1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop unroller. It works best when loops have 11 // been canonicalized by the -indvars pass, allowing it to determine the trip 12 // counts of loops easily. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/ScalarEvolution.h" 22 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DiagnosticInfo.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/InstVisitor.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/UnrollLoop.h" 34 #include <climits> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-unroll" 39 40 static cl::opt<unsigned> 41 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, 42 cl::desc("The cut-off point for automatic loop unrolling")); 43 44 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 45 "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, 46 cl::desc("Don't allow loop unrolling to simulate more than this number of" 47 "iterations when checking full unroll profitability")); 48 49 static cl::opt<unsigned> UnrollMinPercentOfOptimized( 50 "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden, 51 cl::desc("If complete unrolling could trigger further optimizations, and, " 52 "by that, remove the given percent of instructions, perform the " 53 "complete unroll even if it's beyond the threshold")); 54 55 static cl::opt<unsigned> UnrollAbsoluteThreshold( 56 "unroll-absolute-threshold", cl::init(2000), cl::Hidden, 57 cl::desc("Don't unroll if the unrolled size is bigger than this threshold," 58 " even if we can remove big portion of instructions later.")); 59 60 static cl::opt<unsigned> 61 UnrollCount("unroll-count", cl::init(0), cl::Hidden, 62 cl::desc("Use this unroll count for all loops including those with " 63 "unroll_count pragma values, for testing purposes")); 64 65 static cl::opt<bool> 66 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, 67 cl::desc("Allows loops to be partially unrolled until " 68 "-unroll-threshold loop size is reached.")); 69 70 static cl::opt<bool> 71 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, 72 cl::desc("Unroll loops with run-time trip counts")); 73 74 static cl::opt<unsigned> 75 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 76 cl::desc("Unrolled size limit for loops with an unroll(full) or " 77 "unroll_count pragma.")); 78 79 namespace { 80 class LoopUnroll : public LoopPass { 81 public: 82 static char ID; // Pass ID, replacement for typeid 83 LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { 84 CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); 85 CurrentAbsoluteThreshold = UnrollAbsoluteThreshold; 86 CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized; 87 CurrentCount = (C == -1) ? UnrollCount : unsigned(C); 88 CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; 89 CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; 90 91 UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); 92 UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0); 93 UserPercentOfOptimized = 94 (UnrollMinPercentOfOptimized.getNumOccurrences() > 0); 95 UserAllowPartial = (P != -1) || 96 (UnrollAllowPartial.getNumOccurrences() > 0); 97 UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); 98 UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); 99 100 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 101 } 102 103 /// A magic value for use with the Threshold parameter to indicate 104 /// that the loop unroll should be performed regardless of how much 105 /// code expansion would result. 106 static const unsigned NoThreshold = UINT_MAX; 107 108 // Threshold to use when optsize is specified (and there is no 109 // explicit -unroll-threshold). 110 static const unsigned OptSizeUnrollThreshold = 50; 111 112 // Default unroll count for loops with run-time trip count if 113 // -unroll-count is not set 114 static const unsigned UnrollRuntimeCount = 8; 115 116 unsigned CurrentCount; 117 unsigned CurrentThreshold; 118 unsigned CurrentAbsoluteThreshold; 119 unsigned CurrentMinPercentOfOptimized; 120 bool CurrentAllowPartial; 121 bool CurrentRuntime; 122 bool UserCount; // CurrentCount is user-specified. 123 bool UserThreshold; // CurrentThreshold is user-specified. 124 bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is 125 // user-specified. 126 bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is 127 // user-specified. 128 bool UserAllowPartial; // CurrentAllowPartial is user-specified. 129 bool UserRuntime; // CurrentRuntime is user-specified. 