1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopSimplify.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-unroll" 74 75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 76 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 77 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 78 " the current top-most loop. This is somtimes preferred to reduce" 79 " compile time.")); 80 81 static cl::opt<unsigned> 82 UnrollThreshold("unroll-threshold", cl::Hidden, 83 cl::desc("The cost threshold for loop unrolling")); 84 85 static cl::opt<unsigned> UnrollPartialThreshold( 86 "unroll-partial-threshold", cl::Hidden, 87 cl::desc("The cost threshold for partial loop unrolling")); 88 89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 90 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 91 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 92 "to the threshold when aggressively unrolling a loop due to the " 93 "dynamic cost savings. If completely unrolling a loop will reduce " 94 "the total runtime from X to Y, we boost the loop unroll " 95 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 96 "X/Y). This limit avoids excessive code bloat.")); 97 98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 99 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 100 cl::desc("Don't allow loop unrolling to simulate more than this number of" 101 "iterations when checking full unroll profitability")); 102 103 static cl::opt<unsigned> UnrollCount( 104 "unroll-count", cl::Hidden, 105 cl::desc("Use this unroll count for all loops including those with " 106 "unroll_count pragma values, for testing purposes")); 107 108 static cl::opt<unsigned> UnrollMaxCount( 109 "unroll-max-count", cl::Hidden, 110 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 111 "testing purposes")); 112 113 static cl::opt<unsigned> UnrollFullMaxCount( 114 "unroll-full-max-count", cl::Hidden, 115 cl::desc( 116 "Set the max unroll count for full unrolling, for testing purposes")); 117 118 static cl::opt<unsigned> UnrollPeelCount( 119 "unroll-peel-count", cl::Hidden, 120 cl::desc("Set the unroll peeling count, for testing purposes")); 121 122 static cl::opt<bool> 123 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 124 cl::desc("Allows loops to be partially unrolled until " 125 "-unroll-threshold loop size is reached.")); 126 127 static cl::opt<bool> UnrollAllowRemainder( 128 "unroll-allow-remainder", cl::Hidden, 129 cl::desc("Allow generation of a loop remainder (extra iterations) " 130 "when unrolling a loop.")); 131 132 static cl::opt<bool> 133 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 134 cl::desc("Unroll loops with run-time trip counts")); 135 136 static cl::opt<unsigned> UnrollMaxUpperBound( 137 "unroll-max-upperbound", cl::init(8), cl::Hidden, 138 cl::desc( 139 "The max of trip count upper bound that is considered in unrolling")); 140 141 static cl::opt<unsigned> PragmaUnrollThreshold( 142 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 143 cl::desc("Unrolled size limit for loops with an unroll(full) or " 144 "unroll_count pragma.")); 145 146 static cl::opt<unsigned> FlatLoopTripCountThreshold( 147 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 148 cl::desc("If the runtime tripcount for the loop is lower than the " 149 "threshold, the loop is considered as flat and will be less " 150 "aggressively unrolled.")); 151 152 static cl::opt<bool> 153 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 154 cl::desc("Allows loops to be peeled when the dynamic " 155 "trip count is known to be low.")); 156 157 static cl::opt<bool> UnrollUnrollRemainder( 158 "unroll-remainder", cl::Hidden, 159 cl::desc("Allow the loop remainder to be unrolled.")); 160 161 // This option isn't ever intended to be enabled, it serves to allow 162 // experiments to check the assumptions about when this kind of revisit is 163 // necessary. 164 static cl::opt<bool> UnrollRevisitChildLoops( 165 "unroll-revisit-child-loops", cl::Hidden, 166 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 167 "This shouldn't typically be needed as child loops (or their " 168 "clones) were already visited.")); 169 170 /// A magic value for use with the Threshold parameter to indicate 171 /// that the loop unroll should be performed regardless of how much 172 /// code expansion would result. 173 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 174 175 /// Gather the various unrolling parameters based on the defaults, compiler 176 /// flags, TTI overrides and user specified parameters. 177 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 178 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 179 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 180 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 181 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 182 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 183 Optional<bool> UserAllowProfileBasedPeeling, 184 Optional<unsigned> UserFullUnrollMaxCount) { 185 TargetTransformInfo::UnrollingPreferences UP; 186 187 // Set up the defaults 188 UP.Threshold = OptLevel > 2 ? 300 : 150; 189 UP.MaxPercentThresholdBoost = 400; 190 UP.OptSizeThreshold = 0; 191 UP.PartialThreshold = 150; 192 UP.PartialOptSizeThreshold = 0; 193 UP.Count = 0; 194 UP.PeelCount = 0; 195 UP.DefaultUnrollRuntimeCount = 8; 196 UP.MaxCount = std::numeric_limits<unsigned>::max(); 197 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 198 UP.BEInsns = 2; 199 UP.Partial = false; 200 UP.Runtime = false; 201 UP.AllowRemainder = true; 202 UP.UnrollRemainder = false; 203 UP.AllowExpensiveTripCount = false; 204 UP.Force = false; 205 UP.UpperBound = false; 206 UP.AllowPeeling = true; 207 UP.UnrollAndJam = false; 208 UP.PeelProfiledIterations = true; 209 UP.UnrollAndJamInnerLoopThreshold = 60; 210 211 // Override with any target specific settings 212 TTI.getUnrollingPreferences(L, SE, UP); 213 214 // Apply size attributes 215 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 216 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 217 if (OptForSize) { 218 UP.Threshold = UP.OptSizeThreshold; 219 UP.PartialThreshold = UP.PartialOptSizeThreshold; 220 UP.MaxPercentThresholdBoost = 100; 221 } 222 223 // Apply any user values specified by cl::opt 224 if (UnrollThreshold.getNumOccurrences() > 0) 225 UP.Threshold = UnrollThreshold; 226 if (UnrollPartialThreshold.getNumOccurrences() > 0) 227 UP.PartialThreshold = UnrollPartialThreshold; 228 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 229 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 230 if (UnrollMaxCount.getNumOccurrences() > 0) 231 UP.MaxCount = UnrollMaxCount; 232 if (UnrollFullMaxCount.getNumOccurrences() > 0) 233 UP.FullUnrollMaxCount = UnrollFullMaxCount; 234 if (UnrollPeelCount.getNumOccurrences() > 0) 235 UP.PeelCount = UnrollPeelCount; 236 if (UnrollAllowPartial.getNumOccurrences() > 0) 237 