1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is sometimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of" 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 /// A magic value for use with the Threshold parameter to indicate 179 /// that the loop unroll should be performed regardless of how much 180 /// code expansion would result. 181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 182 183 /// Gather the various unrolling parameters based on the defaults, compiler 184 /// flags, TTI overrides and user specified parameters. 185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 186 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 187 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 188 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 189 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 190 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 191 TargetTransformInfo::UnrollingPreferences UP; 192 193 // Set up the defaults 194 UP.Threshold = 195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 196 UP.MaxPercentThresholdBoost = 400; 197 UP.OptSizeThreshold = UnrollOptSizeThreshold; 198 UP.PartialThreshold = 150; 199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 200 UP.Count = 0; 201 UP.DefaultUnrollRuntimeCount = 8; 202 UP.MaxCount = std::numeric_limits<unsigned>::max(); 203 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 204 UP.BEInsns = 2; 205 UP.Partial = false; 206 UP.Runtime = false; 207 UP.AllowRemainder = true; 208 UP.UnrollRemainder = false; 209 UP.AllowExpensiveTripCount = false; 210 UP.Force = false; 211 UP.UpperBound = false; 212 UP.UnrollAndJam = false; 213 UP.UnrollAndJamInnerLoopThreshold = 60; 214 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 215 216 // Override with any target specific settings 217 TTI.getUnrollingPreferences(L, SE, UP); 218 219 // Apply size attributes 220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 221 // Let unroll hints / pragmas take precedence over PGSO. 222 (hasUnrollTransformation(L) != TM_ForcedByUser && 223 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 224 PGSOQueryType::IRPass)); 225 if (OptForSize) { 226 UP.Threshold = UP.OptSizeThreshold; 227 UP.PartialThreshold = UP.PartialOptSizeThreshold; 228 UP.MaxPercentThresholdBoost = 100; 229 } 230 231 // Apply any user values specified by cl::opt 232 if (UnrollThreshold.getNumOccurrences() > 0) 233 UP.Threshold = UnrollThreshold; 234 if (UnrollPartialThreshold.getNumOccurrences() > 0) 235 UP.PartialThreshold = UnrollPartialThreshold; 236 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 237 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 238 if (UnrollMaxCount.getNumOccurrences() > 0) 239 UP.MaxCount = UnrollMaxCount; 240 if (UnrollFullMaxCount.getNumOccurrences() > 0) 241 UP.FullUnrollMaxCount = UnrollFullMaxCount; 242 if (UnrollAllowPartial.getNumOccurrences() > 0) 243 UP.Partial = UnrollAllowPartial; 244 if (UnrollAllowRemainder.getNumOccurrences() > 0) 245 UP.AllowRemainder = UnrollAllowRemainder; 246 if (UnrollRuntime.getNumOccurrences() > 0) 247 UP.Runtime = UnrollRuntime; 248 if (UnrollMaxUpperBound == 0) 249 UP.UpperBound = false; 250 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 251 UP.UnrollRemainder = UnrollUnrollRemainder; 252 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 253 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 254 255 // Apply user values provided by argument 256 if (UserThreshold.hasValue()) { 257 UP.Threshold = *UserThreshold; 258 UP.PartialThreshold = *UserThreshold; 259 } 260 if (UserCount.hasValue()) 261 UP.Count = *UserCount; 262 if (UserAllowPartial.hasValue()) 263 UP.Partial = *UserAllowPartial; 264 if (UserRuntime.hasValue()) 265 UP.Runtime = *UserRuntime; 266 if (UserUpperBound.hasValue()) 267 UP.UpperBound = *UserUpperBound; 268 if (UserFullUnrollMaxCount.hasValue()) 269 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 270 271 return UP; 272 } 273 274 namespace { 275 276 /// A struct to densely store the state of an instruction after unrolling at 277 /// each iteration. 278 /// 279 /// This is designed to work like a tuple of <Instruction *, int> for the 280 /// purposes of hashing and lookup, but to be able to associate two boolean 281 /// states with each key. 282 struct UnrolledInstState { 283 Instruction *I; 284 int Iteration : 30; 285 unsigned IsFree : 1; 286 unsigned IsCounted : 1; 287 }; 288 289 /// Hashing and equality testing for a set of the instruction states. 290 struct UnrolledInstStateKeyInfo { 291 using PtrInfo = DenseMapInfo<Instruction *>; 292 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 293 294 static inline UnrolledInstState getEmptyKey() { 295 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 296 } 297 298 static inline UnrolledInstState getTombstoneKey() { 299 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 300 } 301 302 static inline unsigned getHashValue(const UnrolledInstState &S) { 303 return PairInfo::getHashValue({S.I, S.Iteration}); 304 } 305 306 static inline bool isEqual(const UnrolledInstState &LHS, 307 const UnrolledInstState &RHS) { 308 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 309 } 310 }; 311 312 struct EstimatedUnrollCost { 313 /// The estimated cost after unrolling. 314 unsigned UnrolledCost; 315 316 /// The estimated dynamic cost of executing the instructions in the 317 /// rolled form. 318 unsigned RolledDynamicCost; 319 }; 320 321 } // end anonymous namespace 322 323 /// Figure out if the loop is worth full unrolling. 324 /// 325 /// Complete loop unrolling can make some loads constant, and we need to know 326 /// if that would expose any further optimization opportunities. This routine 327 /// estimates this optimization. It computes cost of unrolled loop 328 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 329 /// dynamic cost we mean that we won't count costs of blocks that are known not 330 /// to be executed (i.e. if we have a branch in the loop and we know that at the 331 /// given iteration its condition would be resolved to true, we won't add up the 332 /// cost of the 'false'-block). 333 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 334 /// the analysis failed (no benefits expected from the unrolling, or the loop is 335 /// too big to analyze), the returned value is None. 336 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 337 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 338 const SmallPtrSetImpl<const Value *> &EphValues, 339 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 340 unsigned MaxIterationsCountToAnalyze) { 341 // We want to be able to scale offsets by the trip count and add more offsets 342 // to them without checking for overflows, and we already don't want to 343 // analyze *massive* trip counts, so we force the max to be reasonably small. 