1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopPass.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/UnrollLoop.h" 31 #include "llvm/IR/InstVisitor.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include <climits> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-unroll" 38 39 static cl::opt<unsigned> 40 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, 41 cl::desc("The cut-off point for automatic loop unrolling")); 42 43 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 44 "unroll-max-iteration-count-to-analyze", cl::init(1000), cl::Hidden, 45 cl::desc("Don't allow loop unrolling to simulate more than this number of" 46 "iterations when checking full unroll profitability")); 47 48 static cl::opt<unsigned> UnrollMinPercentOfOptimized( 49 "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden, 50 cl::desc("If complete unrolling could trigger further optimizations, and, " 51 "by that, remove the given percent of instructions, perform the " 52 "complete unroll even if it's beyond the threshold")); 53 54 static cl::opt<unsigned> UnrollAbsoluteThreshold( 55 "unroll-absolute-threshold", cl::init(2000), cl::Hidden, 56 cl::desc("Don't unroll if the unrolled size is bigger than this threshold," 57 " even if we can remove big portion of instructions later.")); 58 59 static cl::opt<unsigned> 60 UnrollCount("unroll-count", cl::init(0), cl::Hidden, 61 cl::desc("Use this unroll count for all loops including those with " 62 "unroll_count pragma values, for testing purposes")); 63 64 static cl::opt<bool> 65 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, 66 cl::desc("Allows loops to be partially unrolled until " 67 "-unroll-threshold loop size is reached.")); 68 69 static cl::opt<bool> 70 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, 71 cl::desc("Unroll loops with run-time trip counts")); 72 73 static cl::opt<unsigned> 74 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 75 cl::desc("Unrolled size limit for loops with an unroll(full) or " 76 "unroll_count pragma.")); 77 78 namespace { 79 class LoopUnroll : public LoopPass { 80 public: 81 static char ID; // Pass ID, replacement for typeid 82 LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { 83 CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); 84 CurrentAbsoluteThreshold = UnrollAbsoluteThreshold; 85 CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized; 86 CurrentCount = (C == -1) ? UnrollCount : unsigned(C); 87 CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; 88 CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; 89 90 UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); 91 UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0); 92 UserPercentOfOptimized = 93 (UnrollMinPercentOfOptimized.getNumOccurrences() > 0); 94 UserAllowPartial = (P != -1) || 95 (UnrollAllowPartial.getNumOccurrences() > 0); 96 UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); 97 UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); 98 99 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 100 } 101 102 /// A magic value for use with the Threshold parameter to indicate 103 /// that the loop unroll should be performed regardless of how much 104 /// code expansion would result. 105 static const unsigned NoThreshold = UINT_MAX; 106 107 // Threshold to use when optsize is specified (and there is no 108 // explicit -unroll-threshold). 109 static const unsigned OptSizeUnrollThreshold = 50; 110 111 // Default unroll count for loops with run-time trip count if 112 // -unroll-count is not set 113 static const unsigned UnrollRuntimeCount = 8; 114 115 unsigned CurrentCount; 116 unsigned CurrentThreshold; 117 unsigned CurrentAbsoluteThreshold; 118 unsigned CurrentMinPercentOfOptimized; 119 bool CurrentAllowPartial; 120 bool CurrentRuntime; 121 bool UserCount; // CurrentCount is user-specified. 122 bool UserThreshold; // CurrentThreshold is user-specified. 123 bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is 124 // user-specified. 125 bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is 126 // user-specified. 127 bool UserAllowPartial; // CurrentAllowPartial is user-specified. 