xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 0369dc98f958a1ca2ec05f1897f091129bb16e8a)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopSimplify.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-unroll"
74 
75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
76     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
77     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
78              " the current top-most loop. This is somtimes preferred to reduce"
79              " compile time."));
80 
81 static cl::opt<unsigned>
82     UnrollThreshold("unroll-threshold", cl::Hidden,
83                     cl::desc("The cost threshold for loop unrolling"));
84 
85 static cl::opt<unsigned> UnrollPartialThreshold(
86     "unroll-partial-threshold", cl::Hidden,
87     cl::desc("The cost threshold for partial loop unrolling"));
88 
89 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
90     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
91     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
92              "to the threshold when aggressively unrolling a loop due to the "
93              "dynamic cost savings. If completely unrolling a loop will reduce "
94              "the total runtime from X to Y, we boost the loop unroll "
95              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
96              "X/Y). This limit avoids excessive code bloat."));
97 
98 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
99     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
100     cl::desc("Don't allow loop unrolling to simulate more than this number of"
101              "iterations when checking full unroll profitability"));
102 
103 static cl::opt<unsigned> UnrollCount(
104     "unroll-count", cl::Hidden,
105     cl::desc("Use this unroll count for all loops including those with "
106              "unroll_count pragma values, for testing purposes"));
107 
108 static cl::opt<unsigned> UnrollMaxCount(
109     "unroll-max-count", cl::Hidden,
110     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
111              "testing purposes"));
112 
113 static cl::opt<unsigned> UnrollFullMaxCount(
114     "unroll-full-max-count", cl::Hidden,
115     cl::desc(
116         "Set the max unroll count for full unrolling, for testing purposes"));
117 
118 static cl::opt<unsigned> UnrollPeelCount(
119     "unroll-peel-count", cl::Hidden,
120     cl::desc("Set the unroll peeling count, for testing purposes"));
121 
122 static cl::opt<bool>
123     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
124                        cl::desc("Allows loops to be partially unrolled until "
125                                 "-unroll-threshold loop size is reached."));
126 
127 static cl::opt<bool> UnrollAllowRemainder(
128     "unroll-allow-remainder", cl::Hidden,
129     cl::desc("Allow generation of a loop remainder (extra iterations) "
130              "when unrolling a loop."));
131 
132 static cl::opt<bool>
133     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
134                   cl::desc("Unroll loops with run-time trip counts"));
135 
136 static cl::opt<unsigned> UnrollMaxUpperBound(
137     "unroll-max-upperbound", cl::init(8), cl::Hidden,
138     cl::desc(
139         "The max of trip count upper bound that is considered in unrolling"));
140 
141 static cl::opt<unsigned> PragmaUnrollThreshold(
142     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
143     cl::desc("Unrolled size limit for loops with an unroll(full) or "
144              "unroll_count pragma."));
145 
146 static cl::opt<unsigned> FlatLoopTripCountThreshold(
147     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
148     cl::desc("If the runtime tripcount for the loop is lower than the "
149              "threshold, the loop is considered as flat and will be less "
150              "aggressively unrolled."));
151 
152 static cl::opt<bool>
153     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
154                        cl::desc("Allows loops to be peeled when the dynamic "
155                                 "trip count is known to be low."));
156 
157 static cl::opt<bool> UnrollAllowLoopNestsPeeling(
158     "unroll-allow-loop-nests-peeling", cl::init(false), cl::Hidden,
159     cl::desc("Allows loop nests to be peeled."));
160 
161 static cl::opt<bool> UnrollUnrollRemainder(
162   "unroll-remainder", cl::Hidden,
163   cl::desc("Allow the loop remainder to be unrolled."));
164 
165 // This option isn't ever intended to be enabled, it serves to allow
166 // experiments to check the assumptions about when this kind of revisit is
167 // necessary.
168 static cl::opt<bool> UnrollRevisitChildLoops(
169     "unroll-revisit-child-loops", cl::Hidden,
170     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
171              "This shouldn't typically be needed as child loops (or their "
172              "clones) were already visited."));
173 
174 static cl::opt<unsigned> UnrollThresholdAggressive(
175     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
176     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
177              "optimizations"));
178 static cl::opt<unsigned>
179     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
180                            cl::Hidden,
181                            cl::desc("Default threshold (max size of unrolled "
182                                     "loop), used in all but O3 optimizations"));
183 
184 /// A magic value for use with the Threshold parameter to indicate
185 /// that the loop unroll should be performed regardless of how much
186 /// code expansion would result.