344 assert(MaxIterationsCountToAnalyze < 345 (unsigned)(std::numeric_limits<int>::max() / 2) && 346 "The unroll iterations max is too large!"); 347 348 // Only analyze inner loops. We can't properly estimate cost of nested loops 349 // and we won't visit inner loops again anyway. 350 if (!L->isInnermost()) 351 return None; 352 353 // Don't simulate loops with a big or unknown tripcount 354 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 355 return None; 356 357 SmallSetVector<BasicBlock *, 16> BBWorklist; 358 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 359 DenseMap<Value *, Value *> SimplifiedValues; 360 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 361 362 // The estimated cost of the unrolled form of the loop. We try to estimate 363 // this by simplifying as much as we can while computing the estimate. 364 InstructionCost UnrolledCost = 0; 365 366 // We also track the estimated dynamic (that is, actually executed) cost in 367 // the rolled form. This helps identify cases when the savings from unrolling 368 // aren't just exposing dead control flows, but actual reduced dynamic 369 // instructions due to the simplifications which we expect to occur after 370 // unrolling. 371 InstructionCost RolledDynamicCost = 0; 372 373 // We track the simplification of each instruction in each iteration. We use 374 // this to recursively merge costs into the unrolled cost on-demand so that 375 // we don't count the cost of any dead code. This is essentially a map from 376 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 377 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 378 379 // A small worklist used to accumulate cost of instructions from each 380 // observable and reached root in the loop. 381 SmallVector<Instruction *, 16> CostWorklist; 382 383 // PHI-used worklist used between iterations while accumulating cost. 384 SmallVector<Instruction *, 4> PHIUsedList; 385 386 // Helper function to accumulate cost for instructions in the loop. 387 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 388 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 389 assert(CostWorklist.empty() && "Must start with an empty cost list"); 390 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 391 CostWorklist.push_back(&RootI); 392 TargetTransformInfo::TargetCostKind CostKind = 393 RootI.getFunction()->hasMinSize() ? 394 TargetTransformInfo::TCK_CodeSize : 395 TargetTransformInfo::TCK_SizeAndLatency; 396 for (;; --Iteration) { 397 do { 398 Instruction *I = CostWorklist.pop_back_val(); 399 400 // InstCostMap only uses I and Iteration as a key, the other two values 401 // don't matter here. 402 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 403 if (CostIter == InstCostMap.end()) 404 // If an input to a PHI node comes from a dead path through the loop 405 // we may have no cost data for it here. What that actually means is 406 // that it is free. 407 continue; 408 auto &Cost = *CostIter; 409 if (Cost.IsCounted) 410 // Already counted this instruction. 411 continue; 412 413 // Mark that we are counting the cost of this instruction now. 414 Cost.IsCounted = true; 415 416 // If this is a PHI node in the loop header, just add it to the PHI set. 417 if (auto *PhiI = dyn_cast<PHINode>(I)) 418 if (PhiI->getParent() == L->getHeader()) { 419 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 420 "inherently simplify during unrolling."); 421 if (Iteration == 0) 422 continue; 423 424 // Push the incoming value from the backedge into the PHI used list 425 // if it is an in-loop instruction. We'll use this to populate the 426 // cost worklist for the next iteration (as we count backwards). 427 if (auto *OpI = dyn_cast<Instruction>( 428 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 429 if (L->contains(OpI)) 430 PHIUsedList.push_back(OpI); 431 continue; 432 } 433 434 // First accumulate the cost of this instruction. 435 if (!Cost.IsFree) { 436 UnrolledCost += TTI.getUserCost(I, CostKind); 437 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 438 << Iteration << "): "); 439 LLVM_DEBUG(I->dump()); 440 } 441 442 // We must count the cost of every operand which is not free, 443 // recursively. If we reach a loop PHI node, simply add it to the set 444 // to be considered on the next iteration (backwards!). 445 for (Value *Op : I->operands()) { 446 // Check whether this operand is free due to being a constant or 447 // outside the loop. 448 auto *OpI = dyn_cast<Instruction>(Op); 449 if (!OpI || !L->contains(OpI)) 450 continue; 451 452 // Otherwise accumulate its cost. 453 CostWorklist.push_back(OpI); 454 } 455 } while (!CostWorklist.empty()); 456 457 if (PHIUsedList.empty()) 458 // We've exhausted the search. 459 break; 460 461 assert(Iteration > 0 && 462 "Cannot track PHI-used values past the first iteration!"); 463 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 464 PHIUsedList.clear(); 465 } 466 }; 467 468 // Ensure that we don't violate the loop structure invariants relied on by 469 // this analysis. 470 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 471 assert(L->isLCSSAForm(DT) && 472 "Must have loops in LCSSA form to track live-out values."); 473 474 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 475 476 TargetTransformInfo::TargetCostKind CostKind = 477 L->getHeader()->getParent()->hasMinSize() ? 478 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 479 // Simulate execution of each iteration of the loop counting instructions, 480 // which would be simplified. 481 // Since the same load will take different values on different iterations, 482 // we literally have to go through all loop's iterations. 483 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 484 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 485 486 // Prepare for the iteration by collecting any simplified entry or backedge 487 // inputs. 488 for (Instruction &I : *L->getHeader()) { 489 auto *PHI = dyn_cast<PHINode>(&I); 490 if (!PHI) 491 break; 492 493 // The loop header PHI nodes must have exactly two input: one from the 494 // loop preheader and one from the loop latch. 495 assert( 496 PHI->getNumIncomingValues() == 2 && 497 "Must have an incoming value only for the preheader and the latch."); 498 499 Value *V = PHI->getIncomingValueForBlock( 500 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 501 if (Iteration != 0 && SimplifiedValues.count(V)) 502 V = SimplifiedValues.lookup(V); 503 SimplifiedInputValues.push_back({PHI, V}); 504 } 505 506 // Now clear and re-populate the map for the next iteration. 