UP.Partial = UnrollAllowPartial; 238 if (UnrollAllowRemainder.getNumOccurrences() > 0) 239 UP.AllowRemainder = UnrollAllowRemainder; 240 if (UnrollRuntime.getNumOccurrences() > 0) 241 UP.Runtime = UnrollRuntime; 242 if (UnrollMaxUpperBound == 0) 243 UP.UpperBound = false; 244 if (UnrollAllowPeeling.getNumOccurrences() > 0) 245 UP.AllowPeeling = UnrollAllowPeeling; 246 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 247 UP.UnrollRemainder = UnrollUnrollRemainder; 248 249 // Apply user values provided by argument 250 if (UserThreshold.hasValue()) { 251 UP.Threshold = *UserThreshold; 252 UP.PartialThreshold = *UserThreshold; 253 } 254 if (UserCount.hasValue()) 255 UP.Count = *UserCount; 256 if (UserAllowPartial.hasValue()) 257 UP.Partial = *UserAllowPartial; 258 if (UserRuntime.hasValue()) 259 UP.Runtime = *UserRuntime; 260 if (UserUpperBound.hasValue()) 261 UP.UpperBound = *UserUpperBound; 262 if (UserAllowPeeling.hasValue()) 263 UP.AllowPeeling = *UserAllowPeeling; 264 if (UserAllowProfileBasedPeeling.hasValue()) 265 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 266 if (UserFullUnrollMaxCount.hasValue()) 267 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 268 269 return UP; 270 } 271 272 namespace { 273 274 /// A struct to densely store the state of an instruction after unrolling at 275 /// each iteration. 276 /// 277 /// This is designed to work like a tuple of <Instruction *, int> for the 278 /// purposes of hashing and lookup, but to be able to associate two boolean 279 /// states with each key. 280 struct UnrolledInstState { 281 Instruction *I; 282 int Iteration : 30; 283 unsigned IsFree : 1; 284 unsigned IsCounted : 1; 285 }; 286 287 /// Hashing and equality testing for a set of the instruction states. 288 struct UnrolledInstStateKeyInfo { 289 using PtrInfo = DenseMapInfo<Instruction *>; 290 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 291 292 static inline UnrolledInstState getEmptyKey() { 293 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 294 } 295 296 static inline UnrolledInstState getTombstoneKey() { 297 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 298 } 299 300 static inline unsigned getHashValue(const UnrolledInstState &S) { 301 return PairInfo::getHashValue({S.I, S.Iteration}); 302 } 303 304 static inline bool isEqual(const UnrolledInstState &LHS, 305 const UnrolledInstState &RHS) { 306 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 307 } 308 }; 309 310 struct EstimatedUnrollCost { 311 /// The estimated cost after unrolling. 312 unsigned UnrolledCost; 313 314 /// The estimated dynamic cost of executing the instructions in the 315 /// rolled form. 316 unsigned RolledDynamicCost; 317 }; 318 319 } // end anonymous namespace 320 321 /// Figure out if the loop is worth full unrolling. 322 /// 323 /// Complete loop unrolling can make some loads constant, and we need to know 324 /// if that would expose any further optimization opportunities. This routine 325 /// estimates this optimization. It computes cost of unrolled loop 326 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 327 /// dynamic cost we mean that we won't count costs of blocks that are known not 328 /// to be executed (i.e. if we have a branch in the loop and we know that at the 329 /// given iteration its condition would be resolved to true, we won't add up the 330 /// cost of the 'false'-block). 331 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 332 /// the analysis failed (no benefits expected from the unrolling, or the loop is 333 /// too big to analyze), the returned value is None. 334 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 335 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 336 const SmallPtrSetImpl<const Value *> &EphValues, 337 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 338 // We want to be able to scale offsets by the trip count and add more offsets 339 // to them without checking for overflows, and we already don't want to 340 // analyze *massive* trip counts, so we force the max to be reasonably small. 341 assert(UnrollMaxIterationsCountToAnalyze < 342 (unsigned)(std::numeric_limits<int>::max() / 2) && 343 "The unroll iterations max is too large!"); 344 345 // Only analyze inner loops. We can't properly estimate cost of nested loops 346 // and we won't visit inner loops again anyway. 347 if (!L->empty()) 348 return None; 349 350 // Don't simulate loops with a big or unknown tripcount 351 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 352 TripCount > UnrollMaxIterationsCountToAnalyze) 353 return None; 354 355 SmallSetVector<BasicBlock *, 16> BBWorklist; 356 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 357 DenseMap<Value *, Constant *> SimplifiedValues; 358 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 359 360 // The estimated cost of the unrolled form of the loop. We try to estimate 361 // this by simplifying as much as we can while computing the estimate. 362 unsigned UnrolledCost = 0; 363 364 // We also track the estimated dynamic (that is, actually executed) cost in 365 // the rolled form. This helps identify cases when the savings from unrolling 366 // aren't just exposing dead control flows, but actual reduced dynamic 367 // instructions due to the simplifications which we expect to occur after 368 // unrolling. 369 unsigned RolledDynamicCost = 0; 370 371 // We track the simplification of each instruction in each iteration. We use 372 // this to recursively merge costs into the unrolled cost on-demand so that 373 // we don't count the cost of any dead code. This is essentially a map from 374 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 375 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 376 377 // A small worklist used to accumulate cost of instructions from each 378 // observable and reached root in the loop. 379 SmallVector<Instruction *, 16> CostWorklist; 380 381 // PHI-used worklist used between iterations while accumulating cost. 382 SmallVector<Instruction *, 4> PHIUsedList; 383 384 // Helper function to accumulate cost for instructions in the loop. 385 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 386 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 387 assert(CostWorklist.empty() && "Must start with an empty cost list"); 388 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 389 CostWorklist.push_back(&RootI); 390 for (;; --Iteration) { 391 do { 392 Instruction *I = CostWorklist.pop_back_val(); 393 394 // InstCostMap only uses I and Iteration as a key, the other two values 395 // don't matter here. 396 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 397 if (CostIter == InstCostMap.end()) 398 // If an input to a PHI node comes from a dead path through the loop 399 // we may have no cost data for it here. What that actually means is 400 // that it is free. 401 continue; 402 auto &Cost = *CostIter; 403 if (Cost.IsCounted) 404 // Already counted this instruction. 