1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/UnrollLoop.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <limits> 64 #include <string> 65 #include <tuple> 66 #include <utility> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-unroll" 71 72 static cl::opt<unsigned> 73 UnrollThreshold("unroll-threshold", cl::Hidden, 74 cl::desc("The cost threshold for loop unrolling")); 75 76 static cl::opt<unsigned> UnrollPartialThreshold( 77 "unroll-partial-threshold", cl::Hidden, 78 cl::desc("The cost threshold for partial loop unrolling")); 79 80 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 81 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 82 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 83 "to the threshold when aggressively unrolling a loop due to the " 84 "dynamic cost savings. If completely unrolling a loop will reduce " 85 "the total runtime from X to Y, we boost the loop unroll " 86 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 87 "X/Y). This limit avoids excessive code bloat.")); 88 89 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 90 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 91 cl::desc("Don't allow loop unrolling to simulate more than this number of" 92 "iterations when checking full unroll profitability")); 93 94 static cl::opt<unsigned> UnrollCount( 95 "unroll-count", cl::Hidden, 96 cl::desc("Use this unroll count for all loops including those with " 97 "unroll_count pragma values, for testing purposes")); 98 99 static cl::opt<unsigned> UnrollMaxCount( 100 "unroll-max-count", cl::Hidden, 101 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 102 "testing purposes")); 103 104 static cl::opt<unsigned> UnrollFullMaxCount( 105 "unroll-full-max-count", cl::Hidden, 106 cl::desc( 107 "Set the max unroll count for full unrolling, for testing purposes")); 108 109 static cl::opt<unsigned> UnrollPeelCount( 110 "unroll-peel-count", cl::Hidden, 111 cl::desc("Set the unroll peeling count, for testing purposes")); 112 113 static cl::opt<bool> 114 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 115 cl::desc("Allows loops to be partially unrolled until " 116 "-unroll-threshold loop size is reached.")); 117 118 static cl::opt<bool> UnrollAllowRemainder( 119 "unroll-allow-remainder", cl::Hidden, 120 cl::desc("Allow generation of a loop remainder (extra iterations) " 121 "when unrolling a loop.")); 122 123 static cl::opt<bool> 124 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 125 cl::desc("Unroll loops with run-time trip counts")); 126 127 static cl::opt<unsigned> UnrollMaxUpperBound( 128 "unroll-max-upperbound", cl::init(8), cl::Hidden, 129 cl::desc( 130 "The max of trip count upper bound that is considered in unrolling")); 131 132 static cl::opt<unsigned> PragmaUnrollThreshold( 133 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 134 cl::desc("Unrolled size limit for loops with an unroll(full) or " 135 "unroll_count pragma.")); 136 137 static cl::opt<unsigned> FlatLoopTripCountThreshold( 138 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 139 cl::desc("If the runtime tripcount for the loop is lower than the " 140 "threshold, the loop is considered as flat and will be less " 141 "aggressively unrolled.")); 142 143 static cl::opt<bool> 144 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 145 cl::desc("Allows loops to be peeled when the dynamic " 146 "trip count is known to be low.")); 147 148 static cl::opt<bool> UnrollUnrollRemainder( 149 "unroll-remainder", cl::Hidden, 150 cl::desc("Allow the loop remainder to be unrolled.")); 151 152 // This option isn't ever intended to be enabled, it serves to allow 153 // experiments to check the assumptions about when this kind of revisit is 154 // necessary. 155 static cl::opt<bool> UnrollRevisitChildLoops( 156 "unroll-revisit-child-loops", cl::Hidden, 157 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 158 "This shouldn't typically be needed as child loops (or their " 159 "clones) were already visited.")); 160 161 /// A magic value for use with the Threshold parameter to indicate 162 /// that the loop unroll should be performed regardless of how much 163 /// code expansion would result. 164 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 165 166 /// Gather the various unrolling parameters based on the defaults, compiler 167 /// flags, TTI overrides and user specified parameters. 168 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 169 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, int OptLevel, 170 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 171 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 172 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 173 TargetTransformInfo::UnrollingPreferences UP; 174 175 // Set up the defaults 176 UP.Threshold = OptLevel > 2 ? 300 : 150; 177 UP.MaxPercentThresholdBoost = 400; 178 UP.OptSizeThreshold = 0; 179 UP.PartialThreshold = 150; 180 UP.PartialOptSizeThreshold = 0; 181 UP.Count = 0; 182 UP.PeelCount = 0; 183 UP.DefaultUnrollRuntimeCount = 8; 184 UP.MaxCount = std::numeric_limits<unsigned>::max(); 185 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 186 UP.BEInsns = 2; 187 UP.Partial = false; 188 UP.Runtime = false; 189 UP.AllowRemainder = true; 190 UP.UnrollRemainder = false; 191 UP.AllowExpensiveTripCount = false; 192 UP.Force = false; 193 UP.UpperBound = false; 194 UP.AllowPeeling = true; 195 UP.UnrollAndJam = false; 196 UP.UnrollAndJamInnerLoopThreshold = 60; 197 198 // Override with any target specific settings 199 TTI.getUnrollingPreferences(L, SE, UP); 200 201 // Apply size attributes 202 if (L->getHeader()->getParent()->optForSize()) { 203 UP.Threshold = UP.OptSizeThreshold; 204 UP.PartialThreshold = UP.PartialOptSizeThreshold; 205 } 206 207 // Apply any user values specified by cl::opt 208 if (UnrollThreshold.getNumOccurrences() > 0) 209 UP.Threshold = UnrollThreshold; 210 if (UnrollPartialThreshold.getNumOccurrences() > 0) 211 UP.PartialThreshold = UnrollPartialThreshold; 212 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 213 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 214 if (UnrollMaxCount.getNumOccurrences() > 0) 215 UP.MaxCount = UnrollMaxCount; 216 if (UnrollFullMaxCount.getNumOccurrences() > 0) 217 UP.FullUnrollMaxCount = UnrollFullMaxCount; 218 if (UnrollPeelCount.getNumOccurrences() > 