1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 static cl::opt<unsigned> 75 UnrollThreshold("unroll-threshold", cl::Hidden, 76 cl::desc("The cost threshold for loop unrolling")); 77 78 static cl::opt<unsigned> UnrollPartialThreshold( 79 "unroll-partial-threshold", cl::Hidden, 80 cl::desc("The cost threshold for partial loop unrolling")); 81 82 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 83 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 84 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 85 "to the threshold when aggressively unrolling a loop due to the " 86 "dynamic cost savings. If completely unrolling a loop will reduce " 87 "the total runtime from X to Y, we boost the loop unroll " 88 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 89 "X/Y). This limit avoids excessive code bloat.")); 90 91 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 92 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 93 cl::desc("Don't allow loop unrolling to simulate more than this number of" 94 "iterations when checking full unroll profitability")); 95 96 static cl::opt<unsigned> UnrollCount( 97 "unroll-count", cl::Hidden, 98 cl::desc("Use this unroll count for all loops including those with " 99 "unroll_count pragma values, for testing purposes")); 100 101 static cl::opt<unsigned> UnrollMaxCount( 102 "unroll-max-count", cl::Hidden, 103 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 104 "testing purposes")); 105 106 static cl::opt<unsigned> UnrollFullMaxCount( 107 "unroll-full-max-count", cl::Hidden, 108 cl::desc( 109 "Set the max unroll count for full unrolling, for testing purposes")); 110 111 static cl::opt<unsigned> UnrollPeelCount( 112 "unroll-peel-count", cl::Hidden, 113 cl::desc("Set the unroll peeling count, for testing purposes")); 114 115 static cl::opt<bool> 116 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 117 cl::desc("Allows loops to be partially unrolled until " 118 "-unroll-threshold loop size is reached.")); 119 120 static cl::opt<bool> UnrollAllowRemainder( 121 "unroll-allow-remainder", cl::Hidden, 122 cl::desc("Allow generation of a loop remainder (extra iterations) " 123 "when unrolling a loop.")); 124 125 static cl::opt<bool> 126 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 127 cl::desc("Unroll loops with run-time trip counts")); 128 129 static cl::opt<unsigned> UnrollMaxUpperBound( 130 "unroll-max-upperbound", cl::init(8), cl::Hidden, 131 cl::desc( 132 "The max of trip count upper bound that is considered in unrolling")); 133 134 static cl::opt<unsigned> PragmaUnrollThreshold( 135 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 136 cl::desc("Unrolled size limit for loops with an unroll(full) or " 137 "unroll_count pragma.")); 138 139 static cl::opt<unsigned> FlatLoopTripCountThreshold( 140 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 141 cl::desc("If the runtime tripcount for the loop is lower than the " 142 "threshold, the loop is considered as flat and will be less " 143 "aggressively unrolled.")); 144 145 static cl::opt<bool> 146 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 147 cl::desc("Allows loops to be peeled when the dynamic " 148 "trip count is known to be low.")); 149 150 static cl::opt<bool> UnrollUnrollRemainder( 151 "unroll-remainder", cl::Hidden, 152 cl::desc("Allow the loop remainder to be unrolled.")); 153 154 // This option isn't ever intended to be enabled, it serves to allow 155 // experiments to check the assumptions about when this kind of revisit is 156 // necessary. 157 static cl::opt<bool> UnrollRevisitChildLoops( 158 "unroll-revisit-child-loops", cl::Hidden, 159 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 160 "This shouldn't typically be needed as child loops (or their " 161 "clones) were already visited.")); 162 163 /// A magic value for use with the Threshold parameter to indicate 164 /// that the loop unroll should be performed regardless of how much 165 /// code expansion would result. 166 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 167 168 /// Gather the various unrolling parameters based on the defaults, compiler 169 /// flags, TTI overrides and user specified parameters. 170 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 171 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 172 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 173 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 174 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 175 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 176 TargetTransformInfo::UnrollingPreferences UP; 177 178 // Set up the defaults 179 UP.Threshold = OptLevel > 2 ? 300 : 150; 180 UP.MaxPercentThresholdBoost = 400; 181 UP.OptSizeThreshold = 0; 182 UP.PartialThreshold = 150; 183 UP.PartialOptSizeThreshold = 0; 184 UP.Count = 0; 185 UP.PeelCount = 0; 186 UP.DefaultUnrollRuntimeCount = 8; 187 UP.MaxCount = std::numeric_limits<unsigned>::max(); 188 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 189 UP.BEInsns = 2; 190 UP.Partial = false; 191 UP.Runtime = false; 192 UP.AllowRemainder = true; 193 UP.UnrollRemainder = false; 194 UP.AllowExpensiveTripCount = false; 195 UP.Force = false; 196 UP.UpperBound = false; 197 UP.AllowPeeling = true; 198 UP.UnrollAndJam = false; 199 UP.UnrollAndJamInnerLoopThreshold = 60; 200 201 // Override with any target specific settings 202 TTI.getUnrollingPreferences(L, SE, UP); 203 204 // Apply size attributes 205 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 206 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 207 if (OptForSize) { 208 UP.Threshold = UP.OptSizeThreshold; 209 UP.PartialThreshold = UP.PartialOptSizeThreshold; 210 } 211 212 // Apply any user values specified by cl::opt 213 if (UnrollThreshold.getNumOccurrences() > 0) 214 UP.Threshold = UnrollThreshold; 215 if (UnrollPartialThreshold.getNumOccurrences() > 0) 216 UP.PartialThreshold = UnrollPartialThreshold; 217 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 218 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 219 if (UnrollMaxCount.getNumOccurrences() > 0) 220 UP.MaxCount = UnrollMaxCount; 221 if (UnrollFullMaxCount.getNumOccurrences() > 0) 222 UP.FullUnrollMaxCount = UnrollFullMaxCount; 223 if (UnrollPeelCount.getNumOccurrences() > 0) 224 UP.PeelCount = UnrollPeelCount; 225 if (UnrollAllowPartial.getNumOccurrences() > 0) 226 UP.Partial = UnrollAllowPartial; 227 if (UnrollAllowRemainder.getNumOccurrences() > 0) 228 UP.AllowRemainder = UnrollAllowRemainder; 229 if (UnrollRuntime.getNumOccurrences() > 0) 230 UP.Runtime = UnrollRuntime; 231 if (UnrollMaxUpperBound == 0) 232 UP.UpperBound = false; 233 if (UnrollAllowPeeling.getNumOccurrences() > 0) 234 UP.AllowPeeling = UnrollAllowPeeling; 235 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 236 UP.UnrollRemainder = UnrollUnrollRemainder; 237 238 // Apply user values provided by argument 239 if (UserThreshold.hasValue()) { 240 UP.Threshold = *UserThreshold; 241 UP.PartialThreshold = *UserThreshold; 242 } 243 if (UserCount.hasValue()) 244 UP.Count = *UserCount; 245 if (UserAllowPartial.hasValue()) 246 UP.Partial = *UserAllowPartial; 247 if (UserRuntime.hasValue()) 248 UP.Runtime = *UserRuntime; 249 if (UserUpperBound.hasValue()) 250 UP.UpperBound = *UserUpperBound; 251 if (UserAllowPeeling.hasValue()) 252 UP.AllowPeeling = *UserAllowPeeling; 253 254 return UP; 255 } 256 257 namespace { 258 259 /// A struct to densely store the state of an instruction after unrolling at 260 /// each iteration. 