187 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
188 
189 /// Gather the various unrolling parameters based on the defaults, compiler
190 /// flags, TTI overrides and user specified parameters.
191 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
192     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
193     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
194     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
195     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
196     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
197   TargetTransformInfo::UnrollingPreferences UP;
198 
199   // Set up the defaults
200   UP.Threshold =
201       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
202   UP.MaxPercentThresholdBoost = 400;
203   UP.OptSizeThreshold = 0;
204   UP.PartialThreshold = 150;
205   UP.PartialOptSizeThreshold = 0;
206   UP.Count = 0;
207   UP.DefaultUnrollRuntimeCount = 8;
208   UP.MaxCount = std::numeric_limits<unsigned>::max();
209   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
210   UP.BEInsns = 2;
211   UP.Partial = false;
212   UP.Runtime = false;
213   UP.AllowRemainder = true;
214   UP.UnrollRemainder = false;
215   UP.AllowExpensiveTripCount = false;
216   UP.Force = false;
217   UP.UpperBound = false;
218   UP.UnrollAndJam = false;
219   UP.UnrollAndJamInnerLoopThreshold = 60;
220   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
221 
222   // Override with any target specific settings
223   TTI.getUnrollingPreferences(L, SE, UP);
224 
225   // Apply size attributes
226   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
227                     llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
228                                                 PGSOQueryType::IRPass);
229   if (OptForSize) {
230     UP.Threshold = UP.OptSizeThreshold;
231     UP.PartialThreshold = UP.PartialOptSizeThreshold;
232     UP.MaxPercentThresholdBoost = 100;
233   }
234 
235   // Apply any user values specified by cl::opt
236   if (UnrollThreshold.getNumOccurrences() > 0)
237     UP.Threshold = UnrollThreshold;
238   if (UnrollPartialThreshold.getNumOccurrences() > 0)
239     UP.PartialThreshold = UnrollPartialThreshold;
240   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
241     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
242   if (UnrollMaxCount.getNumOccurrences() > 0)
243     UP.MaxCount = UnrollMaxCount;
244   if (UnrollFullMaxCount.getNumOccurrences() > 0)
245     UP.FullUnrollMaxCount = UnrollFullMaxCount;
246   if (UnrollAllowPartial.getNumOccurrences() > 0)
247     UP.Partial = UnrollAllowPartial;
248   if (UnrollAllowRemainder.getNumOccurrences() > 0)
249     UP.AllowRemainder = UnrollAllowRemainder;
250   if (UnrollRuntime.getNumOccurrences() > 0)
251     UP.Runtime = UnrollRuntime;
252   if (UnrollMaxUpperBound == 0)
253     UP.UpperBound = false;
254   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
255     UP.UnrollRemainder = UnrollUnrollRemainder;
256   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
257     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
258 
259   // Apply user values provided by argument
260   if (UserThreshold.hasValue()) {
261     UP.Threshold = *UserThreshold;
262     UP.PartialThreshold = *UserThreshold;
263   }
264   if (UserCount.hasValue())
265     UP.Count = *UserCount;
266   if (UserAllowPartial.hasValue())
267     UP.Partial = *UserAllowPartial;
268   if (UserRuntime.hasValue())
269     UP.Runtime = *UserRuntime;
270   if (UserUpperBound.hasValue())
271     UP.UpperBound = *UserUpperBound;
272   if (UserFullUnrollMaxCount.hasValue())
273     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
274 
275   return UP;
276 }
277 
278 TargetTransformInfo::PeelingPreferences
279 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
280                                const TargetTransformInfo &TTI,
281                                Optional<bool> UserAllowPeeling,
282                                Optional<bool> UserAllowProfileBasedPeeling) {
283   TargetTransformInfo::PeelingPreferences PP;
284 
285   // Get Target Specifc Values
286   TTI.getPeelingPreferences(L, SE, PP);
287 
288   // User Specified Values using cl::opt
289   if (UnrollPeelCount.getNumOccurrences() > 0)
290     PP.PeelCount = UnrollPeelCount;
291   if (UnrollAllowPeeling.getNumOccurrences() > 0)
292     PP.AllowPeeling = UnrollAllowPeeling;
293   if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
294     PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
295 
296   // User Specifed values provided by argument
297   if (UserAllowPeeling.hasValue())
298     PP.AllowPeeling = *UserAllowPeeling;
299   if (UserAllowProfileBasedPeeling.hasValue())
300     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
301 
302   return PP;
303 }
304 
305 namespace {
306 
307 /// A struct to densely store the state of an instruction after unrolling at
308 /// each iteration.