0) 219 UP.PeelCount = UnrollPeelCount; 220 if (UnrollAllowPartial.getNumOccurrences() > 0) 221 UP.Partial = UnrollAllowPartial; 222 if (UnrollAllowRemainder.getNumOccurrences() > 0) 223 UP.AllowRemainder = UnrollAllowRemainder; 224 if (UnrollRuntime.getNumOccurrences() > 0) 225 UP.Runtime = UnrollRuntime; 226 if (UnrollMaxUpperBound == 0) 227 UP.UpperBound = false; 228 if (UnrollAllowPeeling.getNumOccurrences() > 0) 229 UP.AllowPeeling = UnrollAllowPeeling; 230 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 231 UP.UnrollRemainder = UnrollUnrollRemainder; 232 233 // Apply user values provided by argument 234 if (UserThreshold.hasValue()) { 235 UP.Threshold = *UserThreshold; 236 UP.PartialThreshold = *UserThreshold; 237 } 238 if (UserCount.hasValue()) 239 UP.Count = *UserCount; 240 if (UserAllowPartial.hasValue()) 241 UP.Partial = *UserAllowPartial; 242 if (UserRuntime.hasValue()) 243 UP.Runtime = *UserRuntime; 244 if (UserUpperBound.hasValue()) 245 UP.UpperBound = *UserUpperBound; 246 if (UserAllowPeeling.hasValue()) 247 UP.AllowPeeling = *UserAllowPeeling; 248 249 return UP; 250 } 251 252 namespace { 253 254 /// A struct to densely store the state of an instruction after unrolling at 255 /// each iteration. 256 /// 257 /// This is designed to work like a tuple of <Instruction *, int> for the 258 /// purposes of hashing and lookup, but to be able to associate two boolean 259 /// states with each key. 260 struct UnrolledInstState { 261 Instruction *I; 262 int Iteration : 30; 263 unsigned IsFree : 1; 264 unsigned IsCounted : 1; 265 }; 266 267 /// Hashing and equality testing for a set of the instruction states. 268 struct UnrolledInstStateKeyInfo { 269 using PtrInfo = DenseMapInfo<Instruction *>; 270 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 271 272 static inline UnrolledInstState getEmptyKey() { 273 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 274 } 275 276 static inline UnrolledInstState getTombstoneKey() { 277 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 278 } 279 280 static inline unsigned getHashValue(const UnrolledInstState &S) { 281 return PairInfo::getHashValue({S.I, S.Iteration}); 282 } 283 284 static inline bool isEqual(const UnrolledInstState &LHS, 285 const UnrolledInstState &RHS) { 286 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 287 } 288 }; 289 290 struct EstimatedUnrollCost { 291 /// The estimated cost after unrolling. 292 unsigned UnrolledCost; 293 294 /// The estimated dynamic cost of executing the instructions in the 295 /// rolled form. 296 unsigned RolledDynamicCost; 297 }; 298 299 } // end anonymous namespace 300 301 /// Figure out if the loop is worth full unrolling. 302 /// 303 /// Complete loop unrolling can make some loads constant, and we need to know 304 /// if that would expose any further optimization opportunities. This routine 305 /// estimates this optimization. It computes cost of unrolled loop 306 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 307 /// dynamic cost we mean that we won't count costs of blocks that are known not 308 /// to be executed (i.e. if we have a branch in the loop and we know that at the 309 /// given iteration its condition would be resolved to true, we won't add up the 310 /// cost of the 'false'-block). 311 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 312 /// the analysis failed (no benefits expected from the unrolling, or the loop is 313 /// too big to analyze), the returned value is None. 314 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 315 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 316 const SmallPtrSetImpl<const Value *> &EphValues, 317 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 318 // We want to be able to scale offsets by the trip count and add more offsets 319 // to them without checking for overflows, and we already don't want to 320 // analyze *massive* trip counts, so we force the max to be reasonably small. 321 assert(UnrollMaxIterationsCountToAnalyze < 322 (unsigned)(std::numeric_limits<int>::max() / 2) && 323 "The unroll iterations max is too large!"); 324 325 // Only analyze inner loops. We can't properly estimate cost of nested loops 326 // and we won't visit inner loops again anyway. 327 if (!L->empty()) 328 return None; 329 330 // Don't simulate loops with a big or unknown tripcount 331 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 332 TripCount > UnrollMaxIterationsCountToAnalyze) 333 return None; 334 335 SmallSetVector<BasicBlock *, 16> BBWorklist; 336 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 337 DenseMap<Value *, Constant *> SimplifiedValues; 338 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 339 340 // The estimated cost of the unrolled form of the loop. We try to estimate 341 // this by simplifying as much as we can while computing the estimate. 342 unsigned UnrolledCost = 0; 343 344 // We also track the estimated dynamic (that is, actually executed) cost in 345 // the rolled form. This helps identify cases when the savings from unrolling 346 // aren't just exposing dead control flows, but actual reduced dynamic 347 // instructions due to the simplifications which we expect to occur after 348 // unrolling. 349 unsigned RolledDynamicCost = 0; 350 351 // We track the simplification of each instruction in each iteration. We use 352 // this to recursively merge costs into the unrolled cost on-demand so that 353 // we don't count the cost of any dead code. This is essentially a map from 354 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 355 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 356 357 // A small worklist used to accumulate cost of instructions from each 358 // observable and reached root in the loop. 359 SmallVector<Instruction *, 16> CostWorklist; 360 361 // PHI-used worklist used between iterations while accumulating cost. 362 SmallVector<Instruction *, 4> PHIUsedList; 363 364 // Helper function to accumulate cost for instructions in the loop. 365 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 366 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 367 assert(CostWorklist.empty() && "Must start with an empty cost list"); 368 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 369 CostWorklist.push_back(&RootI); 370 for (;; --Iteration) { 371 do { 372 Instruction *I = CostWorklist.pop_back_val(); 373 374 // InstCostMap only uses I and Iteration as a key, the other two values 375 // don't matter here. 376 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 377 if (CostIter == InstCostMap.end()) 378 // If an input to a PHI node comes from a dead path through the loop 379 // we may have no cost data for it here. What that actually means is 380 // that it is free. 381 continue; 382 auto &Cost = *CostIter; 383 if (Cost.IsCounted) 384 // Already counted this instruction. 