128 bool UserRuntime; // CurrentRuntime is user-specified. 129 130 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 131 132 /// This transformation requires natural loop information & requires that 133 /// loop preheaders be inserted into the CFG... 134 /// 135 void getAnalysisUsage(AnalysisUsage &AU) const override { 136 AU.addRequired<AssumptionCacheTracker>(); 137 AU.addRequired<LoopInfoWrapperPass>(); 138 AU.addPreserved<LoopInfoWrapperPass>(); 139 AU.addRequiredID(LoopSimplifyID); 140 AU.addPreservedID(LoopSimplifyID); 141 AU.addRequiredID(LCSSAID); 142 AU.addPreservedID(LCSSAID); 143 AU.addRequired<ScalarEvolution>(); 144 AU.addPreserved<ScalarEvolution>(); 145 AU.addRequired<TargetTransformInfoWrapperPass>(); 146 // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. 147 // If loop unroll does not preserve dom info then LCSSA pass on next 148 // loop will receive invalid dom info. 149 // For now, recreate dom info, if loop is unrolled. 150 AU.addPreserved<DominatorTreeWrapperPass>(); 151 } 152 153 // Fill in the UnrollingPreferences parameter with values from the 154 // TargetTransformationInfo. 155 void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, 156 TargetTransformInfo::UnrollingPreferences &UP) { 157 UP.Threshold = CurrentThreshold; 158 UP.AbsoluteThreshold = CurrentAbsoluteThreshold; 159 UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized; 160 UP.OptSizeThreshold = OptSizeUnrollThreshold; 161 UP.PartialThreshold = CurrentThreshold; 162 UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; 163 UP.Count = CurrentCount; 164 UP.MaxCount = UINT_MAX; 165 UP.Partial = CurrentAllowPartial; 166 UP.Runtime = CurrentRuntime; 167 TTI.getUnrollingPreferences(L, UP); 168 } 169 170 // Select and return an unroll count based on parameters from 171 // user, unroll preferences, unroll pragmas, or a heuristic. 172 // SetExplicitly is set to true if the unroll count is is set by 173 // the user or a pragma rather than selected heuristically. 174 unsigned 175 selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 176 unsigned PragmaCount, 177 const TargetTransformInfo::UnrollingPreferences &UP, 178 bool &SetExplicitly); 179 180 // Select threshold values used to limit unrolling based on a 181 // total unrolled size. Parameters Threshold and PartialThreshold 182 // are set to the maximum unrolled size for fully and partially 183 // unrolled loops respectively. 184 void selectThresholds(const Loop *L, bool HasPragma, 185 const TargetTransformInfo::UnrollingPreferences &UP, 186 unsigned &Threshold, unsigned &PartialThreshold, 187 unsigned NumberOfOptimizedInstructions) { 188 // Determine the current unrolling threshold. While this is 189 // normally set from UnrollThreshold, it is overridden to a 190 // smaller value if the current function is marked as 191 // optimize-for-size, and the unroll threshold was not user 192 // specified. 193 Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; 194 195 // If we are allowed to completely unroll if we can remove M% of 196 // instructions, and we know that with complete unrolling we'll be able 197 // to kill N instructions, then we can afford to completely unroll loops 198 // with unrolled size up to N*100/M. 199 // Adjust the threshold according to that: 200 unsigned PercentOfOptimizedForCompleteUnroll = 201 UserPercentOfOptimized ? CurrentMinPercentOfOptimized 202 : UP.MinPercentOfOptimized; 203 unsigned AbsoluteThreshold = UserAbsoluteThreshold 204 ? CurrentAbsoluteThreshold 205 : UP.AbsoluteThreshold; 206 if (PercentOfOptimizedForCompleteUnroll) 207 Threshold = std::max<unsigned>(Threshold, 208 NumberOfOptimizedInstructions * 100 / 209 PercentOfOptimizedForCompleteUnroll); 210 // But don't allow unrolling loops bigger than absolute threshold. 211 Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold); 212 213 PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; 214 if (!UserThreshold && 215 L->getHeader()->getParent()->getAttributes(). 