xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 05da2fe52162c80dfa18aedf70cf73cb11201811)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopSimplify.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-unroll"
74 
75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
76     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
77     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
78              " the current top-most loop. This is somtimes preferred to reduce"
79              " compile time."));
80 
81 static cl::opt<unsigned>
82     UnrollThreshold("unroll-threshold", cl::Hidden,
83                     cl::desc("The cost threshold for loop unrolling"));
84 
85 static cl::opt<unsigned> UnrollPartialThreshold(
86     "unroll-partial-threshold", cl::Hidden,
87     cl::desc("The cost threshold for partial loop unrolling"));
88 
89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
90     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
91     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
92              "to the threshold when aggressively unrolling a loop due to the "
93              "dynamic cost savings. If completely unrolling a loop will reduce "
94              "the total runtime from X to Y, we boost the loop unroll "
95              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
96              "X/Y). This limit avoids excessive code bloat."));
97 
98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
99     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
100     cl::desc("Don't allow loop unrolling to simulate more than this number of"
101              "iterations when checking full unroll profitability"));
102 
103 static cl::opt<unsigned> UnrollCount(
104     "unroll-count", cl::Hidden,
105     cl::desc("Use this unroll count for all loops including those with "
106              "unroll_count pragma values, for testing purposes"));
107 
108 static cl::opt<unsigned> UnrollMaxCount(
109     "unroll-max-count", cl::Hidden,
110     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
111              "testing purposes"));
112 
113 static cl::opt<unsigned> UnrollFullMaxCount(
114     "unroll-full-max-count", cl::Hidden,
115     cl::desc(
116         "Set the max unroll count for full unrolling, for testing purposes"));
117 
118 static cl::opt<unsigned> UnrollPeelCount(
119     "unroll-peel-count", cl::Hidden,
120     cl::desc("Set the unroll peeling count, for testing purposes"));
121 
122 static cl::opt<bool>
123     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
124                        cl::desc("Allows loops to be partially unrolled until "
125                                 "-unroll-threshold loop size is reached."));
126 
127 static cl::opt<bool> UnrollAllowRemainder(
128     "unroll-allow-remainder", cl::Hidden,
129     cl::desc("Allow generation of a loop remainder (extra iterations) "
130              "when unrolling a loop."));
131 
132 static cl::opt<bool>
133     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
134                   cl::desc("Unroll loops with run-time trip counts"));
135 
136 static cl::opt<unsigned> UnrollMaxUpperBound(
137     "unroll-max-upperbound", cl::init(8), cl::Hidden,
138     cl::desc(
139         "The max of trip count upper bound that is considered in unrolling"));
140 
141 static cl::opt<unsigned> PragmaUnrollThreshold(
142     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
143     cl::desc("Unrolled size limit for loops with an unroll(full) or "
144              "unroll_count pragma."));
145 
146 static cl::opt<unsigned> FlatLoopTripCountThreshold(
147     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
148     cl::desc("If the runtime tripcount for the loop is lower than the "
149              "threshold, the loop is considered as flat and will be less "
150              "aggressively unrolled."));
151 
152 static cl::opt<bool>
153     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
154                        cl::desc("Allows loops to be peeled when the dynamic "
155                                 "trip count is known to be low."));
156 
157 static cl::opt<bool> UnrollUnrollRemainder(
158   "unroll-remainder", cl::Hidden,
159   cl::desc("Allow the loop remainder to be unrolled."));
160 
161 // This option isn't ever intended to be enabled, it serves to allow
162 // experiments to check the assumptions about when this kind of revisit is
163 // necessary.
164 static cl::opt<bool> UnrollRevisitChildLoops(
165     "unroll-revisit-child-loops", cl::Hidden,
166     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
167              "This shouldn't typically be needed as child loops (or their "
168              "clones) were already visited."));
169 
170 /// A magic value for use with the Threshold parameter to indicate
171 /// that the loop unroll should be performed regardless of how much
172 /// code expansion would result.
173 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
174 
175 /// Gather the various unrolling parameters based on the defaults, compiler
176 /// flags, TTI overrides and user specified parameters.
177 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
178     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
179     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
180     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
181     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
182     Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
183     Optional<bool> UserAllowProfileBasedPeeling,
184     Optional<unsigned> UserFullUnrollMaxCount) {
185   TargetTransformInfo::UnrollingPreferences UP;
186 
187   // Set up the defaults
188   UP.Threshold = OptLevel > 2 ? 300 : 150;
189   UP.MaxPercentThresholdBoost = 400;
190   UP.OptSizeThreshold = 0;
191   UP.PartialThreshold = 150;
192   UP.PartialOptSizeThreshold = 0;
193   UP.Count = 0;
194   UP.PeelCount = 0;
195   UP.DefaultUnrollRuntimeCount = 8;
196   UP.MaxCount = std::numeric_limits<unsigned>::max();
197   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
198   UP.BEInsns = 2;
199   UP.Partial = false;
200   UP.Runtime = false;
201   UP.AllowRemainder = true;
202   UP.UnrollRemainder = false;
203   UP.AllowExpensiveTripCount = false;
204   UP.Force = false;
205   UP.UpperBound = false;
206   UP.AllowPeeling = true;
207   UP.UnrollAndJam = false;
208   UP.PeelProfiledIterations = true;
209   UP.UnrollAndJamInnerLoopThreshold = 60;
210 
211   // Override with any target specific settings
212   TTI.getUnrollingPreferences(L, SE, UP);
213 
214   // Apply size attributes
215   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
216                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
217   if (OptForSize) {
218     UP.Threshold = UP.OptSizeThreshold;
219     UP.PartialThreshold = UP.PartialOptSizeThreshold;
220     UP.MaxPercentThresholdBoost = 100;
221   }
222 
223   // Apply any user values specified by cl::opt
224   if (UnrollThreshold.getNumOccurrences() > 0)