405 continue; 406 407 // Mark that we are counting the cost of this instruction now. 408 Cost.IsCounted = true; 409 410 // If this is a PHI node in the loop header, just add it to the PHI set. 411 if (auto *PhiI = dyn_cast<PHINode>(I)) 412 if (PhiI->getParent() == L->getHeader()) { 413 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 414 "inherently simplify during unrolling."); 415 if (Iteration == 0) 416 continue; 417 418 // Push the incoming value from the backedge into the PHI used list 419 // if it is an in-loop instruction. We'll use this to populate the 420 // cost worklist for the next iteration (as we count backwards). 421 if (auto *OpI = dyn_cast<Instruction>( 422 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 423 if (L->contains(OpI)) 424 PHIUsedList.push_back(OpI); 425 continue; 426 } 427 428 // First accumulate the cost of this instruction. 429 if (!Cost.IsFree) { 430 UnrolledCost += TTI.getUserCost(I); 431 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 432 << Iteration << "): "); 433 LLVM_DEBUG(I->dump()); 434 } 435 436 // We must count the cost of every operand which is not free, 437 // recursively. If we reach a loop PHI node, simply add it to the set 438 // to be considered on the next iteration (backwards!). 439 for (Value *Op : I->operands()) { 440 // Check whether this operand is free due to being a constant or 441 // outside the loop. 442 auto *OpI = dyn_cast<Instruction>(Op); 443 if (!OpI || !L->contains(OpI)) 444 continue; 445 446 // Otherwise accumulate its cost. 447 CostWorklist.push_back(OpI); 448 } 449 } while (!CostWorklist.empty()); 450 451 if (PHIUsedList.empty()) 452 // We've exhausted the search. 453 break; 454 455 assert(Iteration > 0 && 456 "Cannot track PHI-used values past the first iteration!"); 457 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 458 PHIUsedList.clear(); 459 } 460 }; 461 462 // Ensure that we don't violate the loop structure invariants relied on by 463 // this analysis. 464 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 465 assert(L->isLCSSAForm(DT) && 466 "Must have loops in LCSSA form to track live-out values."); 467 468 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 469 470 // Simulate execution of each iteration of the loop counting instructions, 471 // which would be simplified. 472 // Since the same load will take different values on different iterations, 473 // we literally have to go through all loop's iterations. 474 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 475 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 476 477 // Prepare for the iteration by collecting any simplified entry or backedge 478 // inputs. 479 for (Instruction &I : *L->getHeader()) { 480 auto *PHI = dyn_cast<PHINode>(&I); 481 if (!PHI) 482 break; 483 484 // The loop header PHI nodes must have exactly two input: one from the 485 // loop preheader and one from the loop latch. 486 assert( 487 PHI->getNumIncomingValues() == 2 && 488 "Must have an incoming value only for the preheader and the latch."); 489 490 Value *V = PHI->getIncomingValueForBlock( 491 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 492 Constant *C = dyn_cast<Constant>(V); 493 if (Iteration != 0 && !C) 494 C = SimplifiedValues.lookup(V); 495 if (C) 496 SimplifiedInputValues.push_back({PHI, C}); 497 } 498 499 // Now clear and re-populate the map for the next iteration. 500 SimplifiedValues.clear(); 501 while (!SimplifiedInputValues.empty()) 502 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 503 504 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 505 506 BBWorklist.clear(); 507 BBWorklist.insert(L->getHeader()); 508 // Note that we *must not* cache the size, this loop grows the worklist. 509 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 510 BasicBlock *BB = BBWorklist[Idx]; 511 512 // Visit all instructions in the given basic block and try to simplify 513 // it. We don't change the actual IR, just count optimization 514 // opportunities. 515 for (Instruction &I : *BB) { 516 // These won't get into the final code - don't even try calculating the 517 // cost for them. 518 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 519 continue; 520 521 // Track this instruction's expected baseline cost when executing the 522 // rolled loop form. 523 RolledDynamicCost += TTI.getUserCost(&I); 524 525 // Visit the instruction to analyze its loop cost after unrolling, 526 // and if the visitor returns true, mark the instruction as free after 527 // unrolling and continue. 528 bool IsFree = Analyzer.visit(I); 529 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 530 (unsigned)IsFree, 531 /*IsCounted*/ false}).second; 532 (void)Inserted; 533 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 534 535 if (IsFree) 536 continue; 537 538 // Can't properly model a cost of a call. 539 // FIXME: With a proper cost model we should be able to do it. 540 if (auto *CI = dyn_cast<CallInst>(&I)) { 541 const Function *Callee = CI->getCalledFunction(); 542 if (!Callee || TTI.isLoweredToCall(Callee)) { 543 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 544 return None; 545 } 546 } 547 548 // If the instruction might have a side-effect recursively account for 549 // the cost of it and all the instructions leading up to it. 550 if (I.mayHaveSideEffects()) 551 AddCostRecursively(I, Iteration); 552 553 // If unrolled body turns out to be too big, bail out. 554 if (UnrolledCost > MaxUnrolledLoopSize) { 555 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 556 << " UnrolledCost: " << UnrolledCost 557 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 558 << "\n"); 559 return None; 560 } 561 } 562 563 Instruction *TI = BB->getTerminator(); 564 565 // Add in the live successors by first checking whether we have terminator 566 // that may be simplified based on the values simplified by this call. 567 BasicBlock *KnownSucc = nullptr; 568 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 569 if (BI->isConditional()) { 570 if (Constant *SimpleCond = 571 SimplifiedValues.lookup(BI->getCondition())) { 572 // Just take the first successor if condition is undef 573 if (isa<UndefValue>(SimpleCond)) 574 KnownSucc = BI->getSuccessor(0); 575 else if (ConstantInt *SimpleCondVal = 576 dyn_cast<ConstantInt>(SimpleCond)) 577 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 578 } 579 } 580 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 581 if (Constant *SimpleCond = 582 SimplifiedValues.lookup(SI->getCondition())) { 583 // Just take the first successor if condition is undef 584 if (isa<UndefValue>(SimpleCond)) 585 KnownSucc = SI->getSuccessor(0); 586 else if (ConstantInt *SimpleCondVal = 587 dyn_cast<ConstantInt>(SimpleCond)) 588 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 589 } 590 } 591 if (KnownSucc) { 592 if (L->contains(KnownSucc)) 593 BBWorklist.insert(KnownSucc); 594 else 595 ExitWorklist.insert({BB, KnownSucc}); 596 continue; 597 } 598 599 // Add BB's successors to the worklist. 