261 /// 262 /// This is designed to work like a tuple of <Instruction *, int> for the 263 /// purposes of hashing and lookup, but to be able to associate two boolean 264 /// states with each key. 265 struct UnrolledInstState { 266 Instruction *I; 267 int Iteration : 30; 268 unsigned IsFree : 1; 269 unsigned IsCounted : 1; 270 }; 271 272 /// Hashing and equality testing for a set of the instruction states. 273 struct UnrolledInstStateKeyInfo { 274 using PtrInfo = DenseMapInfo<Instruction *>; 275 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 276 277 static inline UnrolledInstState getEmptyKey() { 278 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 279 } 280 281 static inline UnrolledInstState getTombstoneKey() { 282 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 283 } 284 285 static inline unsigned getHashValue(const UnrolledInstState &S) { 286 return PairInfo::getHashValue({S.I, S.Iteration}); 287 } 288 289 static inline bool isEqual(const UnrolledInstState &LHS, 290 const UnrolledInstState &RHS) { 291 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 292 } 293 }; 294 295 struct EstimatedUnrollCost { 296 /// The estimated cost after unrolling. 297 unsigned UnrolledCost; 298 299 /// The estimated dynamic cost of executing the instructions in the 300 /// rolled form. 301 unsigned RolledDynamicCost; 302 }; 303 304 } // end anonymous namespace 305 306 /// Figure out if the loop is worth full unrolling. 307 /// 308 /// Complete loop unrolling can make some loads constant, and we need to know 309 /// if that would expose any further optimization opportunities. This routine 310 /// estimates this optimization. It computes cost of unrolled loop 311 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 312 /// dynamic cost we mean that we won't count costs of blocks that are known not 313 /// to be executed (i.e. if we have a branch in the loop and we know that at the 314 /// given iteration its condition would be resolved to true, we won't add up the 315 /// cost of the 'false'-block). 316 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 317 /// the analysis failed (no benefits expected from the unrolling, or the loop is 318 /// too big to analyze), the returned value is None. 319 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 320 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 321 const SmallPtrSetImpl<const Value *> &EphValues, 322 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 323 // We want to be able to scale offsets by the trip count and add more offsets 324 // to them without checking for overflows, and we already don't want to 325 // analyze *massive* trip counts, so we force the max to be reasonably small. 326 assert(UnrollMaxIterationsCountToAnalyze < 327 (unsigned)(std::numeric_limits<int>::max() / 2) && 328 "The unroll iterations max is too large!"); 329 330 // Only analyze inner loops. We can't properly estimate cost of nested loops 331 // and we won't visit inner loops again anyway. 332 if (!L->empty()) 333 return None; 334 335 // Don't simulate loops with a big or unknown tripcount 336 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 337 TripCount > UnrollMaxIterationsCountToAnalyze) 338 return None; 339 340 SmallSetVector<BasicBlock *, 16> BBWorklist; 341 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 342 DenseMap<Value *, Constant *> SimplifiedValues; 343 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 344 345 // The estimated cost of the unrolled form of the loop. We try to estimate 346 // this by simplifying as much as we can while computing the estimate. 347 unsigned UnrolledCost = 0; 348 349 // We also track the estimated dynamic (that is, actually executed) cost in 350 // the rolled form. This helps identify cases when the savings from unrolling 351 // aren't just exposing dead control flows, but actual reduced dynamic 352 // instructions due to the simplifications which we expect to occur after 353 // unrolling. 354 unsigned RolledDynamicCost = 0; 355 356 // We track the simplification of each instruction in each iteration. We use 357 // this to recursively merge costs into the unrolled cost on-demand so that 358 // we don't count the cost of any dead code. This is essentially a map from 359 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 360 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 361 362 // A small worklist used to accumulate cost of instructions from each 363 // observable and reached root in the loop. 364 SmallVector<Instruction *, 16> CostWorklist; 365 366 // PHI-used worklist used between iterations while accumulating cost. 367 SmallVector<Instruction *, 4> PHIUsedList; 368 369 // Helper function to accumulate cost for instructions in the loop. 370 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 371 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 372 assert(CostWorklist.empty() && "Must start with an empty cost list"); 373 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 374 CostWorklist.push_back(&RootI); 375 for (;; --Iteration) { 376 do { 377 Instruction *I = CostWorklist.pop_back_val(); 378 379 // InstCostMap only uses I and Iteration as a key, the other two values 380 // don't matter here. 381 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 382 if (CostIter == InstCostMap.end()) 383 // If an input to a PHI node comes from a dead path through the loop 384 // we may have no cost data for it here. What that actually means is 385 // that it is free. 386 continue; 387 auto &Cost = *CostIter; 388 if (Cost.IsCounted) 389 // Already counted this instruction. 