225     UP.Threshold = UnrollThreshold;
226   if (UnrollPartialThreshold.getNumOccurrences() > 0)
227     UP.PartialThreshold = UnrollPartialThreshold;
228   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
229     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
230   if (UnrollMaxCount.getNumOccurrences() > 0)
231     UP.MaxCount = UnrollMaxCount;
232   if (UnrollFullMaxCount.getNumOccurrences() > 0)
233     UP.FullUnrollMaxCount = UnrollFullMaxCount;
234   if (UnrollPeelCount.getNumOccurrences() > 0)
235     UP.PeelCount = UnrollPeelCount;
236   if (UnrollAllowPartial.getNumOccurrences() > 0)
237     UP.Partial = UnrollAllowPartial;
238   if (UnrollAllowRemainder.getNumOccurrences() > 0)
239     UP.AllowRemainder = UnrollAllowRemainder;
240   if (UnrollRuntime.getNumOccurrences() > 0)
241     UP.Runtime = UnrollRuntime;
242   if (UnrollMaxUpperBound == 0)
243     UP.UpperBound = false;
244   if (UnrollAllowPeeling.getNumOccurrences() > 0)
245     UP.AllowPeeling = UnrollAllowPeeling;
246   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
247     UP.UnrollRemainder = UnrollUnrollRemainder;
248 
249   // Apply user values provided by argument
250   if (UserThreshold.hasValue()) {
251     UP.Threshold = *UserThreshold;
252     UP.PartialThreshold = *UserThreshold;
253   }
254   if (UserCount.hasValue())
255     UP.Count = *UserCount;
256   if (UserAllowPartial.hasValue())
257     UP.Partial = *UserAllowPartial;
258   if (UserRuntime.hasValue())
259     UP.Runtime = *UserRuntime;
260   if (UserUpperBound.hasValue())
261     UP.UpperBound = *UserUpperBound;
262   if (UserAllowPeeling.hasValue())
263     UP.AllowPeeling = *UserAllowPeeling;
264   if (UserAllowProfileBasedPeeling.hasValue())
265     UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
266   if (UserFullUnrollMaxCount.hasValue())
267     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
268 
269   return UP;
270 }
271 
272 namespace {
273 
274 /// A struct to densely store the state of an instruction after unrolling at
275 /// each iteration.
276 ///
277 /// This is designed to work like a tuple of <Instruction *, int> for the
278 /// purposes of hashing and lookup, but to be able to associate two boolean
279 /// states with each key.
280 struct UnrolledInstState {
281   Instruction *I;
282   int Iteration : 30;
283   unsigned IsFree : 1;
284   unsigned IsCounted : 1;
285 };
286 
287 /// Hashing and equality testing for a set of the instruction states.
288 struct UnrolledInstStateKeyInfo {
289   using PtrInfo = DenseMapInfo<Instruction *>;
290   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
291 
292   static inline UnrolledInstState getEmptyKey() {
293     return {PtrInfo::getEmptyKey(), 0, 0, 0};
294   }
295 
296   static inline UnrolledInstState getTombstoneKey() {
297     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
298   }
299 
300   static inline unsigned getHashValue(const UnrolledInstState &S) {
301     return PairInfo::getHashValue({S.I, S.Iteration});
302   }
303 
304   static inline bool isEqual(const UnrolledInstState &LHS,
305                              const UnrolledInstState &RHS) {
306     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
307   }
308 };
309 
310 struct EstimatedUnrollCost {
311   /// The estimated cost after unrolling.
312   unsigned UnrolledCost;
313 
314   /// The estimated dynamic cost of executing the instructions in the
315   /// rolled form.
316   unsigned RolledDynamicCost;
317 };
318 
319 } // end anonymous namespace
320 
321 /// Figure out if the loop is worth full unrolling.
322 ///
323 /// Complete loop unrolling can make some loads constant, and we need to know
324 /// if that would expose any further optimization opportunities.  This routine
325 /// estimates this optimization.  It computes cost of unrolled loop
326 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
327 /// dynamic cost we mean that we won't count costs of blocks that are known not
328 /// to be executed (i.e. if we have a branch in the loop and we know that at the
329 /// given iteration its condition would be resolved to true, we won't add up the
330 /// cost of the 'false'-block).
331 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
332 /// the analysis failed (no benefits expected from the unrolling, or the loop is
333 /// too big to analyze), the returned value is None.
334 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
335     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
336     const SmallPtrSetImpl<const Value *> &EphValues,
337     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
338   // We want to be able to scale offsets by the trip count and add more offsets
339   // to them without checking for overflows, and we already don't want to
340   // analyze *massive* trip counts, so we force the max to be reasonably small.
341   assert(UnrollMaxIterationsCountToAnalyze <
342              (unsigned)(std::numeric_limits<int>::max() / 2) &&
343          "The unroll iterations max is too large!");
344 
345   // Only analyze inner loops. We can't properly estimate cost of nested loops
346   // and we won't visit inner loops again anyway.
347   if (!L->empty())
348     return None;
349 
350   // Don't simulate loops with a big or unknown tripcount
351   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
352       TripCount > UnrollMaxIterationsCountToAnalyze)
353     return None;
354 
355   SmallSetVector<BasicBlock *, 16> BBWorklist;
356   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
357   DenseMap<Value *, Constant *> SimplifiedValues;
358   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
359 
360   // The estimated cost of the unrolled form of the loop. We try to estimate
361   // this by simplifying as much as we can while computing the estimate.
362   unsigned UnrolledCost = 0;
363 
364   // We also track the estimated dynamic (that is, actually executed) cost in
365   // the rolled form. This helps identify cases when the savings from unrolling
366   // aren't just exposing dead control flows, but actual reduced dynamic
367   // instructions due to the simplifications which we expect to occur after
368   // unrolling.
369   unsigned RolledDynamicCost = 0;
370 
371   // We track the simplification of each instruction in each iteration. We use
372   // this to recursively merge costs into the unrolled cost on-demand so that
373   // we don't count the cost of any dead code. This is essentially a map from
374   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
375   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
376 
377   // A small worklist used to accumulate cost of instructions from each
378   // observable and reached root in the loop.
379   SmallVector<Instruction *, 16> CostWorklist;
380 
381   // PHI-used worklist used between iterations while accumulating cost.
382   SmallVector<Instruction *, 4> PHIUsedList;
383 
384   // Helper function to accumulate cost for instructions in the loop.