130 131 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 132 133 /// This transformation requires natural loop information & requires that 134 /// loop preheaders be inserted into the CFG... 135 /// 136 void getAnalysisUsage(AnalysisUsage &AU) const override { 137 AU.addRequired<AssumptionCacheTracker>(); 138 AU.addRequired<LoopInfoWrapperPass>(); 139 AU.addPreserved<LoopInfoWrapperPass>(); 140 AU.addRequiredID(LoopSimplifyID); 141 AU.addPreservedID(LoopSimplifyID); 142 AU.addRequiredID(LCSSAID); 143 AU.addPreservedID(LCSSAID); 144 AU.addRequired<ScalarEvolution>(); 145 AU.addPreserved<ScalarEvolution>(); 146 AU.addRequired<TargetTransformInfoWrapperPass>(); 147 // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. 148 // If loop unroll does not preserve dom info then LCSSA pass on next 149 // loop will receive invalid dom info. 150 // For now, recreate dom info, if loop is unrolled. 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 } 153 154 // Fill in the UnrollingPreferences parameter with values from the 155 // TargetTransformationInfo. 156 void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, 157 TargetTransformInfo::UnrollingPreferences &UP) { 158 UP.Threshold = CurrentThreshold; 159 UP.AbsoluteThreshold = CurrentAbsoluteThreshold; 160 UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized; 161 UP.OptSizeThreshold = OptSizeUnrollThreshold; 162 UP.PartialThreshold = CurrentThreshold; 163 UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; 164 UP.Count = CurrentCount; 165 UP.MaxCount = UINT_MAX; 166 UP.Partial = CurrentAllowPartial; 167 UP.Runtime = CurrentRuntime; 168 UP.AllowExpensiveTripCount = false; 169 TTI.getUnrollingPreferences(L, UP); 170 } 171 172 // Select and return an unroll count based on parameters from 173 // user, unroll preferences, unroll pragmas, or a heuristic. 174 // SetExplicitly is set to true if the unroll count is is set by 175 // the user or a pragma rather than selected heuristically. 176 unsigned 177 selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 178 unsigned PragmaCount, 179 const TargetTransformInfo::UnrollingPreferences &UP, 180 bool &SetExplicitly); 181 182 // Select threshold values used to limit unrolling based on a 183 // total unrolled size. Parameters Threshold and PartialThreshold 184 // are set to the maximum unrolled size for fully and partially 185 // unrolled loops respectively. 186 void selectThresholds(const Loop *L, bool HasPragma, 187 const TargetTransformInfo::UnrollingPreferences &UP, 188 unsigned &Threshold, unsigned &PartialThreshold, 189 unsigned &AbsoluteThreshold, 190 unsigned &PercentOfOptimizedForCompleteUnroll) { 191 // Determine the current unrolling threshold. While this is 192 // normally set from UnrollThreshold, it is overridden to a 193 // smaller value if the current function is marked as 194 // optimize-for-size, and the unroll threshold was not user 195 // specified. 196 Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; 197 PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; 198 AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold 199 : UP.AbsoluteThreshold; 200 PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized 201 ? CurrentMinPercentOfOptimized 202 : UP.MinPercentOfOptimized; 203 204 if (!UserThreshold && 205 L->getHeader()->getParent()->hasFnAttribute( 206 Attribute::OptimizeForSize)) { 207 Threshold = UP.OptSizeThreshold; 208 PartialThreshold = UP.PartialOptSizeThreshold; 209 } 210 if (HasPragma) { 211 // If the loop has an unrolling pragma, we want to be more 212 // aggressive with unrolling limits. Set thresholds to at 213 // least the PragmaTheshold value which is larger than the 214 // default limits. 215 if (Threshold != NoThreshold) 216 Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold); 217 if (PartialThreshold != NoThreshold) 218 PartialThreshold = 219 std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold); 220 } 221 } 222 bool canUnrollCompletely(Loop *L, unsigned Threshold, 223 unsigned AbsoluteThreshold, uint64_t UnrolledSize, 224 unsigned NumberOfOptimizedInstructions, 225 unsigned PercentOfOptimizedForCompleteUnroll); 226 }; 227 } 228 229 char LoopUnroll::ID = 0; 230 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 231 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 232 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 233 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 235 INITIALIZE_PASS_DEPENDENCY(LCSSA) 236 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 237 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 238 239 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, 240 int Runtime) { 241 return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); 242 } 243 244 Pass *llvm::createSimpleLoopUnrollPass() { 245 return llvm::createLoopUnrollPass(-1, -1, 0, 0); 246 } 247 248 namespace { 249 /// \brief SCEV expressions visitor used for finding expressions that would 250 /// become constants if the loop L is unrolled. 