390 continue; 391 392 // Mark that we are counting the cost of this instruction now. 393 Cost.IsCounted = true; 394 395 // If this is a PHI node in the loop header, just add it to the PHI set. 396 if (auto *PhiI = dyn_cast<PHINode>(I)) 397 if (PhiI->getParent() == L->getHeader()) { 398 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 399 "inherently simplify during unrolling."); 400 if (Iteration == 0) 401 continue; 402 403 // Push the incoming value from the backedge into the PHI used list 404 // if it is an in-loop instruction. We'll use this to populate the 405 // cost worklist for the next iteration (as we count backwards). 406 if (auto *OpI = dyn_cast<Instruction>( 407 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 408 if (L->contains(OpI)) 409 PHIUsedList.push_back(OpI); 410 continue; 411 } 412 413 // First accumulate the cost of this instruction. 414 if (!Cost.IsFree) { 415 UnrolledCost += TTI.getUserCost(I); 416 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 417 << Iteration << "): "); 418 LLVM_DEBUG(I->dump()); 419 } 420 421 // We must count the cost of every operand which is not free, 422 // recursively. If we reach a loop PHI node, simply add it to the set 423 // to be considered on the next iteration (backwards!). 424 for (Value *Op : I->operands()) { 425 // Check whether this operand is free due to being a constant or 426 // outside the loop. 427 auto *OpI = dyn_cast<Instruction>(Op); 428 if (!OpI || !L->contains(OpI)) 429 continue; 430 431 // Otherwise accumulate its cost. 432 CostWorklist.push_back(OpI); 433 } 434 } while (!CostWorklist.empty()); 435 436 if (PHIUsedList.empty()) 437 // We've exhausted the search. 438 break; 439 440 assert(Iteration > 0 && 441 "Cannot track PHI-used values past the first iteration!"); 442 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 443 PHIUsedList.clear(); 444 } 445 }; 446 447 // Ensure that we don't violate the loop structure invariants relied on by 448 // this analysis. 449 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 450 assert(L->isLCSSAForm(DT) && 451 "Must have loops in LCSSA form to track live-out values."); 452 453 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 454 455 // Simulate execution of each iteration of the loop counting instructions, 456 // which would be simplified. 457 // Since the same load will take different values on different iterations, 458 // we literally have to go through all loop's iterations. 459 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 460 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 461 462 // Prepare for the iteration by collecting any simplified entry or backedge 463 // inputs. 464 for (Instruction &I : *L->getHeader()) { 465 auto *PHI = dyn_cast<PHINode>(&I); 466 if (!PHI) 467 break; 468 469 // The loop header PHI nodes must have exactly two input: one from the 470 // loop preheader and one from the loop latch. 471 assert( 472 PHI->getNumIncomingValues() == 2 && 473 "Must have an incoming value only for the preheader and the latch."); 474 475 Value *V = PHI->getIncomingValueForBlock( 476 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 477 Constant *C = dyn_cast<Constant>(V); 478 if (Iteration != 0 && !C) 479 C = SimplifiedValues.lookup(V); 480 if (C) 481 SimplifiedInputValues.push_back({PHI, C}); 482 } 483 484 // Now clear and re-populate the map for the next iteration. 485 SimplifiedValues.clear(); 486 while (!SimplifiedInputValues.empty()) 487 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 488 489 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 490 491 BBWorklist.clear(); 492 BBWorklist.insert(L->getHeader()); 493 // Note that we *must not* cache the size, this loop grows the worklist. 494 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 495 BasicBlock *BB = BBWorklist[Idx]; 496 497 // Visit all instructions in the given basic block and try to simplify 498 // it. We don't change the actual IR, just count optimization 499 // opportunities. 500 for (Instruction &I : *BB) { 501 // These won't get into the final code - don't even try calculating the 502 // cost for them. 503 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 504 continue; 505 506 // Track this instruction's expected baseline cost when executing the 507 // rolled loop form. 508 RolledDynamicCost += TTI.getUserCost(&I); 509 510 // Visit the instruction to analyze its loop cost after unrolling, 511 // and if the visitor returns true, mark the instruction as free after 512 // unrolling and continue. 513 bool IsFree = Analyzer.visit(I); 514 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 515 (unsigned)IsFree, 516 /*IsCounted*/ false}).second; 517 (void)Inserted; 518 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 519 520 if (IsFree) 521 continue; 522 523 // Can't properly model a cost of a call. 524 // FIXME: With a proper cost model we should be able to do it. 525 if (auto *CI = dyn_cast<CallInst>(&I)) { 526 const Function *Callee = CI->getCalledFunction(); 527 if (!Callee || TTI.isLoweredToCall(Callee)) { 528 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 529 return None; 530 } 531 } 532 533 // If the instruction might have a side-effect recursively account for 534 // the cost of it and all the instructions leading up to it. 535 if (I.mayHaveSideEffects()) 536 AddCostRecursively(I, Iteration); 537 538 // If unrolled body turns out to be too big, bail out. 539 if (UnrolledCost > MaxUnrolledLoopSize) { 540 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 541 << " UnrolledCost: " << UnrolledCost 542 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 543 << "\n"); 544 return None; 545 } 546 } 547 548 Instruction *TI = BB->getTerminator(); 549 550 // Add in the live successors by first checking whether we have terminator 551 // that may be simplified based on the values simplified by this call. 552 BasicBlock *KnownSucc = nullptr; 553 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 554 if (BI->isConditional()) { 555 if (Constant *SimpleCond = 556 SimplifiedValues.lookup(BI->getCondition())) { 557 // Just take the first successor if condition is undef 558 if (isa<UndefValue>(SimpleCond)) 559 KnownSucc = BI->getSuccessor(0); 560 else if (ConstantInt *SimpleCondVal = 561 dyn_cast<ConstantInt>(SimpleCond)) 562 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 563 } 564 } 565 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 566 if (Constant *SimpleCond = 567 SimplifiedValues.lookup(SI->getCondition())) { 568 // Just take the first successor if condition is undef 569 if (isa<UndefValue>(SimpleCond)) 570 KnownSucc = SI->getSuccessor(0); 571 else if (ConstantInt *SimpleCondVal = 572 dyn_cast<ConstantInt>(SimpleCond)) 573 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 574 } 575 } 576 if (KnownSucc) { 577 if (L->contains(KnownSucc)) 578 BBWorklist.insert(KnownSucc); 579 else 580 ExitWorklist.insert({BB, KnownSucc}); 581 continue; 582 } 583 584 // Add BB's successors to the worklist. 