385   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
386     assert(Iteration >= 0 && "Cannot have a negative iteration!");
387     assert(CostWorklist.empty() && "Must start with an empty cost list");
388     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
389     CostWorklist.push_back(&RootI);
390     for (;; --Iteration) {
391       do {
392         Instruction *I = CostWorklist.pop_back_val();
393 
394         // InstCostMap only uses I and Iteration as a key, the other two values
395         // don't matter here.
396         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
397         if (CostIter == InstCostMap.end())
398           // If an input to a PHI node comes from a dead path through the loop
399           // we may have no cost data for it here. What that actually means is
400           // that it is free.
401           continue;
402         auto &Cost = *CostIter;
403         if (Cost.IsCounted)
404           // Already counted this instruction.
405           continue;
406 
407         // Mark that we are counting the cost of this instruction now.
408         Cost.IsCounted = true;
409 
410         // If this is a PHI node in the loop header, just add it to the PHI set.
411         if (auto *PhiI = dyn_cast<PHINode>(I))
412           if (PhiI->getParent() == L->getHeader()) {
413             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
414                                   "inherently simplify during unrolling.");
415             if (Iteration == 0)
416               continue;
417 
418             // Push the incoming value from the backedge into the PHI used list
419             // if it is an in-loop instruction. We'll use this to populate the
420             // cost worklist for the next iteration (as we count backwards).
421             if (auto *OpI = dyn_cast<Instruction>(
422                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
423               if (L->contains(OpI))
424                 PHIUsedList.push_back(OpI);
425             continue;
426           }
427 
428         // First accumulate the cost of this instruction.
429         if (!Cost.IsFree) {
430           UnrolledCost += TTI.getUserCost(I);
431           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
432                             << Iteration << "): ");
433           LLVM_DEBUG(I->dump());
434         }
435 
436         // We must count the cost of every operand which is not free,
437         // recursively. If we reach a loop PHI node, simply add it to the set
438         // to be considered on the next iteration (backwards!).
439         for (Value *Op : I->operands()) {
440           // Check whether this operand is free due to being a constant or
441           // outside the loop.
442           auto *OpI = dyn_cast<Instruction>(Op);
443           if (!OpI || !L->contains(OpI))
444             continue;
445 
446           // Otherwise accumulate its cost.
447           CostWorklist.push_back(OpI);
448         }
449       } while (!CostWorklist.empty());
450 
451       if (PHIUsedList.empty())
452         // We've exhausted the search.
453         break;
454 
455       assert(Iteration > 0 &&
456              "Cannot track PHI-used values past the first iteration!");
457       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
458       PHIUsedList.clear();
459     }
460   };
461 
462   // Ensure that we don't violate the loop structure invariants relied on by
463   // this analysis.
464   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
465   assert(L->isLCSSAForm(DT) &&
466          "Must have loops in LCSSA form to track live-out values.");
467 
468   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
469 
470   // Simulate execution of each iteration of the loop counting instructions,
471   // which would be simplified.
472   // Since the same load will take different values on different iterations,
473   // we literally have to go through all loop's iterations.
474   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
475     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
476 
477     // Prepare for the iteration by collecting any simplified entry or backedge
478     // inputs.
479     for (Instruction &I : *L->getHeader()) {
480       auto *PHI = dyn_cast<PHINode>(&I);
481       if (!PHI)
482         break;
483 
484       // The loop header PHI nodes must have exactly two input: one from the
485       // loop preheader and one from the loop latch.
486       assert(
487           PHI->getNumIncomingValues() == 2 &&
488           "Must have an incoming value only for the preheader and the latch.");
489 
490       Value *V = PHI->getIncomingValueForBlock(
491           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
492       Constant *C = dyn_cast<Constant>(V);
493       if (Iteration != 0 && !C)
494         C = SimplifiedValues.lookup(V);
495       if (C)
496         SimplifiedInputValues.push_back({PHI, C});
497     }
498 
499     // Now clear and re-populate the map for the next iteration.
500     SimplifiedValues.clear();
501     while (!SimplifiedInputValues.empty())
502       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
503 
504     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
505 
506     BBWorklist.clear();
507     BBWorklist.insert(L->getHeader());
508     // Note that we *must not* cache the size, this loop grows the worklist.
509     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
510       BasicBlock *BB = BBWorklist[Idx];
511 
512       // Visit all instructions in the given basic block and try to simplify
513       // it.  We don't change the actual IR, just count optimization
514       // opportunities.
515       for (Instruction &I : *BB) {
516         // These won't get into the final code - don't even try calculating the
517         // cost for them.
518         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
519           continue;
520 
521         // Track this instruction's expected baseline cost when executing the
522         // rolled loop form.
523         RolledDynamicCost += TTI.getUserCost(&I);
524 
525         // Visit the instruction to analyze its loop cost after unrolling,
526         // and if the visitor returns true, mark the instruction as free after
527         // unrolling and continue.
528         bool IsFree = Analyzer.visit(I);
529         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
530                                            (unsigned)IsFree,
531                                            /*IsCounted*/ false}).second;
532         (void)Inserted;
533         assert(Inserted && "Cannot have a state for an unvisited instruction!");
534 
535         if (IsFree)
536           continue;
537 
538         // Can't properly model a cost of a call.
539         // FIXME: With a proper cost model we should be able to do it.
540         if (auto *CI = dyn_cast<CallInst>(&I)) {
541           const Function *Callee = CI->getCalledFunction();
542           if (!Callee || TTI.isLoweredToCall(Callee)) {
543             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
544             return None;
545           }
546         }
547 
548         // If the instruction might have a side-effect recursively account for
549         // the cost of it and all the instructions leading up to it.
550         if (I.mayHaveSideEffects())
551           AddCostRecursively(I, Iteration);
552 
553         // If unrolled body turns out to be too big, bail out.
554         if (UnrolledCost > MaxUnrolledLoopSize) {
555           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
556                             << "  UnrolledCost: " << UnrolledCost
557                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
558                             << "\n");
559           return None;
560         }
561       }
562 
563       Instruction *TI = BB->getTerminator();
564 
565       // Add in the live successors by first checking whether we have terminator
566       // that may be simplified based on the values simplified by this call.