507 SimplifiedValues.clear(); 508 while (!SimplifiedInputValues.empty()) 509 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 510 511 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 512 513 BBWorklist.clear(); 514 BBWorklist.insert(L->getHeader()); 515 // Note that we *must not* cache the size, this loop grows the worklist. 516 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 517 BasicBlock *BB = BBWorklist[Idx]; 518 519 // Visit all instructions in the given basic block and try to simplify 520 // it. We don't change the actual IR, just count optimization 521 // opportunities. 522 for (Instruction &I : *BB) { 523 // These won't get into the final code - don't even try calculating the 524 // cost for them. 525 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 526 continue; 527 528 // Track this instruction's expected baseline cost when executing the 529 // rolled loop form. 530 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 531 532 // Visit the instruction to analyze its loop cost after unrolling, 533 // and if the visitor returns true, mark the instruction as free after 534 // unrolling and continue. 535 bool IsFree = Analyzer.visit(I); 536 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 537 (unsigned)IsFree, 538 /*IsCounted*/ false}).second; 539 (void)Inserted; 540 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 541 542 if (IsFree) 543 continue; 544 545 // Can't properly model a cost of a call. 546 // FIXME: With a proper cost model we should be able to do it. 547 if (auto *CI = dyn_cast<CallInst>(&I)) { 548 const Function *Callee = CI->getCalledFunction(); 549 if (!Callee || TTI.isLoweredToCall(Callee)) { 550 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 551 return None; 552 } 553 } 554 555 // If the instruction might have a side-effect recursively account for 556 // the cost of it and all the instructions leading up to it. 557 if (I.mayHaveSideEffects()) 558 AddCostRecursively(I, Iteration); 559 560 // If unrolled body turns out to be too big, bail out. 561 if (UnrolledCost > MaxUnrolledLoopSize) { 562 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 563 << " UnrolledCost: " << UnrolledCost 564 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 565 << "\n"); 566 return None; 567 } 568 } 569 570 Instruction *TI = BB->getTerminator(); 571 572 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 573 if (SimplifiedValues.count(V)) 574 V = SimplifiedValues.lookup(V); 575 return dyn_cast<Constant>(V); 576 }; 577 578 // Add in the live successors by first checking whether we have terminator 579 // that may be simplified based on the values simplified by this call. 580 BasicBlock *KnownSucc = nullptr; 581 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 582 if (BI->isConditional()) { 583 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 584 // Just take the first successor if condition is undef 585 if (isa<UndefValue>(SimpleCond)) 586 KnownSucc = BI->getSuccessor(0); 587 else if (ConstantInt *SimpleCondVal = 588 dyn_cast<ConstantInt>(SimpleCond)) 589 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 590 } 591 } 592 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 593 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 594 // Just take the first successor if condition is undef 595 if (isa<UndefValue>(SimpleCond)) 596 KnownSucc = SI->getSuccessor(0); 597 else if (ConstantInt *SimpleCondVal = 598 dyn_cast<ConstantInt>(SimpleCond)) 599 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 600 } 601 } 602 if (KnownSucc) { 603 if (L->contains(KnownSucc)) 604 BBWorklist.insert(KnownSucc); 605 else 606 ExitWorklist.insert({BB, KnownSucc}); 607 continue; 608 } 609 610 // Add BB's successors to the worklist. 611 for (BasicBlock *Succ : successors(BB)) 612 if (L->contains(Succ)) 613 BBWorklist.insert(Succ); 614 else 615 ExitWorklist.insert({BB, Succ}); 616 AddCostRecursively(*TI, Iteration); 617 } 618 619 // If we found no optimization opportunities on the first iteration, we 620 // won't find them on later ones too. 621 if (UnrolledCost == RolledDynamicCost) { 622 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 623 << " UnrolledCost: " << UnrolledCost << "\n"); 624 return None; 625 } 626 } 627 628 while (!ExitWorklist.empty()) { 629 BasicBlock *ExitingBB, *ExitBB; 630 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 631 632 for (Instruction &I : *ExitBB) { 633 auto *PN = dyn_cast<PHINode>(&I); 634 if (!PN) 635 break; 636 637 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 638 if (auto *OpI = dyn_cast<Instruction>(Op)) 639 if (L->contains(OpI)) 640 AddCostRecursively(*OpI, TripCount - 1); 641 } 642 } 643 644 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 645 "All instructions must have a valid cost, whether the " 646 "loop is rolled or unrolled."); 647 648 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 649 << "UnrolledCost: " << UnrolledCost << ", " 650 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 651 return {{unsigned(*UnrolledCost.getValue()), 652 unsigned(*RolledDynamicCost.getValue())}}; 653 } 654 655 /// ApproximateLoopSize - Approximate the size of the loop. 656 unsigned llvm::ApproximateLoopSize( 657 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 658 const TargetTransformInfo &TTI, 659 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 660 CodeMetrics Metrics; 661 for (BasicBlock *BB : L->blocks()) 662 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 663 NumCalls = Metrics.NumInlineCandidates; 664 NotDuplicatable = Metrics.notDuplicatable; 665 Convergent = Metrics.convergent; 666 667 unsigned LoopSize = Metrics.NumInsts; 668 669 // Don't allow an estimate of size zero. This would allows unrolling of loops 670 // with huge iteration counts, which is a compile time problem even if it's 671 // not a problem for code quality. Also, the code using this size may assume 672 // that each loop has at least three instructions (likely a conditional 673 // branch, a comparison feeding that branch, and some kind of loop increment 674 // feeding that comparison instruction). 675 LoopSize = std::max(LoopSize, BEInsns + 1); 676 677 return LoopSize; 678 } 679 680 // Returns the loop hint metadata node with the given name (for example, 681 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 682 // returned. 683 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 684 if (MDNode *LoopID = L->getLoopID()) 685 return GetUnrollMetadata(LoopID, Name); 686 return nullptr; 687 } 688 689 // Returns true if the loop has an unroll(full) pragma. 