251 struct FindConstantPointers { 252 /// \brief Shows whether the expression is ConstAddress+Constant or not. 253 bool IndexIsConstant; 254 255 /// \brief Used for filtering out SCEV expressions with two or more AddRec 256 /// subexpressions. 257 /// 258 /// Used to filter out complicated SCEV expressions, having several AddRec 259 /// sub-expressions. We don't handle them, because unrolling one loop 260 /// would help to replace only one of these inductions with a constant, and 261 /// consequently, the expression would remain non-constant. 262 bool HaveSeenAR; 263 264 /// \brief If the SCEV expression becomes ConstAddress+Constant, this value 265 /// holds ConstAddress. Otherwise, it's nullptr. 266 Value *BaseAddress; 267 268 /// \brief The loop, which we try to completely unroll. 269 const Loop *L; 270 271 ScalarEvolution &SE; 272 273 FindConstantPointers(const Loop *L, ScalarEvolution &SE) 274 : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr), 275 L(L), SE(SE) {} 276 277 /// Examine the given expression S and figure out, if it can be a part of an 278 /// expression, that could become a constant after the loop is unrolled. 279 /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis 280 /// results. 281 /// \returns true if we need to examine subexpressions, and false otherwise. 282 bool follow(const SCEV *S) { 283 if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) { 284 // We've reached the leaf node of SCEV, it's most probably just a 285 // variable. 286 // If it's the only one SCEV-subexpression, then it might be a base 287 // address of an index expression. 288 // If we've already recorded base address, then just give up on this SCEV 289 // - it's too complicated. 290 if (BaseAddress) { 291 IndexIsConstant = false; 292 return false; 293 } 294 BaseAddress = SC->getValue(); 295 return false; 296 } 297 if (isa<SCEVConstant>(S)) 298 return false; 299 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 300 // If the current SCEV expression is AddRec, and its loop isn't the loop 301 // we are about to unroll, then we won't get a constant address after 302 // unrolling, and thus, won't be able to eliminate the load. 303 if (AR->getLoop() != L) { 304 IndexIsConstant = false; 305 return false; 306 } 307 // We don't handle multiple AddRecs here, so give up in this case. 308 if (HaveSeenAR) { 309 IndexIsConstant = false; 310 return false; 311 } 312 HaveSeenAR = true; 313 } 314 315 // Continue traversal. 316 return true; 317 } 318 bool isDone() const { return !IndexIsConstant; } 319 }; 320 } // End anonymous namespace. 321 322 namespace { 323 /// \brief A cache of SCEV results used to optimize repeated queries to SCEV on 324 /// the same set of instructions. 325 /// 326 /// The primary cost this saves is the cost of checking the validity of a SCEV 327 /// every time it is looked up. However, in some cases we can provide a reduced 328 /// and especially useful model for an instruction based upon SCEV that is 329 /// non-trivial to compute but more useful to clients. 330 class SCEVCache { 331 public: 332 /// \brief Struct to represent a GEP whose start and step are known fixed 333 /// offsets from a base address due to SCEV's analysis. 334 struct GEPDescriptor { 335 Value *BaseAddr = nullptr; 336 unsigned Start = 0; 337 unsigned Step = 0; 338 }; 339 340 Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP); 341 342 SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {} 343 344 private: 345 const Loop &L; 346 ScalarEvolution &SE; 347 348 SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors; 349 }; 350 } // End anonymous namespace. 351 352 /// \brief Get a simplified descriptor for a GEP instruction. 353 /// 354 /// Where possible, this produces a simplified descriptor for a GEP instruction 355 /// using SCEV analysis of the containing loop. If this isn't possible, it 356 /// returns an empty optional. 357 /// 358 /// The model is a base address, an initial offset, and a per-iteration step. 359 /// This fits very common patterns of GEPs inside loops and is something we can 360 /// use to simulate the behavior of a particular iteration of a loop. 361 /// 362 /// This is a cached interface. The first call may do non-trivial work to 363 /// compute the result, but all subsequent calls will return a fast answer 364 /// based on a cached result. This includes caching negative results. 365 Optional<SCEVCache::GEPDescriptor> 366 SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) { 367 decltype(GEPDescriptors)::iterator It; 368 bool Inserted; 369 370 std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}}); 371 372 if (!Inserted) { 373 if (!It->second.BaseAddr) 374 return None; 375 376 return It->second; 377 } 378 379 // We've inserted a new record into the cache, so compute the GEP descriptor 380 // if possible. 