567       BasicBlock *KnownSucc = nullptr;
568       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
569         if (BI->isConditional()) {
570           if (Constant *SimpleCond =
571                   SimplifiedValues.lookup(BI->getCondition())) {
572             // Just take the first successor if condition is undef
573             if (isa<UndefValue>(SimpleCond))
574               KnownSucc = BI->getSuccessor(0);
575             else if (ConstantInt *SimpleCondVal =
576                          dyn_cast<ConstantInt>(SimpleCond))
577               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
578           }
579         }
580       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
581         if (Constant *SimpleCond =
582                 SimplifiedValues.lookup(SI->getCondition())) {
583           // Just take the first successor if condition is undef
584           if (isa<UndefValue>(SimpleCond))
585             KnownSucc = SI->getSuccessor(0);
586           else if (ConstantInt *SimpleCondVal =
587                        dyn_cast<ConstantInt>(SimpleCond))
588             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
589         }
590       }
591       if (KnownSucc) {
592         if (L->contains(KnownSucc))
593           BBWorklist.insert(KnownSucc);
594         else
595           ExitWorklist.insert({BB, KnownSucc});
596         continue;
597       }
598 
599       // Add BB's successors to the worklist.
600       for (BasicBlock *Succ : successors(BB))
601         if (L->contains(Succ))
602           BBWorklist.insert(Succ);
603         else
604           ExitWorklist.insert({BB, Succ});
605       AddCostRecursively(*TI, Iteration);
606     }
607 
608     // If we found no optimization opportunities on the first iteration, we
609     // won't find them on later ones too.
610     if (UnrolledCost == RolledDynamicCost) {
611       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
612                         << "  UnrolledCost: " << UnrolledCost << "\n");
613       return None;
614     }
615   }
616 
617   while (!ExitWorklist.empty()) {
618     BasicBlock *ExitingBB, *ExitBB;
619     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
620 
621     for (Instruction &I : *ExitBB) {
622       auto *PN = dyn_cast<PHINode>(&I);
623       if (!PN)
624         break;
625 
626       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
627       if (auto *OpI = dyn_cast<Instruction>(Op))
628         if (L->contains(OpI))
629           AddCostRecursively(*OpI, TripCount - 1);
630     }
631   }
632 
633   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
634                     << "UnrolledCost: " << UnrolledCost << ", "
635                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
636   return {{UnrolledCost, RolledDynamicCost}};
637 }
638 
639 /// ApproximateLoopSize - Approximate the size of the loop.
640 unsigned llvm::ApproximateLoopSize(
641     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
642     const TargetTransformInfo &TTI,
643     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
644   CodeMetrics Metrics;
645   for (BasicBlock *BB : L->blocks())
646     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
647   NumCalls = Metrics.NumInlineCandidates;
648   NotDuplicatable = Metrics.notDuplicatable;
649   Convergent = Metrics.convergent;
650 
651   unsigned LoopSize = Metrics.NumInsts;
652 
653   // Don't allow an estimate of size zero.  This would allows unrolling of loops
654   // with huge iteration counts, which is a compile time problem even if it's
655   // not a problem for code quality. Also, the code using this size may assume
656   // that each loop has at least three instructions (likely a conditional
657   // branch, a comparison feeding that branch, and some kind of loop increment
658   // feeding that comparison instruction).
659   LoopSize = std::max(LoopSize, BEInsns + 1);
660 
661   return LoopSize;
662 }
663 
664 // Returns the loop hint metadata node with the given name (for example,
665 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
666 // returned.
667 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
668   if (MDNode *LoopID = L->getLoopID())
669     return GetUnrollMetadata(LoopID, Name);
670   return nullptr;
671 }
672 
673 // Returns true if the loop has an unroll(full) pragma.
674 static bool HasUnrollFullPragma(const Loop *L) {
675   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
676 }
677 
678 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
679 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
680 static bool HasUnrollEnablePragma(const Loop *L) {
681   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
682 }
683 
684 // Returns true if the loop has an runtime unroll(disable) pragma.
685 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
686   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
687 }
688 
689 // If loop has an unroll_count pragma return the (necessarily
690 // positive) value from the pragma.  Otherwise return 0.
691 static unsigned UnrollCountPragmaValue(const Loop *L) {
692   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
693   if (MD) {
694     assert(MD->getNumOperands() == 2 &&
695            "Unroll count hint metadata should have two operands.");
696     unsigned Count =
697         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
698     assert(Count >= 1 && "Unroll count must be positive.");
699     return Count;
700   }
701   return 0;
702 }
703 
704 // Computes the boosting factor for complete unrolling.
705 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
706 // be beneficial to fully unroll the loop even if unrolledcost is large. We
707 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
708 // the unroll threshold.
709 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
710                                             unsigned MaxPercentThresholdBoost) {
711   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
712     return 100;
713   else if (Cost.UnrolledCost != 0)
714     // The boosting factor is RolledDynamicCost / UnrolledCost
715     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
716                     MaxPercentThresholdBoost);
717   else
718     return MaxPercentThresholdBoost;
719 }
720 
721 // Returns loop size estimation for unrolled loop.
722 static uint64_t getUnrolledLoopSize(
723     unsigned LoopSize,
724     TargetTransformInfo::UnrollingPreferences &UP) {
725   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
726   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
727 }
728 
729 // Returns true if unroll count was set explicitly.
730 // Calculates unroll count and writes it to UP.Count.
731 // Unless IgnoreUser is true, will also use metadata and command-line options
732 // that are specific to to the LoopUnroll pass (which, for instance, are
733 // irrelevant for the LoopUnrollAndJam pass).
734 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
735 // many LoopUnroll-specific options. The shared functionality should be
736 // refactored into it own function.
737 bool llvm::computeUnrollCount(
738     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
739     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
740     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
741     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
742     TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
743 
744   // Check for explicit Count.
745   // 1st priority is unroll count set by "unroll-count" option.
746   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
747   if (UserUnrollCount) {
748     UP.Count = UnrollCount;
749     UP.AllowExpensiveTripCount = true;
750     UP.Force = true;
751     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
752       return true;
753   }
754 
755   // 2nd priority is unroll count set by pragma.