600 for (BasicBlock *Succ : successors(BB)) 601 if (L->contains(Succ)) 602 BBWorklist.insert(Succ); 603 else 604 ExitWorklist.insert({BB, Succ}); 605 AddCostRecursively(*TI, Iteration); 606 } 607 608 // If we found no optimization opportunities on the first iteration, we 609 // won't find them on later ones too. 610 if (UnrolledCost == RolledDynamicCost) { 611 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 612 << " UnrolledCost: " << UnrolledCost << "\n"); 613 return None; 614 } 615 } 616 617 while (!ExitWorklist.empty()) { 618 BasicBlock *ExitingBB, *ExitBB; 619 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 620 621 for (Instruction &I : *ExitBB) { 622 auto *PN = dyn_cast<PHINode>(&I); 623 if (!PN) 624 break; 625 626 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 627 if (auto *OpI = dyn_cast<Instruction>(Op)) 628 if (L->contains(OpI)) 629 AddCostRecursively(*OpI, TripCount - 1); 630 } 631 } 632 633 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 634 << "UnrolledCost: " << UnrolledCost << ", " 635 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 636 return {{UnrolledCost, RolledDynamicCost}}; 637 } 638 639 /// ApproximateLoopSize - Approximate the size of the loop. 640 unsigned llvm::ApproximateLoopSize( 641 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 642 const TargetTransformInfo &TTI, 643 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 644 CodeMetrics Metrics; 645 for (BasicBlock *BB : L->blocks()) 646 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 647 NumCalls = Metrics.NumInlineCandidates; 648 NotDuplicatable = Metrics.notDuplicatable; 649 Convergent = Metrics.convergent; 650 651 unsigned LoopSize = Metrics.NumInsts; 652 653 // Don't allow an estimate of size zero. This would allows unrolling of loops 654 // with huge iteration counts, which is a compile time problem even if it's 655 // not a problem for code quality. Also, the code using this size may assume 656 // that each loop has at least three instructions (likely a conditional 657 // branch, a comparison feeding that branch, and some kind of loop increment 658 // feeding that comparison instruction). 659 LoopSize = std::max(LoopSize, BEInsns + 1); 660 661 return LoopSize; 662 } 663 664 // Returns the loop hint metadata node with the given name (for example, 665 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 666 // returned. 667 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 668 if (MDNode *LoopID = L->getLoopID()) 669 return GetUnrollMetadata(LoopID, Name); 670 return nullptr; 671 } 672 673 // Returns true if the loop has an unroll(full) pragma. 674 static bool HasUnrollFullPragma(const Loop *L) { 675 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 676 } 677 678 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 679 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 680 static bool HasUnrollEnablePragma(const Loop *L) { 681 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 682 } 683 684 // Returns true if the loop has an runtime unroll(disable) pragma. 685 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 686 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 687 } 688 689 // If loop has an unroll_count pragma return the (necessarily 690 // positive) value from the pragma. Otherwise return 0. 691 static unsigned UnrollCountPragmaValue(const Loop *L) { 692 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 693 if (MD) { 694 assert(MD->getNumOperands() == 2 && 695 "Unroll count hint metadata should have two operands."); 696 unsigned Count = 697 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 698 assert(Count >= 1 && "Unroll count must be positive."); 699 return Count; 700 } 701 return 0; 702 } 703 704 // Computes the boosting factor for complete unrolling. 705 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 706 // be beneficial to fully unroll the loop even if unrolledcost is large. We 707 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 708 // the unroll threshold. 709 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 710 unsigned MaxPercentThresholdBoost) { 711 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 712 return 100; 713 else if (Cost.UnrolledCost != 0) 714 // The boosting factor is RolledDynamicCost / UnrolledCost 715 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 716 MaxPercentThresholdBoost); 717 else 718 return MaxPercentThresholdBoost; 719 } 720 721 // Returns loop size estimation for unrolled loop. 722 static uint64_t getUnrolledLoopSize( 723 unsigned LoopSize, 724 TargetTransformInfo::UnrollingPreferences &UP) { 725 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 726 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 727 } 728 729 // Returns true if unroll count was set explicitly. 730 // Calculates unroll count and writes it to UP.Count. 731 // Unless IgnoreUser is true, will also use metadata and command-line options 732 // that are specific to to the LoopUnroll pass (which, for instance, are 733 // irrelevant for the LoopUnrollAndJam pass). 734 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 735 // many LoopUnroll-specific options. The shared functionality should be 736 // refactored into it own function. 737 bool llvm::computeUnrollCount( 738 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 739 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 740 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 741 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 742 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 743 744 // Check for explicit Count. 745 // 1st priority is unroll count set by "unroll-count" option. 746 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 747 if (UserUnrollCount) { 748 UP.Count = UnrollCount; 749 UP.AllowExpensiveTripCount = true; 750 UP.Force = true; 751 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 752 return true; 753 } 754 755 // 2nd priority is unroll count set by pragma. 756 unsigned PragmaCount = UnrollCountPragmaValue(L); 757 if (PragmaCount > 0) { 758 UP.Count = PragmaCount; 759 UP.Runtime = true; 760 UP.AllowExpensiveTripCount = true; 761 UP.Force = true; 762 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 763 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 764 return true; 765 } 766 bool PragmaFullUnroll = HasUnrollFullPragma(L); 767 if (PragmaFullUnroll && TripCount != 0) { 768 UP.Count = TripCount; 769 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 770 return false; 771 } 772 773 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 774 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 775 PragmaEnableUnroll || UserUnrollCount; 776 777 if (ExplicitUnroll && TripCount != 0) { 778 // If the loop has an unrolling pragma, we want to be more aggressive with 779 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 780 // value which is larger than the default limits. 