690 static bool hasUnrollFullPragma(const Loop *L) { 691 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 692 } 693 694 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 695 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 696 static bool hasUnrollEnablePragma(const Loop *L) { 697 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 698 } 699 700 // Returns true if the loop has an runtime unroll(disable) pragma. 701 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 702 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 703 } 704 705 // If loop has an unroll_count pragma return the (necessarily 706 // positive) value from the pragma. Otherwise return 0. 707 static unsigned unrollCountPragmaValue(const Loop *L) { 708 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 709 if (MD) { 710 assert(MD->getNumOperands() == 2 && 711 "Unroll count hint metadata should have two operands."); 712 unsigned Count = 713 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 714 assert(Count >= 1 && "Unroll count must be positive."); 715 return Count; 716 } 717 return 0; 718 } 719 720 // Computes the boosting factor for complete unrolling. 721 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 722 // be beneficial to fully unroll the loop even if unrolledcost is large. We 723 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 724 // the unroll threshold. 725 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 726 unsigned MaxPercentThresholdBoost) { 727 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 728 return 100; 729 else if (Cost.UnrolledCost != 0) 730 // The boosting factor is RolledDynamicCost / UnrolledCost 731 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 732 MaxPercentThresholdBoost); 733 else 734 return MaxPercentThresholdBoost; 735 } 736 737 // Produce an estimate of the unrolled cost of the specified loop. This 738 // is used to a) produce a cost estimate for partial unrolling and b) to 739 // cheaply estimate cost for full unrolling when we don't want to symbolically 740 // evaluate all iterations. 741 class UnrollCostEstimator { 742 const unsigned LoopSize; 743 744 public: 745 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {} 746 747 // Returns loop size estimation for unrolled loop, given the unrolling 748 // configuration specified by UP. 749 uint64_t getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences &UP) { 750 assert(LoopSize >= UP.BEInsns && 751 "LoopSize should not be less than BEInsns!"); 752 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 753 } 754 }; 755 756 // Returns true if unroll count was set explicitly. 757 // Calculates unroll count and writes it to UP.Count. 758 // Unless IgnoreUser is true, will also use metadata and command-line options 759 // that are specific to to the LoopUnroll pass (which, for instance, are 760 // irrelevant for the LoopUnrollAndJam pass). 761 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 762 // many LoopUnroll-specific options. The shared functionality should be 763 // refactored into it own function. 764 bool llvm::computeUnrollCount( 765 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 766 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 767 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 768 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 769 TargetTransformInfo::UnrollingPreferences &UP, 770 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 771 772 UnrollCostEstimator UCE(*L, LoopSize); 773 774 // Use an explicit peel count that has been specified for testing. In this 775 // case it's not permitted to also specify an explicit unroll count. 776 if (PP.PeelCount) { 777 if (UnrollCount.getNumOccurrences() > 0) { 778 report_fatal_error("Cannot specify both explicit peel count and " 779 "explicit unroll count"); 780 } 781 UP.Count = 1; 782 UP.Runtime = false; 783 return true; 784 } 785 786 // Check for explicit Count. 787 // 1st priority is unroll count set by "unroll-count" option. 788 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 789 if (UserUnrollCount) { 790 UP.Count = UnrollCount; 791 UP.AllowExpensiveTripCount = true; 792 UP.Force = true; 793 if (UP.AllowRemainder && UCE.getUnrolledLoopSize(UP) < UP.Threshold) 794 return true; 795 } 796 797 // 2nd priority is unroll count set by pragma. 798 unsigned PragmaCount = unrollCountPragmaValue(L); 799 if (PragmaCount > 0) { 800 UP.Count = PragmaCount; 801 UP.Runtime = true; 802 UP.AllowExpensiveTripCount = true; 803 UP.Force = true; 804 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 805 UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold) 806 return true; 807 } 808 bool PragmaFullUnroll = hasUnrollFullPragma(L); 809 if (PragmaFullUnroll && TripCount != 0) { 810 UP.Count = TripCount; 811 if (UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold) 812 return false; 813 } 814 815 bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 816 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 817 PragmaEnableUnroll || UserUnrollCount; 818 819 if (ExplicitUnroll && TripCount != 0) { 820 // If the loop has an unrolling pragma, we want to be more aggressive with 821 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 822 // value which is larger than the default limits. 823 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 824 UP.PartialThreshold = 825 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 826 } 827 828 // 3rd priority is full unroll count. 829 // Full unroll makes sense only when TripCount or its upper bound could be 830 // statically calculated. 831 // Also we need to check if we exceed FullUnrollMaxCount. 832 // If using the upper bound to unroll, TripMultiple should be set to 1 because 833 // we do not know when loop may exit. 834 835 // We can unroll by the upper bound amount if it's generally allowed or if 836 // we know that the loop is executed either the upper bound or zero times. 837 // (MaxOrZero unrolling keeps only the first loop test, so the number of 838 // loop tests remains the same compared to the non-unrolled version, whereas 839 // the generic upper bound unrolling keeps all but the last loop test so the 840 // number of loop tests goes up which may end up being worse on targets with 841 // constrained branch predictor resources so is controlled by an option.) 842 // In addition we only unroll small upper bounds. 843 unsigned FullUnrollMaxTripCount = MaxTripCount; 844 if (!