756   unsigned PragmaCount = UnrollCountPragmaValue(L);
757   if (PragmaCount > 0) {
758     UP.Count = PragmaCount;
759     UP.Runtime = true;
760     UP.AllowExpensiveTripCount = true;
761     UP.Force = true;
762     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
763         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
764       return true;
765   }
766   bool PragmaFullUnroll = HasUnrollFullPragma(L);
767   if (PragmaFullUnroll && TripCount != 0) {
768     UP.Count = TripCount;
769     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
770       return false;
771   }
772 
773   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
774   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
775                         PragmaEnableUnroll || UserUnrollCount;
776 
777   if (ExplicitUnroll && TripCount != 0) {
778     // If the loop has an unrolling pragma, we want to be more aggressive with
779     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
780     // value which is larger than the default limits.
781     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
782     UP.PartialThreshold =
783         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
784   }
785 
786   // 3rd priority is full unroll count.
787   // Full unroll makes sense only when TripCount or its upper bound could be
788   // statically calculated.
789   // Also we need to check if we exceed FullUnrollMaxCount.
790   // If using the upper bound to unroll, TripMultiple should be set to 1 because
791   // we do not know when loop may exit.
792 
793   // We can unroll by the upper bound amount if it's generally allowed or if
794   // we know that the loop is executed either the upper bound or zero times.
795   // (MaxOrZero unrolling keeps only the first loop test, so the number of
796   // loop tests remains the same compared to the non-unrolled version, whereas
797   // the generic upper bound unrolling keeps all but the last loop test so the
798   // number of loop tests goes up which may end up being worse on targets with
799   // constrained branch predictor resources so is controlled by an option.)
800   // In addition we only unroll small upper bounds.
801   unsigned FullUnrollMaxTripCount = MaxTripCount;
802   if (!(UP.UpperBound || MaxOrZero) ||
803       FullUnrollMaxTripCount > UnrollMaxUpperBound)
804     FullUnrollMaxTripCount = 0;
805 
806   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
807   // compute the former when the latter is zero.
808   unsigned ExactTripCount = TripCount;
809   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
810          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
811 
812   unsigned FullUnrollTripCount =
813       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
814   UP.Count = FullUnrollTripCount;
815   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
816     // When computing the unrolled size, note that BEInsns are not replicated
817     // like the rest of the loop body.
818     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
819       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
820       TripCount = FullUnrollTripCount;
821       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
822       return ExplicitUnroll;
823     } else {
824       // The loop isn't that small, but we still can fully unroll it if that
825       // helps to remove a significant number of instructions.
826       // To check that, run additional analysis on the loop.
827       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
828               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
829               UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
830         unsigned Boost =
831             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
832         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
833           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
834           TripCount = FullUnrollTripCount;
835           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
836           return ExplicitUnroll;
837         }
838       }
839     }
840   }
841 
842   // 4th priority is loop peeling.
843   computePeelCount(L, LoopSize, UP, TripCount, SE);
844   if (UP.PeelCount) {
845     UP.Runtime = false;
846     UP.Count = 1;
847     return ExplicitUnroll;
848   }
849 
850   // 5th priority is partial unrolling.
851   // Try partial unroll only when TripCount could be statically calculated.
852   if (TripCount) {
853     UP.Partial |= ExplicitUnroll;
854     if (!UP.Partial) {
855       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
856                         << "-unroll-allow-partial not given\n");
857       UP.Count = 0;
858       return false;
859     }
860     if (UP.Count == 0)
861       UP.Count = TripCount;
862     if (UP.PartialThreshold != NoThreshold) {
863       // Reduce unroll count to be modulo of TripCount for partial unrolling.
864       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
865         UP.Count =
866             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
867             (LoopSize - UP.BEInsns);
868       if (UP.Count > UP.MaxCount)
869         UP.Count = UP.MaxCount;
870       while (UP.Count != 0 && TripCount % UP.Count != 0)
871         UP.Count--;
872       if (UP.AllowRemainder && UP.Count <= 1) {
873         // If there is no Count that is modulo of TripCount, set Count to
874         // largest power-of-two factor that satisfies the threshold limit.
875         // As we'll create fixup loop, do the type of unrolling only if
876         // remainder loop is allowed.
877         UP.Count = UP.DefaultUnrollRuntimeCount;
878         while (UP.Count != 0 &&
879                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
880           UP.Count >>= 1;
881       }
882       if (UP.Count < 2) {
883         if (PragmaEnableUnroll)
884           ORE->emit([&]() {
885             return OptimizationRemarkMissed(DEBUG_TYPE,
886                                             "UnrollAsDirectedTooLarge",
887                                             L->getStartLoc(), L->getHeader())
888                    << "Unable to unroll loop as directed by unroll(enable) "
889                       "pragma "
890                       "because unrolled size is too large.";
891           });
892         UP.Count = 0;
893       }
894     } else {
895       UP.Count = TripCount;
896     }
897     if (UP.Count > UP.MaxCount)
898       UP.Count = UP.MaxCount;
899     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
900         UP.Count != TripCount)
901       ORE->emit([&]() {
902         return OptimizationRemarkMissed(DEBUG_TYPE,
903                                         "FullUnrollAsDirectedTooLarge",
904                                         L->getStartLoc(), L->getHeader())
905                << "Unable to fully unroll loop as directed by unroll pragma "
906                   "because "
907                   "unrolled size is too large.";
908       });
909     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
910                       << "\n");
911     return ExplicitUnroll;
912   }
913   assert(TripCount == 0 &&
914          "All cases when TripCount is constant should be covered here.");
915   if (PragmaFullUnroll)
916     ORE->emit([&]() {
917       return OptimizationRemarkMissed(
918                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
919                  L->getStartLoc(), L->getHeader())
920              << "Unable to fully unroll loop as directed by unroll(full) "
921                 "pragma "
922                 "because loop has a runtime trip count.";
923     });
924 
925   // 6th priority is runtime unrolling.
926   // Don't unroll a runtime trip count loop when it is disabled.
927   if (HasRuntimeUnrollDisablePragma(L)) {
928     UP.Count = 0;
929     return false;
930   }
931 
932   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
933   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
934     UP.Count = 0;
935     return false;
936   }
937 
938   // Check if the runtime trip count is too small when profile is available.