781 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 782 UP.PartialThreshold = 783 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 784 } 785 786 // 3rd priority is full unroll count. 787 // Full unroll makes sense only when TripCount or its upper bound could be 788 // statically calculated. 789 // Also we need to check if we exceed FullUnrollMaxCount. 790 // If using the upper bound to unroll, TripMultiple should be set to 1 because 791 // we do not know when loop may exit. 792 793 // We can unroll by the upper bound amount if it's generally allowed or if 794 // we know that the loop is executed either the upper bound or zero times. 795 // (MaxOrZero unrolling keeps only the first loop test, so the number of 796 // loop tests remains the same compared to the non-unrolled version, whereas 797 // the generic upper bound unrolling keeps all but the last loop test so the 798 // number of loop tests goes up which may end up being worse on targets with 799 // constrained branch predictor resources so is controlled by an option.) 800 // In addition we only unroll small upper bounds. 801 unsigned FullUnrollMaxTripCount = MaxTripCount; 802 if (!(UP.UpperBound || MaxOrZero) || 803 FullUnrollMaxTripCount > UnrollMaxUpperBound) 804 FullUnrollMaxTripCount = 0; 805 806 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 807 // compute the former when the latter is zero. 808 unsigned ExactTripCount = TripCount; 809 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 810 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 811 812 unsigned FullUnrollTripCount = 813 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 814 UP.Count = FullUnrollTripCount; 815 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 816 // When computing the unrolled size, note that BEInsns are not replicated 817 // like the rest of the loop body. 818 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 819 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 820 TripCount = FullUnrollTripCount; 821 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 822 return ExplicitUnroll; 823 } else { 824 // The loop isn't that small, but we still can fully unroll it if that 825 // helps to remove a significant number of instructions. 826 // To check that, run additional analysis on the loop. 827 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 828 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 829 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 830 unsigned Boost = 831 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 832 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 833 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 834 TripCount = FullUnrollTripCount; 835 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 836 return ExplicitUnroll; 837 } 838 } 839 } 840 } 841 842 // 4th priority is loop peeling. 843 computePeelCount(L, LoopSize, UP, TripCount, SE); 844 if (UP.PeelCount) { 845 UP.Runtime = false; 846 UP.Count = 1; 847 return ExplicitUnroll; 848 } 849 850 // 5th priority is partial unrolling. 851 // Try partial unroll only when TripCount could be statically calculated. 852 if (TripCount) { 853 UP.Partial |= ExplicitUnroll; 854 if (!UP.Partial) { 855 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 856 << "-unroll-allow-partial not given\n"); 857 UP.Count = 0; 858 return false; 859 } 860 if (UP.Count == 0) 861 UP.Count = TripCount; 862 if (UP.PartialThreshold != NoThreshold) { 863 // Reduce unroll count to be modulo of TripCount for partial unrolling. 864 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 865 UP.Count = 866 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 867 (LoopSize - UP.BEInsns); 868 if (UP.Count > UP.MaxCount) 869 UP.Count = UP.MaxCount; 870 while (UP.Count != 0 && TripCount % UP.Count != 0) 871 UP.Count--; 872 if (UP.AllowRemainder && UP.Count <= 1) { 873 // If there is no Count that is modulo of TripCount, set Count to 874 // largest power-of-two factor that satisfies the threshold limit. 875 // As we'll create fixup loop, do the type of unrolling only if 876 // remainder loop is allowed. 877 UP.Count = UP.DefaultUnrollRuntimeCount; 878 while (UP.Count != 0 && 879 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 880 UP.Count >>= 1; 881 } 882 if (UP.Count < 2) { 883 if (PragmaEnableUnroll) 884 ORE->emit([&]() { 885 return OptimizationRemarkMissed(DEBUG_TYPE, 886 "UnrollAsDirectedTooLarge", 887 L->getStartLoc(), L->getHeader()) 888 << "Unable to unroll loop as directed by unroll(enable) " 889 "pragma " 890 "because unrolled size is too large."; 891 }); 892 UP.Count = 0; 893 } 894 } else { 895 UP.Count = TripCount; 896 } 897 if (UP.Count > UP.MaxCount) 898 UP.Count = UP.MaxCount; 899 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 900 UP.Count != TripCount) 901 ORE->emit([&]() { 902 return OptimizationRemarkMissed(DEBUG_TYPE, 903 "FullUnrollAsDirectedTooLarge", 904 L->getStartLoc(), L->getHeader()) 905 << "Unable to fully unroll loop as directed by unroll pragma " 906 "because " 907 "unrolled size is too large."; 908 }); 909 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 910 << "\n"); 911 return ExplicitUnroll; 912 } 913 assert(TripCount == 0 && 914 "All cases when TripCount is constant should be covered here."); 915 if (PragmaFullUnroll) 916 ORE->emit([&]() { 917 return OptimizationRemarkMissed( 918 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 919 L->getStartLoc(), L->getHeader()) 920 << "Unable to fully unroll loop as directed by unroll(full) " 921 "pragma " 922 "because loop has a runtime trip count."; 923 }); 924 925 // 6th priority is runtime unrolling. 926 // Don't unroll a runtime trip count loop when it is disabled. 927 if (HasRuntimeUnrollDisablePragma(L)) { 928 UP.Count = 0; 929 return false; 930 } 931 932 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 933 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 934 UP.Count = 0; 935 return false; 936 } 937 938 // Check if the runtime trip count is too small when profile is available. 939 if (L->getHeader()->getParent()->hasProfileData()) { 940 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 941 if (*ProfileTripCount < FlatLoopTripCountThreshold) 942 return false; 943 else 944 UP.AllowExpensiveTripCount = true; 945 } 946 } 947 948 // Reduce count based on the type of unrolling and the threshold values. 949 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 950 if (!UP.Runtime) { 951 LLVM_DEBUG( 952 dbgs() << " will not try to unroll loop with runtime trip count " 953 << "-unroll-runtime not given\n"); 954 UP.Count = 0; 955 return false; 956 } 957 if (UP.Count == 0) 958 UP.Count = UP.DefaultUnrollRuntimeCount; 959 960 // Reduce unroll count to be the largest power-of-two factor of 961 // the original count which satisfies the threshold limit. 