xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 3034281b437d681664b72ddbab9178cfcf1f608e)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/LoopPass.h"
31 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/UnrollLoop.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <limits>
64 #include <string>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-unroll"
71 
72 static cl::opt<unsigned>
73     UnrollThreshold("unroll-threshold", cl::Hidden,
74                     cl::desc("The cost threshold for loop unrolling"));
75 
76 static cl::opt<unsigned> UnrollPartialThreshold(
77     "unroll-partial-threshold", cl::Hidden,
78     cl::desc("The cost threshold for partial loop unrolling"));
79 
80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
81     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
82     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
83              "to the threshold when aggressively unrolling a loop due to the "
84              "dynamic cost savings. If completely unrolling a loop will reduce "
85              "the total runtime from X to Y, we boost the loop unroll "
86              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
87              "X/Y). This limit avoids excessive code bloat."));
88 
89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
90     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
91     cl::desc("Don't allow loop unrolling to simulate more than this number of"
92              "iterations when checking full unroll profitability"));
93 
94 static cl::opt<unsigned> UnrollCount(
95     "unroll-count", cl::Hidden,
96     cl::desc("Use this unroll count for all loops including those with "
97              "unroll_count pragma values, for testing purposes"));
98 
99 static cl::opt<unsigned> UnrollMaxCount(
100     "unroll-max-count", cl::Hidden,
101     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
102              "testing purposes"));
103 
104 static cl::opt<unsigned> UnrollFullMaxCount(
105     "unroll-full-max-count", cl::Hidden,
106     cl::desc(
107         "Set the max unroll count for full unrolling, for testing purposes"));
108 
109 static cl::opt<unsigned> UnrollPeelCount(
110     "unroll-peel-count", cl::Hidden,
111     cl::desc("Set the unroll peeling count, for testing purposes"));
112 
113 static cl::opt<bool>
114     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
115                        cl::desc("Allows loops to be partially unrolled until "
116                                 "-unroll-threshold loop size is reached."));
117 
118 static cl::opt<bool> UnrollAllowRemainder(
119     "unroll-allow-remainder", cl::Hidden,
120     cl::desc("Allow generation of a loop remainder (extra iterations) "
121              "when unrolling a loop."));
122 
123 static cl::opt<bool>
124     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
125                   cl::desc("Unroll loops with run-time trip counts"));
126 
127 static cl::opt<unsigned> UnrollMaxUpperBound(
128     "unroll-max-upperbound", cl::init(8), cl::Hidden,
129     cl::desc(
130         "The max of trip count upper bound that is considered in unrolling"));
131 
132 static cl::opt<unsigned> PragmaUnrollThreshold(
133     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
134     cl::desc("Unrolled size limit for loops with an unroll(full) or "
135              "unroll_count pragma."));
136 
137 static cl::opt<unsigned> FlatLoopTripCountThreshold(
138     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
139     cl::desc("If the runtime tripcount for the loop is lower than the "
140              "threshold, the loop is considered as flat and will be less "
141              "aggressively unrolled."));
142 
143 static cl::opt<bool>
144     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
145                        cl::desc("Allows loops to be peeled when the dynamic "
146                                 "trip count is known to be low."));
147 
148 static cl::opt<bool> UnrollUnrollRemainder(
149   "unroll-remainder", cl::Hidden,
150   cl::desc("Allow the loop remainder to be unrolled."));
151 
152 // This option isn't ever intended to be enabled, it serves to allow
153 // experiments to check the assumptions about when this kind of revisit is
154 // necessary.
155 static cl::opt<bool> UnrollRevisitChildLoops(
156     "unroll-revisit-child-loops", cl::Hidden,
157     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
158              "This shouldn't typically be needed as child loops (or their "
159              "clones) were already visited."));
160 
161 /// A magic value for use with the Threshold parameter to indicate
162 /// that the loop unroll should be performed regardless of how much
163 /// code expansion would result.
164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
165 
166 /// Gather the various unrolling parameters based on the defaults, compiler
167 /// flags, TTI overrides and user specified parameters.
168 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
169     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel,
170     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
171     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
172     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
173   TargetTransformInfo::UnrollingPreferences UP;
174 
175   // Set up the defaults
176   UP.Threshold = OptLevel > 2 ? 300 : 150;
177   UP.MaxPercentThresholdBoost = 400;
178   UP.OptSizeThreshold = 0;
179   UP.PartialThreshold = 150;
180   UP.PartialOptSizeThreshold = 0;
181   UP.Count = 0;
182   UP.PeelCount = 0;
183   UP.DefaultUnrollRuntimeCount = 8;
184   UP.MaxCount = std::numeric_limits<unsigned>::max();
185   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
186   UP.BEInsns = 2;
187   UP.Partial = false;
188   UP.Runtime = false;
189   UP.AllowRemainder = true;
190   UP.UnrollRemainder = false;
191   UP.AllowExpensiveTripCount = false;
192   UP.Force = false;
193   UP.UpperBound = false;
194   UP.AllowPeeling = true;
195   UP.UnrollAndJam = false;
196   UP.UnrollAndJamInnerLoopThreshold = 60;
197 
198   // Override with any target specific settings
199   TTI.getUnrollingPreferences(L, SE, UP);
200 
201   // Apply size attributes
202   if (L->getHeader()->getParent()->optForSize()) {
203     UP.Threshold = UP.OptSizeThreshold;
204     UP.PartialThreshold = UP.PartialOptSizeThreshold;
205   }
206 
207   // Apply any user values specified by cl::opt
208   if (UnrollThreshold.getNumOccurrences() > 0)