381 Value *V = cast<Value>(GEP); 382 if (!SE.isSCEVable(V->getType())) 383 return None; 384 const SCEV *S = SE.getSCEV(V); 385 386 // FIXME: It'd be nice if the worklist and set used by the 387 // SCEVTraversal could be re-used between loop iterations, but the 388 // interface doesn't support that. There is no way to clear the visited 389 // sets between uses. 390 FindConstantPointers Visitor(&L, SE); 391 SCEVTraversal<FindConstantPointers> T(Visitor); 392 393 // Try to find (BaseAddress+Step+Offset) tuple. 394 // If succeeded, save it to the cache - it might help in folding 395 // loads. 396 T.visitAll(S); 397 if (!Visitor.IndexIsConstant || !Visitor.BaseAddress) 398 return None; 399 400 const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress); 401 if (BaseAddrSE->getType() != S->getType()) 402 return None; 403 const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); 404 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE); 405 406 if (!AR) 407 return None; 408 409 const SCEVConstant *StepSE = 410 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)); 411 const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()); 412 if (!StepSE || !StartSE) 413 return None; 414 415 // Check and skip caching if doing so would require lots of bits to 416 // avoid overflow. 417 APInt Start = StartSE->getValue()->getValue(); 418 APInt Step = StepSE->getValue()->getValue(); 419 if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32) 420 return None; 421 422 // We found a cacheable SCEV model for the GEP. 423 It->second.BaseAddr = Visitor.BaseAddress; 424 It->second.Start = Start.getLimitedValue(); 425 It->second.Step = Step.getLimitedValue(); 426 return It->second; 427 } 428 429 namespace { 430 // This class is used to get an estimate of the optimization effects that we 431 // could get from complete loop unrolling. It comes from the fact that some 432 // loads might be replaced with concrete constant values and that could trigger 433 // a chain of instruction simplifications. 434 // 435 // E.g. we might have: 436 // int a[] = {0, 1, 0}; 437 // v = 0; 438 // for (i = 0; i < 3; i ++) 439 // v += b[i]*a[i]; 440 // If we completely unroll the loop, we would get: 441 // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] 442 // Which then will be simplified to: 443 // v = b[0]* 0 + b[1]* 1 + b[2]* 0 444 // And finally: 445 // v = b[1] 446 class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> { 447 typedef InstVisitor<UnrolledInstAnalyzer, bool> Base; 448 friend class InstVisitor<UnrolledInstAnalyzer, bool>; 449 450 public: 451 UnrolledInstAnalyzer(unsigned Iteration, 452 DenseMap<Value *, Constant *> &SimplifiedValues, 453 SCEVCache &SC) 454 : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {} 455 456 // Allow access to the initial visit method. 457 using Base::visit; 458 459 private: 460 /// \brief Number of currently simulated iteration. 461 /// 462 /// If an expression is ConstAddress+Constant, then the Constant is 463 /// Start + Iteration*Step, where Start and Step could be obtained from 464 /// SCEVGEPCache. 465 unsigned Iteration; 466 467 // While we walk the loop instructions, we we build up and maintain a mapping 468 // of simplified values specific to this iteration. The idea is to propagate 469 // any special information we have about loads that can be replaced with 470 // constants after complete unrolling, and account for likely simplifications 471 // post-unrolling. 472 DenseMap<Value *, Constant *> &SimplifiedValues; 473 474 // We use a cache to wrap all our SCEV queries. 475 SCEVCache &SC; 476 477 /// Base case for the instruction visitor. 478 bool visitInstruction(Instruction &I) { return false; }; 479 480 /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt. 481 482 /// Try to simplify binary operator I. 483 /// 484 /// TODO: Probaly it's worth to hoist the code for estimating the 485 /// simplifications effects to a separate class, since we have a very similar 486 /// code in InlineCost already. 487 bool visitBinaryOperator(BinaryOperator &I) { 488 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 489 if (!isa<Constant>(LHS)) 490 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) 491 LHS = SimpleLHS; 492 if (!isa<Constant>(RHS)) 493 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) 494 RHS = SimpleRHS; 495 Value *SimpleV = nullptr; 496 const DataLayout &DL = I.getModule()->getDataLayout(); 497 if (auto FI = dyn_cast<FPMathOperator>(&I)) 498 SimpleV = 499 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); 500 else 501 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); 502 503 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 504 SimplifiedValues[&I] = C; 505 506 return SimpleV; 507 } 508 509 /// Try to fold load I. 510 bool visitLoad(LoadInst &I) { 511 Value *AddrOp = I.getPointerOperand(); 512 if (!isa<Constant>(AddrOp)) 513 if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp)) 514 AddrOp = SimplifiedAddrOp; 515 516 auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp); 517 if (!GEP) 518 return false; 519 auto OptionalGEPDesc = SC.getGEPDescriptor(GEP); 520 if (!OptionalGEPDesc) 521 return false; 522 523 auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr); 524 // We're only interested in loads that can be completely folded to a 525 // constant. 