939   if (L->getHeader()->getParent()->hasProfileData()) {
940     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
941       if (*ProfileTripCount < FlatLoopTripCountThreshold)
942         return false;
943       else
944         UP.AllowExpensiveTripCount = true;
945     }
946   }
947 
948   // Reduce count based on the type of unrolling and the threshold values.
949   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
950   if (!UP.Runtime) {
951     LLVM_DEBUG(
952         dbgs() << "  will not try to unroll loop with runtime trip count "
953                << "-unroll-runtime not given\n");
954     UP.Count = 0;
955     return false;
956   }
957   if (UP.Count == 0)
958     UP.Count = UP.DefaultUnrollRuntimeCount;
959 
960   // Reduce unroll count to be the largest power-of-two factor of
961   // the original count which satisfies the threshold limit.
962   while (UP.Count != 0 &&
963          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
964     UP.Count >>= 1;
965 
966 #ifndef NDEBUG
967   unsigned OrigCount = UP.Count;
968 #endif
969 
970   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
971     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
972       UP.Count >>= 1;
973     LLVM_DEBUG(
974         dbgs() << "Remainder loop is restricted (that could architecture "
975                   "specific or because the loop contains a convergent "
976                   "instruction), so unroll count must divide the trip "
977                   "multiple, "
978                << TripMultiple << ".  Reducing unroll count from " << OrigCount
979                << " to " << UP.Count << ".\n");
980 
981     using namespace ore;
982 
983     if (PragmaCount > 0 && !UP.AllowRemainder)
984       ORE->emit([&]() {
985         return OptimizationRemarkMissed(DEBUG_TYPE,
986                                         "DifferentUnrollCountFromDirected",
987                                         L->getStartLoc(), L->getHeader())
988                << "Unable to unroll loop the number of times directed by "
989                   "unroll_count pragma because remainder loop is restricted "
990                   "(that could architecture specific or because the loop "
991                   "contains a convergent instruction) and so must have an "
992                   "unroll "
993                   "count that divides the loop trip multiple of "
994                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
995                << NV("UnrollCount", UP.Count) << " time(s).";
996       });
997   }
998 
999   if (UP.Count > UP.MaxCount)
1000     UP.Count = UP.MaxCount;
1001 
1002   if (MaxTripCount && UP.Count > MaxTripCount)
1003     UP.Count = MaxTripCount;
1004 
1005   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1006                     << "\n");
1007   if (UP.Count < 2)
1008     UP.Count = 0;
1009   return ExplicitUnroll;
1010 }
1011 
1012 static LoopUnrollResult tryToUnrollLoop(
1013     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1014     const TargetTransformInfo &TTI, AssumptionCache &AC,
1015     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1016     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1017     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1018     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1019     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1020     Optional<bool> ProvidedAllowPeeling,
1021     Optional<bool> ProvidedAllowProfileBasedPeeling,
1022     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1023   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1024                     << L->getHeader()->getParent()->getName() << "] Loop %"
1025                     << L->getHeader()->getName() << "\n");
1026   TransformationMode TM = hasUnrollTransformation(L);
1027   if (TM & TM_Disable)
1028     return LoopUnrollResult::Unmodified;
1029   if (!L->isLoopSimplifyForm()) {
1030     LLVM_DEBUG(
1031         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1032     return LoopUnrollResult::Unmodified;
1033   }
1034 
1035   // When automtatic unrolling is disabled, do not unroll unless overridden for
1036   // this loop.
1037   if (OnlyWhenForced && !(TM & TM_Enable))
1038     return LoopUnrollResult::Unmodified;
1039 
1040   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1041   unsigned NumInlineCandidates;
1042   bool NotDuplicatable;
1043   bool Convergent;
1044   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1045       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1046       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1047       ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1048       ProvidedFullUnrollMaxCount);
1049 
1050   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1051   // as threshold later on.
1052   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1053       !OptForSize)
1054     return LoopUnrollResult::Unmodified;
1055 
1056   SmallPtrSet<const Value *, 32> EphValues;
1057   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1058 
1059   unsigned LoopSize =
1060       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1061                           TTI, EphValues, UP.BEInsns);
1062   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1063   if (NotDuplicatable) {
1064     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1065                       << " instructions.\n");
1066     return LoopUnrollResult::Unmodified;
1067   }
1068 
1069   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1070   // later), to (fully) unroll loops, if it does not increase code size.
1071   if (OptForSize)
1072     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1073 
1074   if (NumInlineCandidates != 0) {
1075     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1076     return LoopUnrollResult::Unmodified;
1077   }
1078 
1079   // Find trip count and trip multiple if count is not available
1080   unsigned TripCount = 0;
1081   unsigned TripMultiple = 1;
1082   // If there are multiple exiting blocks but one of them is the latch, use the
1083   // latch for the trip count estimation. Otherwise insist on a single exiting
1084   // block for the trip count estimation.
1085   BasicBlock *ExitingBlock = L->getLoopLatch();
1086   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1087     ExitingBlock = L->getExitingBlock();
1088   if (ExitingBlock) {
1089     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1090     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1091   }
1092 
1093   // If the loop contains a convergent operation, the prelude we'd add
1094   // to do the first few instructions before we hit the unrolled loop
1095   // is unsafe -- it adds a control-flow dependency to the convergent
1096   // operation.  Therefore restrict remainder loop (try unrollig without).
1097   //
1098   // TODO: This is quite conservative.  In practice, convergent_op()
1099   // is likely to be called unconditionally in the loop.  In this
1100   // case, the program would be ill-formed (on most architectures)
1101   // unless n were the same on all threads in a thread group.
1102   // Assuming n is the same on all threads, any kind of unrolling is
1103   // safe.  But currently llvm's notion of convergence isn't powerful
1104   // enough to express this.
1105   if (Convergent)
1106     UP.AllowRemainder = false;
1107 
1108   // Try to find the trip count upper bound if we cannot find the exact trip
1109   // count.
1110   unsigned MaxTripCount = 0;
1111   bool MaxOrZero = false;
1112   if (!TripCount) {
1113     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1114     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1115   }
1116 
1117   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1118   // fully unroll the loop.