385 continue; 386 387 // Mark that we are counting the cost of this instruction now. 388 Cost.IsCounted = true; 389 390 // If this is a PHI node in the loop header, just add it to the PHI set. 391 if (auto *PhiI = dyn_cast<PHINode>(I)) 392 if (PhiI->getParent() == L->getHeader()) { 393 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 394 "inherently simplify during unrolling."); 395 if (Iteration == 0) 396 continue; 397 398 // Push the incoming value from the backedge into the PHI used list 399 // if it is an in-loop instruction. We'll use this to populate the 400 // cost worklist for the next iteration (as we count backwards). 401 if (auto *OpI = dyn_cast<Instruction>( 402 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 403 if (L->contains(OpI)) 404 PHIUsedList.push_back(OpI); 405 continue; 406 } 407 408 // First accumulate the cost of this instruction. 409 if (!Cost.IsFree) { 410 UnrolledCost += TTI.getUserCost(I); 411 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 412 << Iteration << "): "); 413 LLVM_DEBUG(I->dump()); 414 } 415 416 // We must count the cost of every operand which is not free, 417 // recursively. If we reach a loop PHI node, simply add it to the set 418 // to be considered on the next iteration (backwards!). 419 for (Value *Op : I->operands()) { 420 // Check whether this operand is free due to being a constant or 421 // outside the loop. 422 auto *OpI = dyn_cast<Instruction>(Op); 423 if (!OpI || !L->contains(OpI)) 424 continue; 425 426 // Otherwise accumulate its cost. 427 CostWorklist.push_back(OpI); 428 } 429 } while (!CostWorklist.empty()); 430 431 if (PHIUsedList.empty()) 432 // We've exhausted the search. 433 break; 434 435 assert(Iteration > 0 && 436 "Cannot track PHI-used values past the first iteration!"); 437 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 438 PHIUsedList.clear(); 439 } 440 }; 441 442 // Ensure that we don't violate the loop structure invariants relied on by 443 // this analysis. 444 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 445 assert(L->isLCSSAForm(DT) && 446 "Must have loops in LCSSA form to track live-out values."); 447 448 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 449 450 // Simulate execution of each iteration of the loop counting instructions, 451 // which would be simplified. 452 // Since the same load will take different values on different iterations, 453 // we literally have to go through all loop's iterations. 454 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 455 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 456 457 // Prepare for the iteration by collecting any simplified entry or backedge 458 // inputs. 459 for (Instruction &I : *L->getHeader()) { 460 auto *PHI = dyn_cast<PHINode>(&I); 461 if (!PHI) 462 break; 463 464 // The loop header PHI nodes must have exactly two input: one from the 465 // loop preheader and one from the loop latch. 466 assert( 467 PHI->getNumIncomingValues() == 2 && 468 "Must have an incoming value only for the preheader and the latch."); 469 470 Value *V = PHI->getIncomingValueForBlock( 471 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 472 Constant *C = dyn_cast<Constant>(V); 473 if (Iteration != 0 && !C) 474 C = SimplifiedValues.lookup(V); 475 if (C) 476 SimplifiedInputValues.push_back({PHI, C}); 477 } 478 479 // Now clear and re-populate the map for the next iteration. 480 SimplifiedValues.clear(); 481 while (!SimplifiedInputValues.empty()) 482 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 483 484 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 485 486 BBWorklist.clear(); 487 BBWorklist.insert(L->getHeader()); 488 // Note that we *must not* cache the size, this loop grows the worklist. 489 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 490 BasicBlock *BB = BBWorklist[Idx]; 491 492 // Visit all instructions in the given basic block and try to simplify 493 // it. We don't change the actual IR, just count optimization 494 // opportunities. 495 for (Instruction &I : *BB) { 496 // These won't get into the final code - don't even try calculating the 497 // cost for them. 498 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 499 continue; 500 501 // Track this instruction's expected baseline cost when executing the 502 // rolled loop form. 503 RolledDynamicCost += TTI.getUserCost(&I); 504 505 // Visit the instruction to analyze its loop cost after unrolling, 506 // and if the visitor returns true, mark the instruction as free after 507 // unrolling and continue. 508 bool IsFree = Analyzer.visit(I); 509 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 510 (unsigned)IsFree, 511 /*IsCounted*/ false}).second; 512 (void)Inserted; 513 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 514 515 if (IsFree) 516 continue; 517 518 // Can't properly model a cost of a call. 519 // FIXME: With a proper cost model we should be able to do it. 520 if(isa<CallInst>(&I)) 521 return None; 522 523 // If the instruction might have a side-effect recursively account for 524 // the cost of it and all the instructions leading up to it. 525 if (I.mayHaveSideEffects()) 526 AddCostRecursively(I, Iteration); 527 528 // If unrolled body turns out to be too big, bail out. 529 if (UnrolledCost > MaxUnrolledLoopSize) { 530 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 531 << " UnrolledCost: " << UnrolledCost 532 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 533 << "\n"); 534 return None; 535 } 536 } 537 538 TerminatorInst *TI = BB->getTerminator(); 539 540 // Add in the live successors by first checking whether we have terminator 541 // that may be simplified based on the values simplified by this call. 542 BasicBlock *KnownSucc = nullptr; 543 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 544 if (BI->isConditional()) { 545 if (Constant *SimpleCond = 546 SimplifiedValues.lookup(BI->getCondition())) { 547 // Just take the first successor if condition is undef 548 if (isa<UndefValue>(SimpleCond)) 549 KnownSucc = BI->getSuccessor(0); 550 else if (ConstantInt *SimpleCondVal = 551 dyn_cast<ConstantInt>(SimpleCond)) 552 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 553 } 554 } 555 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 556 if (Constant *SimpleCond = 557 SimplifiedValues.lookup(SI->getCondition())) { 558 // Just take the first successor if condition is undef 559 if (isa<UndefValue>(SimpleCond)) 560 KnownSucc = SI->getSuccessor(0); 561 else if (ConstantInt *SimpleCondVal = 562 dyn_cast<ConstantInt>(SimpleCond)) 563 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 564 } 565 } 566 if (KnownSucc) { 567 if (L->contains(KnownSucc)) 568 BBWorklist.insert(KnownSucc); 569 else 570 ExitWorklist.insert({BB, KnownSucc}); 571 continue; 572 } 573 574 // Add BB's successors to the worklist. 575 for (BasicBlock *Succ : successors(BB)) 576 if (L->contains(Succ)) 577 BBWorklist.insert(Succ); 578 else 579 ExitWorklist.insert({BB, Succ}); 580 AddCostRecursively(*TI, Iteration); 581 } 582 583 // If we found no optimization opportunities on the first iteration, we 584 // won't find them on later ones too. 585 if (UnrolledCost == RolledDynamicCost) { 586 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 587 << " UnrolledCost: " << UnrolledCost << "\n"); 588 return None; 589 } 590 } 591 592 while (!ExitWorklist.empty()) { 593 BasicBlock *ExitingBB, *ExitBB; 594 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 595 596 for (Instruction &I : *ExitBB) { 597 auto *PN = dyn_cast<PHINode>(&I); 598 if (!PN) 599 break; 600 601 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 602 if (auto *OpI = dyn_cast<Instruction>(Op)) 603 if (L->contains(OpI)) 604 AddCostRecursively(*OpI, TripCount - 1); 605 } 606 } 607 608 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 609 << "UnrolledCost: " << UnrolledCost << ", " 610 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 611 return {{UnrolledCost, RolledDynamicCost}}; 612 } 613 614 /// ApproximateLoopSize - Approximate the size of the loop. 615 unsigned llvm::ApproximateLoopSize( 616 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 617 const TargetTransformInfo &TTI, 618 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 619 CodeMetrics Metrics; 620 for (BasicBlock *BB : L->blocks()) 621 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 622 NumCalls = Metrics.NumInlineCandidates; 623 NotDuplicatable = Metrics.notDuplicatable; 624 Convergent = Metrics.convergent; 625 626 unsigned LoopSize = Metrics.NumInsts; 627 628 // Don't allow an estimate of size zero. This would allows unrolling of loops 629 // with huge iteration counts, which is a compile time problem even if it's 630 // not a problem for code quality. Also, the code using this size may assume 631 // that each loop has at least three instructions (likely a conditional 632 // branch, a comparison feeding that branch, and some kind of loop increment 633 // feeding that comparison instruction). 634 LoopSize = std::max(LoopSize, BEInsns + 1); 635 636 return LoopSize; 637 } 638 639 // Returns the loop hint metadata node with the given name (for example, 640 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 641 // returned. 642 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 643 if (MDNode *LoopID = L->getLoopID()) 644 return GetUnrollMetadata(LoopID, Name); 645 return nullptr; 646 } 647 648 // Returns true if the loop has an unroll(full) pragma. 649 static bool HasUnrollFullPragma(const Loop *L) { 650 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 651 } 652 653 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 654 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 655 static bool HasUnrollEnablePragma(const Loop *L) { 656 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 657 } 658 659 // Returns true if the loop has an unroll(disable) pragma. 660 static bool HasUnrollDisablePragma(const Loop *L) { 661 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 662 } 663 664 // Returns true if the loop has an runtime unroll(disable) pragma. 665 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 666 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 667 } 668 669 // If loop has an unroll_count pragma return the (necessarily 670 // positive) value from the pragma. Otherwise return 0. 671 static unsigned UnrollCountPragmaValue(const Loop *L) { 672 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 673 if (MD) { 674 assert(MD->getNumOperands() == 2 && 675 "Unroll count hint metadata should have two operands."); 676 unsigned Count = 677 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 678 assert(Count >= 1 && "Unroll count must be positive."); 679 return Count; 680 } 681 return 0; 682 } 683 684 // Computes the boosting factor for complete unrolling. 685 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 686 // be beneficial to fully unroll the loop even if unrolledcost is large. We 687 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 688 // the unroll threshold. 689 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 690 unsigned MaxPercentThresholdBoost) { 691 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 692 return 100; 693 else if (Cost.UnrolledCost != 0) 694 // The boosting factor is RolledDynamicCost / UnrolledCost 695 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 696 MaxPercentThresholdBoost); 697 else 698 return MaxPercentThresholdBoost; 699 } 700 701 // Returns loop size estimation for unrolled loop. 702 static uint64_t getUnrolledLoopSize( 703 unsigned LoopSize, 704 TargetTransformInfo::UnrollingPreferences &UP) { 705 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 706 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 707 } 708 709 // Returns true if unroll count was set explicitly. 710 // Calculates unroll count and writes it to UP.Count. 711 bool llvm::computeUnrollCount( 712 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 713 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 714 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 715 unsigned &TripMultiple, unsigned LoopSize, 716 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 717 // Check for explicit Count. 