962 while (UP.Count != 0 && 963 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 964 UP.Count >>= 1; 965 966 #ifndef NDEBUG 967 unsigned OrigCount = UP.Count; 968 #endif 969 970 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 971 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 972 UP.Count >>= 1; 973 LLVM_DEBUG( 974 dbgs() << "Remainder loop is restricted (that could architecture " 975 "specific or because the loop contains a convergent " 976 "instruction), so unroll count must divide the trip " 977 "multiple, " 978 << TripMultiple << ". Reducing unroll count from " << OrigCount 979 << " to " << UP.Count << ".\n"); 980 981 using namespace ore; 982 983 if (PragmaCount > 0 && !UP.AllowRemainder) 984 ORE->emit([&]() { 985 return OptimizationRemarkMissed(DEBUG_TYPE, 986 "DifferentUnrollCountFromDirected", 987 L->getStartLoc(), L->getHeader()) 988 << "Unable to unroll loop the number of times directed by " 989 "unroll_count pragma because remainder loop is restricted " 990 "(that could architecture specific or because the loop " 991 "contains a convergent instruction) and so must have an " 992 "unroll " 993 "count that divides the loop trip multiple of " 994 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 995 << NV("UnrollCount", UP.Count) << " time(s)."; 996 }); 997 } 998 999 if (UP.Count > UP.MaxCount) 1000 UP.Count = UP.MaxCount; 1001 1002 if (MaxTripCount && UP.Count > MaxTripCount) 1003 UP.Count = MaxTripCount; 1004 1005 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1006 << "\n"); 1007 if (UP.Count < 2) 1008 UP.Count = 0; 1009 return ExplicitUnroll; 1010 } 1011 1012 static LoopUnrollResult tryToUnrollLoop( 1013 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1014 const TargetTransformInfo &TTI, AssumptionCache &AC, 1015 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1016 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1017 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1018 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1019 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1020 Optional<bool> ProvidedAllowPeeling, 1021 Optional<bool> ProvidedAllowProfileBasedPeeling, 1022 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1023 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1024 << L->getHeader()->getParent()->getName() << "] Loop %" 1025 << L->getHeader()->getName() << "\n"); 1026 TransformationMode TM = hasUnrollTransformation(L); 1027 if (TM & TM_Disable) 1028 return LoopUnrollResult::Unmodified; 1029 if (!L->isLoopSimplifyForm()) { 1030 LLVM_DEBUG( 1031 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1032 return LoopUnrollResult::Unmodified; 1033 } 1034 1035 // When automtatic unrolling is disabled, do not unroll unless overridden for 1036 // this loop. 1037 if (OnlyWhenForced && !(TM & TM_Enable)) 1038 return LoopUnrollResult::Unmodified; 1039 1040 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1041 unsigned NumInlineCandidates; 1042 bool NotDuplicatable; 1043 bool Convergent; 1044 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1045 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1046 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1047 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1048 ProvidedFullUnrollMaxCount); 1049 1050 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1051 // as threshold later on. 1052 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1053 !OptForSize) 1054 return LoopUnrollResult::Unmodified; 1055 1056 SmallPtrSet<const Value *, 32> EphValues; 1057 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1058 1059 unsigned LoopSize = 1060 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1061 TTI, EphValues, UP.BEInsns); 1062 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1063 if (NotDuplicatable) { 1064 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1065 << " instructions.\n"); 1066 return LoopUnrollResult::Unmodified; 1067 } 1068 1069 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1070 // later), to (fully) unroll loops, if it does not increase code size. 1071 if (OptForSize) 1072 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1073 1074 if (NumInlineCandidates != 0) { 1075 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1076 return LoopUnrollResult::Unmodified; 1077 } 1078 1079 // Find trip count and trip multiple if count is not available 1080 unsigned TripCount = 0; 1081 unsigned TripMultiple = 1; 1082 // If there are multiple exiting blocks but one of them is the latch, use the 1083 // latch for the trip count estimation. Otherwise insist on a single exiting 1084 // block for the trip count estimation. 1085 BasicBlock *ExitingBlock = L->getLoopLatch(); 1086 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1087 ExitingBlock = L->getExitingBlock(); 1088 if (ExitingBlock) { 1089 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1090 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1091 } 1092 1093 // If the loop contains a convergent operation, the prelude we'd add 1094 // to do the first few instructions before we hit the unrolled loop 1095 // is unsafe -- it adds a control-flow dependency to the convergent 1096 // operation. Therefore restrict remainder loop (try unrollig without). 1097 // 1098 // TODO: This is quite conservative. In practice, convergent_op() 1099 // is likely to be called unconditionally in the loop. In this 1100 // case, the program would be ill-formed (on most architectures) 1101 // unless n were the same on all threads in a thread group. 1102 // Assuming n is the same on all threads, any kind of unrolling is 1103 // safe. But currently llvm's notion of convergence isn't powerful 1104 // enough to express this. 1105 if (Convergent) 1106 UP.AllowRemainder = false; 1107 1108 // Try to find the trip count upper bound if we cannot find the exact trip 1109 // count. 1110 unsigned MaxTripCount = 0; 1111 bool MaxOrZero = false; 1112 if (!TripCount) { 1113 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1114 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1115 } 1116 1117 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1118 // fully unroll the loop. 1119 bool UseUpperBound = false; 1120 bool IsCountSetExplicitly = computeUnrollCount( 1121 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1122 TripMultiple, LoopSize, UP, UseUpperBound); 1123 if (!UP.Count) 1124 return LoopUnrollResult::Unmodified; 1125 // Unroll factor (Count) must be less or equal to TripCount. 1126 if (TripCount && UP.Count > TripCount) 1127 UP.Count = TripCount; 1128 1129 // Save loop properties before it is transformed. 