526 if (!GV || !GV->hasInitializer()) 527 return false; 528 529 ConstantDataSequential *CDS = 530 dyn_cast<ConstantDataSequential>(GV->getInitializer()); 531 if (!CDS) 532 return false; 533 534 // This calculation should never overflow because we bound Iteration quite 535 // low and both the start and step are 32-bit integers. We use signed 536 // integers so that UBSan will catch if a bug sneaks into the code. 537 int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; 538 int64_t Index = ((int64_t)OptionalGEPDesc->Start + 539 (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) / 540 ElemSize; 541 if (Index >= CDS->getNumElements()) { 542 // FIXME: For now we conservatively ignore out of bound accesses, but 543 // we're allowed to perform the optimization in this case. 544 return false; 545 } 546 547 Constant *CV = CDS->getElementAsConstant(Index); 548 assert(CV && "Constant expected."); 549 SimplifiedValues[&I] = CV; 550 551 return true; 552 } 553 }; 554 } // namespace 555 556 557 namespace { 558 struct EstimatedUnrollCost { 559 /// \brief Count the number of optimized instructions. 560 unsigned NumberOfOptimizedInstructions; 561 562 /// \brief Count the total number of instructions. 563 unsigned UnrolledLoopSize; 564 }; 565 } 566 567 /// \brief Figure out if the loop is worth full unrolling. 568 /// 569 /// Complete loop unrolling can make some loads constant, and we need to know 570 /// if that would expose any further optimization opportunities. This routine 571 /// estimates this optimization. It assigns computed number of instructions, 572 /// that potentially might be optimized away, to 573 /// NumberOfOptimizedInstructions, and total number of instructions to 574 /// UnrolledLoopSize (not counting blocks that won't be reached, if we were 575 /// able to compute the condition). 576 /// \returns false if we can't analyze the loop, or if we discovered that 577 /// unrolling won't give anything. Otherwise, returns true. 578 Optional<EstimatedUnrollCost> 579 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE, 580 const TargetTransformInfo &TTI, 581 unsigned MaxUnrolledLoopSize) { 582 // We want to be able to scale offsets by the trip count and add more offsets 583 // to them without checking for overflows, and we already don't want to 584 // analyze *massive* trip counts, so we force the max to be reasonably small. 585 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && 586 "The unroll iterations max is too large!"); 587 588 // Don't simulate loops with a big or unknown tripcount 589 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 590 TripCount > UnrollMaxIterationsCountToAnalyze) 591 return None; 592 593 SmallSetVector<BasicBlock *, 16> BBWorklist; 594 DenseMap<Value *, Constant *> SimplifiedValues; 595 596 // Use a cache to access SCEV expressions so that we don't pay the cost on 597 // each iteration. This cache is lazily self-populating. 598 SCEVCache SC(*L, SE); 599 600 unsigned NumberOfOptimizedInstructions = 0; 601 unsigned UnrolledLoopSize = 0; 602 603 // Simulate execution of each iteration of the loop counting instructions, 604 // which would be simplified. 605 // Since the same load will take different values on different iterations, 606 // we literally have to go through all loop's iterations. 607 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 608 SimplifiedValues.clear(); 609 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC); 610 611 BBWorklist.clear(); 612 BBWorklist.insert(L->getHeader()); 613 // Note that we *must not* cache the size, this loop grows the worklist. 614 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 615 BasicBlock *BB = BBWorklist[Idx]; 616 617 // Visit all instructions in the given basic block and try to simplify 618 // it. We don't change the actual IR, just count optimization 619 // opportunities. 620 for (Instruction &I : *BB) { 621 UnrolledLoopSize += TTI.getUserCost(&I); 622 623 // Visit the instruction to analyze its loop cost after unrolling, 624 // and if the visitor returns true, then we can optimize this 625 // instruction away. 626 if (Analyzer.visit(I)) 627 NumberOfOptimizedInstructions += TTI.getUserCost(&I); 628 629 // If unrolled body turns out to be too big, bail out. 630 if (UnrolledLoopSize - NumberOfOptimizedInstructions > 631 MaxUnrolledLoopSize) 632 return None; 633 } 634 635 // Add BB's successors to the worklist. 