718 // 1st priority is unroll count set by "unroll-count" option. 719 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 720 if (UserUnrollCount) { 721 UP.Count = UnrollCount; 722 UP.AllowExpensiveTripCount = true; 723 UP.Force = true; 724 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 725 return true; 726 } 727 728 // 2nd priority is unroll count set by pragma. 729 unsigned PragmaCount = UnrollCountPragmaValue(L); 730 if (PragmaCount > 0) { 731 UP.Count = PragmaCount; 732 UP.Runtime = true; 733 UP.AllowExpensiveTripCount = true; 734 UP.Force = true; 735 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 736 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 737 return true; 738 } 739 bool PragmaFullUnroll = HasUnrollFullPragma(L); 740 if (PragmaFullUnroll && TripCount != 0) { 741 UP.Count = TripCount; 742 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 743 return false; 744 } 745 746 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 747 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 748 PragmaEnableUnroll || UserUnrollCount; 749 750 if (ExplicitUnroll && TripCount != 0) { 751 // If the loop has an unrolling pragma, we want to be more aggressive with 752 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 753 // value which is larger than the default limits. 754 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 755 UP.PartialThreshold = 756 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 757 } 758 759 // 3rd priority is full unroll count. 760 // Full unroll makes sense only when TripCount or its upper bound could be 761 // statically calculated. 762 // Also we need to check if we exceed FullUnrollMaxCount. 763 // If using the upper bound to unroll, TripMultiple should be set to 1 because 764 // we do not know when loop may exit. 765 // MaxTripCount and ExactTripCount cannot both be non zero since we only 766 // compute the former when the latter is zero. 767 unsigned ExactTripCount = TripCount; 768 assert((ExactTripCount == 0 || MaxTripCount == 0) && 769 "ExtractTripCound and MaxTripCount cannot both be non zero."); 770 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 771 UP.Count = FullUnrollTripCount; 772 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 773 // When computing the unrolled size, note that BEInsns are not replicated 774 // like the rest of the loop body. 775 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 776 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 777 TripCount = FullUnrollTripCount; 778 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 779 return ExplicitUnroll; 780 } else { 781 // The loop isn't that small, but we still can fully unroll it if that 782 // helps to remove a significant number of instructions. 783 // To check that, run additional analysis on the loop. 784 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 785 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 786 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 787 unsigned Boost = 788 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 789 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 790 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 791 TripCount = FullUnrollTripCount; 792 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 793 return ExplicitUnroll; 794 } 795 } 796 } 797 } 798 799 // 4th priority is loop peeling 800 computePeelCount(L, LoopSize, UP, TripCount, SE); 801 if (UP.PeelCount) { 802 UP.Runtime = false; 803 UP.Count = 1; 804 return ExplicitUnroll; 805 } 806 807 // 5th priority is partial unrolling. 808 // Try partial unroll only when TripCount could be staticaly calculated. 809 if (TripCount) { 810 UP.Partial |= ExplicitUnroll; 811 if (!UP.Partial) { 812 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 813 << "-unroll-allow-partial not given\n"); 814 UP.Count = 0; 815 return false; 816 } 817 if (UP.Count == 0) 818 UP.Count = TripCount; 819 if (UP.PartialThreshold != NoThreshold) { 820 // Reduce unroll count to be modulo of TripCount for partial unrolling. 821 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 822 UP.Count = 823 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 824 (LoopSize - UP.BEInsns); 825 if (UP.Count > UP.MaxCount) 826 UP.Count = UP.MaxCount; 827 while (UP.Count != 0 && TripCount % UP.Count != 0) 828 UP.Count--; 829 if (UP.AllowRemainder && UP.Count <= 1) { 830 // If there is no Count that is modulo of TripCount, set Count to 831 // largest power-of-two factor that satisfies the threshold limit. 832 // As we'll create fixup loop, do the type of unrolling only if 833 // remainder loop is allowed. 834 UP.Count = UP.DefaultUnrollRuntimeCount; 835 while (UP.Count != 0 && 836 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 837 UP.Count >>= 1; 838 } 839 if (UP.Count < 2) { 840 if (PragmaEnableUnroll) 841 ORE->emit([&]() { 842 return OptimizationRemarkMissed(DEBUG_TYPE, 843 "UnrollAsDirectedTooLarge", 844 L->getStartLoc(), L->getHeader()) 845 << "Unable to unroll loop as directed by unroll(enable) " 846 "pragma " 847 "because unrolled size is too large."; 848 }); 849 UP.Count = 0; 850 } 851 } else { 852 UP.Count = TripCount; 853 } 854 if (UP.Count > UP.MaxCount) 855 UP.Count = UP.MaxCount; 856 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 857 UP.Count != TripCount) 858 ORE->emit([&]() { 859 return OptimizationRemarkMissed(DEBUG_TYPE, 860 "FullUnrollAsDirectedTooLarge", 861 L->getStartLoc(), L->getHeader()) 862 << "Unable to fully unroll loop as directed by unroll pragma " 863 "because " 864 "unrolled size is too large."; 865 }); 866 return ExplicitUnroll; 867 } 868 assert(TripCount == 0 && 869 "All cases when TripCount is constant should be covered here."); 870 if (PragmaFullUnroll) 871 ORE->emit([&]() { 872 return OptimizationRemarkMissed( 873 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 874 L->getStartLoc(), L->getHeader()) 875 << "Unable to fully unroll loop as directed by unroll(full) " 876 "pragma " 877 "because loop has a runtime trip count."; 878 }); 879 880 // 6th priority is runtime unrolling. 881 // Don't unroll a runtime trip count loop when it is disabled. 882 if (HasRuntimeUnrollDisablePragma(L)) { 883 UP.Count = 0; 884 return false; 885 } 886 887 // Check if the runtime trip count is too small when profile is available. 