back to front so that we work forward across the CFG, which
1605     // for unrolling is only needed to get optimization remarks emitted in
1606     // a forward order.
1607     Loop &L = *Worklist.pop_back_val();
1608 #ifndef NDEBUG
1609     Loop *ParentL = L.getParentLoop();
1610 #endif
1611 
1612     // Check if the profile summary indicates that the profiled application
1613     // has a huge working set size, in which case we disable peeling to avoid
1614     // bloating it further.
1615     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1616     if (PSI && PSI->hasHugeWorkingSetSize())
1617       LocalAllowPeeling = false;
1618     std::string LoopName = std::string(L.getName());
1619     // The API here is quite complex to call and we allow to select some
1620     // flavors of unrolling during construction time (by setting UnrollOpts).
1621     LoopUnrollResult Result = tryToUnrollLoop(
1622         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1623         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1624         UnrollOpts.ForgetSCEV, /*Count*/ std::nullopt,
1625         /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1626         UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1627         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1628     Changed |= Result != LoopUnrollResult::Unmodified;
1629 
1630     // The parent must not be damaged by unrolling!
1631 #ifndef NDEBUG
1632     if (Result != LoopUnrollResult::Unmodified && ParentL)
1633       ParentL->verifyLoop();
1634 #endif
1635 
1636     // Clear any cached analysis results for L if we removed it completely.
1637     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1638       LAM->clear(L, LoopName);
1639   }
1640 
1641   if (!Changed)
1642     return PreservedAnalyses::all();
1643 
1644   return getLoopPassPreservedAnalyses();
1645 }
1646 
1647 void LoopUnrollPass::printPipeline(
1648     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1649   static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1650       OS, MapClassName2PassName);
1651   OS << "<";
1652   if (UnrollOpts.AllowPartial != std::nullopt)
1653     OS << (UnrollOpts.AllowPartial.value() ? "" : "no-") << "partial;";
1654   if (UnrollOpts.AllowPeeling != std::nullopt)
1655     OS << (UnrollOpts.AllowPeeling.value() ? "" : "no-") << "peeling;";
1656   if (UnrollOpts.AllowRuntime != std::nullopt)
1657     OS << (UnrollOpts.AllowRuntime.value() ? "" : "no-") << "runtime;";
1658   if (UnrollOpts.AllowUpperBound != std::nullopt)
1659     OS << (UnrollOpts.AllowUpperBound.value() ? "" : "no-") << "upperbound;";
1660   if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1661     OS << (UnrollOpts.AllowProfileBasedPeeling.value() ? "" : "no-")
1662        << "profile-peeling;";
1663   if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1664     OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";";
1665   OS << "O" << UnrollOpts.OptLevel;
1666   OS << ">";
1667 }
1668