209     UP.Threshold = UnrollThreshold;
210   if (UnrollPartialThreshold.getNumOccurrences() > 0)
211     UP.PartialThreshold = UnrollPartialThreshold;
212   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
213     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
214   if (UnrollMaxCount.getNumOccurrences() > 0)
215     UP.MaxCount = UnrollMaxCount;
216   if (UnrollFullMaxCount.getNumOccurrences() > 0)
217     UP.FullUnrollMaxCount = UnrollFullMaxCount;
218   if (UnrollPeelCount.getNumOccurrences() > 0)
219     UP.PeelCount = UnrollPeelCount;
220   if (UnrollAllowPartial.getNumOccurrences() > 0)
221     UP.Partial = UnrollAllowPartial;
222   if (UnrollAllowRemainder.getNumOccurrences() > 0)
223     UP.AllowRemainder = UnrollAllowRemainder;
224   if (UnrollRuntime.getNumOccurrences() > 0)
225     UP.Runtime = UnrollRuntime;
226   if (UnrollMaxUpperBound == 0)
227     UP.UpperBound = false;
228   if (UnrollAllowPeeling.getNumOccurrences() > 0)
229     UP.AllowPeeling = UnrollAllowPeeling;
230   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
231     UP.UnrollRemainder = UnrollUnrollRemainder;
232 
233   // Apply user values provided by argument
234   if (UserThreshold.hasValue()) {
235     UP.Threshold = *UserThreshold;
236     UP.PartialThreshold = *UserThreshold;
237   }
238   if (UserCount.hasValue())
239     UP.Count = *UserCount;
240   if (UserAllowPartial.hasValue())
241     UP.Partial = *UserAllowPartial;
242   if (UserRuntime.hasValue())
243     UP.Runtime = *UserRuntime;
244   if (UserUpperBound.hasValue())
245     UP.UpperBound = *UserUpperBound;
246   if (UserAllowPeeling.hasValue())
247     UP.AllowPeeling = *UserAllowPeeling;
248 
249   return UP;
250 }
251 
252 namespace {
253 
254 /// A struct to densely store the state of an instruction after unrolling at
255 /// each iteration.
256 ///
257 /// This is designed to work like a tuple of <Instruction *, int> for the
258 /// purposes of hashing and lookup, but to be able to associate two boolean
259 /// states with each key.
260 struct UnrolledInstState {
261   Instruction *I;
262   int Iteration : 30;
263   unsigned IsFree : 1;
264   unsigned IsCounted : 1;
265 };
266 
267 /// Hashing and equality testing for a set of the instruction states.
268 struct UnrolledInstStateKeyInfo {
269   using PtrInfo = DenseMapInfo<Instruction *>;
270   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
271 
272   static inline UnrolledInstState getEmptyKey() {
273     return {PtrInfo::getEmptyKey(), 0, 0, 0};
274   }
275 
276   static inline UnrolledInstState getTombstoneKey() {
277     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
278   }
279 
280   static inline unsigned getHashValue(const UnrolledInstState &S) {
281     return PairInfo::getHashValue({S.I, S.Iteration});
282   }
283 
284   static inline bool isEqual(const UnrolledInstState &LHS,
285                              const UnrolledInstState &RHS) {
286     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
287   }
288 };
289 
290 struct EstimatedUnrollCost {
291   /// The estimated cost after unrolling.
292   unsigned UnrolledCost;
293 
294   /// The estimated dynamic cost of executing the instructions in the
295   /// rolled form.
296   unsigned RolledDynamicCost;
297 };
298 
299 } // end anonymous namespace
300 
301 /// Figure out if the loop is worth full unrolling.
302 ///
303 /// Complete loop unrolling can make some loads constant, and we need to know
304 /// if that would expose any further optimization opportunities.  This routine
305 /// estimates this optimization.  It computes cost of unrolled loop
306 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
307 /// dynamic cost we mean that we won't count costs of blocks that are known not
308 /// to be executed (i.e. if we have a branch in the loop and we know that at the
309 /// given iteration its condition would be resolved to true, we won't add up the
310 /// cost of the 'false'-block).
311 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
312 /// the analysis failed (no benefits expected from the unrolling, or the loop is
313 /// too big to analyze), the returned value is None.
314 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
315     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
316     const SmallPtrSetImpl<const Value *> &EphValues,
317     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
318   // We want to be able to scale offsets by the trip count and add more offsets
319   // to them without checking for overflows, and we already don't want to
320   // analyze *massive* trip counts, so we force the max to be reasonably small.
321   assert(UnrollMaxIterationsCountToAnalyze <
322              (unsigned)(std::numeric_limits<int>::max() / 2) &&
323          "The unroll iterations max is too large!");
324 
325   // Only analyze inner loops. We can't properly estimate cost of nested loops
326   // and we won't visit inner loops again anyway.
327   if (!L->empty())
328     return None;
329 
330   // Don't simulate loops with a big or unknown tripcount
331   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
332       TripCount > UnrollMaxIterationsCountToAnalyze)
333     return None;
334 
335   SmallSetVector<BasicBlock *, 16> BBWorklist;
336   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
337   DenseMap<Value *, Constant *> SimplifiedValues;
338   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
339 
340   // The estimated cost of the unrolled form of the loop. We try to estimate
341   // this by simplifying as much as we can while computing the estimate.
342   unsigned UnrolledCost = 0;
343 
344   // We also track the estimated dynamic (that is, actually executed) cost in
345   // the rolled form. This helps identify cases when the savings from unrolling
346   // aren't just exposing dead control flows, but actual reduced dynamic
347   // instructions due to the simplifications which we expect to occur after
348   // unrolling.
349   unsigned RolledDynamicCost = 0;
350 
351   // We track the simplification of each instruction in each iteration. We use
352   // this to recursively merge costs into the unrolled cost on-demand so that
353   // we don't count the cost of any dead code. This is essentially a map from
354   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
355   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
356 
357   // A small worklist used to accumulate cost of instructions from each
358   // observable and reached root in the loop.