585 for (BasicBlock *Succ : successors(BB)) 586 if (L->contains(Succ)) 587 BBWorklist.insert(Succ); 588 else 589 ExitWorklist.insert({BB, Succ}); 590 AddCostRecursively(*TI, Iteration); 591 } 592 593 // If we found no optimization opportunities on the first iteration, we 594 // won't find them on later ones too. 595 if (UnrolledCost == RolledDynamicCost) { 596 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 597 << " UnrolledCost: " << UnrolledCost << "\n"); 598 return None; 599 } 600 } 601 602 while (!ExitWorklist.empty()) { 603 BasicBlock *ExitingBB, *ExitBB; 604 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 605 606 for (Instruction &I : *ExitBB) { 607 auto *PN = dyn_cast<PHINode>(&I); 608 if (!PN) 609 break; 610 611 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 612 if (auto *OpI = dyn_cast<Instruction>(Op)) 613 if (L->contains(OpI)) 614 AddCostRecursively(*OpI, TripCount - 1); 615 } 616 } 617 618 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 619 << "UnrolledCost: " << UnrolledCost << ", " 620 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 621 return {{UnrolledCost, RolledDynamicCost}}; 622 } 623 624 /// ApproximateLoopSize - Approximate the size of the loop. 625 unsigned llvm::ApproximateLoopSize( 626 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 627 const TargetTransformInfo &TTI, 628 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 629 CodeMetrics Metrics; 630 for (BasicBlock *BB : L->blocks()) 631 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 632 NumCalls = Metrics.NumInlineCandidates; 633 NotDuplicatable = Metrics.notDuplicatable; 634 Convergent = Metrics.convergent; 635 636 unsigned LoopSize = Metrics.NumInsts; 637 638 // Don't allow an estimate of size zero. This would allows unrolling of loops 639 // with huge iteration counts, which is a compile time problem even if it's 640 // not a problem for code quality. Also, the code using this size may assume 641 // that each loop has at least three instructions (likely a conditional 642 // branch, a comparison feeding that branch, and some kind of loop increment 643 // feeding that comparison instruction). 644 LoopSize = std::max(LoopSize, BEInsns + 1); 645 646 return LoopSize; 647 } 648 649 // Returns the loop hint metadata node with the given name (for example, 650 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 651 // returned. 652 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 653 if (MDNode *LoopID = L->getLoopID()) 654 return GetUnrollMetadata(LoopID, Name); 655 return nullptr; 656 } 657 658 // Returns true if the loop has an unroll(full) pragma. 659 static bool HasUnrollFullPragma(const Loop *L) { 660 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 661 } 662 663 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 664 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 665 static bool HasUnrollEnablePragma(const Loop *L) { 666 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 667 } 668 669 // Returns true if the loop has an runtime unroll(disable) pragma. 670 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 671 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 672 } 673 674 // If loop has an unroll_count pragma return the (necessarily 675 // positive) value from the pragma. Otherwise return 0. 676 static unsigned UnrollCountPragmaValue(const Loop *L) { 677 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 678 if (MD) { 679 assert(MD->getNumOperands() == 2 && 680 "Unroll count hint metadata should have two operands."); 681 unsigned Count = 682 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 683 assert(Count >= 1 && "Unroll count must be positive."); 684 return Count; 685 } 686 return 0; 687 } 688 689 // Computes the boosting factor for complete unrolling. 690 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 691 // be beneficial to fully unroll the loop even if unrolledcost is large. We 692 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 693 // the unroll threshold. 694 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 695 unsigned MaxPercentThresholdBoost) { 696 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 697 return 100; 698 else if (Cost.UnrolledCost != 0) 699 // The boosting factor is RolledDynamicCost / UnrolledCost 700 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 701 MaxPercentThresholdBoost); 702 else 703 return MaxPercentThresholdBoost; 704 } 705 706 // Returns loop size estimation for unrolled loop. 707 static uint64_t getUnrolledLoopSize( 708 unsigned LoopSize, 709 TargetTransformInfo::UnrollingPreferences &UP) { 710 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 711 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 712 } 713 714 // Returns true if unroll count was set explicitly. 715 // Calculates unroll count and writes it to UP.Count. 716 // Unless IgnoreUser is true, will also use metadata and command-line options 717 // that are specific to to the LoopUnroll pass (which, for instance, are 718 // irrelevant for the LoopUnrollAndJam pass). 719 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 720 // many LoopUnroll-specific options. The shared functionality should be 721 // refactored into it own function. 722 bool llvm::computeUnrollCount( 723 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 724 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 725 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 726 unsigned &TripMultiple, unsigned LoopSize, 727 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 728 729 // Check for explicit Count. 730 // 1st priority is unroll count set by "unroll-count" option. 731 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 732 if (UserUnrollCount) { 733 UP.Count = UnrollCount; 734 UP.AllowExpensiveTripCount = true; 735 UP.Force = true; 736 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 737 return true; 738 } 739 740 // 2nd priority is unroll count set by pragma. 