216 hasAttribute(AttributeSet::FunctionIndex, 217 Attribute::OptimizeForSize)) { 218 Threshold = UP.OptSizeThreshold; 219 PartialThreshold = UP.PartialOptSizeThreshold; 220 } 221 if (HasPragma) { 222 // If the loop has an unrolling pragma, we want to be more 223 // aggressive with unrolling limits. Set thresholds to at 224 // least the PragmaTheshold value which is larger than the 225 // default limits. 226 if (Threshold != NoThreshold) 227 Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold); 228 if (PartialThreshold != NoThreshold) 229 PartialThreshold = 230 std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold); 231 } 232 } 233 }; 234 } 235 236 char LoopUnroll::ID = 0; 237 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 238 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 240 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 241 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 242 INITIALIZE_PASS_DEPENDENCY(LCSSA) 243 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 244 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 245 246 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 247 int Runtime) { 248 return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); 249 } 250 251 Pass *llvm::createSimpleLoopUnrollPass() { 252 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 253 } 254 255 static bool isLoadFromConstantInitializer(Value *V) { 256 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 257 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 258 return GV->getInitializer(); 259 return false; 260 } 261 262 struct FindConstantPointers { 263 bool LoadCanBeConstantFolded; 264 bool IndexIsConstant; 265 APInt Step; 266 APInt StartValue; 267 Value *BaseAddress; 268 const Loop *L; 269 ScalarEvolution &SE; 270 FindConstantPointers(const Loop *loop, ScalarEvolution &SE) 271 : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {} 272 273 bool follow(const SCEV *S) { 274 if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) { 275 // We've reached the leaf node of SCEV, it's most probably just a 276 // variable. Now it's time to see if it corresponds to a global constant 277 // global (in which case we can eliminate the load), or not. 278 BaseAddress = SC->getValue(); 279 LoadCanBeConstantFolded = 280 IndexIsConstant && isLoadFromConstantInitializer(BaseAddress); 281 return false; 282 } 283 if (isa<SCEVConstant>(S)) 284 return true; 285 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 286 // If the current SCEV expression is AddRec, and its loop isn't the loop 287 // we are about to unroll, then we won't get a constant address after 288 // unrolling, and thus, won't be able to eliminate the load. 289 if (AR->getLoop() != L) 290 return IndexIsConstant = false; 291 // If the step isn't constant, we won't get constant addresses in unrolled 292 // version. Bail out. 293 if (const SCEVConstant *StepSE = 294 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 295 Step = StepSE->getValue()->getValue(); 296 else 297 return IndexIsConstant = false; 298 299 return IndexIsConstant; 300 } 301 // If Result is true, continue traversal. 302 // Otherwise, we have found something that prevents us from (possible) load 303 // elimination. 304 return IndexIsConstant; 305 } 306 bool isDone() const { return !IndexIsConstant; } 307 }; 308 309 // This class is used to get an estimate of the optimization effects that we 310 // could get from complete loop unrolling. It comes from the fact that some 311 // loads might be replaced with concrete constant values and that could trigger 312 // a chain of instruction simplifications. 313 // 314 // E.g. we might have: 315 // int a[] = {0, 1, 0}; 316 // v = 0; 317 // for (i = 0; i < 3; i ++) 318 // v += b[i]*a[i]; 319 // If we completely unroll the loop, we would get: 320 // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] 321 // Which then will be simplified to: 322 // v = b[0]* 0 + b[1]* 1 + b[2]* 0 323 // And finally: 324 // v = b[1] 325 class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> { 326 typedef InstVisitor<UnrollAnalyzer, bool> Base; 327 friend class InstVisitor<UnrollAnalyzer, bool>; 328 329 const Loop *L; 330 unsigned TripCount; 331 ScalarEvolution &SE; 332 const TargetTransformInfo &TTI; 333 334 DenseMap<Value *, Constant *> SimplifiedValues; 335 DenseMap<LoadInst *, Value *> LoadBaseAddresses; 336 SmallPtrSet<Instruction *, 32> CountedInstructions; 337 338 /// \brief Count the number of optimized instructions. 