359   SmallVector<Instruction *, 16> CostWorklist;
360 
361   // PHI-used worklist used between iterations while accumulating cost.
362   SmallVector<Instruction *, 4> PHIUsedList;
363 
364   // Helper function to accumulate cost for instructions in the loop.
365   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
366     assert(Iteration >= 0 && "Cannot have a negative iteration!");
367     assert(CostWorklist.empty() && "Must start with an empty cost list");
368     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
369     CostWorklist.push_back(&RootI);
370     for (;; --Iteration) {
371       do {
372         Instruction *I = CostWorklist.pop_back_val();
373 
374         // InstCostMap only uses I and Iteration as a key, the other two values
375         // don't matter here.
376         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
377         if (CostIter == InstCostMap.end())
378           // If an input to a PHI node comes from a dead path through the loop
379           // we may have no cost data for it here. What that actually means is
380           // that it is free.
381           continue;
382         auto &Cost = *CostIter;
383         if (Cost.IsCounted)
384           // Already counted this instruction.
385           continue;
386 
387         // Mark that we are counting the cost of this instruction now.
388         Cost.IsCounted = true;
389 
390         // If this is a PHI node in the loop header, just add it to the PHI set.
391         if (auto *PhiI = dyn_cast<PHINode>(I))
392           if (PhiI->getParent() == L->getHeader()) {
393             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
394                                   "inherently simplify during unrolling.");
395             if (Iteration == 0)
396               continue;
397 
398             // Push the incoming value from the backedge into the PHI used list
399             // if it is an in-loop instruction. We'll use this to populate the
400             // cost worklist for the next iteration (as we count backwards).
401             if (auto *OpI = dyn_cast<Instruction>(
402                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
403               if (L->contains(OpI))
404                 PHIUsedList.push_back(OpI);
405             continue;
406           }
407 
408         // First accumulate the cost of this instruction.
409         if (!Cost.IsFree) {
410           UnrolledCost += TTI.getUserCost(I);
411           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
412                             << Iteration << "): ");
413           LLVM_DEBUG(I->dump());
414         }
415 
416         // We must count the cost of every operand which is not free,
417         // recursively. If we reach a loop PHI node, simply add it to the set
418         // to be considered on the next iteration (backwards!).
419         for (Value *Op : I->operands()) {
420           // Check whether this operand is free due to being a constant or
421           // outside the loop.
422           auto *OpI = dyn_cast<Instruction>(Op);
423           if (!OpI || !L->contains(OpI))
424             continue;
425 
426           // Otherwise accumulate its cost.
427           CostWorklist.push_back(OpI);
428         }
429       } while (!CostWorklist.empty());
430 
431       if (PHIUsedList.empty())
432         // We've exhausted the search.
433         break;
434 
435       assert(Iteration > 0 &&
436              "Cannot track PHI-used values past the first iteration!");
437       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
438       PHIUsedList.clear();
439     }
440   };
441 
442   // Ensure that we don't violate the loop structure invariants relied on by
443   // this analysis.
444   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
445   assert(L->isLCSSAForm(DT) &&
446          "Must have loops in LCSSA form to track live-out values.");
447 
448   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
449 
450   // Simulate execution of each iteration of the loop counting instructions,
451   // which would be simplified.
452   // Since the same load will take different values on different iterations,
453   // we literally have to go through all loop's iterations.
454   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
455     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
456 
457     // Prepare for the iteration by collecting any simplified entry or backedge
458     // inputs.
459     for (Instruction &I : *L->getHeader()) {
460       auto *PHI = dyn_cast<PHINode>(&I);
461       if (!PHI)
462         break;
463 
464       // The loop header PHI nodes must have exactly two input: one from the
465       // loop preheader and one from the loop latch.
466       assert(
467           PHI->getNumIncomingValues() == 2 &&
468           "Must have an incoming value only for the preheader and the latch.");
469 
470       Value *V = PHI->getIncomingValueForBlock(
471           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
472       Constant *C = dyn_cast<Constant>(V);
473       if (Iteration != 0 && !C)
474         C = SimplifiedValues.lookup(V);
475       if (C)
476         SimplifiedInputValues.push_back({PHI, C});
477     }
478 
479     // Now clear and re-populate the map for the next iteration.
480     SimplifiedValues.clear();
481     while (!SimplifiedInputValues.empty())
482       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
483 
484     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
485 
486     BBWorklist.clear();
487     BBWorklist.insert(L->getHeader());
488     // Note that we *must not* cache the size, this loop grows the worklist.
489     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
490       BasicBlock *BB = BBWorklist[Idx];
491 
492       // Visit all instructions in the given basic block and try to simplify
493       // it.  We don't change the actual IR, just count optimization
494       // opportunities.
495       for (Instruction &I : *BB) {
496         // These won't get into the final code - don't even try calculating the
497         // cost for them.
498         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
499           continue;
500 
501         // Track this instruction's expected baseline cost when executing the
502         // rolled loop form.
503         RolledDynamicCost += TTI.getUserCost(&I);
504 
505         // Visit the instruction to analyze its loop cost after unrolling,
506         // and if the visitor returns true, mark the instruction as free after
507         // unrolling and continue.
508         bool IsFree = Analyzer.visit(I);
509         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
510                                            (unsigned)IsFree,
511                                            /*IsCounted*/ false}).second;
512         (void)Inserted;
513         assert(Inserted && "Cannot have a state for an unvisited instruction!");
514 
515         if (IsFree)
516           continue;
517 
518         // Can't properly model a cost of a call.
519         // FIXME: With a proper cost model we should be able to do it.
520         if(isa<CallInst>(&I))
521           return None;
522 
523         // If the instruction might have a side-effect recursively account for
524         // the cost of it and all the instructions leading up to it.