741 unsigned PragmaCount = UnrollCountPragmaValue(L); 742 if (PragmaCount > 0) { 743 UP.Count = PragmaCount; 744 UP.Runtime = true; 745 UP.AllowExpensiveTripCount = true; 746 UP.Force = true; 747 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 748 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 749 return true; 750 } 751 bool PragmaFullUnroll = HasUnrollFullPragma(L); 752 if (PragmaFullUnroll && TripCount != 0) { 753 UP.Count = TripCount; 754 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 755 return false; 756 } 757 758 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 759 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 760 PragmaEnableUnroll || UserUnrollCount; 761 762 if (ExplicitUnroll && TripCount != 0) { 763 // If the loop has an unrolling pragma, we want to be more aggressive with 764 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 765 // value which is larger than the default limits. 766 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 767 UP.PartialThreshold = 768 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 769 } 770 771 // 3rd priority is full unroll count. 772 // Full unroll makes sense only when TripCount or its upper bound could be 773 // statically calculated. 774 // Also we need to check if we exceed FullUnrollMaxCount. 775 // If using the upper bound to unroll, TripMultiple should be set to 1 because 776 // we do not know when loop may exit. 777 // MaxTripCount and ExactTripCount cannot both be non zero since we only 778 // compute the former when the latter is zero. 779 unsigned ExactTripCount = TripCount; 780 assert((ExactTripCount == 0 || MaxTripCount == 0) && 781 "ExtractTripCount and MaxTripCount cannot both be non zero."); 782 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 783 UP.Count = FullUnrollTripCount; 784 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 785 // When computing the unrolled size, note that BEInsns are not replicated 786 // like the rest of the loop body. 787 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 788 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 789 TripCount = FullUnrollTripCount; 790 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 791 return ExplicitUnroll; 792 } else { 793 // The loop isn't that small, but we still can fully unroll it if that 794 // helps to remove a significant number of instructions. 795 // To check that, run additional analysis on the loop. 796 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 797 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 798 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 799 unsigned Boost = 800 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 801 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 802 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 803 TripCount = FullUnrollTripCount; 804 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 805 return ExplicitUnroll; 806 } 807 } 808 } 809 } 810 811 // 4th priority is loop peeling. 812 computePeelCount(L, LoopSize, UP, TripCount, SE); 813 if (UP.PeelCount) { 814 UP.Runtime = false; 815 UP.Count = 1; 816 return ExplicitUnroll; 817 } 818 819 // 5th priority is partial unrolling. 820 // Try partial unroll only when TripCount could be statically calculated. 821 if (TripCount) { 822 UP.Partial |= ExplicitUnroll; 823 if (!UP.Partial) { 824 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 825 << "-unroll-allow-partial not given\n"); 826 UP.Count = 0; 827 return false; 828 } 829 if (UP.Count == 0) 830 UP.Count = TripCount; 831 if (UP.PartialThreshold != NoThreshold) { 832 // Reduce unroll count to be modulo of TripCount for partial unrolling. 833 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 834 UP.Count = 835 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 836 (LoopSize - UP.BEInsns); 837 if (UP.Count > UP.MaxCount) 838 UP.Count = UP.MaxCount; 839 while (UP.Count != 0 && TripCount % UP.Count != 0) 840 UP.Count--; 841 if (UP.AllowRemainder && UP.Count <= 1) { 842 // If there is no Count that is modulo of TripCount, set Count to 843 // largest power-of-two factor that satisfies the threshold limit. 844 // As we'll create fixup loop, do the type of unrolling only if 845 // remainder loop is allowed. 846 UP.Count = UP.DefaultUnrollRuntimeCount; 847 while (UP.Count != 0 && 848 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 849 UP.Count >>= 1; 850 } 851 if (UP.Count < 2) { 852 if (PragmaEnableUnroll) 853 ORE->emit([&]() { 854 return OptimizationRemarkMissed(DEBUG_TYPE, 855 "UnrollAsDirectedTooLarge", 856 L->getStartLoc(), L->getHeader()) 857 << "Unable to unroll loop as directed by unroll(enable) " 858 "pragma " 859 "because unrolled size is too large."; 860 }); 861 UP.Count = 0; 862 } 863 } else { 864 UP.Count = TripCount; 865 } 866 if (UP.Count > UP.MaxCount) 867 UP.Count = UP.MaxCount; 868 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 869 UP.Count != TripCount) 870 ORE->emit([&]() { 871 return OptimizationRemarkMissed(DEBUG_TYPE, 872 "FullUnrollAsDirectedTooLarge", 873 L->getStartLoc(), L->getHeader()) 874 << "Unable to fully unroll loop as directed by unroll pragma " 875 "because " 876 "unrolled size is too large."; 877 }); 878 return ExplicitUnroll; 879 } 880 assert(TripCount == 0 && 881 "All cases when TripCount is constant should be covered here."); 882 if (PragmaFullUnroll) 883 ORE->emit([&]() { 884 return OptimizationRemarkMissed( 885 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 886 L->getStartLoc(), L->getHeader()) 887 << "Unable to fully unroll loop as directed by unroll(full) " 888 "pragma " 889 "because loop has a runtime trip count."; 890 }); 891 892 // 6th priority is runtime unrolling. 893 // Don't unroll a runtime trip count loop when it is disabled. 894 if (HasRuntimeUnrollDisablePragma(L)) { 895 UP.Count = 0; 896 return false; 897 } 898 899 // Check if the runtime trip count is too small when profile is available. 900 if (L->getHeader()->getParent()->hasProfileData()) { 901 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 902 if (*ProfileTripCount < FlatLoopTripCountThreshold) 903 return false; 904 else 905 UP.AllowExpensiveTripCount = true; 906 } 907 } 908 909 // Reduce count based on the type of unrolling and the threshold values. 910 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 911 if (!UP.Runtime) { 912 LLVM_DEBUG( 913 dbgs() << " will not try to unroll loop with runtime trip count " 914 << "-unroll-runtime not given\n"); 915 UP.Count = 0; 916 return false; 917 } 918 if (UP.Count == 0) 919 UP.Count = UP.DefaultUnrollRuntimeCount; 920 921 // Reduce unroll count to be the largest power-of-two factor of 922 // the original count which satisfies the threshold limit. 923 while (UP.Count != 0 && 924 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 925 UP.Count >>= 1; 926 927 #ifndef NDEBUG 928 unsigned OrigCount = UP.Count; 929 #endif 930 931 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 932 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 933 UP.Count >>= 1; 934 LLVM_DEBUG( 935 dbgs() << "Remainder loop is restricted (that could architecture " 936 "specific or because the loop contains a convergent " 937 "instruction), so unroll count must divide the trip " 938 "multiple, " 939 << TripMultiple << ". Reducing unroll count from " << OrigCount 940 << " to " << UP.Count << ".