888 if (L->getHeader()->getParent()->hasProfileData()) { 889 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 890 if (*ProfileTripCount < FlatLoopTripCountThreshold) 891 return false; 892 else 893 UP.AllowExpensiveTripCount = true; 894 } 895 } 896 897 // Reduce count based on the type of unrolling and the threshold values. 898 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 899 if (!UP.Runtime) { 900 LLVM_DEBUG( 901 dbgs() << " will not try to unroll loop with runtime trip count " 902 << "-unroll-runtime not given\n"); 903 UP.Count = 0; 904 return false; 905 } 906 if (UP.Count == 0) 907 UP.Count = UP.DefaultUnrollRuntimeCount; 908 909 // Reduce unroll count to be the largest power-of-two factor of 910 // the original count which satisfies the threshold limit. 911 while (UP.Count != 0 && 912 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 913 UP.Count >>= 1; 914 915 #ifndef NDEBUG 916 unsigned OrigCount = UP.Count; 917 #endif 918 919 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 920 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 921 UP.Count >>= 1; 922 LLVM_DEBUG( 923 dbgs() << "Remainder loop is restricted (that could architecture " 924 "specific or because the loop contains a convergent " 925 "instruction), so unroll count must divide the trip " 926 "multiple, " 927 << TripMultiple << ". Reducing unroll count from " << OrigCount 928 << " to " << UP.Count << ".\n"); 929 930 using namespace ore; 931 932 if (PragmaCount > 0 && !UP.AllowRemainder) 933 ORE->emit([&]() { 934 return OptimizationRemarkMissed(DEBUG_TYPE, 935 "DifferentUnrollCountFromDirected", 936 L->getStartLoc(), L->getHeader()) 937 << "Unable to unroll loop the number of times directed by " 938 "unroll_count pragma because remainder loop is restricted " 939 "(that could architecture specific or because the loop " 940 "contains a convergent instruction) and so must have an " 941 "unroll " 942 "count that divides the loop trip multiple of " 943 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 944 << NV("UnrollCount", UP.Count) << " time(s)."; 945 }); 946 } 947 948 if (UP.Count > UP.MaxCount) 949 UP.Count = UP.MaxCount; 950 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 951 << "\n"); 952 if (UP.Count < 2) 953 UP.Count = 0; 954 return ExplicitUnroll; 955 } 956 957 static LoopUnrollResult tryToUnrollLoop( 958 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 959 const TargetTransformInfo &TTI, AssumptionCache &AC, 960 OptimizationRemarkEmitter &ORE, bool PreserveLCSSA, int OptLevel, 961 Optional<unsigned> ProvidedCount, Optional<unsigned> ProvidedThreshold, 962 Optional<bool> ProvidedAllowPartial, Optional<bool> ProvidedRuntime, 963 Optional<bool> ProvidedUpperBound, Optional<bool> ProvidedAllowPeeling) { 964 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 965 << L->getHeader()->getParent()->getName() << "] Loop %" 966 << L->getHeader()->getName() << "\n"); 967 if (HasUnrollDisablePragma(L)) 968 return LoopUnrollResult::Unmodified; 969 if (!L->isLoopSimplifyForm()) { 970 LLVM_DEBUG( 971 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 972 return LoopUnrollResult::Unmodified; 973 } 974 975 unsigned NumInlineCandidates; 976 bool NotDuplicatable; 977 bool Convergent; 978 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 979 L, SE, TTI, OptLevel, ProvidedThreshold, ProvidedCount, 980 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 981 ProvidedAllowPeeling); 982 // Exit early if unrolling is disabled. 983 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 984 return LoopUnrollResult::Unmodified; 985 986 SmallPtrSet<const Value *, 32> EphValues; 987 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 988 989 unsigned LoopSize = 990 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 991 TTI, EphValues, UP.BEInsns); 992 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 993 if (NotDuplicatable) { 994 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 995 << " instructions.\n"); 996 return LoopUnrollResult::Unmodified; 997 } 998 if (NumInlineCandidates != 0) { 999 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1000 return LoopUnrollResult::Unmodified; 1001 } 1002 1003 // Find trip count and trip multiple if count is not available 1004 unsigned TripCount = 0; 1005 unsigned MaxTripCount = 0; 1006 unsigned TripMultiple = 1; 1007 // If there are multiple exiting blocks but one of them is the latch, use the 1008 // latch for the trip count estimation. Otherwise insist on a single exiting 1009 // block for the trip count estimation. 1010 BasicBlock *ExitingBlock = L->getLoopLatch(); 1011 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1012 ExitingBlock = L->getExitingBlock(); 1013 if (ExitingBlock) { 1014 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1015 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1016 } 1017 1018 // If the loop contains a convergent operation, the prelude we'd add 1019 // to do the first few instructions before we hit the unrolled loop 1020 // is unsafe -- it adds a control-flow dependency to the convergent 1021 // operation. Therefore restrict remainder loop (try unrollig without). 1022 // 1023 // TODO: This is quite conservative. In practice, convergent_op() 1024 // is likely to be called unconditionally in the loop. In this 1025 // case, the program would be ill-formed (on most architectures) 1026 // unless n were the same on all threads in a thread group. 1027 // Assuming n is the same on all threads, any kind of unrolling is 1028 // safe. But currently llvm's notion of convergence isn't powerful 1029 // enough to express this. 1030 if (Convergent) 1031 UP.AllowRemainder = false; 1032 1033 // Try to find the trip count upper bound if we cannot find the exact trip 1034 // count. 1035 bool MaxOrZero = false; 1036 if (!TripCount) { 1037 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1038 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1039 // We can unroll by the upper bound amount if it's generally allowed or if 1040 // we know that the loop is executed either the upper bound or zero times. 1041 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1042 // loop tests remains the same compared to the non-unrolled version, whereas 1043 // the generic upper bound unrolling keeps all but the last loop test so the 1044 // number of loop tests goes up which may end up being worse on targets with 1045 // constriained branch predictor resources so is controlled by an option.) 