1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DiagnosticInfo.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/InstVisitor.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Utils/UnrollLoop.h" 37 #include <climits> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 static cl::opt<unsigned> 44 UnrollThreshold("unroll-threshold", cl::Hidden, 45 cl::desc("The baseline cost threshold for loop unrolling")); 46 47 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( 48 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden, 49 cl::desc("The percentage of estimated dynamic cost which must be saved by " 50 "unrolling to allow unrolling up to the max threshold.")); 51 52 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( 53 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden, 54 cl::desc("This is the amount discounted from the total unroll cost when " 55 "the unrolled form has a high dynamic cost savings (triggered by " 56 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); 57 58 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 59 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 60 cl::desc("Don't allow loop unrolling to simulate more than this number of" 61 "iterations when checking full unroll profitability")); 62 63 static cl::opt<unsigned> UnrollCount( 64 "unroll-count", cl::Hidden, 65 cl::desc("Use this unroll count for all loops including those with " 66 "unroll_count pragma values, for testing purposes")); 67 68 static cl::opt<unsigned> UnrollMaxCount( 69 "unroll-max-count", cl::Hidden, 70 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 71 "testing purposes")); 72 73 static cl::opt<unsigned> UnrollFullMaxCount( 74 "unroll-full-max-count", cl::Hidden, 75 cl::desc( 76 "Set the max unroll count for full unrolling, for testing purposes")); 77 78 static cl::opt<bool> 79 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 80 cl::desc("Allows loops to be partially unrolled until " 81 "-unroll-threshold loop size is reached.")); 82 83 static cl::opt<bool> 84 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 85 cl::desc("Unroll loops with run-time trip counts")); 86 87 static cl::opt<unsigned> PragmaUnrollThreshold( 88 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 89 cl::desc("Unrolled size limit for loops with an unroll(full) or " 90 "unroll_count pragma.")); 91 92 /// A magic value for use with the Threshold parameter to indicate 93 /// that the loop unroll should be performed regardless of how much 94 /// code expansion would result. 95 static const unsigned NoThreshold = UINT_MAX; 96 97 /// Default unroll count for loops with run-time trip count if 98 /// -unroll-count is not set 99 static const unsigned DefaultUnrollRuntimeCount = 8; 100 101 /// Gather the various unrolling parameters based on the defaults, compiler 102 /// flags, TTI overrides, pragmas, and user specified parameters. 103 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( 104 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, 105 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, 106 Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, 107 bool PragmaEnableUnroll, unsigned TripCount) { 108 TargetTransformInfo::UnrollingPreferences UP; 109 110 // Set up the defaults 111 UP.Threshold = 150; 112 UP.PercentDynamicCostSavedThreshold = 20; 113 UP.DynamicCostSavingsDiscount = 2000; 114 UP.OptSizeThreshold = 0; 115 UP.PartialThreshold = UP.Threshold; 116 UP.PartialOptSizeThreshold = 0; 117 UP.Count = 0; 118 UP.MaxCount = UINT_MAX; 119 UP.FullUnrollMaxCount = UINT_MAX; 120 UP.Partial = false; 121 UP.Runtime = false; 122 UP.AllowExpensiveTripCount = false; 123 124 // Override with any target specific settings 125 TTI.getUnrollingPreferences(L, UP); 126 127 // Apply size attributes 128 if (L->getHeader()->getParent()->optForSize()) { 129 UP.Threshold = UP.OptSizeThreshold; 130 UP.PartialThreshold = UP.PartialOptSizeThreshold; 131 } 132 133 // Apply unroll count pragmas 134 if (PragmaCount) 135 UP.Count = PragmaCount; 136 else if (PragmaFullUnroll) 137 UP.Count = TripCount; 138 139 // Apply any user values specified by cl::opt 140 if (UnrollThreshold.getNumOccurrences() > 0) { 141 UP.Threshold = UnrollThreshold; 142 UP.PartialThreshold = UnrollThreshold; 143 } 144 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) 145 UP.PercentDynamicCostSavedThreshold = 146 UnrollPercentDynamicCostSavedThreshold; 147 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) 148 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; 149 if (UnrollCount.getNumOccurrences() > 0) 150 UP.Count = UnrollCount; 151 if (UnrollMaxCount.getNumOccurrences() > 0) 152 UP.MaxCount = UnrollMaxCount; 153 if (UnrollFullMaxCount.getNumOccurrences() > 