(UP.UpperBound || MaxOrZero) || 845 FullUnrollMaxTripCount > UnrollMaxUpperBound) 846 FullUnrollMaxTripCount = 0; 847 848 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 849 // compute the former when the latter is zero. 850 unsigned ExactTripCount = TripCount; 851 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 852 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 853 854 unsigned FullUnrollTripCount = 855 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 856 UP.Count = FullUnrollTripCount; 857 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 858 // When computing the unrolled size, note that BEInsns are not replicated 859 // like the rest of the loop body. 860 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) { 861 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 862 TripCount = FullUnrollTripCount; 863 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 864 return ExplicitUnroll; 865 } else { 866 // The loop isn't that small, but we still can fully unroll it if that 867 // helps to remove a significant number of instructions. 868 // To check that, run additional analysis on the loop. 869 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 870 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 871 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 872 UP.MaxIterationsCountToAnalyze)) { 873 unsigned Boost = 874 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 875 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 876 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 877 TripCount = FullUnrollTripCount; 878 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 879 return ExplicitUnroll; 880 } 881 } 882 } 883 } 884 885 // 4th priority is loop peeling. 886 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold); 887 if (PP.PeelCount) { 888 UP.Runtime = false; 889 UP.Count = 1; 890 return ExplicitUnroll; 891 } 892 893 // 5th priority is partial unrolling. 894 // Try partial unroll only when TripCount could be statically calculated. 895 if (TripCount) { 896 UP.Partial |= ExplicitUnroll; 897 if (!UP.Partial) { 898 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 899 << "-unroll-allow-partial not given\n"); 900 UP.Count = 0; 901 return false; 902 } 903 if (UP.Count == 0) 904 UP.Count = TripCount; 905 if (UP.PartialThreshold != NoThreshold) { 906 // Reduce unroll count to be modulo of TripCount for partial unrolling. 907 if (UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 908 UP.Count = 909 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 910 (LoopSize - UP.BEInsns); 911 if (UP.Count > UP.MaxCount) 912 UP.Count = UP.MaxCount; 913 while (UP.Count != 0 && TripCount % UP.Count != 0) 914 UP.Count--; 915 if (UP.AllowRemainder && UP.Count <= 1) { 916 // If there is no Count that is modulo of TripCount, set Count to 917 // largest power-of-two factor that satisfies the threshold limit. 918 // As we'll create fixup loop, do the type of unrolling only if 919 // remainder loop is allowed. 920 UP.Count = UP.DefaultUnrollRuntimeCount; 921 while (UP.Count != 0 && 922 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 923 UP.Count >>= 1; 924 } 925 if (UP.Count < 2) { 926 if (PragmaEnableUnroll) 927 ORE->emit([&]() { 928 return OptimizationRemarkMissed(DEBUG_TYPE, 929 "UnrollAsDirectedTooLarge", 930 L->getStartLoc(), L->getHeader()) 931 << "Unable to unroll loop as directed by unroll(enable) " 932 "pragma " 933 "because unrolled size is too large."; 934 }); 935 UP.Count = 0; 936 } 937 } else { 938 UP.Count = TripCount; 939 } 940 if (UP.Count > UP.MaxCount) 941 UP.Count = UP.MaxCount; 942 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 943 UP.Count != TripCount) 944 ORE->emit([&]() { 945 return OptimizationRemarkMissed(DEBUG_TYPE, 946 "FullUnrollAsDirectedTooLarge", 947 L->getStartLoc(), L->getHeader()) 948 << "Unable to fully unroll loop as directed by unroll pragma " 949 "because " 950 "unrolled size is too large."; 951 }); 952 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 953 << "\n"); 954 return ExplicitUnroll; 955 } 956 assert(TripCount == 0 && 957 "All cases when TripCount is constant should be covered here."); 958 if (PragmaFullUnroll) 959 ORE->emit([&]() { 960 return OptimizationRemarkMissed( 961 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 962 L->getStartLoc(), L->getHeader()) 963 << "Unable to fully unroll loop as directed by unroll(full) " 964 "pragma " 965 "because loop has a runtime trip count."; 966 }); 967 968 // 6th priority is runtime unrolling. 969 // Don't unroll a runtime trip count loop when it is disabled. 970 if (hasRuntimeUnrollDisablePragma(L)) { 971 UP.Count = 0; 972 return false; 973 } 974 975 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 976 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 977 UP.Count = 0; 978 return false; 979 } 980 981 // Check if the runtime trip count is too small when profile is available. 982 if (L->getHeader()->getParent()->hasProfileData()) { 983 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 984 if (*ProfileTripCount < FlatLoopTripCountThreshold) 985 return false; 986 else 987 UP.AllowExpensiveTripCount = true; 988 } 989 } 990 991 // Reduce count based on the type of unrolling and the threshold values. 992 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 993 if (!UP.Runtime) { 994 LLVM_DEBUG( 995 dbgs() << " will not try to unroll loop with runtime trip count " 996 << "-unroll-runtime not given\n"); 997 UP.Count = 0; 998 return false; 999 } 1000 if (UP.Count == 0) 1001 UP.Count = UP.DefaultUnrollRuntimeCount; 1002 1003 // Reduce unroll count to be the largest power-of-two factor of 1004 // the original count which satisfies the threshold limit. 1005 while (UP.Count != 0 && 1006 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1007 UP.Count >>= 1; 1008 1009 #ifndef NDEBUG 1010 unsigned OrigCount = UP.Count; 1011 #endif 1012 1013 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1014 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1015 UP.Count >>= 1; 1016 LLVM_DEBUG( 1017 dbgs() << "Remainder loop is restricted (that could architecture " 1018 "specific or because the loop contains a convergent " 1019 "instruction), so unroll count must divide the trip " 1020 "multiple, " 1021 << TripMultiple << ". Reducing unroll count from " << OrigCount 1022 << " to " << UP.Count << ".