636 for (BasicBlock *Succ : successors(BB)) 637 if (L->contains(Succ)) 638 BBWorklist.insert(Succ); 639 } 640 641 // If we found no optimization opportunities on the first iteration, we 642 // won't find them on later ones too. 643 if (!NumberOfOptimizedInstructions) 644 return None; 645 } 646 return {{NumberOfOptimizedInstructions, UnrolledLoopSize}}; 647 } 648 649 /// ApproximateLoopSize - Approximate the size of the loop. 650 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, 651 bool &NotDuplicatable, 652 const TargetTransformInfo &TTI, 653 AssumptionCache *AC) { 654 SmallPtrSet<const Value *, 32> EphValues; 655 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 656 657 CodeMetrics Metrics; 658 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 659 I != E; ++I) 660 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 661 NumCalls = Metrics.NumInlineCandidates; 662 NotDuplicatable = Metrics.notDuplicatable; 663 664 unsigned LoopSize = Metrics.NumInsts; 665 666 // Don't allow an estimate of size zero. This would allows unrolling of loops 667 // with huge iteration counts, which is a compile time problem even if it's 668 // not a problem for code quality. Also, the code using this size may assume 669 // that each loop has at least three instructions (likely a conditional 670 // branch, a comparison feeding that branch, and some kind of loop increment 671 // feeding that comparison instruction). 672 LoopSize = std::max(LoopSize, 3u); 673 674 return LoopSize; 675 } 676 677 // Returns the loop hint metadata node with the given name (for example, 678 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 679 // returned. 680 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 681 if (MDNode *LoopID = L->getLoopID()) 682 return GetUnrollMetadata(LoopID, Name); 683 return nullptr; 684 } 685 686 // Returns true if the loop has an unroll(full) pragma. 687 static bool HasUnrollFullPragma(const Loop *L) { 688 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 689 } 690 691 // Returns true if the loop has an unroll(disable) pragma. 692 static bool HasUnrollDisablePragma(const Loop *L) { 693 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); 694 } 695 696 // Returns true if the loop has an runtime unroll(disable) pragma. 697 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 698 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 699 } 700 701 // If loop has an unroll_count pragma return the (necessarily 702 // positive) value from the pragma. Otherwise return 0. 703 static unsigned UnrollCountPragmaValue(const Loop *L) { 704 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 705 if (MD) { 706 assert(MD->getNumOperands() == 2 && 707 "Unroll count hint metadata should have two operands."); 708 unsigned Count = 709 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 710 assert(Count >= 1 && "Unroll count must be positive."); 711 return Count; 712 } 713 return 0; 714 } 715 716 // Remove existing unroll metadata and add unroll disable metadata to 717 // indicate the loop has already been unrolled. This prevents a loop 718 // from being unrolled more than is directed by a pragma if the loop 719 // unrolling pass is run more than once (which it generally is). 720 static void SetLoopAlreadyUnrolled(Loop *L) { 721 MDNode *LoopID = L->getLoopID(); 722 if (!LoopID) return; 723 724 // First remove any existing loop unrolling metadata. 725 SmallVector<Metadata *, 4> MDs; 726 // Reserve first location for self reference to the LoopID metadata node. 727 MDs.push_back(nullptr); 728 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 729 bool IsUnrollMetadata = false; 730 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 731 if (MD) { 732 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 733 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 734 } 735 if (!IsUnrollMetadata) 736 MDs.push_back(LoopID->getOperand(i)); 737 } 738 739 // Add unroll(disable) metadata to disable future unrolling. 740 LLVMContext &Context = L->getHeader()->getContext(); 741 SmallVector<Metadata *, 1> DisableOperands; 742 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 743 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 744 MDs.push_back(DisableNode); 745 746 MDNode *NewLoopID = MDNode::get(Context, MDs); 747 // Set operand 0 to refer to the loop id itself. 