339 unsigned NumberOfOptimizedInstructions; 340 341 // Provide base case for our instruction visit. 342 bool visitInstruction(Instruction &I) { return false; }; 343 // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt, 344 // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select, 345 // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue. 346 // 347 // Probaly it's worth to hoist the code for estimating the simplifications 348 // effects to a separate class, since we have a very similar code in 349 // InlineCost already. 350 bool visitBinaryOperator(BinaryOperator &I) { 351 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 352 if (!isa<Constant>(LHS)) 353 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 354 LHS = SimpleLHS; 355 if (!isa<Constant>(RHS)) 356 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 357 RHS = SimpleRHS; 358 Value *SimpleV = nullptr; 359 if (auto FI = dyn_cast<FPMathOperator>(&I)) 360 SimpleV = 361 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags()); 362 else 363 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS); 364 365 if (SimpleV && CountedInstructions.insert(&I).second) 366 NumberOfOptimizedInstructions += TTI.getUserCost(&I); 367 368 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { 369 SimplifiedValues[&I] = C; 370 return true; 371 } 372 return false; 373 } 374 375 Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) { 376 if (!LI) 377 return nullptr; 378 Value *BaseAddr = LoadBaseAddresses[LI]; 379 if (!BaseAddr) 380 return nullptr; 381 382 auto GV = dyn_cast<GlobalVariable>(BaseAddr); 383 if (!GV) 384 return nullptr; 385 386 ConstantDataSequential *CDS = 387 dyn_cast<ConstantDataSequential>(GV->getInitializer()); 388 if (!CDS) 389 return nullptr; 390 391 const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr); 392 const SCEV *S = SE.getSCEV(LI->getPointerOperand()); 393 const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); 394 395 APInt StepC, StartC; 396 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE); 397 if (!AR) 398 return nullptr; 399 400 if (const SCEVConstant *StepSE = 401 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 402 StepC = StepSE->getValue()->getValue(); 403 else 404 return nullptr; 405 406 if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart())) 407 StartC = StartSE->getValue()->getValue(); 408 else 409 return nullptr; 410 411 unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; 412 unsigned Start = StartC.getLimitedValue(); 413 unsigned Step = StepC.getLimitedValue(); 414 415 unsigned Index = (Start + Step * Iteration) / ElemSize; 416 if (Index >= CDS->getNumElements()) 417 return nullptr; 418 419 Constant *CV = CDS->getElementAsConstant(Index); 420 421 return CV; 422 } 423 424 public: 425 UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE, 426 const TargetTransformInfo &TTI) 427 : L(L), TripCount(TripCount), SE(SE), TTI(TTI), 428 NumberOfOptimizedInstructions(0) {} 429 430 // Visit all loads the loop L, and for those that, after complete loop 431 // unrolling, would have a constant address and it will point to a known 432 // constant initializer, record its base address for future use. It is used 433 // when we estimate number of potentially simplified instructions. 434 void findConstFoldableLoads() { 435 for (auto BB : L->getBlocks()) { 436 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 437 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 438 if (!LI->isSimple()) 439 continue; 440 Value *AddrOp = LI->getPointerOperand(); 441 const SCEV *S = SE.getSCEV(AddrOp); 442 FindConstantPointers Visitor(L, SE); 443 SCEVTraversal<FindConstantPointers> T(Visitor); 444 T.visitAll(S); 445 if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) { 446 LoadBaseAddresses[LI] = Visitor.BaseAddress; 447 } 448 } 449 } 450 } 451 } 452 453 // Given a list of loads that could be constant-folded (LoadBaseAddresses), 454 // estimate number of optimized instructions after substituting the concrete 455 // values for the given Iteration. 