0) 154 UP.FullUnrollMaxCount = UnrollFullMaxCount; 155 if (UnrollAllowPartial.getNumOccurrences() > 0) 156 UP.Partial = UnrollAllowPartial; 157 if (UnrollRuntime.getNumOccurrences() > 0) 158 UP.Runtime = UnrollRuntime; 159 160 // Apply user values provided by argument 161 if (UserThreshold.hasValue()) { 162 UP.Threshold = *UserThreshold; 163 UP.PartialThreshold = *UserThreshold; 164 } 165 if (UserCount.hasValue()) 166 UP.Count = *UserCount; 167 if (UserAllowPartial.hasValue()) 168 UP.Partial = *UserAllowPartial; 169 if (UserRuntime.hasValue()) 170 UP.Runtime = *UserRuntime; 171 172 if (PragmaCount > 0 || 173 ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { 174 // If the loop has an unrolling pragma, we want to be more aggressive with 175 // unrolling limits. Set thresholds to at least the PragmaTheshold value 176 // which is larger than the default limits. 177 if (UP.Threshold != NoThreshold) 178 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 179 if (UP.PartialThreshold != NoThreshold) 180 UP.PartialThreshold = 181 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 182 } 183 184 return UP; 185 } 186 187 namespace { 188 /// A struct to densely store the state of an instruction after unrolling at 189 /// each iteration. 190 /// 191 /// This is designed to work like a tuple of <Instruction *, int> for the 192 /// purposes of hashing and lookup, but to be able to associate two boolean 193 /// states with each key. 194 struct UnrolledInstState { 195 Instruction *I; 196 int Iteration : 30; 197 unsigned IsFree : 1; 198 unsigned IsCounted : 1; 199 }; 200 201 /// Hashing and equality testing for a set of the instruction states. 202 struct UnrolledInstStateKeyInfo { 203 typedef DenseMapInfo<Instruction *> PtrInfo; 204 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo; 205 static inline UnrolledInstState getEmptyKey() { 206 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 207 } 208 static inline UnrolledInstState getTombstoneKey() { 209 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 210 } 211 static inline unsigned getHashValue(const UnrolledInstState &S) { 212 return PairInfo::getHashValue({S.I, S.Iteration}); 213 } 214 static inline bool isEqual(const UnrolledInstState &LHS, 215 const UnrolledInstState &RHS) { 216 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 217 } 218 }; 219 } 220 221 namespace { 222 struct EstimatedUnrollCost { 223 /// \brief The estimated cost after unrolling. 224 int UnrolledCost; 225 226 /// \brief The estimated dynamic cost of executing the instructions in the 227 /// rolled form. 228 int RolledDynamicCost; 229 }; 230 } 231 232 /// \brief Figure out if the loop is worth full unrolling. 233 /// 234 /// Complete loop unrolling can make some loads constant, and we need to know 235 /// if that would expose any further optimization opportunities. This routine 236 /// estimates this optimization. It computes cost of unrolled loop 237 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 238 /// dynamic cost we mean that we won't count costs of blocks that are known not 239 /// to be executed (i.e. if we have a branch in the loop and we know that at the 240 /// given iteration its condition would be resolved to true, we won't add up the 241 /// cost of the 'false'-block). 242 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 243 /// the analysis failed (no benefits expected from the unrolling, or the loop is 244 /// too big to analyze), the returned value is None. 245 static Optional<EstimatedUnrollCost> 246 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, 247 ScalarEvolution &SE, const TargetTransformInfo &TTI, 248 int MaxUnrolledLoopSize) { 249 // We want to be able to scale offsets by the trip count and add more offsets 250 // to them without checking for overflows, and we already don't want to 251 // analyze *massive* trip counts, so we force the max to be reasonably small. 252 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 253 "The unroll iterations max is too large!"); 254 255 // Only analyze inner loops. We can't properly estimate cost of nested loops 256 // and we won't visit inner loops again anyway. 257 if (!L->empty()) 258 return None; 259 260 // Don't simulate loops with a big or unknown tripcount 261 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 262 TripCount > UnrollMaxIterationsCountToAnalyze) 263 return None; 264 265 SmallSetVector<BasicBlock *, 16> BBWorklist; 266 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 267 DenseMap<Value *, Constant *> SimplifiedValues; 268 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 269 270 // The estimated cost of the unrolled form of the loop. We try to estimate 271 // this by simplifying as much as we can while computing the estimate. 