1046 // In addition we only unroll small upper bounds. 1047 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1048 MaxTripCount = 0; 1049 } 1050 } 1051 1052 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1053 // fully unroll the loop. 1054 bool UseUpperBound = false; 1055 bool IsCountSetExplicitly = computeUnrollCount( 1056 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1057 TripMultiple, LoopSize, UP, UseUpperBound); 1058 if (!UP.Count) 1059 return LoopUnrollResult::Unmodified; 1060 // Unroll factor (Count) must be less or equal to TripCount. 1061 if (TripCount && UP.Count > TripCount) 1062 UP.Count = TripCount; 1063 1064 // Unroll the loop. 1065 LoopUnrollResult UnrollResult = UnrollLoop( 1066 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1067 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1068 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA); 1069 if (UnrollResult == LoopUnrollResult::Unmodified) 1070 return LoopUnrollResult::Unmodified; 1071 1072 // If loop has an unroll count pragma or unrolled by explicitly set count 1073 // mark loop as unrolled to prevent unrolling beyond that requested. 1074 // If the loop was peeled, we already "used up" the profile information 1075 // we had, so we don't want to unroll or peel again. 1076 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1077 (IsCountSetExplicitly || UP.PeelCount)) 1078 L->setLoopAlreadyUnrolled(); 1079 1080 return UnrollResult; 1081 } 1082 1083 namespace { 1084 1085 class LoopUnroll : public LoopPass { 1086 public: 1087 static char ID; // Pass ID, replacement for typeid 1088 1089 int OptLevel; 1090 Optional<unsigned> ProvidedCount; 1091 Optional<unsigned> ProvidedThreshold; 1092 Optional<bool> ProvidedAllowPartial; 1093 Optional<bool> ProvidedRuntime; 1094 Optional<bool> ProvidedUpperBound; 1095 Optional<bool> ProvidedAllowPeeling; 1096 1097 LoopUnroll(int OptLevel = 2, Optional<unsigned> Threshold = None, 1098 Optional<unsigned> Count = None, 1099 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1100 Optional<bool> UpperBound = None, 1101 Optional<bool> AllowPeeling = None) 1102 : LoopPass(ID), OptLevel(OptLevel), ProvidedCount(std::move(Count)), 1103 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1104 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1105 ProvidedAllowPeeling(AllowPeeling) { 1106 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1107 } 1108 1109 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1110 if (skipLoop(L)) 1111 return false; 1112 1113 Function &F = *L->getHeader()->getParent(); 1114 1115 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1116 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1117 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1118 const TargetTransformInfo &TTI = 1119 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1120 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1121 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1122 // pass. Function analyses need to be preserved across loop transformations 1123 // but ORE cannot be preserved (see comment before the pass definition). 1124 OptimizationRemarkEmitter ORE(&F); 1125 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1126 1127 LoopUnrollResult Result = tryToUnrollLoop( 1128 L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA, OptLevel, ProvidedCount, 1129 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1130 ProvidedUpperBound, ProvidedAllowPeeling); 1131 1132 if (Result == LoopUnrollResult::FullyUnrolled) 1133 LPM.markLoopAsDeleted(*L); 1134 1135 return Result != LoopUnrollResult::Unmodified; 1136 } 1137 1138 /// This transformation requires natural loop information & requires that 1139 /// loop preheaders be inserted into the CFG... 1140 void getAnalysisUsage(AnalysisUsage &AU) const override { 1141 AU.addRequired<AssumptionCacheTracker>(); 1142 AU.addRequired<TargetTransformInfoWrapperPass>(); 1143 // FIXME: Loop passes are required to preserve domtree, and for now we just 1144 // recreate dom info if anything gets unrolled. 1145 getLoopAnalysisUsage(AU); 1146 } 1147 }; 1148 1149 } // end anonymous namespace 1150 1151 char LoopUnroll::ID = 0; 1152 1153 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1154 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1155 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1156 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1157 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1158 1159 Pass *llvm::createLoopUnrollPass(int OptLevel, int Threshold, int Count, 1160 int AllowPartial, int Runtime, int UpperBound, 1161 int AllowPeeling) { 1162 // TODO: It would make more sense for this function to take the optionals 1163 // directly, but that's dangerous since it would silently break out of tree 1164 // callers. 1165 return new LoopUnroll( 1166 OptLevel, Threshold == -1 ? None : Optional<unsigned>(Threshold), 1167 Count == -1 ? None : Optional<unsigned>(Count), 1168 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1169 Runtime == -1 ? None : Optional<bool>(Runtime), 1170 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1171 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1172 } 1173 1174 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel) { 1175 return createLoopUnrollPass(OptLevel, -1, -1, 0, 0, 0, 0); 1176 } 1177 1178 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1179 LoopStandardAnalysisResults &AR, 1180 LPMUpdater &Updater) { 1181 const auto &FAM = 1182 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1183 Function *F = L.getHeader()->getParent(); 1184 1185 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1186 // FIXME: This should probably be optional rather than required. 1187 if (!ORE) 1188 report_fatal_error( 1189 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1190 "cached at a higher level"); 1191 1192 // Keep track of the previous loop structure so we can identify new loops 1193 // created by unrolling. 