456 // Fill in SimplifiedValues map for future use in DCE-estimation. 457 unsigned estimateNumberOfSimplifiedInstructions(unsigned Iteration) { 458 SmallVector<Instruction *, 8> Worklist; 459 SimplifiedValues.clear(); 460 CountedInstructions.clear(); 461 NumberOfOptimizedInstructions = 0; 462 463 // We start by adding all loads to the worklist. 464 for (auto &LoadDescr : LoadBaseAddresses) { 465 LoadInst *LI = LoadDescr.first; 466 SimplifiedValues[LI] = computeLoadValue(LI, Iteration); 467 if (CountedInstructions.insert(LI).second) 468 NumberOfOptimizedInstructions += TTI.getUserCost(LI); 469 470 for (User *U : LI->users()) { 471 Instruction *UI = dyn_cast<Instruction>(U); 472 if (!UI) 473 continue; 474 if (!L->contains(UI)) 475 continue; 476 Worklist.push_back(UI); 477 } 478 } 479 480 // And then we try to simplify every user of every instruction from the 481 // worklist. If we do simplify a user, add it to the worklist to process 482 // its users as well. 483 while (!Worklist.empty()) { 484 Instruction *I = Worklist.pop_back_val(); 485 if (!visit(I)) 486 continue; 487 for (User *U : I->users()) { 488 Instruction *UI = dyn_cast<Instruction>(U); 489 if (!UI) 490 continue; 491 if (!L->contains(UI)) 492 continue; 493 Worklist.push_back(UI); 494 } 495 } 496 return NumberOfOptimizedInstructions; 497 } 498 499 // Given a list of potentially simplifed instructions, estimate number of 500 // instructions that would become dead if we do perform the simplification. 501 unsigned estimateNumberOfDeadInstructions() { 502 NumberOfOptimizedInstructions = 0; 503 SmallVector<Instruction *, 8> Worklist; 504 SmallPtrSet<Instruction *, 16> DeadInstructions; 505 506 // We keep a very small set of operands that we use to de-duplicate things 507 // when inserting into the worklist. This lets us handle duplicates within 508 // a single instruction's operands without buring lots of memory on the 509 // worklist. 510 SmallPtrSet<Instruction *, 4> OperandSet; 511 512 // Lambda to enque operands onto the worklist. 513 auto EnqueueOperands = [&](Instruction &I) { 514 OperandSet.clear(); 515 for (auto *Op : I.operand_values()) 516 if (auto *OpI = dyn_cast<Instruction>(Op)) 517 if (OperandSet.insert(OpI).second) 518 Worklist.push_back(OpI); 519 }; 520 521 // Start by initializing worklist with simplified instructions. 522 for (auto &FoldedKeyValue : SimplifiedValues) 523 if (auto *FoldedInst = dyn_cast<Instruction>(FoldedKeyValue.first)) { 524 DeadInstructions.insert(FoldedInst); 525 526 // Add each instruction operand of this dead instruction to the 527 // worklist. 528 EnqueueOperands(*FoldedInst); 529 } 530 531 // If a definition of an insn is only used by simplified or dead 532 // instructions, it's also dead. Check defs of all instructions from the 533 // worklist. 534 while (!Worklist.empty()) { 535 Instruction *I = Worklist.pop_back_val(); 536 if (!L->contains(I)) 537 continue; 538 if (DeadInstructions.count(I)) 539 continue; 540 if (I->getNumUses() == 0) 541 continue; 542 bool AllUsersFolded = true; 543 for (User *U : I->users()) { 544 Instruction *UI = dyn_cast<Instruction>(U); 545 if (!SimplifiedValues[UI] && !DeadInstructions.count(UI)) { 546 AllUsersFolded = false; 547 break; 548 } 549 } 550 if (AllUsersFolded) { 551 NumberOfOptimizedInstructions += TTI.getUserCost(I); 552 DeadInstructions.insert(I); 553 EnqueueOperands(*I); 554 } 555 } 556 return NumberOfOptimizedInstructions; 557 } 558 }; 559 560 // Complete loop unrolling can make some loads constant, and we need to know if 561 // that would expose any further optimization opportunities. 