525         if (I.mayHaveSideEffects())
526           AddCostRecursively(I, Iteration);
527 
528         // If unrolled body turns out to be too big, bail out.
529         if (UnrolledCost > MaxUnrolledLoopSize) {
530           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
531                             << "  UnrolledCost: " << UnrolledCost
532                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
533                             << "\n");
534           return None;
535         }
536       }
537 
538       TerminatorInst *TI = BB->getTerminator();
539 
540       // Add in the live successors by first checking whether we have terminator
541       // that may be simplified based on the values simplified by this call.
542       BasicBlock *KnownSucc = nullptr;
543       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
544         if (BI->isConditional()) {
545           if (Constant *SimpleCond =
546                   SimplifiedValues.lookup(BI->getCondition())) {
547             // Just take the first successor if condition is undef
548             if (isa<UndefValue>(SimpleCond))
549               KnownSucc = BI->getSuccessor(0);
550             else if (ConstantInt *SimpleCondVal =
551                          dyn_cast<ConstantInt>(SimpleCond))
552               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
553           }
554         }
555       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
556         if (Constant *SimpleCond =
557                 SimplifiedValues.lookup(SI->getCondition())) {
558           // Just take the first successor if condition is undef
559           if (isa<UndefValue>(SimpleCond))
560             KnownSucc = SI->getSuccessor(0);
561           else if (ConstantInt *SimpleCondVal =
562                        dyn_cast<ConstantInt>(SimpleCond))
563             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
564         }
565       }
566       if (KnownSucc) {
567         if (L->contains(KnownSucc))
568           BBWorklist.insert(KnownSucc);
569         else
570           ExitWorklist.insert({BB, KnownSucc});
571         continue;
572       }
573 
574       // Add BB's successors to the worklist.
575       for (BasicBlock *Succ : successors(BB))
576         if (L->contains(Succ))
577           BBWorklist.insert(Succ);
578         else
579           ExitWorklist.insert({BB, Succ});
580       AddCostRecursively(*TI, Iteration);
581     }
582 
583     // If we found no optimization opportunities on the first iteration, we
584     // won't find them on later ones too.
585     if (UnrolledCost == RolledDynamicCost) {
586       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
587                         << "  UnrolledCost: " << UnrolledCost << "\n");
588       return None;
589     }
590   }
591 
592   while (!ExitWorklist.empty()) {
593     BasicBlock *ExitingBB, *ExitBB;
594     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
595 
596     for (Instruction &I : *ExitBB) {
597       auto *PN = dyn_cast<PHINode>(&I);
598       if (!PN)
599         break;
600 
601       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
602       if (auto *OpI = dyn_cast<Instruction>(Op))
603         if (L->contains(OpI))
604           AddCostRecursively(*OpI, TripCount - 1);
605     }
606   }
607 
608   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
609                     << "UnrolledCost: " << UnrolledCost << ", "
610                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
611   return {{UnrolledCost, RolledDynamicCost}};
612 }
613 
614 /// ApproximateLoopSize - Approximate the size of the loop.
615 unsigned llvm::ApproximateLoopSize(
616     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
617     const TargetTransformInfo &TTI,
618     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
619   CodeMetrics Metrics;
620   for (BasicBlock *BB : L->blocks())
621     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
622   NumCalls = Metrics.NumInlineCandidates;
623   NotDuplicatable = Metrics.notDuplicatable;
624   Convergent = Metrics.convergent;
625 
626   unsigned LoopSize = Metrics.NumInsts;
627 
628   // Don't allow an estimate of size zero.  This would allows unrolling of loops
629   // with huge iteration counts, which is a compile time problem even if it's
630   // not a problem for code quality. Also, the code using this size may assume
631   // that each loop has at least three instructions (likely a conditional
632   // branch, a comparison feeding that branch, and some kind of loop increment
633   // feeding that comparison instruction).
634   LoopSize = std::max(LoopSize, BEInsns + 1);
635 
636   return LoopSize;
637 }
638 
639 // Returns the loop hint metadata node with the given name (for example,
640 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
641 // returned.
642 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
643   if (MDNode *LoopID = L->getLoopID())
644     return GetUnrollMetadata(LoopID, Name);
645   return nullptr;
646 }
647 
648 // Returns true if the loop has an unroll(full) pragma.
649 static bool HasUnrollFullPragma(const Loop *L) {
650   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
651 }
652 
653 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
654 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
655 static bool HasUnrollEnablePragma(const Loop *L) {
656   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
657 }
658 
659 // Returns true if the loop has an unroll(disable) pragma.
660 static bool HasUnrollDisablePragma(const Loop *L) {
661   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
662 }
663 
664 // Returns true if the loop has an runtime unroll(disable) pragma.
665 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
666   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
667 }
668 
669 // If loop has an unroll_count pragma return the (necessarily
670 // positive) value from the pragma.  Otherwise return 0.
671 static unsigned UnrollCountPragmaValue(const Loop *L) {
672   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
673   if (MD) {
674     assert(MD->getNumOperands() == 2 &&
675            "Unroll count hint metadata should have two operands.");
676     unsigned Count =
677         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
678     assert(Count >= 1 && "Unroll count must be positive.");
679     return Count;
680   }
681   return 0;
682 }
683 
684 // Computes the boosting factor for complete unrolling.
685 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
686 // be beneficial to fully unroll the loop even if unrolledcost is large. We
687 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
688 // the unroll threshold.
689 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
690                                             unsigned MaxPercentThresholdBoost) {
691   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
692     return 100;
693   else if (Cost.UnrolledCost != 0)
694     // The boosting factor is RolledDynamicCost / UnrolledCost
695     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
696                     MaxPercentThresholdBoost);
697   else
698     return MaxPercentThresholdBoost;
699 }
700 
701 // Returns loop size estimation for unrolled loop.