272 int UnrolledCost = 0; 273 274 // We also track the estimated dynamic (that is, actually executed) cost in 275 // the rolled form. This helps identify cases when the savings from unrolling 276 // aren't just exposing dead control flows, but actual reduced dynamic 277 // instructions due to the simplifications which we expect to occur after 278 // unrolling. 279 int RolledDynamicCost = 0; 280 281 // We track the simplification of each instruction in each iteration. We use 282 // this to recursively merge costs into the unrolled cost on-demand so that 283 // we don't count the cost of any dead code. This is essentially a map from 284 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 285 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 286 287 // A small worklist used to accumulate cost of instructions from each 288 // observable and reached root in the loop. 289 SmallVector<Instruction *, 16> CostWorklist; 290 291 // PHI-used worklist used between iterations while accumulating cost. 292 SmallVector<Instruction *, 4> PHIUsedList; 293 294 // Helper function to accumulate cost for instructions in the loop. 295 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 296 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 297 assert(CostWorklist.empty() && "Must start with an empty cost list"); 298 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 299 CostWorklist.push_back(&RootI); 300 for (;; --Iteration) { 301 do { 302 Instruction *I = CostWorklist.pop_back_val(); 303 304 // InstCostMap only uses I and Iteration as a key, the other two values 305 // don't matter here. 306 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 307 if (CostIter == InstCostMap.end()) 308 // If an input to a PHI node comes from a dead path through the loop 309 // we may have no cost data for it here. What that actually means is 310 // that it is free. 311 continue; 312 auto &Cost = *CostIter; 313 if (Cost.IsCounted) 314 // Already counted this instruction. 315 continue; 316 317 // Mark that we are counting the cost of this instruction now. 318 Cost.IsCounted = true; 319 320 // If this is a PHI node in the loop header, just add it to the PHI set. 321 if (auto *PhiI = dyn_cast<PHINode>(I)) 322 if (PhiI->getParent() == L->getHeader()) { 323 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 324 "inherently simplify during unrolling."); 325 if (Iteration == 0) 326 continue; 327 328 // Push the incoming value from the backedge into the PHI used list 329 // if it is an in-loop instruction. We'll use this to populate the 330 // cost worklist for the next iteration (as we count backwards). 331 if (auto *OpI = dyn_cast<Instruction>( 332 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 333 if (L->contains(OpI)) 334 PHIUsedList.push_back(OpI); 335 continue; 336 } 337 338 // First accumulate the cost of this instruction. 339 if (!Cost.IsFree) { 340 UnrolledCost += TTI.getUserCost(I); 341 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration 342 << "): "); 343 DEBUG(I->dump()); 344 } 345 346 // We must count the cost of every operand which is not free, 347 // recursively. If we reach a loop PHI node, simply add it to the set 348 // to be considered on the next iteration (backwards!). 349 for (Value *Op : I->operands()) { 350 // Check whether this operand is free due to being a constant or 351 // outside the loop. 352 auto *OpI = dyn_cast<Instruction>(Op); 353 if (!OpI || !L->contains(OpI)) 354 continue; 355 356 // Otherwise accumulate its cost. 357 CostWorklist.push_back(OpI); 358 } 359 } while (!CostWorklist.empty()); 360 361 if (PHIUsedList.empty()) 362 // We've exhausted the search. 363 break; 364 365 assert(Iteration > 0 && 366 "Cannot track PHI-used values past the first iteration!"); 367 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 368 PHIUsedList.clear(); 369 } 370 }; 371 372 // Ensure that we don't violate the loop structure invariants relied on by 373 // this analysis. 374 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 375 assert(L->isLCSSAForm(DT) && 376 "Must have loops in LCSSA form to track live-out values."); 377 378 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 379 380 // Simulate execution of each iteration of the loop counting instructions, 381 // which would be simplified. 382 // Since the same load will take different values on different iterations, 383 // we literally have to go through all loop's iterations. 384 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 385 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 386 387 // Prepare for the iteration by collecting any simplified entry or backedge 388 // inputs. 