562 // This routine estimates this optimization effect and returns the number of 563 // instructions, that potentially might be optimized away. 564 static unsigned 565 approximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE, 566 unsigned TripCount, 567 const TargetTransformInfo &TTI) { 568 if (!TripCount || !UnrollMaxIterationsCountToAnalyze) 569 return 0; 570 571 UnrollAnalyzer UA(L, TripCount, SE, TTI); 572 UA.findConstFoldableLoads(); 573 574 // Estimate number of instructions, that could be simplified if we replace a 575 // load with the corresponding constant. Since the same load will take 576 // different values on different iterations, we have to go through all loop's 577 // iterations here. To limit ourselves here, we check only first N 578 // iterations, and then scale the found number, if necessary. 579 unsigned IterationsNumberForEstimate = 580 std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount); 581 unsigned NumberOfOptimizedInstructions = 0; 582 for (unsigned i = 0; i < IterationsNumberForEstimate; ++i) { 583 NumberOfOptimizedInstructions += 584 UA.estimateNumberOfSimplifiedInstructions(i); 585 NumberOfOptimizedInstructions += UA.estimateNumberOfDeadInstructions(); 586 } 587 NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate; 588 589 return NumberOfOptimizedInstructions; 590 } 591 592 /// ApproximateLoopSize - Approximate the size of the loop. 593 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 594 bool &NotDuplicatable, 595 const TargetTransformInfo &TTI, 596 AssumptionCache *AC) { 597 SmallPtrSet<const Value *, 32> EphValues; 598 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 599 600 CodeMetrics Metrics; 601 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 602 I != E; ++I) 603 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 604 NumCalls = Metrics.NumInlineCandidates; 605 NotDuplicatable = Metrics.notDuplicatable; 606 607 unsigned LoopSize = Metrics.NumInsts; 608 609 // Don't allow an estimate of size zero. This would allows unrolling of loops 610 // with huge iteration counts, which is a compile time problem even if it's 611 // not a problem for code quality. Also, the code using this size may assume 612 // that each loop has at least three instructions (likely a conditional 613 // branch, a comparison feeding that branch, and some kind of loop increment 614 // feeding that comparison instruction). 615 LoopSize = std::max(LoopSize, 3u); 616 617 return LoopSize; 618 } 619 620 // Returns the loop hint metadata node with the given name (for example, 621 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 622 // returned. 623 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 624 if (MDNode *LoopID = L->getLoopID()) 625 return GetUnrollMetadata(LoopID, Name); 626 return nullptr; 627 } 628 629 // Returns true if the loop has an unroll(full) pragma. 630 static bool HasUnrollFullPragma(const Loop *L) { 631 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 632 } 633 634 // Returns true if the loop has an unroll(disable) pragma. 635 static bool HasUnrollDisablePragma(const Loop *L) { 636 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 637 } 638 639 // If loop has an unroll_count pragma return the (necessarily 640 // positive) value from the pragma. Otherwise return 0. 641 static unsigned UnrollCountPragmaValue(const Loop *L) { 642 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 643 if (MD) { 644 assert(MD->getNumOperands() == 2 && 645 "Unroll count hint metadata should have two operands."); 646 unsigned Count = 647 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 648 assert(Count >= 1 && "Unroll count must be positive."); 649 return Count; 650 } 651 return 0; 652 } 653 654 // Remove existing unroll metadata and add unroll disable metadata to 655 // indicate the loop has already been unrolled. This prevents a loop 656 // from being unrolled more than is directed by a pragma if the loop 657 // unrolling pass is run more than once (which it generally is). 658 static void SetLoopAlreadyUnrolled(Loop *L) { 659 MDNode *LoopID = L->getLoopID(); 660 if (!LoopID) return; 661 662 // First remove any existing loop unrolling metadata. 663 SmallVector<Metadata *, 4> MDs; 664 // Reserve first location for self reference to the LoopID metadata node. 665 MDs.push_back(nullptr); 666 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 667 bool IsUnrollMetadata = false; 668 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 669 if (MD) { 670 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 671 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 672 } 673 if (!IsUnrollMetadata) 674 MDs.push_back(LoopID->getOperand(i)); 675 } 676 677 // Add unroll(disable) metadata to disable future unrolling. 