702 static uint64_t getUnrolledLoopSize(
703     unsigned LoopSize,
704     TargetTransformInfo::UnrollingPreferences &UP) {
705   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
706   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
707 }
708 
709 // Returns true if unroll count was set explicitly.
710 // Calculates unroll count and writes it to UP.Count.
711 bool llvm::computeUnrollCount(
712     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
713     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
714     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
715     unsigned &TripMultiple, unsigned LoopSize,
716     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
717   // Check for explicit Count.
718   // 1st priority is unroll count set by "unroll-count" option.
719   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
720   if (UserUnrollCount) {
721     UP.Count = UnrollCount;
722     UP.AllowExpensiveTripCount = true;
723     UP.Force = true;
724     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
725       return true;
726   }
727 
728   // 2nd priority is unroll count set by pragma.
729   unsigned PragmaCount = UnrollCountPragmaValue(L);
730   if (PragmaCount > 0) {
731     UP.Count = PragmaCount;
732     UP.Runtime = true;
733     UP.AllowExpensiveTripCount = true;
734     UP.Force = true;
735     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
736         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
737       return true;
738   }
739   bool PragmaFullUnroll = HasUnrollFullPragma(L);
740   if (PragmaFullUnroll && TripCount != 0) {
741     UP.Count = TripCount;
742     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
743       return false;
744   }
745 
746   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
747   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
748                         PragmaEnableUnroll || UserUnrollCount;
749 
750   if (ExplicitUnroll && TripCount != 0) {
751     // If the loop has an unrolling pragma, we want to be more aggressive with
752     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
753     // value which is larger than the default limits.
754     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
755     UP.PartialThreshold =
756         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
757   }
758 
759   // 3rd priority is full unroll count.
760   // Full unroll makes sense only when TripCount or its upper bound could be
761   // statically calculated.
762   // Also we need to check if we exceed FullUnrollMaxCount.
763   // If using the upper bound to unroll, TripMultiple should be set to 1 because
764   // we do not know when loop may exit.
765   // MaxTripCount and ExactTripCount cannot both be non zero since we only
766   // compute the former when the latter is zero.
767   unsigned ExactTripCount = TripCount;
768   assert((ExactTripCount == 0 || MaxTripCount == 0) &&
769          "ExtractTripCound and MaxTripCount cannot both be non zero.");
770   unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
771   UP.Count = FullUnrollTripCount;
772   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
773     // When computing the unrolled size, note that BEInsns are not replicated
774     // like the rest of the loop body.
775     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
776       UseUpperBound = (MaxTripCount == FullUnrollTripCount);
777       TripCount = FullUnrollTripCount;
778       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
779       return ExplicitUnroll;
780     } else {
781       // The loop isn't that small, but we still can fully unroll it if that
782       // helps to remove a significant number of instructions.
783       // To check that, run additional analysis on the loop.
784       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
785               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
786               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
787         unsigned Boost =
788             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
789         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
790           UseUpperBound = (MaxTripCount == FullUnrollTripCount);
791           TripCount = FullUnrollTripCount;
792           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
793           return ExplicitUnroll;
794         }
795       }
796     }
797   }
798 
799   // 4th priority is loop peeling
800   computePeelCount(L, LoopSize, UP, TripCount, SE);
801   if (UP.PeelCount) {
802     UP.Runtime = false;
803     UP.Count = 1;
804     return ExplicitUnroll;
805   }
806 
807   // 5th priority is partial unrolling.
808   // Try partial unroll only when TripCount could be staticaly calculated.
809   if (TripCount) {
810     UP.Partial |= ExplicitUnroll;
811     if (!UP.Partial) {
812       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
813                         << "-unroll-allow-partial not given\n");
814       UP.Count = 0;
815       return false;
816     }
817     if (UP.Count == 0)
818       UP.Count = TripCount;
819     if (UP.PartialThreshold != NoThreshold) {
820       // Reduce unroll count to be modulo of TripCount for partial unrolling.
821       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
822         UP.Count =
823             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
824             (LoopSize - UP.BEInsns);
825       if (UP.Count > UP.MaxCount)
826         UP.Count = UP.MaxCount;
827       while (UP.Count != 0 && TripCount % UP.Count != 0)
828         UP.Count--;
829       if (UP.AllowRemainder && UP.Count <= 1) {
830         // If there is no Count that is modulo of TripCount, set Count to
831         // largest power-of-two factor that satisfies the threshold limit.
832         // As we'll create fixup loop, do the type of unrolling only if
833         // remainder loop is allowed.
834         UP.Count = UP.DefaultUnrollRuntimeCount;
835         while (UP.Count != 0 &&
836                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
837           UP.Count >>= 1;
838       }
839       if (UP.Count < 2) {
840         if (PragmaEnableUnroll)
841           ORE->emit([&]() {
842             return OptimizationRemarkMissed(DEBUG_TYPE,
843                                             "UnrollAsDirectedTooLarge",
844                                             L->getStartLoc(), L->getHeader())
845                    << "Unable to unroll loop as directed by unroll(enable) "
846                       "pragma "
847                       "because unrolled size is too large.";
848           });
849         UP.Count = 0;
850       }
851     } else {
852       UP.Count = TripCount;
853     }
854     if (UP.Count > UP.MaxCount)
855       UP.Count = UP.MaxCount;
856     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
857         UP.Count != TripCount)
858       ORE->emit([&]() {
859         return OptimizationRemarkMissed(DEBUG_TYPE,
860                                         "FullUnrollAsDirectedTooLarge",
861                                         L->getStartLoc(), L->getHeader())
862                << "Unable to fully unroll loop as directed by unroll pragma "
863                   "because "
864                   "unrolled size is too large.";
865       });
866     return ExplicitUnroll;
867   }
868   assert(TripCount == 0 &&
869          "All cases when TripCount is constant should be covered here.");
870   if (PragmaFullUnroll)
871     ORE->emit([&]() {
872       return OptimizationRemarkMissed(
873                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
874                  L->getStartLoc(), L->getHeader())
875              << "Unable to fully unroll loop as directed by unroll(full) "
876                 "pragma "
877                 "because loop has a runtime trip count.";
878     });
879 
880   // 6th priority is runtime unrolling.