389 for (Instruction &I : *L->getHeader()) { 390 auto *PHI = dyn_cast<PHINode>(&I); 391 if (!PHI) 392 break; 393 394 // The loop header PHI nodes must have exactly two input: one from the 395 // loop preheader and one from the loop latch. 396 assert( 397 PHI->getNumIncomingValues() == 2 && 398 "Must have an incoming value only for the preheader and the latch."); 399 400 Value *V = PHI->getIncomingValueForBlock( 401 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 402 Constant *C = dyn_cast<Constant>(V); 403 if (Iteration != 0 && !C) 404 C = SimplifiedValues.lookup(V); 405 if (C) 406 SimplifiedInputValues.push_back({PHI, C}); 407 } 408 409 // Now clear and re-populate the map for the next iteration. 410 SimplifiedValues.clear(); 411 while (!SimplifiedInputValues.empty()) 412 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 413 414 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 415 416 BBWorklist.clear(); 417 BBWorklist.insert(L->getHeader()); 418 // Note that we *must not* cache the size, this loop grows the worklist. 419 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 420 BasicBlock *BB = BBWorklist[Idx]; 421 422 // Visit all instructions in the given basic block and try to simplify 423 // it. We don't change the actual IR, just count optimization 424 // opportunities. 425 for (Instruction &I : *BB) { 426 // Track this instruction's expected baseline cost when executing the 427 // rolled loop form. 428 RolledDynamicCost += TTI.getUserCost(&I); 429 430 // Visit the instruction to analyze its loop cost after unrolling, 431 // and if the visitor returns true, mark the instruction as free after 432 // unrolling and continue. 433 bool IsFree = Analyzer.visit(I); 434 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 435 (unsigned)IsFree, 436 /*IsCounted*/ false}).second; 437 (void)Inserted; 438 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 439 440 if (IsFree) 441 continue; 442 443 // If the instruction might have a side-effect recursively account for 444 // the cost of it and all the instructions leading up to it. 445 if (I.mayHaveSideEffects()) 446 AddCostRecursively(I, Iteration); 447 448 // Can't properly model a cost of a call. 449 // FIXME: With a proper cost model we should be able to do it. 450 if(isa<CallInst>(&I)) 451 return None; 452 453 // If unrolled body turns out to be too big, bail out. 454 if (UnrolledCost > MaxUnrolledLoopSize) { 455 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 456 << " UnrolledCost: " << UnrolledCost 457 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 458 << "\n"); 459 return None; 460 } 461 } 462 463 TerminatorInst *TI = BB->getTerminator(); 464 465 // Add in the live successors by first checking whether we have terminator 466 // that may be simplified based on the values simplified by this call. 467 BasicBlock *KnownSucc = nullptr; 468 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 469 if (BI->isConditional()) { 470 if (Constant *SimpleCond = 471 SimplifiedValues.lookup(BI->getCondition())) { 472 // Just take the first successor if condition is undef 473 if (isa<UndefValue>(SimpleCond)) 474 KnownSucc = BI->getSuccessor(0); 475 else if (ConstantInt *SimpleCondVal = 476 dyn_cast<ConstantInt>(SimpleCond)) 477 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 478 } 479 } 480 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 481 if (Constant *SimpleCond = 482 SimplifiedValues.lookup(SI->getCondition())) { 483 // Just take the first successor if condition is undef 484 if (isa<UndefValue>(SimpleCond)) 485 KnownSucc = SI->getSuccessor(0); 486 else if (ConstantInt *SimpleCondVal = 487 dyn_cast<ConstantInt>(SimpleCond)) 488 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor(); 489 } 490 } 491 if (KnownSucc) { 492 if (L->contains(KnownSucc)) 493 BBWorklist.insert(KnownSucc); 494 else 495 ExitWorklist.insert({BB, KnownSucc}); 496 continue; 497 } 498 499 // Add BB's successors to the worklist. 500 for (BasicBlock *Succ : successors(BB)) 501 if (L->contains(Succ)) 502 BBWorklist.insert(Succ); 503 else 504 ExitWorklist.insert({BB, Succ}); 505 AddCostRecursively(*TI, Iteration); 506 } 507 508 // If we found no optimization opportunities on the first iteration, we 509 // won't find them on later ones too. 510 if (UnrolledCost == RolledDynamicCost) { 511 DEBUG(dbgs() << " No opportunities found.. exiting.