678 LLVMContext &Context = L->getHeader()->getContext(); 679 SmallVector<Metadata *, 1> DisableOperands; 680 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 681 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 682 MDs.push_back(DisableNode); 683 684 MDNode *NewLoopID = MDNode::get(Context, MDs); 685 // Set operand 0 to refer to the loop id itself. 686 NewLoopID->replaceOperandWith(0, NewLoopID); 687 L->setLoopID(NewLoopID); 688 } 689 690 unsigned LoopUnroll::selectUnrollCount( 691 const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 692 unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, 693 bool &SetExplicitly) { 694 SetExplicitly = true; 695 696 // User-specified count (either as a command-line option or 697 // constructor parameter) has highest precedence. 698 unsigned Count = UserCount ? CurrentCount : 0; 699 700 // If there is no user-specified count, unroll pragmas have the next 701 // highest precendence. 702 if (Count == 0) { 703 if (PragmaCount) { 704 Count = PragmaCount; 705 } else if (PragmaFullUnroll) { 706 Count = TripCount; 707 } 708 } 709 710 if (Count == 0) 711 Count = UP.Count; 712 713 if (Count == 0) { 714 SetExplicitly = false; 715 if (TripCount == 0) 716 // Runtime trip count. 717 Count = UnrollRuntimeCount; 718 else 719 // Conservative heuristic: if we know the trip count, see if we can 720 // completely unroll (subject to the threshold, checked below); otherwise 721 // try to find greatest modulo of the trip count which is still under 722 // threshold value. 723 Count = TripCount; 724 } 725 if (TripCount && Count > TripCount) 726 return TripCount; 727 return Count; 728 } 729 730 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { 731 if (skipOptnoneFunction(L)) 732 return false; 733 734 Function &F = *L->getHeader()->getParent(); 735 736 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 737 ScalarEvolution *SE = &getAnalysis<ScalarEvolution>(); 738 const TargetTransformInfo &TTI = 739 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 740 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 741 742 BasicBlock *Header = L->getHeader(); 743 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 744 << "] Loop %" << Header->getName() << "\n"); 745 746 if (HasUnrollDisablePragma(L)) { 747 return false; 748 } 749 bool PragmaFullUnroll = HasUnrollFullPragma(L); 750 unsigned PragmaCount = UnrollCountPragmaValue(L); 751 bool HasPragma = PragmaFullUnroll || PragmaCount > 0; 752 753 TargetTransformInfo::UnrollingPreferences UP; 754 getUnrollingPreferences(L, TTI, UP); 755 756 // Find trip count and trip multiple if count is not available 757 unsigned TripCount = 0; 758 unsigned TripMultiple = 1; 759 // If there are multiple exiting blocks but one of them is the latch, use the 760 // latch for the trip count estimation. Otherwise insist on a single exiting 761 // block for the trip count estimation. 762 BasicBlock *ExitingBlock = L->getLoopLatch(); 763 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 764 ExitingBlock = L->getExitingBlock(); 765 if (ExitingBlock) { 766 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 767 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 768 } 769 770 // Select an initial unroll count. This may be reduced later based 771 // on size thresholds. 772 bool CountSetExplicitly; 773 unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, 774 PragmaCount, UP, CountSetExplicitly); 775 776 unsigned NumInlineCandidates; 777 bool notDuplicatable; 778 unsigned LoopSize = 779 ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); 780 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 781 782 // When computing the unrolled size, note that the conditional branch on the 783 // backedge and the comparison feeding it are not replicated like the rest of 784 // the loop body (which is why 2 is subtracted). 