309 ///
310 /// This is designed to work like a tuple of <Instruction *, int> for the
311 /// purposes of hashing and lookup, but to be able to associate two boolean
312 /// states with each key.
313 struct UnrolledInstState {
314   Instruction *I;
315   int Iteration : 30;
316   unsigned IsFree : 1;
317   unsigned IsCounted : 1;
318 };
319 
320 /// Hashing and equality testing for a set of the instruction states.
321 struct UnrolledInstStateKeyInfo {
322   using PtrInfo = DenseMapInfo<Instruction *>;
323   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
324 
325   static inline UnrolledInstState getEmptyKey() {
326     return {PtrInfo::getEmptyKey(), 0, 0, 0};
327   }
328 
329   static inline UnrolledInstState getTombstoneKey() {
330     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
331   }
332 
333   static inline unsigned getHashValue(const UnrolledInstState &S) {
334     return PairInfo::getHashValue({S.I, S.Iteration});
335   }
336 
337   static inline bool isEqual(const UnrolledInstState &LHS,
338                              const UnrolledInstState &RHS) {
339     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
340   }
341 };
342 
343 struct EstimatedUnrollCost {
344   /// The estimated cost after unrolling.
345   unsigned UnrolledCost;
346 
347   /// The estimated dynamic cost of executing the instructions in the
348   /// rolled form.
349   unsigned RolledDynamicCost;
350 };
351 
352 } // end anonymous namespace
353 
354 /// Figure out if the loop is worth full unrolling.
355 ///
356 /// Complete loop unrolling can make some loads constant, and we need to know
357 /// if that would expose any further optimization opportunities.  This routine
358 /// estimates this optimization.  It computes cost of unrolled loop
359 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
360 /// dynamic cost we mean that we won't count costs of blocks that are known not
361 /// to be executed (i.e. if we have a branch in the loop and we know that at the
362 /// given iteration its condition would be resolved to true, we won't add up the
363 /// cost of the 'false'-block).
364 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
365 /// the analysis failed (no benefits expected from the unrolling, or the loop is
366 /// too big to analyze), the returned value is None.
367 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
368     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
369     const SmallPtrSetImpl<const Value *> &EphValues,
370     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
371     unsigned MaxIterationsCountToAnalyze) {
372   // We want to be able to scale offsets by the trip count and add more offsets
373   // to them without checking for overflows, and we already don't want to
374   // analyze *massive* trip counts, so we force the max to be reasonably small.
375   assert(MaxIterationsCountToAnalyze <
376              (unsigned)(std::numeric_limits<int>::max() / 2) &&
377          "The unroll iterations max is too large!");
378 
379   // Only analyze inner loops. We can't properly estimate cost of nested loops
380   // and we won't visit inner loops again anyway.
381   if (!L->empty())
382     return None;
383 
384   // Don't simulate loops with a big or unknown tripcount
385   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
386     return None;
387 
388   SmallSetVector<BasicBlock *, 16> BBWorklist;
389   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
390   DenseMap<Value *, Constant *> SimplifiedValues;
391   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
392 
393   // The estimated cost of the unrolled form of the loop. We try to estimate
394   // this by simplifying as much as we can while computing the estimate.
395   unsigned UnrolledCost = 0;
396 
397   // We also track the estimated dynamic (that is, actually executed) cost in
398   // the rolled form. This helps identify cases when the savings from unrolling
399   // aren't just exposing dead control flows, but actual reduced dynamic
400   // instructions due to the simplifications which we expect to occur after
401   // unrolling.