748 NewLoopID->replaceOperandWith(0, NewLoopID); 749 L->setLoopID(NewLoopID); 750 } 751 752 bool LoopUnroll::canUnrollCompletely( 753 Loop *L, unsigned Threshold, unsigned AbsoluteThreshold, 754 uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions, 755 unsigned PercentOfOptimizedForCompleteUnroll) { 756 757 if (Threshold == NoThreshold) { 758 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); 759 return true; 760 } 761 762 if (UnrolledSize <= Threshold) { 763 DEBUG(dbgs() << " Can fully unroll, because unrolled size: " 764 << UnrolledSize << "<" << Threshold << "\n"); 765 return true; 766 } 767 768 assert(UnrolledSize && "UnrolledSize can't be 0 at this point."); 769 unsigned PercentOfOptimizedInstructions = 770 (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize; 771 772 if (UnrolledSize <= AbsoluteThreshold && 773 PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) { 774 DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing " 775 << PercentOfOptimizedInstructions 776 << "% instructions (threshold: " 777 << PercentOfOptimizedForCompleteUnroll << "%)\n"); 778 DEBUG(dbgs() << " Unrolled size (" << UnrolledSize 779 << ") is less than the threshold (" << AbsoluteThreshold 780 << ").\n"); 781 return true; 782 } 783 784 DEBUG(dbgs() << " Too large to fully unroll:\n"); 785 DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n"); 786 DEBUG(dbgs() << " Estimated number of optimized instructions: " 787 << NumberOfOptimizedInstructions << "\n"); 788 DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n"); 789 DEBUG(dbgs() << " Minimum percent of removed instructions: " 790 << PercentOfOptimizedForCompleteUnroll << "\n"); 791 DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n"); 792 return false; 793 } 794 795 unsigned LoopUnroll::selectUnrollCount( 796 const Loop *L, unsigned TripCount, bool PragmaFullUnroll, 797 unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, 798 bool &SetExplicitly) { 799 SetExplicitly = true; 800 801 // User-specified count (either as a command-line option or 802 // constructor parameter) has highest precedence. 803 unsigned Count = UserCount ? CurrentCount : 0; 804 805 // If there is no user-specified count, unroll pragmas have the next 806 // highest precendence. 807 if (Count == 0) { 808 if (PragmaCount) { 809 Count = PragmaCount; 810 } else if (PragmaFullUnroll) { 811 Count = TripCount; 812 } 813 } 814 815 if (Count == 0) 816 Count = UP.Count; 817 818 if (Count == 0) { 819 SetExplicitly = false; 820 if (TripCount == 0) 821 // Runtime trip count. 822 Count = UnrollRuntimeCount; 823 else 824 // Conservative heuristic: if we know the trip count, see if we can 825 // completely unroll (subject to the threshold, checked below); otherwise 826 // try to find greatest modulo of the trip count which is still under 827 // threshold value. 828 Count = TripCount; 829 } 830 if (TripCount && Count > TripCount) 831 return TripCount; 832 return Count; 833 } 834 835 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { 836 if (skipOptnoneFunction(L)) 837 return false; 838 839 Function &F = *L->getHeader()->getParent(); 840 841 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 842 ScalarEvolution *SE = &getAnalysis<ScalarEvolution>(); 843 const TargetTransformInfo &TTI = 844 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 845 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 846 847 BasicBlock *Header = L->getHeader(); 848 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() 849 << "] Loop %" << Header->getName() << "\n"); 850 851 if (HasUnrollDisablePragma(L)) { 852 return false; 853 } 854 bool PragmaFullUnroll = HasUnrollFullPragma(L); 855 unsigned PragmaCount = UnrollCountPragmaValue(L); 856 bool HasPragma = PragmaFullUnroll || PragmaCount > 0; 857 858 TargetTransformInfo::UnrollingPreferences UP; 859 getUnrollingPreferences(L, TTI, UP); 860 861 // Find trip count and trip multiple if count is not available 862 unsigned TripCount = 0; 863 unsigned TripMultiple = 1; 864 // If there are multiple exiting blocks but one of them is the latch, use the 865 // latch for the trip count estimation. Otherwise insist on a single exiting 866 // block for the trip count estimation. 867 BasicBlock *ExitingBlock = L->getLoopLatch(); 868 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 869 ExitingBlock = L->getExitingBlock(); 870 if (ExitingBlock) { 871 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); 872 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); 873 } 874 875 // Select an initial unroll count. This may be reduced later based 876 // on size thresholds. 877 bool CountSetExplicitly; 878 unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, 879 PragmaCount, UP, CountSetExplicitly); 880 881 unsigned NumInlineCandidates; 882 bool notDuplicatable; 883 unsigned LoopSize = 884 ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); 885 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 886 887 // When computing the unrolled size, note that the conditional branch on the 888 // backedge and the comparison feeding it are not replicated like the rest of 889 // the loop body (which is why 2 is subtracted). 