785 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; 786 if (notDuplicatable) { 787 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 788 << " instructions.\n"); 789 return false; 790 } 791 if (NumInlineCandidates != 0) { 792 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 793 return false; 794 } 795 796 unsigned NumberOfOptimizedInstructions = 797 approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI); 798 DEBUG(dbgs() << " Complete unrolling could save: " 799 << NumberOfOptimizedInstructions << "\n"); 800 801 unsigned Threshold, PartialThreshold; 802 selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, 803 NumberOfOptimizedInstructions); 804 805 // Given Count, TripCount and thresholds determine the type of 806 // unrolling which is to be performed. 807 enum { Full = 0, Partial = 1, Runtime = 2 }; 808 int Unrolling; 809 if (TripCount && Count == TripCount) { 810 if (Threshold != NoThreshold && UnrolledSize > Threshold) { 811 DEBUG(dbgs() << " Too large to fully unroll with count: " << Count 812 << " because size: " << UnrolledSize << ">" << Threshold 813 << "\n"); 814 Unrolling = Partial; 815 } else { 816 Unrolling = Full; 817 } 818 } else if (TripCount && Count < TripCount) { 819 Unrolling = Partial; 820 } else { 821 Unrolling = Runtime; 822 } 823 824 // Reduce count based on the type of unrolling and the threshold values. 825 unsigned OriginalCount = Count; 826 bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; 827 if (Unrolling == Partial) { 828 bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; 829 if (!AllowPartial && !CountSetExplicitly) { 830 DEBUG(dbgs() << " will not try to unroll partially because " 831 << "-unroll-allow-partial not given\n"); 832 return false; 833 } 834 if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { 835 // Reduce unroll count to be modulo of TripCount for partial unrolling. 836 Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); 837 while (Count != 0 && TripCount % Count != 0) 838 Count--; 839 } 840 } else if (Unrolling == Runtime) { 841 if (!AllowRuntime && !CountSetExplicitly) { 842 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 843 << "-unroll-runtime not given\n"); 844 return false; 845 } 846 // Reduce unroll count to be the largest power-of-two factor of 847 // the original count which satisfies the threshold limit. 848 while (Count != 0 && UnrolledSize > PartialThreshold) { 849 Count >>= 1; 850 UnrolledSize = (LoopSize-2) * Count + 2; 851 } 852 if (Count > UP.MaxCount) 853 Count = UP.MaxCount; 854 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 855 } 856 857 if (HasPragma) { 858 if (PragmaCount != 0) 859 // If loop has an unroll count pragma mark loop as unrolled to prevent 860 // unrolling beyond that requested by the pragma. 861 SetLoopAlreadyUnrolled(L); 862 863 // Emit optimization remarks if we are unable to unroll the loop 864 // as directed by a pragma. 865 DebugLoc LoopLoc = L->getStartLoc(); 866 Function *F = Header->getParent(); 867 LLVMContext &Ctx = F->getContext(); 868 if (PragmaFullUnroll && PragmaCount == 0) { 869 if (TripCount && Count != TripCount) { 870 emitOptimizationRemarkMissed( 871 Ctx, DEBUG_TYPE, *F, LoopLoc, 872 "Unable to fully unroll loop as directed by unroll(full) pragma " 873 "because unrolled size is too large."); 874 } else if (!TripCount) { 875 emitOptimizationRemarkMissed( 876 Ctx, DEBUG_TYPE, *F, LoopLoc, 877 "Unable to fully unroll loop as directed by unroll(full) pragma " 878 "because loop has a runtime trip count."); 879 } 880 } else if (PragmaCount > 0 && Count != OriginalCount) { 881 emitOptimizationRemarkMissed( 882 Ctx, DEBUG_TYPE, *F, LoopLoc, 883 "Unable to unroll loop the number of times directed by " 884 "unroll_count pragma because unrolled size is too large."); 885 } 886 } 887 888 if (Unrolling != Full && Count < 2) { 889 // Partial unrolling by 1 is a nop. For full unrolling, a factor 890 // of 1 makes sense because loop control can be eliminated. 891 return false; 892 } 893 894 // Unroll the loop. 895 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this, 896 &LPM, &AC)) 897 return false; 898 899 return true; 900 } 901