1119   bool UseUpperBound = false;
1120   bool IsCountSetExplicitly = computeUnrollCount(
1121       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1122       TripMultiple, LoopSize, UP, UseUpperBound);
1123   if (!UP.Count)
1124     return LoopUnrollResult::Unmodified;
1125   // Unroll factor (Count) must be less or equal to TripCount.
1126   if (TripCount && UP.Count > TripCount)
1127     UP.Count = TripCount;
1128 
1129   // Save loop properties before it is transformed.
1130   MDNode *OrigLoopID = L->getLoopID();
1131 
1132   // Unroll the loop.
1133   Loop *RemainderLoop = nullptr;
1134   LoopUnrollResult UnrollResult = UnrollLoop(
1135       L,
1136       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1137        UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
1138        ForgetAllSCEV},
1139       LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
1140   if (UnrollResult == LoopUnrollResult::Unmodified)
1141     return LoopUnrollResult::Unmodified;
1142 
1143   if (RemainderLoop) {
1144     Optional<MDNode *> RemainderLoopID =
1145         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1146                                         LLVMLoopUnrollFollowupRemainder});
1147     if (RemainderLoopID.hasValue())
1148       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1149   }
1150 
1151   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1152     Optional<MDNode *> NewLoopID =
1153         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1154                                         LLVMLoopUnrollFollowupUnrolled});
1155     if (NewLoopID.hasValue()) {
1156       L->setLoopID(NewLoopID.getValue());
1157 
1158       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1159       // explicitly.
1160       return UnrollResult;
1161     }
1162   }
1163 
1164   // If loop has an unroll count pragma or unrolled by explicitly set count
1165   // mark loop as unrolled to prevent unrolling beyond that requested.
1166   // If the loop was peeled, we already "used up" the profile information
1167   // we had, so we don't want to unroll or peel again.
1168   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1169       (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
1170     L->setLoopAlreadyUnrolled();
1171 
1172   return UnrollResult;
1173 }
1174 
1175 namespace {
1176 
1177 class LoopUnroll : public LoopPass {
1178 public:
1179   static char ID; // Pass ID, replacement for typeid
1180 
1181   int OptLevel;
1182 
1183   /// If false, use a cost model to determine whether unrolling of a loop is
1184   /// profitable. If true, only loops that explicitly request unrolling via
1185   /// metadata are considered. All other loops are skipped.
1186   bool OnlyWhenForced;
1187 
1188   /// If false, when SCEV is invalidated, only forget everything in the
1189   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1190   /// Otherwise, forgetAllLoops and rebuild when needed next.
1191   bool ForgetAllSCEV;
1192 
1193   Optional<unsigned> ProvidedCount;
1194   Optional<unsigned> ProvidedThreshold;
1195   Optional<bool> ProvidedAllowPartial;
1196   Optional<bool> ProvidedRuntime;
1197   Optional<bool> ProvidedUpperBound;
1198   Optional<bool> ProvidedAllowPeeling;
1199   Optional<bool> ProvidedAllowProfileBasedPeeling;
1200   Optional<unsigned> ProvidedFullUnrollMaxCount;
1201 
1202   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1203              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1204              Optional<unsigned> Count = None,
1205              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1206              Optional<bool> UpperBound = None,
1207              Optional<bool> AllowPeeling = None,
1208              Optional<bool> AllowProfileBasedPeeling = None,
1209              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1210       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1211         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1212         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1213         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1214         ProvidedAllowPeeling(AllowPeeling),
1215         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1216         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1217     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1218   }
1219 
1220   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1221     if (skipLoop(L))
1222       return false;
1223 
1224     Function &F = *L->getHeader()->getParent();
1225 
1226     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1227     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1228     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1229     const TargetTransformInfo &TTI =
1230         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1231     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1232     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1233     // pass.  Function analyses need to be preserved across loop transformations
1234     // but ORE cannot be preserved (see comment before the pass definition).
1235     OptimizationRemarkEmitter ORE(&F);
1236     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1237 
1238     LoopUnrollResult Result = tryToUnrollLoop(
1239         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1240         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1241         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1242         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1243         ProvidedFullUnrollMaxCount);
1244 
1245     if (Result == LoopUnrollResult::FullyUnrolled)
1246       LPM.markLoopAsDeleted(*L);
1247 
1248     return Result != LoopUnrollResult::Unmodified;
1249   }
1250 
1251   /// This transformation requires natural loop information & requires that
1252   /// loop preheaders be inserted into the CFG...
1253   void getAnalysisUsage(AnalysisUsage &AU) const override {
1254     AU.addRequired<AssumptionCacheTracker>();
1255     AU.addRequired<TargetTransformInfoWrapperPass>();
1256     // FIXME: Loop passes are required to preserve domtree, and for now we just
1257     // recreate dom info if anything gets unrolled.
1258     getLoopAnalysisUsage(AU);
1259   }
1260 };
1261 
1262 } // end anonymous namespace
1263 
1264 char LoopUnroll::ID = 0;
1265 
1266 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1268 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1269 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1270 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1271 
1272 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1273                                  bool ForgetAllSCEV, int Threshold, int Count,
1274                                  int AllowPartial, int Runtime, int UpperBound,
1275                                  int AllowPeeling) {
1276   // TODO: It would make more sense for this function to take the optionals
1277   // directly, but that's dangerous since it would silently break out of tree
1278   // callers.
1279   return new LoopUnroll(
1280       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1281       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1282       Count == -1 ? None : Optional<unsigned>(Count),
1283       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1284       Runtime == -1 ? None : Optional<bool>(Runtime),
1285       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1286       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1287 }
1288 
1289 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1290                                        bool ForgetAllSCEV) {
1291   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1292                               0, 0, 0, 0);
1293 }
1294 
1295 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1296                                           LoopStandardAnalysisResults &AR,
1297                                           LPMUpdater &Updater) {
1298   const auto &FAM =
1299       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1300   Function *F = L.getHeader()->getParent();
1301 
1302   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
1303   // FIXME: This should probably be optional rather than required.
1304   if (!ORE)
1305     report_fatal_error(
1306         "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
1307         "cached at a higher level");
1308 
1309   // Keep track of the previous loop structure so we can identify new loops
1310   // created by unrolling.