\n"); 941 942 using namespace ore; 943 944 if (PragmaCount > 0 && !UP.AllowRemainder) 945 ORE->emit([&]() { 946 return OptimizationRemarkMissed(DEBUG_TYPE, 947 "DifferentUnrollCountFromDirected", 948 L->getStartLoc(), L->getHeader()) 949 << "Unable to unroll loop the number of times directed by " 950 "unroll_count pragma because remainder loop is restricted " 951 "(that could architecture specific or because the loop " 952 "contains a convergent instruction) and so must have an " 953 "unroll " 954 "count that divides the loop trip multiple of " 955 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 956 << NV("UnrollCount", UP.Count) << " time(s)."; 957 }); 958 } 959 960 if (UP.Count > UP.MaxCount) 961 UP.Count = UP.MaxCount; 962 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 963 << "\n"); 964 if (UP.Count < 2) 965 UP.Count = 0; 966 return ExplicitUnroll; 967 } 968 969 static LoopUnrollResult tryToUnrollLoop( 970 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 971 const TargetTransformInfo &TTI, AssumptionCache &AC, 972 OptimizationRemarkEmitter &ORE, 973 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 974 bool PreserveLCSSA, int OptLevel, 975 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 976 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 977 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 978 Optional<bool> ProvidedAllowPeeling) { 979 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 980 << L->getHeader()->getParent()->getName() << "] Loop %" 981 << L->getHeader()->getName() << "\n"); 982 TransformationMode TM = hasUnrollTransformation(L); 983 if (TM & TM_Disable) 984 return LoopUnrollResult::Unmodified; 985 if (!L->isLoopSimplifyForm()) { 986 LLVM_DEBUG( 987 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 988 return LoopUnrollResult::Unmodified; 989 } 990 991 // When automtatic unrolling is disabled, do not unroll unless overridden for 992 // this loop. 993 if (OnlyWhenForced && !(TM & TM_Enable)) 994 return LoopUnrollResult::Unmodified; 995 996 unsigned NumInlineCandidates; 997 bool NotDuplicatable; 998 bool Convergent; 999 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1000 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1001 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1002 ProvidedAllowPeeling); 1003 // Exit early if unrolling is disabled. 1004 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0)) 1005 return LoopUnrollResult::Unmodified; 1006 1007 SmallPtrSet<const Value *, 32> EphValues; 1008 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1009 1010 unsigned LoopSize = 1011 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1012 TTI, EphValues, UP.BEInsns); 1013 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1014 if (NotDuplicatable) { 1015 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1016 << " instructions.\n"); 1017 return LoopUnrollResult::Unmodified; 1018 } 1019 if (NumInlineCandidates != 0) { 1020 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1021 return LoopUnrollResult::Unmodified; 1022 } 1023 1024 // Find trip count and trip multiple if count is not available 1025 unsigned TripCount = 0; 1026 unsigned MaxTripCount = 0; 1027 unsigned TripMultiple = 1; 1028 // If there are multiple exiting blocks but one of them is the latch, use the 1029 // latch for the trip count estimation. Otherwise insist on a single exiting 1030 // block for the trip count estimation. 1031 BasicBlock *ExitingBlock = L->getLoopLatch(); 1032 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1033 ExitingBlock = L->getExitingBlock(); 1034 if (ExitingBlock) { 1035 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1036 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1037 } 1038 1039 // If the loop contains a convergent operation, the prelude we'd add 1040 // to do the first few instructions before we hit the unrolled loop 1041 // is unsafe -- it adds a control-flow dependency to the convergent 1042 // operation. Therefore restrict remainder loop (try unrollig without). 1043 // 1044 // TODO: This is quite conservative. In practice, convergent_op() 1045 // is likely to be called unconditionally in the loop. In this 1046 // case, the program would be ill-formed (on most architectures) 1047 // unless n were the same on all threads in a thread group. 1048 // Assuming n is the same on all threads, any kind of unrolling is 1049 // safe. But currently llvm's notion of convergence isn't powerful 1050 // enough to express this. 1051 if (Convergent) 1052 UP.AllowRemainder = false; 1053 1054 // Try to find the trip count upper bound if we cannot find the exact trip 1055 // count. 1056 bool MaxOrZero = false; 1057 if (!TripCount) { 1058 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1059 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1060 // We can unroll by the upper bound amount if it's generally allowed or if 1061 // we know that the loop is executed either the upper bound or zero times. 1062 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1063 // loop tests remains the same compared to the non-unrolled version, whereas 1064 // the generic upper bound unrolling keeps all but the last loop test so the 1065 // number of loop tests goes up which may end up being worse on targets with 1066 // constrained branch predictor resources so is controlled by an option.) 1067 // In addition we only unroll small upper bounds. 1068 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1069 MaxTripCount = 0; 1070 } 1071 } 1072 1073 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1074 // fully unroll the loop. 1075 bool UseUpperBound = false; 1076 bool IsCountSetExplicitly = computeUnrollCount( 1077 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1078 TripMultiple, LoopSize, UP, UseUpperBound); 1079 if (!UP.Count) 1080 return LoopUnrollResult::Unmodified; 1081 // Unroll factor (Count) must be less or equal to TripCount. 1082 if (TripCount && UP.Count > TripCount) 1083 UP.Count = TripCount; 1084 1085 // Save loop properties before it is transformed. 