\n"); 1023 1024 using namespace ore; 1025 1026 if (PragmaCount > 0 && !UP.AllowRemainder) 1027 ORE->emit([&]() { 1028 return OptimizationRemarkMissed(DEBUG_TYPE, 1029 "DifferentUnrollCountFromDirected", 1030 L->getStartLoc(), L->getHeader()) 1031 << "Unable to unroll loop the number of times directed by " 1032 "unroll_count pragma because remainder loop is restricted " 1033 "(that could architecture specific or because the loop " 1034 "contains a convergent instruction) and so must have an " 1035 "unroll " 1036 "count that divides the loop trip multiple of " 1037 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1038 << NV("UnrollCount", UP.Count) << " time(s)."; 1039 }); 1040 } 1041 1042 if (UP.Count > UP.MaxCount) 1043 UP.Count = UP.MaxCount; 1044 1045 if (MaxTripCount && UP.Count > MaxTripCount) 1046 UP.Count = MaxTripCount; 1047 1048 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1049 << "\n"); 1050 if (UP.Count < 2) 1051 UP.Count = 0; 1052 return ExplicitUnroll; 1053 } 1054 1055 static LoopUnrollResult tryToUnrollLoop( 1056 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1057 const TargetTransformInfo &TTI, AssumptionCache &AC, 1058 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1059 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1060 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1061 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1062 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1063 Optional<bool> ProvidedAllowPeeling, 1064 Optional<bool> ProvidedAllowProfileBasedPeeling, 1065 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1066 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1067 << L->getHeader()->getParent()->getName() << "] Loop %" 1068 << L->getHeader()->getName() << "\n"); 1069 TransformationMode TM = hasUnrollTransformation(L); 1070 if (TM & TM_Disable) 1071 return LoopUnrollResult::Unmodified; 1072 if (!L->isLoopSimplifyForm()) { 1073 LLVM_DEBUG( 1074 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1075 return LoopUnrollResult::Unmodified; 1076 } 1077 1078 // When automatic unrolling is disabled, do not unroll unless overridden for 1079 // this loop. 1080 if (OnlyWhenForced && !(TM & TM_Enable)) 1081 return LoopUnrollResult::Unmodified; 1082 1083 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1084 unsigned NumInlineCandidates; 1085 bool NotDuplicatable; 1086 bool Convergent; 1087 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1088 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1089 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1090 ProvidedFullUnrollMaxCount); 1091 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1092 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1093 1094 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1095 // as threshold later on. 1096 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1097 !OptForSize) 1098 return LoopUnrollResult::Unmodified; 1099 1100 SmallPtrSet<const Value *, 32> EphValues; 1101 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1102 1103 unsigned LoopSize = 1104 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1105 TTI, EphValues, UP.BEInsns); 1106 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1107 if (NotDuplicatable) { 1108 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1109 << " instructions.\n"); 1110 return LoopUnrollResult::Unmodified; 1111 } 1112 1113 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1114 // later), to (fully) unroll loops, if it does not increase code size. 1115 if (OptForSize) 1116 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1117 1118 if (NumInlineCandidates != 0) { 1119 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1120 return LoopUnrollResult::Unmodified; 1121 } 1122 1123 // Find the smallest exact trip count for any exit. This is an upper bound 1124 // on the loop trip count, but an exit at an earlier iteration is still 1125 // possible. An unroll by the smallest exact trip count guarantees that all 1126 // brnaches relating to at least one exit can be eliminated. This is unlike 1127 // the max trip count, which only guarantees that the backedge can be broken. 1128 unsigned TripCount = 0; 1129 unsigned TripMultiple = 1; 1130 SmallVector<BasicBlock *, 8> ExitingBlocks; 1131 L->getExitingBlocks(ExitingBlocks); 1132 for (BasicBlock *ExitingBlock : ExitingBlocks) 1133 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1134 if (!TripCount || TC < TripCount) 1135 TripCount = TripMultiple = TC; 1136 1137 if (!TripCount) { 1138 // If no exact trip count is known, determine the trip multiple of either 1139 // the loop latch or the single exiting block. 1140 // TODO: Relax for multiple exits. 1141 BasicBlock *ExitingBlock = L->getLoopLatch(); 1142 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1143 ExitingBlock = L->getExitingBlock(); 1144 if (ExitingBlock) 1145 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1146 } 1147 1148 // If the loop contains a convergent operation, the prelude we'd add 1149 // to do the first few instructions before we hit the unrolled loop 1150 // is unsafe -- it adds a control-flow dependency to the convergent 1151 // operation. Therefore restrict remainder loop (try unrolling without). 1152 // 1153 // TODO: This is quite conservative. In practice, convergent_op() 1154 // is likely to be called unconditionally in the loop. In this 1155 // case, the program would be ill-formed (on most architectures) 1156 // unless n were the same on all threads in a thread group. 1157 // Assuming n is the same on all threads, any kind of unrolling is 1158 // safe. But currently llvm's notion of convergence isn't powerful 1159 // enough to express this. 1160 if (Convergent) 1161 UP.AllowRemainder = false; 1162 1163 // Try to find the trip count upper bound if we cannot find the exact trip 1164 // count. 1165 unsigned MaxTripCount = 0; 1166 bool MaxOrZero = false; 1167 if (!TripCount) { 1168 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1169 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1170 } 1171 1172 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1173 // fully unroll the loop. 1174 bool UseUpperBound = false; 1175 bool IsCountSetExplicitly = computeUnrollCount( 1176 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1177 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1178 if (!UP.Count) 1179 return LoopUnrollResult::Unmodified; 1180 // Unroll factor (Count) must be less or equal to TripCount. 1181 if (TripCount && UP.Count > TripCount) 1182 UP.Count = TripCount; 1183 1184 if (PP.PeelCount) { 1185 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1186 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1187 << " with iteration count " << PP.PeelCount << "!\n"); 1188 ORE.emit([&]() { 1189 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1190 L->getHeader()) 1191 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1192 << " iterations"; 1193 }); 1194 1195 if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) { 1196 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1197 // If the loop was peeled, we already "used up" the profile information 1198 // we had, so we don't want to unroll or peel again. 