881   // Don't unroll a runtime trip count loop when it is disabled.
882   if (HasRuntimeUnrollDisablePragma(L)) {
883     UP.Count = 0;
884     return false;
885   }
886 
887   // Check if the runtime trip count is too small when profile is available.
888   if (L->getHeader()->getParent()->hasProfileData()) {
889     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
890       if (*ProfileTripCount < FlatLoopTripCountThreshold)
891         return false;
892       else
893         UP.AllowExpensiveTripCount = true;
894     }
895   }
896 
897   // Reduce count based on the type of unrolling and the threshold values.
898   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
899   if (!UP.Runtime) {
900     LLVM_DEBUG(
901         dbgs() << "  will not try to unroll loop with runtime trip count "
902                << "-unroll-runtime not given\n");
903     UP.Count = 0;
904     return false;
905   }
906   if (UP.Count == 0)
907     UP.Count = UP.DefaultUnrollRuntimeCount;
908 
909   // Reduce unroll count to be the largest power-of-two factor of
910   // the original count which satisfies the threshold limit.
911   while (UP.Count != 0 &&
912          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
913     UP.Count >>= 1;
914 
915 #ifndef NDEBUG
916   unsigned OrigCount = UP.Count;
917 #endif
918 
919   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
920     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
921       UP.Count >>= 1;
922     LLVM_DEBUG(
923         dbgs() << "Remainder loop is restricted (that could architecture "
924                   "specific or because the loop contains a convergent "
925                   "instruction), so unroll count must divide the trip "
926                   "multiple, "
927                << TripMultiple << ".  Reducing unroll count from " << OrigCount
928                << " to " << UP.Count << ".\n");
929 
930     using namespace ore;
931 
932     if (PragmaCount > 0 && !UP.AllowRemainder)
933       ORE->emit([&]() {
934         return OptimizationRemarkMissed(DEBUG_TYPE,
935                                         "DifferentUnrollCountFromDirected",
936                                         L->getStartLoc(), L->getHeader())
937                << "Unable to unroll loop the number of times directed by "
938                   "unroll_count pragma because remainder loop is restricted "
939                   "(that could architecture specific or because the loop "
940                   "contains a convergent instruction) and so must have an "
941                   "unroll "
942                   "count that divides the loop trip multiple of "
943                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
944                << NV("UnrollCount", UP.Count) << " time(s).";
945       });
946   }
947 
948   if (UP.Count > UP.MaxCount)
949     UP.Count = UP.MaxCount;
950   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
951                     << "\n");
952   if (UP.Count < 2)
953     UP.Count = 0;
954   return ExplicitUnroll;
955 }
956 
957 static LoopUnrollResult tryToUnrollLoop(
958     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
959     const TargetTransformInfo &TTI, AssumptionCache &AC,
960     OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel,
961     Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold,
962     Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime,
963     Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) {
964   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
965                     << L->getHeader()->getParent()->getName() << "] Loop %"
966                     << L->getHeader()->getName() << "\n");
967   if (HasUnrollDisablePragma(L))
968     return LoopUnrollResult::Unmodified;
969   if (!L->isLoopSimplifyForm()) {
970     LLVM_DEBUG(
971         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
972     return LoopUnrollResult::Unmodified;
973   }
974 
975   unsigned NumInlineCandidates;
976   bool NotDuplicatable;
977   bool Convergent;
978   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
979       L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount,
980       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
981       ProvidedAllowPeeling);
982   // Exit early if unrolling is disabled.
983   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
984     return LoopUnrollResult::Unmodified;
985 
986   SmallPtrSet<const Value *, 32> EphValues;
987   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
988 
989   unsigned LoopSize =
990       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
991                           TTI, EphValues, UP.BEInsns);
992   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
993   if (NotDuplicatable) {
994     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
995                       << " instructions.\n");
996     return LoopUnrollResult::Unmodified;
997   }
998   if (NumInlineCandidates != 0) {
999     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1000     return LoopUnrollResult::Unmodified;
1001   }
1002 
1003   // Find trip count and trip multiple if count is not available
1004   unsigned TripCount = 0;
1005   unsigned MaxTripCount = 0;
1006   unsigned TripMultiple = 1;
1007   // If there are multiple exiting blocks but one of them is the latch, use the
1008   // latch for the trip count estimation. Otherwise insist on a single exiting
1009   // block for the trip count estimation.
1010   BasicBlock *ExitingBlock = L->getLoopLatch();
1011   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1012     ExitingBlock = L->getExitingBlock();
1013   if (ExitingBlock) {
1014     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1015     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1016   }
1017 
1018   // If the loop contains a convergent operation, the prelude we'd add
1019   // to do the first few instructions before we hit the unrolled loop
1020   // is unsafe -- it adds a control-flow dependency to the convergent
1021   // operation.  Therefore restrict remainder loop (try unrollig without).
1022   //
1023   // TODO: This is quite conservative.  In practice, convergent_op()
1024   // is likely to be called unconditionally in the loop.  In this
1025   // case, the program would be ill-formed (on most architectures)
1026   // unless n were the same on all threads in a thread group.
1027   // Assuming n is the same on all threads, any kind of unrolling is
1028   // safe.  But currently llvm's notion of convergence isn't powerful
1029   // enough to express this.
1030   if (Convergent)
1031     UP.AllowRemainder = false;
1032 
1033   // Try to find the trip count upper bound if we cannot find the exact trip
1034   // count.