1086 MDNode *OrigLoopID = L->getLoopID(); 1087 1088 // Unroll the loop. 1089 Loop *RemainderLoop = nullptr; 1090 LoopUnrollResult UnrollResult = UnrollLoop( 1091 L, UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1092 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1093 ForgetAllSCEV, LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1094 if (UnrollResult == LoopUnrollResult::Unmodified) 1095 return LoopUnrollResult::Unmodified; 1096 1097 if (RemainderLoop) { 1098 Optional<MDNode *> RemainderLoopID = 1099 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1100 LLVMLoopUnrollFollowupRemainder}); 1101 if (RemainderLoopID.hasValue()) 1102 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1103 } 1104 1105 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1106 Optional<MDNode *> NewLoopID = 1107 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1108 LLVMLoopUnrollFollowupUnrolled}); 1109 if (NewLoopID.hasValue()) { 1110 L->setLoopID(NewLoopID.getValue()); 1111 1112 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1113 // explicitly. 1114 return UnrollResult; 1115 } 1116 } 1117 1118 // If loop has an unroll count pragma or unrolled by explicitly set count 1119 // mark loop as unrolled to prevent unrolling beyond that requested. 1120 // If the loop was peeled, we already "used up" the profile information 1121 // we had, so we don't want to unroll or peel again. 1122 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1123 (IsCountSetExplicitly || UP.PeelCount)) 1124 L->setLoopAlreadyUnrolled(); 1125 1126 return UnrollResult; 1127 } 1128 1129 namespace { 1130 1131 class LoopUnroll : public LoopPass { 1132 public: 1133 static char ID; // Pass ID, replacement for typeid 1134 1135 int OptLevel; 1136 1137 /// If false, use a cost model to determine whether unrolling of a loop is 1138 /// profitable. If true, only loops that explicitly request unrolling via 1139 /// metadata are considered. All other loops are skipped. 1140 bool OnlyWhenForced; 1141 1142 /// If false, when SCEV is invalidated, only forget everything in the 1143 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1144 /// Otherwise, forgetAllLoops and rebuild when needed next. 1145 bool ForgetAllSCEV; 1146 1147 Optional<unsigned> ProvidedCount; 1148 Optional<unsigned> ProvidedThreshold; 1149 Optional<bool> ProvidedAllowPartial; 1150 Optional<bool> ProvidedRuntime; 1151 Optional<bool> ProvidedUpperBound; 1152 Optional<bool> ProvidedAllowPeeling; 1153 1154 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1155 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1156 Optional<unsigned> Count = None, 1157 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1158 Optional<bool> UpperBound = None, 1159 Optional<bool> AllowPeeling = None) 1160 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1161 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1162 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1163 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1164 ProvidedAllowPeeling(AllowPeeling) { 1165 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1166 } 1167 1168 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1169 if (skipLoop(L)) 1170 return false; 1171 1172 Function &F = *L->getHeader()->getParent(); 1173 1174 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1175 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1176 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1177 const TargetTransformInfo &TTI = 1178 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1179 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1180 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1181 // pass. Function analyses need to be preserved across loop transformations 1182 // but ORE cannot be preserved (see comment before the pass definition). 1183 OptimizationRemarkEmitter ORE(&F); 1184 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1185 1186 LoopUnrollResult Result = tryToUnrollLoop( 1187 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, 1188 PreserveLCSSA, OptLevel, OnlyWhenForced, 1189 ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1190 ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling); 1191 1192 if (Result == LoopUnrollResult::FullyUnrolled) 1193 LPM.markLoopAsDeleted(*L); 1194 1195 return Result != LoopUnrollResult::Unmodified; 1196 } 1197 1198 /// This transformation requires natural loop information & requires that 1199 /// loop preheaders be inserted into the CFG... 1200 void getAnalysisUsage(AnalysisUsage &AU) const override { 1201 AU.addRequired<AssumptionCacheTracker>(); 1202 AU.addRequired<TargetTransformInfoWrapperPass>(); 1203 // FIXME: Loop passes are required to preserve domtree, and for now we just 1204 // recreate dom info if anything gets unrolled. 1205 getLoopAnalysisUsage(AU); 1206 } 1207 }; 1208 1209 } // end anonymous namespace 1210 1211 char LoopUnroll::ID = 0; 1212 1213 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1214 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1215 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1216 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1217 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1218 1219 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1220 bool ForgetAllSCEV, int Threshold, int Count, 1221 int AllowPartial, int Runtime, int UpperBound, 1222 int AllowPeeling) { 1223 // TODO: It would make more sense for this function to take the optionals 1224 // directly, but that's dangerous since it would silently break out of tree 1225 // callers. 1226 return new LoopUnroll( 1227 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1228 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1229 Count == -1 ? None : Optional<unsigned>(Count), 1230 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1231 Runtime == -1 ? None : Optional<bool>(Runtime), 1232 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1233 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1234 } 1235 1236 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1237 bool ForgetAllSCEV) { 1238 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1239 0, 0, 0, 0); 1240 } 1241 1242 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1243 LoopStandardAnalysisResults &AR, 1244 LPMUpdater &Updater) { 1245 const auto &FAM = 1246 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1247 Function *F = L.getHeader()->getParent(); 1248 1249 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1250 // FIXME: This should probably be optional rather than required. 1251 if (!ORE) 1252 report_fatal_error( 1253 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1254 "cached at a higher level"); 1255 1256 // Keep track of the previous loop structure so we can identify new loops 1257 // created by unrolling. 