\n" 512 << " UnrolledCost: " << UnrolledCost << "\n"); 513 return None; 514 } 515 } 516 517 while (!ExitWorklist.empty()) { 518 BasicBlock *ExitingBB, *ExitBB; 519 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 520 521 for (Instruction &I : *ExitBB) { 522 auto *PN = dyn_cast<PHINode>(&I); 523 if (!PN) 524 break; 525 526 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 527 if (auto *OpI = dyn_cast<Instruction>(Op)) 528 if (L->contains(OpI)) 529 AddCostRecursively(*OpI, TripCount - 1); 530 } 531 } 532 533 DEBUG(dbgs() << "Analysis finished:\n" 534 << "UnrolledCost: " << UnrolledCost << ", " 535 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 536 return {{UnrolledCost, RolledDynamicCost}}; 537 } 538 539 /// ApproximateLoopSize - Approximate the size of the loop. 540 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 541 bool &NotDuplicatable, bool &Convergent, 542 const TargetTransformInfo &TTI, 543 AssumptionCache *AC) { 544 SmallPtrSet<const Value *, 32> EphValues; 545 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 546 547 CodeMetrics Metrics; 548 for (BasicBlock *BB : L->blocks()) 549 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 550 NumCalls = Metrics.NumInlineCandidates; 551 NotDuplicatable = Metrics.notDuplicatable; 552 Convergent = Metrics.convergent; 553 554 unsigned LoopSize = Metrics.NumInsts; 555 556 // Don't allow an estimate of size zero. This would allows unrolling of loops 557 // with huge iteration counts, which is a compile time problem even if it's 558 // not a problem for code quality. Also, the code using this size may assume 559 // that each loop has at least three instructions (likely a conditional 560 // branch, a comparison feeding that branch, and some kind of loop increment 561 // feeding that comparison instruction). 562 LoopSize = std::max(LoopSize, 3u); 563 564 return LoopSize; 565 } 566 567 // Returns the loop hint metadata node with the given name (for example, 568 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 569 // returned. 570 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 571 if (MDNode *LoopID = L->getLoopID()) 572 return GetUnrollMetadata(LoopID, Name); 573 return nullptr; 574 } 575 576 // Returns true if the loop has an unroll(full) pragma. 577 static bool HasUnrollFullPragma(const Loop *L) { 578 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 579 } 580 581 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 582 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 583 static bool HasUnrollEnablePragma(const Loop *L) { 584 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 585 } 586 587 // Returns true if the loop has an unroll(disable) pragma. 588 static bool HasUnrollDisablePragma(const Loop *L) { 589 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 590 } 591 592 // Returns true if the loop has an runtime unroll(disable) pragma. 593 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 594 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 595 } 596 597 // If loop has an unroll_count pragma return the (necessarily 598 // positive) value from the pragma. Otherwise return 0. 599 static unsigned UnrollCountPragmaValue(const Loop *L) { 600 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 601 if (MD) { 602 assert(MD->getNumOperands() == 2 && 603 "Unroll count hint metadata should have two operands."); 604 unsigned Count = 605 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 606 assert(Count >= 1 && "Unroll count must be positive."); 607 return Count; 608 } 609 return 0; 610 } 611 612 // Remove existing unroll metadata and add unroll disable metadata to 613 // indicate the loop has already been unrolled. This prevents a loop 614 // from being unrolled more than is directed by a pragma if the loop 615 // unrolling pass is run more than once (which it generally is). 616 static void SetLoopAlreadyUnrolled(Loop *L) { 617 MDNode *LoopID = L->getLoopID(); 618 if (!LoopID) 619 return; 620 621 // First remove any existing loop unrolling metadata. 622 SmallVector<Metadata *, 4> MDs; 623 // Reserve first location for self reference to the LoopID metadata node. 624 MDs.push_back(nullptr); 625 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 626 bool IsUnrollMetadata = false; 627 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 628 if (MD) { 629 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 630 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 631 } 632 if (!IsUnrollMetadata) 633 MDs.push_back(LoopID->getOperand(i)); 634 } 635 636 // Add unroll(disable) metadata to disable future unrolling. 637 LLVMContext &Context = L->getHeader()->getContext(); 638 SmallVector<Metadata *, 1> DisableOperands; 639 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 640 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 641 MDs.push_back(DisableNode); 642 643 MDNode *NewLoopID = MDNode::get(Context, MDs); 644 // Set operand 0 to refer to the loop id itself. 