1311   Loop *ParentL = L.getParentLoop();
1312   SmallPtrSet<Loop *, 4> OldLoops;
1313   if (ParentL)
1314     OldLoops.insert(ParentL->begin(), ParentL->end());
1315   else
1316     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1317 
1318   std::string LoopName = L.getName();
1319 
1320   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
1321                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1322                                  /*PreserveLCSSA*/ true, OptLevel,
1323                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1324                                  /*Threshold*/ None, /*AllowPartial*/ false,
1325                                  /*Runtime*/ false, /*UpperBound*/ false,
1326                                  /*AllowPeeling*/ false,
1327                                  /*AllowProfileBasedPeeling*/ false,
1328                                  /*FullUnrollMaxCount*/ None) !=
1329                  LoopUnrollResult::Unmodified;
1330   if (!Changed)
1331     return PreservedAnalyses::all();
1332 
1333   // The parent must not be damaged by unrolling!
1334 #ifndef NDEBUG
1335   if (ParentL)
1336     ParentL->verifyLoop();
1337 #endif
1338 
1339   // Unrolling can do several things to introduce new loops into a loop nest:
1340   // - Full unrolling clones child loops within the current loop but then
1341   //   removes the current loop making all of the children appear to be new
1342   //   sibling loops.
1343   //
1344   // When a new loop appears as a sibling loop after fully unrolling,
1345   // its nesting structure has fundamentally changed and we want to revisit
1346   // it to reflect that.
1347   //
1348   // When unrolling has removed the current loop, we need to tell the
1349   // infrastructure that it is gone.
1350   //
1351   // Finally, we support a debugging/testing mode where we revisit child loops
1352   // as well. These are not expected to require further optimizations as either
1353   // they or the loop they were cloned from have been directly visited already.
1354   // But the debugging mode allows us to check this assumption.
1355   bool IsCurrentLoopValid = false;
1356   SmallVector<Loop *, 4> SibLoops;
1357   if (ParentL)
1358     SibLoops.append(ParentL->begin(), ParentL->end());
1359   else
1360     SibLoops.append(AR.LI.begin(), AR.LI.end());
1361   erase_if(SibLoops, [&](Loop *SibLoop) {
1362     if (SibLoop == &L) {
1363       IsCurrentLoopValid = true;
1364       return true;
1365     }
1366 
1367     // Otherwise erase the loop from the list if it was in the old loops.
1368     return OldLoops.count(SibLoop) != 0;
1369   });
1370   Updater.addSiblingLoops(SibLoops);
1371 
1372   if (!IsCurrentLoopValid) {
1373     Updater.markLoopAsDeleted(L, LoopName);
1374   } else {
1375     // We can only walk child loops if the current loop remained valid.
1376     if (UnrollRevisitChildLoops) {
1377       // Walk *all* of the child loops.
1378       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1379       Updater.addChildLoops(ChildLoops);
1380     }
1381   }
1382 
1383   return getLoopPassPreservedAnalyses();
1384 }
1385 
1386 template <typename RangeT>
1387 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
1388   SmallVector<Loop *, 8> Worklist;
1389   // We use an internal worklist to build up the preorder traversal without
1390   // recursion.
1391   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1392 
1393   for (Loop *RootL : Loops) {
1394     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1395     assert(PreOrderWorklist.empty() &&
1396            "Must start with an empty preorder walk worklist.");
1397     PreOrderWorklist.push_back(RootL);
1398     do {
1399       Loop *L = PreOrderWorklist.pop_back_val();
1400       PreOrderWorklist.append(L->begin(), L->end());
1401       PreOrderLoops.push_back(L);
1402     } while (!PreOrderWorklist.empty());
1403 
1404     Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
1405     PreOrderLoops.clear();
1406   }
1407   return Worklist;
1408 }
1409 
1410 PreservedAnalyses LoopUnrollPass::run(Function &F,
1411                                       FunctionAnalysisManager &AM) {
1412   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1413   auto &LI = AM.getResult<LoopAnalysis>(F);
1414   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1415   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1416   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1417   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1418 
1419   LoopAnalysisManager *LAM = nullptr;
1420   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1421     LAM = &LAMProxy->getManager();
1422 
1423   const ModuleAnalysisManager &MAM =
1424       AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
1425   ProfileSummaryInfo *PSI =
1426       MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1427   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1428       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1429 
1430   bool Changed = false;
1431 
1432   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1433   // Since simplification may add new inner loops, it has to run before the
1434   // legality and profitability checks. This means running the loop unroller
1435   // will simplify all loops, regardless of whether anything end up being
1436   // unrolled.
1437   for (auto &L : LI) {
1438     Changed |=
1439         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1440     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1441   }
1442 
1443   SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
1444 
1445   while (!Worklist.empty()) {
1446     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1447     // from back to front so that we work forward across the CFG, which
1448     // for unrolling is only needed to get optimization remarks emitted in
1449     // a forward order.
1450     Loop &L = *Worklist.pop_back_val();
1451 #ifndef NDEBUG
1452     Loop *ParentL = L.getParentLoop();
1453 #endif
1454 
1455     // Check if the profile summary indicates that the profiled application
1456     // has a huge working set size, in which case we disable peeling to avoid
1457     // bloating it further.
1458     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1459     if (PSI && PSI->hasHugeWorkingSetSize())
1460       LocalAllowPeeling = false;
1461     std::string LoopName = L.getName();
1462     // The API here is quite complex to call and we allow to select some
1463     // flavors of unrolling during construction time (by setting UnrollOpts).
1464     LoopUnrollResult Result = tryToUnrollLoop(
1465         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1466         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1467         UnrollOpts.ForgetSCEV, /*Count*/ None,
1468         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1469         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1470         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1471     Changed |= Result != LoopUnrollResult::Unmodified;
1472 
1473     // The parent must not be damaged by unrolling!
1474 #ifndef NDEBUG
1475     if (Result != LoopUnrollResult::Unmodified && ParentL)
1476       ParentL->verifyLoop();
1477 #endif
1478 
1479     // Clear any cached analysis results for L if we removed it completely.
1480     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1481       LAM->clear(L, LoopName);
1482   }
1483 
1484   if (!Changed)
1485     return PreservedAnalyses::all();
1486 
1487   return getLoopPassPreservedAnalyses();
1488 }
1489