1258 Loop *ParentL = L.getParentLoop(); 1259 SmallPtrSet<Loop *, 4> OldLoops; 1260 if (ParentL) 1261 OldLoops.insert(ParentL->begin(), ParentL->end()); 1262 else 1263 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1264 1265 std::string LoopName = L.getName(); 1266 1267 bool Changed = 1268 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1269 /*BFI*/ nullptr, /*PSI*/ nullptr, 1270 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced, 1271 /*ForgetAllSCEV*/ false, /*Count*/ None, 1272 /*Threshold*/ None, /*AllowPartial*/ false, 1273 /*Runtime*/ false, /*UpperBound*/ false, 1274 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1275 if (!Changed) 1276 return PreservedAnalyses::all(); 1277 1278 // The parent must not be damaged by unrolling! 1279 #ifndef NDEBUG 1280 if (ParentL) 1281 ParentL->verifyLoop(); 1282 #endif 1283 1284 // Unrolling can do several things to introduce new loops into a loop nest: 1285 // - Full unrolling clones child loops within the current loop but then 1286 // removes the current loop making all of the children appear to be new 1287 // sibling loops. 1288 // 1289 // When a new loop appears as a sibling loop after fully unrolling, 1290 // its nesting structure has fundamentally changed and we want to revisit 1291 // it to reflect that. 1292 // 1293 // When unrolling has removed the current loop, we need to tell the 1294 // infrastructure that it is gone. 1295 // 1296 // Finally, we support a debugging/testing mode where we revisit child loops 1297 // as well. These are not expected to require further optimizations as either 1298 // they or the loop they were cloned from have been directly visited already. 1299 // But the debugging mode allows us to check this assumption. 1300 bool IsCurrentLoopValid = false; 1301 SmallVector<Loop *, 4> SibLoops; 1302 if (ParentL) 1303 SibLoops.append(ParentL->begin(), ParentL->end()); 1304 else 1305 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1306 erase_if(SibLoops, [&](Loop *SibLoop) { 1307 if (SibLoop == &L) { 1308 IsCurrentLoopValid = true; 1309 return true; 1310 } 1311 1312 // Otherwise erase the loop from the list if it was in the old loops. 1313 return OldLoops.count(SibLoop) != 0; 1314 }); 1315 Updater.addSiblingLoops(SibLoops); 1316 1317 if (!IsCurrentLoopValid) { 1318 Updater.markLoopAsDeleted(L, LoopName); 1319 } else { 1320 // We can only walk child loops if the current loop remained valid. 1321 if (UnrollRevisitChildLoops) { 1322 // Walk *all* of the child loops. 1323 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1324 Updater.addChildLoops(ChildLoops); 1325 } 1326 } 1327 1328 return getLoopPassPreservedAnalyses(); 1329 } 1330 1331 template <typename RangeT> 1332 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1333 SmallVector<Loop *, 8> Worklist; 1334 // We use an internal worklist to build up the preorder traversal without 1335 // recursion. 1336 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1337 1338 for (Loop *RootL : Loops) { 1339 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1340 assert(PreOrderWorklist.empty() && 1341 "Must start with an empty preorder walk worklist."); 1342 PreOrderWorklist.push_back(RootL); 1343 do { 1344 Loop *L = PreOrderWorklist.pop_back_val(); 1345 PreOrderWorklist.append(L->begin(), L->end()); 1346 PreOrderLoops.push_back(L); 1347 } while (!PreOrderWorklist.empty()); 1348 1349 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1350 PreOrderLoops.clear(); 1351 } 1352 return Worklist; 1353 } 1354 1355 PreservedAnalyses LoopUnrollPass::run(Function &F, 1356 FunctionAnalysisManager &AM) { 1357 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1358 auto &LI = AM.getResult<LoopAnalysis>(F); 1359 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1360 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1361 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1362 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1363 1364 LoopAnalysisManager *LAM = nullptr; 1365 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1366 LAM = &LAMProxy->getManager(); 1367 1368 const ModuleAnalysisManager &MAM = 1369 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1370 ProfileSummaryInfo *PSI = 1371 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1372 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1373 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1374 1375 bool Changed = false; 1376 1377 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1378 // Since simplification may add new inner loops, it has to run before the 1379 // legality and profitability checks. This means running the loop unroller 1380 // will simplify all loops, regardless of whether anything end up being 1381 // unrolled. 1382 for (auto &L : LI) { 1383 Changed |= simplifyLoop(L, &DT, &LI, &SE, &AC, false /* PreserveLCSSA */); 1384 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1385 } 1386 1387 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1388 1389 while (!Worklist.empty()) { 1390 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1391 // from back to front so that we work forward across the CFG, which 1392 // for unrolling is only needed to get optimization remarks emitted in 1393 // a forward order. 1394 Loop &L = *Worklist.pop_back_val(); 1395 #ifndef NDEBUG 1396 Loop *ParentL = L.getParentLoop(); 1397 #endif 1398 1399 // Check if the profile summary indicates that the profiled application 1400 // has a huge working set size, in which case we disable peeling to avoid 1401 // bloating it further. 1402 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1403 if (PSI && PSI->hasHugeWorkingSetSize()) 1404 LocalAllowPeeling = false; 1405 std::string LoopName = L.getName(); 1406 // The API here is quite complex to call and we allow to select some 1407 // flavors of unrolling during construction time (by setting UnrollOpts). 1408 LoopUnrollResult Result = tryToUnrollLoop( 1409 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1410 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1411 /*ForgetAllSCEV*/ false, /*Count*/ None, 1412 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1413 UnrollOpts.AllowUpperBound, LocalAllowPeeling); 1414 Changed |= Result != LoopUnrollResult::Unmodified; 1415 1416 // The parent must not be damaged by unrolling! 1417 #ifndef NDEBUG 1418 if (Result != LoopUnrollResult::Unmodified && ParentL) 1419 ParentL->verifyLoop(); 1420 #endif 1421 1422 // Clear any cached analysis results for L if we removed it completely. 1423 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1424 LAM->clear(L, LoopName); 1425 } 1426 1427 if (!Changed) 1428 return PreservedAnalyses::all(); 1429 1430 return getLoopPassPreservedAnalyses(); 1431 } 1432