645 NewLoopID->replaceOperandWith(0, NewLoopID); 646 L->setLoopID(NewLoopID); 647 } 648 649 static bool canUnrollCompletely(Loop *L, unsigned Threshold, 650 unsigned PercentDynamicCostSavedThreshold, 651 unsigned DynamicCostSavingsDiscount, 652 uint64_t UnrolledCost, 653 uint64_t RolledDynamicCost) { 654 if (Threshold == NoThreshold) { 655 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 656 return true; 657 } 658 659 if (UnrolledCost <= Threshold) { 660 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " 661 << UnrolledCost << "<" << Threshold << "\n"); 662 return true; 663 } 664 665 assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); 666 assert(RolledDynamicCost >= UnrolledCost && 667 "Cannot have a higher unrolled cost than a rolled cost!"); 668 669 // Compute the percentage of the dynamic cost in the rolled form that is 670 // saved when unrolled. If unrolling dramatically reduces the estimated 671 // dynamic cost of the loop, we use a higher threshold to allow more 672 // unrolling. 673 unsigned PercentDynamicCostSaved = 674 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; 675 676 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && 677 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= 678 (int64_t)Threshold) { 679 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " 680 "expected dynamic cost by " 681 << PercentDynamicCostSaved << "% (threshold: " 682 << PercentDynamicCostSavedThreshold << "%)\n" 683 << " and the unrolled cost (" << UnrolledCost 684 << ") is less than the max threshold (" 685 << DynamicCostSavingsDiscount << ").\n"); 686 return true; 687 } 688 689 DEBUG(dbgs() << " Too large to fully unroll:\n"); 690 DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); 691 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); 692 DEBUG(dbgs() << " Percent cost saved threshold: " 693 << PercentDynamicCostSavedThreshold << "%\n"); 694 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); 695 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); 696 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved 697 << "\n"); 698 return false; 699 } 700 701 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, 702 ScalarEvolution *SE, const TargetTransformInfo &TTI, 703 AssumptionCache &AC, bool PreserveLCSSA, 704 Optional<unsigned> ProvidedCount, 705 Optional<unsigned> ProvidedThreshold, 706 Optional<bool> ProvidedAllowPartial, 707 Optional<bool> ProvidedRuntime) { 708 BasicBlock *Header = L->getHeader(); 709 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 710 << "] Loop %" << Header->getName() << "\n"); 711 712 if (HasUnrollDisablePragma(L)) { 713 return false; 714 } 715 bool PragmaFullUnroll = HasUnrollFullPragma(L); 716 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 717 unsigned PragmaCount = UnrollCountPragmaValue(L); 718 bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; 719 720 // Find trip count and trip multiple if count is not available 721 unsigned TripCount = 0; 722 unsigned TripMultiple = 1; 723 // If there are multiple exiting blocks but one of them is the latch, use the 724 // latch for the trip count estimation. Otherwise insist on a single exiting 725 // block for the trip count estimation. 726 BasicBlock *ExitingBlock = L->getLoopLatch(); 727 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 728 ExitingBlock = L->getExitingBlock(); 729 if (ExitingBlock) { 730 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 731 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 732 } 733 734 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 735 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, 736 ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, 737 TripCount); 738 739 unsigned Count = UP.Count; 740 bool CountSetExplicitly = Count != 0; 741 // Use a heuristic count if we didn't set anything explicitly. 742 if (!CountSetExplicitly) 743 Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; 744 if (TripCount && Count > TripCount) 745 Count = TripCount; 746 Count = std::min(Count, UP.FullUnrollMaxCount); 747 748 unsigned NumInlineCandidates; 749 bool NotDuplicatable; 750 bool Convergent; 751 unsigned LoopSize = ApproximateLoopSize( 752 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC); 753 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 754 755 // When computing the unrolled size, note that the conditional branch on the 756 // backedge and the comparison feeding it are not replicated like the rest of 757 // the loop body (which is why 2 is subtracted). 758 uint64_t UnrolledSize = (uint64_t)(LoopSize - 2) * Count + 2; 759 if (NotDuplicatable) { 760 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 761 << " instructions.