1035   bool MaxOrZero = false;
1036   if (!TripCount) {
1037     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1038     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1039     // We can unroll by the upper bound amount if it's generally allowed or if
1040     // we know that the loop is executed either the upper bound or zero times.
1041     // (MaxOrZero unrolling keeps only the first loop test, so the number of
1042     // loop tests remains the same compared to the non-unrolled version, whereas
1043     // the generic upper bound unrolling keeps all but the last loop test so the
1044     // number of loop tests goes up which may end up being worse on targets with
1045     // constriained branch predictor resources so is controlled by an option.)
1046     // In addition we only unroll small upper bounds.
1047     if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
1048       MaxTripCount = 0;
1049     }
1050   }
1051 
1052   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1053   // fully unroll the loop.
1054   bool UseUpperBound = false;
1055   bool IsCountSetExplicitly = computeUnrollCount(
1056       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
1057       TripMultiple, LoopSize, UP, UseUpperBound);
1058   if (!UP.Count)
1059     return LoopUnrollResult::Unmodified;
1060   // Unroll factor (Count) must be less or equal to TripCount.
1061   if (TripCount && UP.Count > TripCount)
1062     UP.Count = TripCount;
1063 
1064   // Unroll the loop.
1065   LoopUnrollResult UnrollResult = UnrollLoop(
1066       L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1067       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1068       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA);
1069   if (UnrollResult == LoopUnrollResult::Unmodified)
1070     return LoopUnrollResult::Unmodified;
1071 
1072   // If loop has an unroll count pragma or unrolled by explicitly set count
1073   // mark loop as unrolled to prevent unrolling beyond that requested.
1074   // If the loop was peeled, we already "used up" the profile information
1075   // we had, so we don't want to unroll or peel again.
1076   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1077       (IsCountSetExplicitly || UP.PeelCount))
1078     L->setLoopAlreadyUnrolled();
1079 
1080   return UnrollResult;
1081 }
1082 
1083 namespace {
1084 
1085 class LoopUnroll : public LoopPass {
1086 public:
1087   static char ID; // Pass ID, replacement for typeid
1088 
1089   int OptLevel;
1090   Optional<unsigned> ProvidedCount;
1091   Optional<unsigned> ProvidedThreshold;
1092   Optional<bool> ProvidedAllowPartial;
1093   Optional<bool> ProvidedRuntime;
1094   Optional<bool> ProvidedUpperBound;
1095   Optional<bool> ProvidedAllowPeeling;
1096 
1097   LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None,
1098              Optional<unsigned> Count = None,
1099              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1100              Optional<bool> UpperBound = None,
1101              Optional<bool> AllowPeeling = None)
1102       : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)),
1103         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1104         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1105         ProvidedAllowPeeling(AllowPeeling) {
1106     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1107   }
1108 
1109   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1110     if (skipLoop(L))
1111       return false;
1112 
1113     Function &F = *L->getHeader()->getParent();
1114 
1115     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1116     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1117     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1118     const TargetTransformInfo &TTI =
1119         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1120     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1121     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1122     // pass.  Function analyses need to be preserved across loop transformations
1123     // but ORE cannot be preserved (see comment before the pass definition).
1124     OptimizationRemarkEmitter ORE(&F);
1125     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1126 
1127     LoopUnrollResult Result = tryToUnrollLoop(
1128         L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount,
1129         ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1130         ProvidedUpperBound, ProvidedAllowPeeling);
1131 
1132     if (Result == LoopUnrollResult::FullyUnrolled)
1133       LPM.markLoopAsDeleted(*L);
1134 
1135     return Result != LoopUnrollResult::Unmodified;
1136   }
1137 
1138   /// This transformation requires natural loop information & requires that
1139   /// loop preheaders be inserted into the CFG...
1140   void getAnalysisUsage(AnalysisUsage &AU) const override {
1141     AU.addRequired<AssumptionCacheTracker>();
1142     AU.addRequired<TargetTransformInfoWrapperPass>();
1143     // FIXME: Loop passes are required to preserve domtree, and for now we just
1144     // recreate dom info if anything gets unrolled.
1145     getLoopAnalysisUsage(AU);
1146   }
1147 };
1148 
1149 } // end anonymous namespace
1150 
1151 char LoopUnroll::ID = 0;
1152 
1153 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1154 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1155 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1156 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1157 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1158 
1159 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count,
1160                                  int AllowPartial, int Runtime, int UpperBound,
1161                                  int AllowPeeling) {
1162   // TODO: It would make more sense for this function to take the optionals
1163   // directly, but that's dangerous since it would silently break out of tree
1164   // callers.
1165   return new LoopUnroll(
1166       OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold),
1167       Count == -1 ? None : Optional<unsigned>(Count),
1168       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1169       Runtime == -1 ? None : Optional<bool>(Runtime),
1170       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1171       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1172 }
1173 
1174 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) {
1175   return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0);
1176 }
1177 
1178 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1179                                           LoopStandardAnalysisResults &AR,
1180                                           LPMUpdater &Updater) {
1181   const auto &FAM =
1182       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1183   Function *F = L.getHeader()->getParent();
1184 
1185   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1186   // FIXME: This should probably be optional rather than required.
1187   if (!ORE)
1188     report_fatal_error(
1189         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1190         "cached at a higher level");
1191 
1192   // Keep track of the previous loop structure so we can identify new loops
1193   // created by unrolling.
1194   Loop *ParentL = L.getParentLoop();
1195   SmallPtrSet<Loop *, 4> OldLoops;
1196   if (ParentL)
1197     OldLoops.insert(ParentL->begin(), ParentL->end());
1198   else
1199     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1200 
1201   std::string LoopName = L.getName();
1202 
1203   bool Changed =
1204       tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1205                       /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1206                       /*Threshold*/ None, /*AllowPartial*/ false,
1207                       /*Runtime*/ false, /*UpperBound*/ false,
1208                       /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
1209   if (!Changed)
1210     return PreservedAnalyses::all();
1211 
1212   // The parent must not be damaged by unrolling!