402   unsigned RolledDynamicCost = 0;
403 
404   // We track the simplification of each instruction in each iteration. We use
405   // this to recursively merge costs into the unrolled cost on-demand so that
406   // we don't count the cost of any dead code. This is essentially a map from
407   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
408   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
409 
410   // A small worklist used to accumulate cost of instructions from each
411   // observable and reached root in the loop.
412   SmallVector<Instruction *, 16> CostWorklist;
413 
414   // PHI-used worklist used between iterations while accumulating cost.
415   SmallVector<Instruction *, 4> PHIUsedList;
416 
417   // Helper function to accumulate cost for instructions in the loop.
418   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
419     assert(Iteration >= 0 && "Cannot have a negative iteration!");
420     assert(CostWorklist.empty() && "Must start with an empty cost list");
421     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
422     CostWorklist.push_back(&RootI);
423     for (;; --Iteration) {
424       do {
425         Instruction *I = CostWorklist.pop_back_val();
426 
427         // InstCostMap only uses I and Iteration as a key, the other two values
428         // don't matter here.
429         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
430         if (CostIter == InstCostMap.end())
431           // If an input to a PHI node comes from a dead path through the loop
432           // we may have no cost data for it here. What that actually means is
433           // that it is free.
434           continue;
435         auto &Cost = *CostIter;
436         if (Cost.IsCounted)
437           // Already counted this instruction.
438           continue;
439 
440         // Mark that we are counting the cost of this instruction now.
441         Cost.IsCounted = true;
442 
443         // If this is a PHI node in the loop header, just add it to the PHI set.
444         if (auto *PhiI = dyn_cast<PHINode>(I))
445           if (PhiI->getParent() == L->getHeader()) {
446             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
447                                   "inherently simplify during unrolling.");
448             if (Iteration == 0)
449               continue;
450 
451             // Push the incoming value from the backedge into the PHI used list
452             // if it is an in-loop instruction. We'll use this to populate the
453             // cost worklist for the next iteration (as we count backwards).
454             if (auto *OpI = dyn_cast<Instruction>(
455                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
456               if (L->contains(OpI))
457                 PHIUsedList.push_back(OpI);
458             continue;
459           }
460 
461         // First accumulate the cost of this instruction.
462         if (!Cost.IsFree) {
463           UnrolledCost += TTI.getUserCost(I, TargetTransformInfo::TCK_CodeSize);
464           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
465                             << Iteration << "): ");
466           LLVM_DEBUG(I->dump());
467         }
468 
469         // We must count the cost of every operand which is not free,
470         // recursively. If we reach a loop PHI node, simply add it to the set
471         // to be considered on the next iteration (backwards!).
472         for (Value *Op : I->operands()) {
473           // Check whether this operand is free due to being a constant or
474           // outside the loop.
475           auto *OpI = dyn_cast<Instruction>(Op);
476           if (!OpI || !L->contains(OpI))
477             continue;
478 
479           // Otherwise accumulate its cost.
480           CostWorklist.push_back(OpI);
481         }
482       } while (!CostWorklist.empty());
483 
484       if (PHIUsedList.empty())
485         // We've exhausted the search.
486         break;
487 
488       assert(Iteration > 0 &&
489              "Cannot track PHI-used values past the first iteration!");
490       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
491       PHIUsedList.clear();
492     }
493   };
494 
495   // Ensure that we don't violate the loop structure invariants relied on by
496   // this analysis.
497   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
498   assert(L->isLCSSAForm(DT) &&
499          "Must have loops in LCSSA form to track live-out values.");
500 
501   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
502 
503   // Simulate execution of each iteration of the loop counting instructions,
504   // which would be simplified.
505   // Since the same load will take different values on different iterations,
506   // we literally have to go through all loop's iterations.
507   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
508     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
509 
510     // Prepare for the iteration by collecting any simplified entry or backedge
511     // inputs.
512     for (Instruction &I : *L->getHeader()) {
513       auto *PHI = dyn_cast<PHINode>(&I);
514       if (!PHI)
515         break;
516 
517       // The loop header PHI nodes must have exactly two input: one from the
518       // loop preheader and one from the loop latch.