1130 MDNode *OrigLoopID = L->getLoopID(); 1131 1132 // Unroll the loop. 1133 Loop *RemainderLoop = nullptr; 1134 LoopUnrollResult UnrollResult = UnrollLoop( 1135 L, 1136 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1137 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1138 ForgetAllSCEV}, 1139 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1140 if (UnrollResult == LoopUnrollResult::Unmodified) 1141 return LoopUnrollResult::Unmodified; 1142 1143 if (RemainderLoop) { 1144 Optional<MDNode *> RemainderLoopID = 1145 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1146 LLVMLoopUnrollFollowupRemainder}); 1147 if (RemainderLoopID.hasValue()) 1148 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1149 } 1150 1151 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1152 Optional<MDNode *> NewLoopID = 1153 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1154 LLVMLoopUnrollFollowupUnrolled}); 1155 if (NewLoopID.hasValue()) { 1156 L->setLoopID(NewLoopID.getValue()); 1157 1158 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1159 // explicitly. 1160 return UnrollResult; 1161 } 1162 } 1163 1164 // If loop has an unroll count pragma or unrolled by explicitly set count 1165 // mark loop as unrolled to prevent unrolling beyond that requested. 1166 // If the loop was peeled, we already "used up" the profile information 1167 // we had, so we don't want to unroll or peel again. 1168 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1169 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1170 L->setLoopAlreadyUnrolled(); 1171 1172 return UnrollResult; 1173 } 1174 1175 namespace { 1176 1177 class LoopUnroll : public LoopPass { 1178 public: 1179 static char ID; // Pass ID, replacement for typeid 1180 1181 int OptLevel; 1182 1183 /// If false, use a cost model to determine whether unrolling of a loop is 1184 /// profitable. If true, only loops that explicitly request unrolling via 1185 /// metadata are considered. All other loops are skipped. 1186 bool OnlyWhenForced; 1187 1188 /// If false, when SCEV is invalidated, only forget everything in the 1189 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1190 /// Otherwise, forgetAllLoops and rebuild when needed next. 1191 bool ForgetAllSCEV; 1192 1193 Optional<unsigned> ProvidedCount; 1194 Optional<unsigned> ProvidedThreshold; 1195 Optional<bool> ProvidedAllowPartial; 1196 Optional<bool> ProvidedRuntime; 1197 Optional<bool> ProvidedUpperBound; 1198 Optional<bool> ProvidedAllowPeeling; 1199 Optional<bool> ProvidedAllowProfileBasedPeeling; 1200 Optional<unsigned> ProvidedFullUnrollMaxCount; 1201 1202 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1203 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1204 Optional<unsigned> Count = None, 1205 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1206 Optional<bool> UpperBound = None, 1207 Optional<bool> AllowPeeling = None, 1208 Optional<bool> AllowProfileBasedPeeling = None, 1209 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1210 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1211 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1212 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1213 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1214 ProvidedAllowPeeling(AllowPeeling), 1215 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1216 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1217 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1218 } 1219 1220 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1221 if (skipLoop(L)) 1222 return false; 1223 1224 Function &F = *L->getHeader()->getParent(); 1225 1226 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1227 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1228 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1229 const TargetTransformInfo &TTI = 1230 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1231 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1232 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1233 // pass. Function analyses need to be preserved across loop transformations 1234 // but ORE cannot be preserved (see comment before the pass definition). 1235 OptimizationRemarkEmitter ORE(&F); 1236 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1237 1238 LoopUnrollResult Result = tryToUnrollLoop( 1239 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1240 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1241 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1242 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1243 ProvidedFullUnrollMaxCount); 1244 1245 if (Result == LoopUnrollResult::FullyUnrolled) 1246 LPM.markLoopAsDeleted(*L); 1247 1248 return Result != LoopUnrollResult::Unmodified; 1249 } 1250 1251 /// This transformation requires natural loop information & requires that 1252 /// loop preheaders be inserted into the CFG... 1253 void getAnalysisUsage(AnalysisUsage &AU) const override { 1254 AU.addRequired<AssumptionCacheTracker>(); 1255 AU.addRequired<TargetTransformInfoWrapperPass>(); 1256 // FIXME: Loop passes are required to preserve domtree, and for now we just 1257 // recreate dom info if anything gets unrolled. 1258 getLoopAnalysisUsage(AU); 1259 } 1260 }; 1261 1262 } // end anonymous namespace 1263 1264 char LoopUnroll::ID = 0; 1265 1266 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1268 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1269 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1270 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1271 1272 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1273 bool ForgetAllSCEV, int Threshold, int Count, 1274 int AllowPartial, int Runtime, int UpperBound, 1275 int AllowPeeling) { 1276 // TODO: It would make more sense for this function to take the optionals 1277 // directly, but that's dangerous since it would silently break out of tree 1278 // callers. 1279 return new LoopUnroll( 1280 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1281 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1282 Count == -1 ? None : Optional<unsigned>(Count), 1283 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1284 Runtime == -1 ? None : Optional<bool>(Runtime), 1285 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1286 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1287 } 1288 1289 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1290 bool ForgetAllSCEV) { 1291 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1292 0, 0, 0, 0); 1293 } 1294 1295 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1296 LoopStandardAnalysisResults &AR, 1297 LPMUpdater &Updater) { 1298 const auto &FAM = 1299 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1300 Function *F = L.getHeader()->getParent(); 1301 1302 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1303 // FIXME: This should probably be optional rather than required. 1304 if (!ORE) 1305 report_fatal_error( 1306 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1307 "cached at a higher level"); 1308 1309 // Keep track of the previous loop structure so we can identify new loops 1310 // created by unrolling. 