\n"); 762 return false; 763 } 764 if (NumInlineCandidates != 0) { 765 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 766 return false; 767 } 768 769 // Given Count, TripCount and thresholds determine the type of 770 // unrolling which is to be performed. 771 enum { Full = 0, Partial = 1, Runtime = 2 }; 772 int Unrolling; 773 if (TripCount && Count == TripCount) { 774 Unrolling = Partial; 775 // If the loop is really small, we don't need to run an expensive analysis. 776 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, 777 UnrolledSize, UnrolledSize)) { 778 Unrolling = Full; 779 } else { 780 // The loop isn't that small, but we still can fully unroll it if that 781 // helps to remove a significant number of instructions. 782 // To check that, run additional analysis on the loop. 783 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 784 L, TripCount, DT, *SE, TTI, 785 UP.Threshold + UP.DynamicCostSavingsDiscount)) 786 if (canUnrollCompletely(L, UP.Threshold, 787 UP.PercentDynamicCostSavedThreshold, 788 UP.DynamicCostSavingsDiscount, 789 Cost->UnrolledCost, Cost->RolledDynamicCost)) { 790 Unrolling = Full; 791 } 792 } 793 } else if (TripCount && Count < TripCount) { 794 Unrolling = Partial; 795 } else { 796 Unrolling = Runtime; 797 } 798 799 // Reduce count based on the type of unrolling and the threshold values. 800 unsigned OriginalCount = Count; 801 bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; 802 // Don't unroll a runtime trip count loop with unroll full pragma. 803 if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { 804 AllowRuntime = false; 805 } 806 bool DecreasedCountDueToConvergence = false; 807 if (Unrolling == Partial) { 808 bool AllowPartial = PragmaEnableUnroll || UP.Partial; 809 if (!AllowPartial && !CountSetExplicitly) { 810 DEBUG(dbgs() << " will not try to unroll partially because " 811 << "-unroll-allow-partial not given\n"); 812 return false; 813 } 814 if (UP.PartialThreshold != NoThreshold && Count > 1) { 815 // Reduce unroll count to be modulo of TripCount for partial unrolling. 816 if (UnrolledSize > UP.PartialThreshold) 817 Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); 818 if (Count > UP.MaxCount) 819 Count = UP.MaxCount; 820 while (Count != 0 && TripCount % Count != 0) 821 Count--; 822 if (AllowRuntime && Count <= 1) { 823 // If there is no Count that is modulo of TripCount, set Count to 824 // largest power-of-two factor that satisfies the threshold limit. 825 // As we'll create fixup loop, do the type of unrolling only if 826 // runtime unrolling is allowed. 827 Count = DefaultUnrollRuntimeCount; 828 UnrolledSize = (LoopSize - 2) * Count + 2; 829 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 830 Count >>= 1; 831 UnrolledSize = (LoopSize - 2) * Count + 2; 832 } 833 } 834 } 835 } else if (Unrolling == Runtime) { 836 if (!AllowRuntime && !CountSetExplicitly) { 837 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 838 << "-unroll-runtime not given\n"); 839 return false; 840 } 841 842 // Reduce unroll count to be the largest power-of-two factor of 843 // the original count which satisfies the threshold limit. 844 while (Count != 0 && UnrolledSize > UP.PartialThreshold) { 845 Count >>= 1; 846 UnrolledSize = (LoopSize - 2) * Count + 2; 847 } 848 849 if (Count > UP.MaxCount) 850 Count = UP.MaxCount; 851 852 // If the loop contains a convergent operation, the prelude we'd add 853 // to do the first few instructions before we hit the unrolled loop 854 // is unsafe -- it adds a control-flow dependency to the convergent 855 // operation. Therefore Count must divide TripMultiple. 856 // 857 // TODO: This is quite conservative. In practice, convergent_op() 858 // is likely to be called unconditionally in the loop. In this 859 // case, the program would be ill-formed (on most architectures) 860 // unless n were the same on all threads in a thread group. 861 // Assuming n is the same on all threads, any kind of unrolling is 862 // safe. But currently llvm's notion of convergence isn't powerful 863 // enough to express this. 864 unsigned OrigCount = Count; 865 while (Convergent && Count != 0 && TripMultiple % Count != 0) { 866 DecreasedCountDueToConvergence = true; 867 Count >>= 1; 868 } 869 if (OrigCount > Count) { 870 DEBUG(dbgs() << " loop contains a convergent instruction, so unroll " 871 "count must divide the trip multiple, " 872 << TripMultiple << ". Reducing unroll count from " 873 << OrigCount << " to " << Count << ".\n"); 874 } 875 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 876 } 877 878 if (HasPragma) { 879 // Emit optimization remarks if we are unable to unroll the loop 880 // as directed by a pragma. 