1199 if (PP.PeelProfiledIterations) 1200 L->setLoopAlreadyUnrolled(); 1201 return LoopUnrollResult::PartiallyUnrolled; 1202 } 1203 return LoopUnrollResult::Unmodified; 1204 } 1205 1206 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1207 // However, we only want to actually perform it if we don't know the trip 1208 // count and the unroll count doesn't divide the known trip multiple. 1209 // TODO: This decision should probably be pushed up into 1210 // computeUnrollCount(). 1211 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1212 1213 // Save loop properties before it is transformed. 1214 MDNode *OrigLoopID = L->getLoopID(); 1215 1216 // Unroll the loop. 1217 Loop *RemainderLoop = nullptr; 1218 LoopUnrollResult UnrollResult = UnrollLoop( 1219 L, 1220 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1221 UP.UnrollRemainder, ForgetAllSCEV}, 1222 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1223 if (UnrollResult == LoopUnrollResult::Unmodified) 1224 return LoopUnrollResult::Unmodified; 1225 1226 if (RemainderLoop) { 1227 Optional<MDNode *> RemainderLoopID = 1228 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1229 LLVMLoopUnrollFollowupRemainder}); 1230 if (RemainderLoopID.hasValue()) 1231 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1232 } 1233 1234 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1235 Optional<MDNode *> NewLoopID = 1236 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1237 LLVMLoopUnrollFollowupUnrolled}); 1238 if (NewLoopID.hasValue()) { 1239 L->setLoopID(NewLoopID.getValue()); 1240 1241 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1242 // explicitly. 1243 return UnrollResult; 1244 } 1245 } 1246 1247 // If loop has an unroll count pragma or unrolled by explicitly set count 1248 // mark loop as unrolled to prevent unrolling beyond that requested. 1249 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1250 L->setLoopAlreadyUnrolled(); 1251 1252 return UnrollResult; 1253 } 1254 1255 namespace { 1256 1257 class LoopUnroll : public LoopPass { 1258 public: 1259 static char ID; // Pass ID, replacement for typeid 1260 1261 int OptLevel; 1262 1263 /// If false, use a cost model to determine whether unrolling of a loop is 1264 /// profitable. If true, only loops that explicitly request unrolling via 1265 /// metadata are considered. All other loops are skipped. 1266 bool OnlyWhenForced; 1267 1268 /// If false, when SCEV is invalidated, only forget everything in the 1269 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1270 /// Otherwise, forgetAllLoops and rebuild when needed next. 1271 bool ForgetAllSCEV; 1272 1273 Optional<unsigned> ProvidedCount; 1274 Optional<unsigned> ProvidedThreshold; 1275 Optional<bool> ProvidedAllowPartial; 1276 Optional<bool> ProvidedRuntime; 1277 Optional<bool> ProvidedUpperBound; 1278 Optional<bool> ProvidedAllowPeeling; 1279 Optional<bool> ProvidedAllowProfileBasedPeeling; 1280 Optional<unsigned> ProvidedFullUnrollMaxCount; 1281 1282 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1283 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1284 Optional<unsigned> Count = None, 1285 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1286 Optional<bool> UpperBound = None, 1287 Optional<bool> AllowPeeling = None, 1288 Optional<bool> AllowProfileBasedPeeling = None, 1289 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1290 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1291 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1292 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1293 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1294 ProvidedAllowPeeling(AllowPeeling), 1295 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1296 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1297 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1298 } 1299 1300 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1301 if (skipLoop(L)) 1302 return false; 1303 1304 Function &F = *L->getHeader()->getParent(); 1305 1306 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1307 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1308 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1309 const TargetTransformInfo &TTI = 1310 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1311 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1312 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1313 // pass. Function analyses need to be preserved across loop transformations 1314 // but ORE cannot be preserved (see comment before the pass definition). 1315 OptimizationRemarkEmitter ORE(&F); 1316 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1317 1318 LoopUnrollResult Result = tryToUnrollLoop( 1319 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1320 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1321 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1322 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1323 ProvidedFullUnrollMaxCount); 1324 1325 if (Result == LoopUnrollResult::FullyUnrolled) 1326 LPM.markLoopAsDeleted(*L); 1327 1328 return Result != LoopUnrollResult::Unmodified; 1329 } 1330 1331 /// This transformation requires natural loop information & requires that 1332 /// loop preheaders be inserted into the CFG... 1333 void getAnalysisUsage(AnalysisUsage &AU) const override { 1334 AU.addRequired<AssumptionCacheTracker>(); 1335 AU.addRequired<TargetTransformInfoWrapperPass>(); 1336 // FIXME: Loop passes are required to preserve domtree, and for now we just 1337 // recreate dom info if anything gets unrolled. 1338 getLoopAnalysisUsage(AU); 1339 } 1340 }; 1341 1342 } // end anonymous namespace 1343 1344 char LoopUnroll::ID = 0; 1345 1346 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1347 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1348 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1349 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1350 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1351 1352 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1353 bool ForgetAllSCEV, int Threshold, int Count, 1354 int AllowPartial, int Runtime, int UpperBound, 1355 int AllowPeeling) { 1356 // TODO: It would make more sense for this function to take the optionals 1357 // directly, but that's dangerous since it would silently break out of tree 1358 // callers. 1359 return new LoopUnroll( 1360 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1361 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1362 Count == -1 ? None : Optional<unsigned>(Count), 1363 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1364 Runtime == -1 ? None : Optional<bool>(Runtime), 1365 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1366 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1367 } 1368 1369 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1370 bool ForgetAllSCEV) { 1371 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1372 0, 0, 0, 1); 1373 } 1374 1375 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1376 LoopStandardAnalysisResults &AR, 1377 LPMUpdater &Updater) { 1378 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1379 // pass. Function analyses need to be preserved across loop transformations 1380 // but ORE cannot be preserved (see comment before the pass definition). 