890 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; 891 if (notDuplicatable) { 892 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 893 << " instructions.\n"); 894 return false; 895 } 896 if (NumInlineCandidates != 0) { 897 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 898 return false; 899 } 900 901 unsigned Threshold, PartialThreshold; 902 unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll; 903 selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, 904 AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll); 905 906 // Given Count, TripCount and thresholds determine the type of 907 // unrolling which is to be performed. 908 enum { Full = 0, Partial = 1, Runtime = 2 }; 909 int Unrolling; 910 if (TripCount && Count == TripCount) { 911 Unrolling = Partial; 912 // If the loop is really small, we don't need to run an expensive analysis. 913 if (canUnrollCompletely( 914 L, Threshold, AbsoluteThreshold, 915 UnrolledSize, 0, 100)) { 916 Unrolling = Full; 917 } else { 918 // The loop isn't that small, but we still can fully unroll it if that 919 // helps to remove a significant number of instructions. 920 // To check that, run additional analysis on the loop. 921 if (Optional<EstimatedUnrollCost> Cost = 922 analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold)) 923 if (canUnrollCompletely(L, Threshold, AbsoluteThreshold, 924 Cost->UnrolledLoopSize, 925 Cost->NumberOfOptimizedInstructions, 926 PercentOfOptimizedForCompleteUnroll)) { 927 Unrolling = Full; 928 } 929 } 930 } else if (TripCount && Count < TripCount) { 931 Unrolling = Partial; 932 } else { 933 Unrolling = Runtime; 934 } 935 936 // Reduce count based on the type of unrolling and the threshold values. 937 unsigned OriginalCount = Count; 938 bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; 939 if (HasRuntimeUnrollDisablePragma(L)) { 940 AllowRuntime = false; 941 } 942 if (Unrolling == Partial) { 943 bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; 944 if (!AllowPartial && !CountSetExplicitly) { 945 DEBUG(dbgs() << " will not try to unroll partially because " 946 << "-unroll-allow-partial not given\n"); 947 return false; 948 } 949 if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { 950 // Reduce unroll count to be modulo of TripCount for partial unrolling. 951 Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); 952 while (Count != 0 && TripCount % Count != 0) 953 Count--; 954 } 955 } else if (Unrolling == Runtime) { 956 if (!AllowRuntime && !CountSetExplicitly) { 957 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " 958 << "-unroll-runtime not given\n"); 959 return false; 960 } 961 // Reduce unroll count to be the largest power-of-two factor of 962 // the original count which satisfies the threshold limit. 963 while (Count != 0 && UnrolledSize > PartialThreshold) { 964 Count >>= 1; 965 UnrolledSize = (LoopSize-2) * Count + 2; 966 } 967 if (Count > UP.MaxCount) 968 Count = UP.MaxCount; 969 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); 970 } 971 972 if (HasPragma) { 973 if (PragmaCount != 0) 974 // If loop has an unroll count pragma mark loop as unrolled to prevent 975 // unrolling beyond that requested by the pragma. 976 SetLoopAlreadyUnrolled(L); 977 978 // Emit optimization remarks if we are unable to unroll the loop 979 // as directed by a pragma. 980 DebugLoc LoopLoc = L->getStartLoc(); 981 Function *F = Header->getParent(); 982 LLVMContext &Ctx = F->getContext(); 983 if (PragmaFullUnroll && PragmaCount == 0) { 984 if (TripCount && Count != TripCount) { 985 emitOptimizationRemarkMissed( 986 Ctx, DEBUG_TYPE, *F, LoopLoc, 987 "Unable to fully unroll loop as directed by unroll(full) pragma " 988 "because unrolled size is too large."); 989 } else if (!TripCount) { 990 emitOptimizationRemarkMissed( 991 Ctx, DEBUG_TYPE, *F, LoopLoc, 992 "Unable to fully unroll loop as directed by unroll(full) pragma " 993 "because loop has a runtime trip count."); 994 } 995 } else if (PragmaCount > 0 && Count != OriginalCount) { 996 emitOptimizationRemarkMissed( 997 Ctx, DEBUG_TYPE, *F, LoopLoc, 998 "Unable to unroll loop the number of times directed by " 999 "unroll_count pragma because unrolled size is too large."); 1000 } 1001 } 1002 1003 if (Unrolling != Full && Count < 2) { 1004 // Partial unrolling by 1 is a nop. For full unrolling, a factor 1005 // of 1 makes sense because loop control can be eliminated. 1006 return false; 1007 } 1008 1009 // Unroll the loop. 1010 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, 1011 TripMultiple, LI, this, &LPM, &AC)) 1012 return false; 1013 1014 return true; 1015 } 1016