1194 Loop *ParentL = L.getParentLoop(); 1195 SmallPtrSet<Loop *, 4> OldLoops; 1196 if (ParentL) 1197 OldLoops.insert(ParentL->begin(), ParentL->end()); 1198 else 1199 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1200 1201 std::string LoopName = L.getName(); 1202 1203 bool Changed = 1204 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1205 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1206 /*Threshold*/ None, /*AllowPartial*/ false, 1207 /*Runtime*/ false, /*UpperBound*/ false, 1208 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1209 if (!Changed) 1210 return PreservedAnalyses::all(); 1211 1212 // The parent must not be damaged by unrolling! 1213 #ifndef NDEBUG 1214 if (ParentL) 1215 ParentL->verifyLoop(); 1216 #endif 1217 1218 // Unrolling can do several things to introduce new loops into a loop nest: 1219 // - Full unrolling clones child loops within the current loop but then 1220 // removes the current loop making all of the children appear to be new 1221 // sibling loops. 1222 // 1223 // When a new loop appears as a sibling loop after fully unrolling, 1224 // its nesting structure has fundamentally changed and we want to revisit 1225 // it to reflect that. 1226 // 1227 // When unrolling has removed the current loop, we need to tell the 1228 // infrastructure that it is gone. 1229 // 1230 // Finally, we support a debugging/testing mode where we revisit child loops 1231 // as well. These are not expected to require further optimizations as either 1232 // they or the loop they were cloned from have been directly visited already. 1233 // But the debugging mode allows us to check this assumption. 1234 bool IsCurrentLoopValid = false; 1235 SmallVector<Loop *, 4> SibLoops; 1236 if (ParentL) 1237 SibLoops.append(ParentL->begin(), ParentL->end()); 1238 else 1239 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1240 erase_if(SibLoops, [&](Loop *SibLoop) { 1241 if (SibLoop == &L) { 1242 IsCurrentLoopValid = true; 1243 return true; 1244 } 1245 1246 // Otherwise erase the loop from the list if it was in the old loops. 1247 return OldLoops.count(SibLoop) != 0; 1248 }); 1249 Updater.addSiblingLoops(SibLoops); 1250 1251 if (!IsCurrentLoopValid) { 1252 Updater.markLoopAsDeleted(L, LoopName); 1253 } else { 1254 // We can only walk child loops if the current loop remained valid. 1255 if (UnrollRevisitChildLoops) { 1256 // Walk *all* of the child loops. 1257 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1258 Updater.addChildLoops(ChildLoops); 1259 } 1260 } 1261 1262 return getLoopPassPreservedAnalyses(); 1263 } 1264 1265 template <typename RangeT> 1266 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1267 SmallVector<Loop *, 8> Worklist; 1268 // We use an internal worklist to build up the preorder traversal without 1269 // recursion. 1270 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1271 1272 for (Loop *RootL : Loops) { 1273 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1274 assert(PreOrderWorklist.empty() && 1275 "Must start with an empty preorder walk worklist."); 1276 PreOrderWorklist.push_back(RootL); 1277 do { 1278 Loop *L = PreOrderWorklist.pop_back_val(); 1279 PreOrderWorklist.append(L->begin(), L->end()); 1280 PreOrderLoops.push_back(L); 1281 } while (!PreOrderWorklist.empty()); 1282 1283 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1284 PreOrderLoops.clear(); 1285 } 1286 return Worklist; 1287 } 1288 1289 PreservedAnalyses LoopUnrollPass::run(Function &F, 1290 FunctionAnalysisManager &AM) { 1291 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1292 auto &LI = AM.getResult<LoopAnalysis>(F); 1293 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1294 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1295 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1296 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1297 1298 LoopAnalysisManager *LAM = nullptr; 1299 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1300 LAM = &LAMProxy->getManager(); 1301 1302 const ModuleAnalysisManager &MAM = 1303 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1304 ProfileSummaryInfo *PSI = 1305 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1306 1307 bool Changed = false; 1308 1309 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1310 // Since simplification may add new inner loops, it has to run before the 1311 // legality and profitability checks. This means running the loop unroller 1312 // will simplify all loops, regardless of whether anything end up being 1313 // unrolled. 1314 for (auto &L : LI) { 1315 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1316 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1317 } 1318 1319 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1320 1321 while (!Worklist.empty()) { 1322 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1323 // from back to front so that we work forward across the CFG, which 1324 // for unrolling is only needed to get optimization remarks emitted in 1325 // a forward order. 1326 Loop &L = *Worklist.pop_back_val(); 1327 #ifndef NDEBUG 1328 Loop *ParentL = L.getParentLoop(); 1329 #endif 1330 1331 // The API here is quite complex to call, but there are only two interesting 1332 // states we support: partial and full (or "simple") unrolling. However, to 1333 // enable these things we actually pass "None" in for the optional to avoid 1334 // providing an explicit choice. 1335 Optional<bool> AllowPartialParam, RuntimeParam, UpperBoundParam, 1336 AllowPeeling; 1337 // Check if the profile summary indicates that the profiled application 1338 // has a huge working set size, in which case we disable peeling to avoid 1339 // bloating it further. 1340 if (PSI && PSI->hasHugeWorkingSetSize()) 1341 AllowPeeling = false; 1342 std::string LoopName = L.getName(); 1343 LoopUnrollResult Result = 1344 tryToUnrollLoop(&L, DT, &LI, SE, TTI, AC, ORE, 1345 /*PreserveLCSSA*/ true, OptLevel, /*Count*/ None, 1346 /*Threshold*/ None, AllowPartialParam, RuntimeParam, 1347 UpperBoundParam, AllowPeeling); 1348 Changed |= Result != LoopUnrollResult::Unmodified; 1349 1350 // The parent must not be damaged by unrolling! 1351 #ifndef NDEBUG 1352 if (Result != LoopUnrollResult::Unmodified && ParentL) 1353 ParentL->verifyLoop(); 1354 #endif 1355 1356 // Clear any cached analysis results for L if we removed it completely. 1357 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1358 LAM->clear(L, LoopName); 1359 } 1360 1361 if (!Changed) 1362 return PreservedAnalyses::all(); 1363 1364 return getLoopPassPreservedAnalyses(); 1365 } 1366