1381 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1382 1383 // Keep track of the previous loop structure so we can identify new loops 1384 // created by unrolling. 1385 Loop *ParentL = L.getParentLoop(); 1386 SmallPtrSet<Loop *, 4> OldLoops; 1387 if (ParentL) 1388 OldLoops.insert(ParentL->begin(), ParentL->end()); 1389 else 1390 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1391 1392 std::string LoopName = std::string(L.getName()); 1393 1394 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1395 /*BFI*/ nullptr, /*PSI*/ nullptr, 1396 /*PreserveLCSSA*/ true, OptLevel, 1397 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1398 /*Threshold*/ None, /*AllowPartial*/ false, 1399 /*Runtime*/ false, /*UpperBound*/ false, 1400 /*AllowPeeling*/ true, 1401 /*AllowProfileBasedPeeling*/ false, 1402 /*FullUnrollMaxCount*/ None) != 1403 LoopUnrollResult::Unmodified; 1404 if (!Changed) 1405 return PreservedAnalyses::all(); 1406 1407 // The parent must not be damaged by unrolling! 1408 #ifndef NDEBUG 1409 if (ParentL) 1410 ParentL->verifyLoop(); 1411 #endif 1412 1413 // Unrolling can do several things to introduce new loops into a loop nest: 1414 // - Full unrolling clones child loops within the current loop but then 1415 // removes the current loop making all of the children appear to be new 1416 // sibling loops. 1417 // 1418 // When a new loop appears as a sibling loop after fully unrolling, 1419 // its nesting structure has fundamentally changed and we want to revisit 1420 // it to reflect that. 1421 // 1422 // When unrolling has removed the current loop, we need to tell the 1423 // infrastructure that it is gone. 1424 // 1425 // Finally, we support a debugging/testing mode where we revisit child loops 1426 // as well. These are not expected to require further optimizations as either 1427 // they or the loop they were cloned from have been directly visited already. 1428 // But the debugging mode allows us to check this assumption. 1429 bool IsCurrentLoopValid = false; 1430 SmallVector<Loop *, 4> SibLoops; 1431 if (ParentL) 1432 SibLoops.append(ParentL->begin(), ParentL->end()); 1433 else 1434 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1435 erase_if(SibLoops, [&](Loop *SibLoop) { 1436 if (SibLoop == &L) { 1437 IsCurrentLoopValid = true; 1438 return true; 1439 } 1440 1441 // Otherwise erase the loop from the list if it was in the old loops. 1442 return OldLoops.contains(SibLoop); 1443 }); 1444 Updater.addSiblingLoops(SibLoops); 1445 1446 if (!IsCurrentLoopValid) { 1447 Updater.markLoopAsDeleted(L, LoopName); 1448 } else { 1449 // We can only walk child loops if the current loop remained valid. 1450 if (UnrollRevisitChildLoops) { 1451 // Walk *all* of the child loops. 1452 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1453 Updater.addChildLoops(ChildLoops); 1454 } 1455 } 1456 1457 return getLoopPassPreservedAnalyses(); 1458 } 1459 1460 PreservedAnalyses LoopUnrollPass::run(Function &F, 1461 FunctionAnalysisManager &AM) { 1462 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1463 auto &LI = AM.getResult<LoopAnalysis>(F); 1464 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1465 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1466 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1467 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1468 1469 LoopAnalysisManager *LAM = nullptr; 1470 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1471 LAM = &LAMProxy->getManager(); 1472 1473 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1474 ProfileSummaryInfo *PSI = 1475 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1476 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1477 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1478 1479 bool Changed = false; 1480 1481 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1482 // Since simplification may add new inner loops, it has to run before the 1483 // legality and profitability checks. This means running the loop unroller 1484 // will simplify all loops, regardless of whether anything end up being 1485 // unrolled. 1486 for (auto &L : LI) { 1487 Changed |= 1488 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1489 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1490 } 1491 1492 // Add the loop nests in the reverse order of LoopInfo. See method 1493 // declaration. 1494 SmallPriorityWorklist<Loop *, 4> Worklist; 1495 appendLoopsToWorklist(LI, Worklist); 1496 1497 while (!Worklist.empty()) { 1498 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1499 // from back to front so that we work forward across the CFG, which 1500 // for unrolling is only needed to get optimization remarks emitted in 1501 // a forward order. 1502 Loop &L = *Worklist.pop_back_val(); 1503 #ifndef NDEBUG 1504 Loop *ParentL = L.getParentLoop(); 1505 #endif 1506 1507 // Check if the profile summary indicates that the profiled application 1508 // has a huge working set size, in which case we disable peeling to avoid 1509 // bloating it further. 1510 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1511 if (PSI && PSI->hasHugeWorkingSetSize()) 1512 LocalAllowPeeling = false; 1513 std::string LoopName = std::string(L.getName()); 1514 // The API here is quite complex to call and we allow to select some 1515 // flavors of unrolling during construction time (by setting UnrollOpts). 1516 LoopUnrollResult Result = tryToUnrollLoop( 1517 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1518 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1519 UnrollOpts.ForgetSCEV, /*Count*/ None, 1520 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1521 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1522 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1523 Changed |= Result != LoopUnrollResult::Unmodified; 1524 1525 // The parent must not be damaged by unrolling! 1526 #ifndef NDEBUG 1527 if (Result != LoopUnrollResult::Unmodified && ParentL) 1528 ParentL->verifyLoop(); 1529 #endif 1530 1531 // Clear any cached analysis results for L if we removed it completely. 1532 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1533 LAM->clear(L, LoopName); 1534 } 1535 1536 if (!Changed) 1537 return PreservedAnalyses::all(); 1538 1539 return getLoopPassPreservedAnalyses(); 1540 } 1541