1213 #ifndef NDEBUG
1214   if (ParentL)
1215     ParentL->verifyLoop();
1216 #endif
1217 
1218   // Unrolling can do several things to introduce new loops into a loop nest:
1219   // - Full unrolling clones child loops within the current loop but then
1220   //   removes the current loop making all of the children appear to be new
1221   //   sibling loops.
1222   //
1223   // When a new loop appears as a sibling loop after fully unrolling,
1224   // its nesting structure has fundamentally changed and we want to revisit
1225   // it to reflect that.
1226   //
1227   // When unrolling has removed the current loop, we need to tell the
1228   // infrastructure that it is gone.
1229   //
1230   // Finally, we support a debugging/testing mode where we revisit child loops
1231   // as well. These are not expected to require further optimizations as either
1232   // they or the loop they were cloned from have been directly visited already.
1233   // But the debugging mode allows us to check this assumption.
1234   bool IsCurrentLoopValid = false;
1235   SmallVector<Loop *, 4> SibLoops;
1236   if (ParentL)
1237     SibLoops.append(ParentL->begin(), ParentL->end());
1238   else
1239     SibLoops.append(AR.LI.begin(), AR.LI.end());
1240   erase_if(SibLoops, [&](Loop *SibLoop) {
1241     if (SibLoop == &L) {
1242       IsCurrentLoopValid = true;
1243       return true;
1244     }
1245 
1246     // Otherwise erase the loop from the list if it was in the old loops.
1247     return OldLoops.count(SibLoop) != 0;
1248   });
1249   Updater.addSiblingLoops(SibLoops);
1250 
1251   if (!IsCurrentLoopValid) {
1252     Updater.markLoopAsDeleted(L, LoopName);
1253   } else {
1254     // We can only walk child loops if the current loop remained valid.
1255     if (UnrollRevisitChildLoops) {
1256       // Walk *all* of the child loops.
1257       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1258       Updater.addChildLoops(ChildLoops);
1259     }
1260   }
1261 
1262   return getLoopPassPreservedAnalyses();
1263 }
1264 
1265 template <typename RangeT>
1266 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1267   SmallVector<Loop *, 8> Worklist;
1268   // We use an internal worklist to build up the preorder traversal without
1269   // recursion.
1270   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1271 
1272   for (Loop *RootL : Loops) {
1273     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1274     assert(PreOrderWorklist.empty() &&
1275            "Must start with an empty preorder walk worklist.");
1276     PreOrderWorklist.push_back(RootL);
1277     do {
1278       Loop *L = PreOrderWorklist.pop_back_val();
1279       PreOrderWorklist.append(L->begin(), L->end());
1280       PreOrderLoops.push_back(L);
1281     } while (!PreOrderWorklist.empty());
1282 
1283     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1284     PreOrderLoops.clear();
1285   }
1286   return Worklist;
1287 }
1288 
1289 PreservedAnalyses LoopUnrollPass::run(Function &F,
1290                                       FunctionAnalysisManager &AM) {
1291   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1292   auto &LI = AM.getResult<LoopAnalysis>(F);
1293   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1294   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1295   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1296   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1297 
1298   LoopAnalysisManager *LAM = nullptr;
1299   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1300     LAM = &LAMProxy->getManager();
1301 
1302   const ModuleAnalysisManager &MAM =
1303       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1304   ProfileSummaryInfo *PSI =
1305       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1306 
1307   bool Changed = false;
1308 
1309   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1310   // Since simplification may add new inner loops, it has to run before the
1311   // legality and profitability checks. This means running the loop unroller
1312   // will simplify all loops, regardless of whether anything end up being
1313   // unrolled.
1314   for (auto &L : LI) {
1315     Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */);
1316     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1317   }
1318 
1319   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1320 
1321   while (!Worklist.empty()) {
1322     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1323     // from back to front so that we work forward across the CFG, which
1324     // for unrolling is only needed to get optimization remarks emitted in
1325     // a forward order.
1326     Loop &L = *Worklist.pop_back_val();
1327 #ifndef NDEBUG
1328     Loop *ParentL = L.getParentLoop();
1329 #endif
1330 
1331     // The API here is quite complex to call, but there are only two interesting
1332     // states we support: partial and full (or "simple") unrolling. However, to
1333     // enable these things we actually pass "None" in for the optional to avoid
1334     // providing an explicit choice.
1335     Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam,
1336         AllowPeeling;
1337     // Check if the profile summary indicates that the profiled application
1338     // has a huge working set size, in which case we disable peeling to avoid
1339     // bloating it further.
1340     if (PSI && PSI->hasHugeWorkingSetSize())
1341       AllowPeeling = false;
1342     std::string LoopName = L.getName();
1343     LoopUnrollResult Result =
1344         tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE,
1345                         /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None,
1346                         /*Threshold*/ None, AllowPartialParam, RuntimeParam,
1347                         UpperBoundParam, AllowPeeling);
1348     Changed |= Result != LoopUnrollResult::Unmodified;
1349 
1350     // The parent must not be damaged by unrolling!
1351 #ifndef NDEBUG
1352     if (Result != LoopUnrollResult::Unmodified && ParentL)
1353       ParentL->verifyLoop();
1354 #endif
1355 
1356     // Clear any cached analysis results for L if we removed it completely.
1357     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1358       LAM->clear(L, LoopName);
1359   }
1360 
1361   if (!Changed)
1362     return PreservedAnalyses::all();
1363 
1364   return getLoopPassPreservedAnalyses();
1365 }
1366