1311 Loop *ParentL = L.getParentLoop(); 1312 SmallPtrSet<Loop *, 4> OldLoops; 1313 if (ParentL) 1314 OldLoops.insert(ParentL->begin(), ParentL->end()); 1315 else 1316 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1317 1318 std::string LoopName = L.getName(); 1319 1320 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1321 /*BFI*/ nullptr, /*PSI*/ nullptr, 1322 /*PreserveLCSSA*/ true, OptLevel, 1323 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1324 /*Threshold*/ None, /*AllowPartial*/ false, 1325 /*Runtime*/ false, /*UpperBound*/ false, 1326 /*AllowPeeling*/ false, 1327 /*AllowProfileBasedPeeling*/ false, 1328 /*FullUnrollMaxCount*/ None) != 1329 LoopUnrollResult::Unmodified; 1330 if (!Changed) 1331 return PreservedAnalyses::all(); 1332 1333 // The parent must not be damaged by unrolling! 1334 #ifndef NDEBUG 1335 if (ParentL) 1336 ParentL->verifyLoop(); 1337 #endif 1338 1339 // Unrolling can do several things to introduce new loops into a loop nest: 1340 // - Full unrolling clones child loops within the current loop but then 1341 // removes the current loop making all of the children appear to be new 1342 // sibling loops. 1343 // 1344 // When a new loop appears as a sibling loop after fully unrolling, 1345 // its nesting structure has fundamentally changed and we want to revisit 1346 // it to reflect that. 1347 // 1348 // When unrolling has removed the current loop, we need to tell the 1349 // infrastructure that it is gone. 1350 // 1351 // Finally, we support a debugging/testing mode where we revisit child loops 1352 // as well. These are not expected to require further optimizations as either 1353 // they or the loop they were cloned from have been directly visited already. 1354 // But the debugging mode allows us to check this assumption. 1355 bool IsCurrentLoopValid = false; 1356 SmallVector<Loop *, 4> SibLoops; 1357 if (ParentL) 1358 SibLoops.append(ParentL->begin(), ParentL->end()); 1359 else 1360 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1361 erase_if(SibLoops, [&](Loop *SibLoop) { 1362 if (SibLoop == &L) { 1363 IsCurrentLoopValid = true; 1364 return true; 1365 } 1366 1367 // Otherwise erase the loop from the list if it was in the old loops. 1368 return OldLoops.count(SibLoop) != 0; 1369 }); 1370 Updater.addSiblingLoops(SibLoops); 1371 1372 if (!IsCurrentLoopValid) { 1373 Updater.markLoopAsDeleted(L, LoopName); 1374 } else { 1375 // We can only walk child loops if the current loop remained valid. 1376 if (UnrollRevisitChildLoops) { 1377 // Walk *all* of the child loops. 1378 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1379 Updater.addChildLoops(ChildLoops); 1380 } 1381 } 1382 1383 return getLoopPassPreservedAnalyses(); 1384 } 1385 1386 template <typename RangeT> 1387 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1388 SmallVector<Loop *, 8> Worklist; 1389 // We use an internal worklist to build up the preorder traversal without 1390 // recursion. 1391 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1392 1393 for (Loop *RootL : Loops) { 1394 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1395 assert(PreOrderWorklist.empty() && 1396 "Must start with an empty preorder walk worklist."); 1397 PreOrderWorklist.push_back(RootL); 1398 do { 1399 Loop *L = PreOrderWorklist.pop_back_val(); 1400 PreOrderWorklist.append(L->begin(), L->end()); 1401 PreOrderLoops.push_back(L); 1402 } while (!PreOrderWorklist.empty()); 1403 1404 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1405 PreOrderLoops.clear(); 1406 } 1407 return Worklist; 1408 } 1409 1410 PreservedAnalyses LoopUnrollPass::run(Function &F, 1411 FunctionAnalysisManager &AM) { 1412 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1413 auto &LI = AM.getResult<LoopAnalysis>(F); 1414 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1415 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1416 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1417 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1418 1419 LoopAnalysisManager *LAM = nullptr; 1420 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1421 LAM = &LAMProxy->getManager(); 1422 1423 const ModuleAnalysisManager &MAM = 1424 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1425 ProfileSummaryInfo *PSI = 1426 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1427 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1428 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1429 1430 bool Changed = false; 1431 1432 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1433 // Since simplification may add new inner loops, it has to run before the 1434 // legality and profitability checks. This means running the loop unroller 1435 // will simplify all loops, regardless of whether anything end up being 1436 // unrolled. 1437 for (auto &L : LI) { 1438 Changed |= 1439 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1440 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1441 } 1442 1443 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1444 1445 while (!Worklist.empty()) { 1446 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1447 // from back to front so that we work forward across the CFG, which 1448 // for unrolling is only needed to get optimization remarks emitted in 1449 // a forward order. 1450 Loop &L = *Worklist.pop_back_val(); 1451 #ifndef NDEBUG 1452 Loop *ParentL = L.getParentLoop(); 1453 #endif 1454 1455 // Check if the profile summary indicates that the profiled application 1456 // has a huge working set size, in which case we disable peeling to avoid 1457 // bloating it further. 1458 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1459 if (PSI && PSI->hasHugeWorkingSetSize()) 1460 LocalAllowPeeling = false; 1461 std::string LoopName = L.getName(); 1462 // The API here is quite complex to call and we allow to select some 1463 // flavors of unrolling during construction time (by setting UnrollOpts). 1464 LoopUnrollResult Result = tryToUnrollLoop( 1465 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1466 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1467 UnrollOpts.ForgetSCEV, /*Count*/ None, 1468 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1469 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1470 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1471 Changed |= Result != LoopUnrollResult::Unmodified; 1472 1473 // The parent must not be damaged by unrolling! 1474 #ifndef NDEBUG 1475 if (Result != LoopUnrollResult::Unmodified && ParentL) 1476 ParentL->verifyLoop(); 1477 #endif 1478 1479 // Clear any cached analysis results for L if we removed it completely. 1480 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1481 LAM->clear(L, LoopName); 1482 } 1483 1484 if (!Changed) 1485 return PreservedAnalyses::all(); 1486 1487 return getLoopPassPreservedAnalyses(); 1488 } 1489