881 DebugLoc LoopLoc = L->getStartLoc(); 882 Function *F = Header->getParent(); 883 LLVMContext &Ctx = F->getContext(); 884 if (PragmaCount > 0 && DecreasedCountDueToConvergence) { 885 emitOptimizationRemarkMissed( 886 Ctx, DEBUG_TYPE, *F, LoopLoc, 887 Twine("Unable to unroll loop the number of times directed by " 888 "unroll_count pragma because the loop contains a convergent " 889 "instruction, and so must have an unroll count that divides " 890 "the loop trip multiple of ") + 891 Twine(TripMultiple) + ". Unrolling instead " + Twine(Count) + 892 " time(s)."); 893 } else if ((PragmaCount > 0) && Count != OriginalCount) { 894 emitOptimizationRemarkMissed( 895 Ctx, DEBUG_TYPE, *F, LoopLoc, 896 "Unable to unroll loop the number of times directed by " 897 "unroll_count pragma because unrolled size is too large."); 898 } else if (PragmaFullUnroll && !TripCount) { 899 emitOptimizationRemarkMissed( 900 Ctx, DEBUG_TYPE, *F, LoopLoc, 901 "Unable to fully unroll loop as directed by unroll(full) pragma " 902 "because loop has a runtime trip count."); 903 } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { 904 emitOptimizationRemarkMissed( 905 Ctx, DEBUG_TYPE, *F, LoopLoc, 906 "Unable to unroll loop as directed by unroll(enable) pragma because " 907 "unrolled size is too large."); 908 } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 909 Count != TripCount) { 910 emitOptimizationRemarkMissed( 911 Ctx, DEBUG_TYPE, *F, LoopLoc, 912 "Unable to fully unroll loop as directed by unroll pragma because " 913 "unrolled size is too large."); 914 } 915 } 916 917 if (Unrolling != Full && Count < 2) { 918 // Partial unrolling by 1 is a nop. For full unrolling, a factor 919 // of 1 makes sense because loop control can be eliminated. 920 return false; 921 } 922 923 // Unroll the loop. 924 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 925 TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) 926 return false; 927 928 // If loop has an unroll count pragma mark loop as unrolled to prevent 929 // unrolling beyond that requested by the pragma. 930 if (HasPragma && PragmaCount != 0) 931 SetLoopAlreadyUnrolled(L); 932 return true; 933 } 934 935 namespace { 936 class LoopUnroll : public LoopPass { 937 public: 938 static char ID; // Pass ID, replacement for typeid 939 LoopUnroll(Optional<unsigned> Threshold = None, 940 Optional<unsigned> Count = None, 941 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) 942 : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold), 943 ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) { 944 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 945 } 946 947 Optional<unsigned> ProvidedCount; 948 Optional<unsigned> ProvidedThreshold; 949 Optional<bool> ProvidedAllowPartial; 950 Optional<bool> ProvidedRuntime; 951 952 bool runOnLoop(Loop *L, LPPassManager &) override { 953 if (skipLoop(L)) 954 return false; 955 956 Function &F = *L->getHeader()->getParent(); 957 958 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 959 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 960 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 961 const TargetTransformInfo &TTI = 962 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 963 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 964 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 965 966 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, 967 ProvidedThreshold, ProvidedAllowPartial, 968 ProvidedRuntime); 969 } 970 971 /// This transformation requires natural loop information & requires that 972 /// loop preheaders be inserted into the CFG... 973 /// 974 void getAnalysisUsage(AnalysisUsage &AU) const override { 975 AU.addRequired<AssumptionCacheTracker>(); 976 AU.addRequired<TargetTransformInfoWrapperPass>(); 977 // FIXME: Loop passes are required to preserve domtree, and for now we just 978 // recreate dom info if anything gets unrolled. 979 getLoopAnalysisUsage(AU); 980 } 981 }; 982 } 983 984 char LoopUnroll::ID = 0; 985 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 986 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 987 INITIALIZE_PASS_DEPENDENCY(LoopPass) 988 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 989 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 990 991 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 992 int Runtime) { 993 // TODO: It would make more sense for this function to take the optionals 994 // directly, but that's dangerous since it would silently break out of tree 995 // callers. 996 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), 997 Count == -1 ? None : Optional<unsigned>(Count), 998 AllowPartial == -1 ? None 999 : Optional<bool>(AllowPartial), 1000 Runtime == -1 ? None : Optional<bool>(Runtime)); 1001 } 1002 1003 Pass *llvm::createSimpleLoopUnrollPass() { 1004 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 1005 } 1006