519       assert(
520           PHI->getNumIncomingValues() == 2 &&
521           "Must have an incoming value only for the preheader and the latch.");
522 
523       Value *V = PHI->getIncomingValueForBlock(
524           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
525       Constant *C = dyn_cast<Constant>(V);
526       if (Iteration != 0 && !C)
527         C = SimplifiedValues.lookup(V);
528       if (C)
529         SimplifiedInputValues.push_back({PHI, C});
530     }
531 
532     // Now clear and re-populate the map for the next iteration.
533     SimplifiedValues.clear();
534     while (!SimplifiedInputValues.empty())
535       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
536 
537     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
538 
539     BBWorklist.clear();
540     BBWorklist.insert(L->getHeader());
541     // Note that we *must not* cache the size, this loop grows the worklist.
542     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
543       BasicBlock *BB = BBWorklist[Idx];
544 
545       // Visit all instructions in the given basic block and try to simplify
546       // it.  We don't change the actual IR, just count optimization
547       // opportunities.
548       for (Instruction &I : *BB) {
549         // These won't get into the final code - don't even try calculating the
550         // cost for them.
551         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
552           continue;
553 
554         // Track this instruction's expected baseline cost when executing the
555         // rolled loop form.
556         RolledDynamicCost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
557 
558         // Visit the instruction to analyze its loop cost after unrolling,
559         // and if the visitor returns true, mark the instruction as free after
560         // unrolling and continue.
561         bool IsFree = Analyzer.visit(I);
562         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
563                                            (unsigned)IsFree,
564                                            /*IsCounted*/ false}).second;
565         (void)Inserted;
566         assert(Inserted && "Cannot have a state for an unvisited instruction!");
567 
568         if (IsFree)
569           continue;
570 
571         // Can't properly model a cost of a call.
572         // FIXME: With a proper cost model we should be able to do it.
573         if (auto *CI = dyn_cast<CallInst>(&I)) {
574           const Function *Callee = CI->getCalledFunction();
575           if (!Callee || TTI.isLoweredToCall(Callee)) {
576             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
577             return None;
578           }
579         }
580 
581         // If the instruction might have a side-effect recursively account for
582         // the cost of it and all the instructions leading up to it.
583         if (I.mayHaveSideEffects())
584           AddCostRecursively(I, Iteration);
585 
586         // If unrolled body turns out to be too big, bail out.
587         if (UnrolledCost > MaxUnrolledLoopSize) {
588           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
589                             << "  UnrolledCost: " << UnrolledCost
590                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
591                             << "\n");
592           return None;
593         }
594       }
595 
596       Instruction *TI = BB->getTerminator();
597 
598       // Add in the live successors by first checking whether we have terminator
599       // that may be simplified based on the values simplified by this call.
600       BasicBlock *KnownSucc = nullptr;
601       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
602         if (BI->isConditional()) {
603           if (Constant *SimpleCond =
604                   SimplifiedValues.lookup(BI->getCondition())) {
605             // Just take the first successor if condition is undef
606             if (isa<UndefValue>(SimpleCond))
607               KnownSucc = BI->getSuccessor(0);
608             else if (ConstantInt *SimpleCondVal =
609                          dyn_cast<ConstantInt>(SimpleCond))
610               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
611           }
612         }
613       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
614         if (Constant *SimpleCond =
615                 SimplifiedValues.lookup(SI->getCondition())) {
616           // Just take the first successor if condition is undef
617           if (isa<UndefValue>(SimpleCond))
618             KnownSucc = SI->getSuccessor(0);
619           else if (ConstantInt *SimpleCondVal =
620                        dyn_cast<ConstantInt>(SimpleCond))
621             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
622         }
623       }
624       if (KnownSucc) {
625         if (L->contains(KnownSucc))
626           BBWorklist.insert(KnownSucc);
627         else
628           ExitWorklist.insert({BB, KnownSucc});
629         continue;
630       }
631 
632       // Add BB's successors to the worklist.
633       for (BasicBlock *Succ : successors(BB))
634         if (L->contains(Succ))
635           BBWorklist.insert(Succ);
636         else
637           ExitWorklist.insert({BB, Succ});
638       AddCostRecursively(*TI, Iteration);
639     }
640 
641     // If we found no optimization opportunities on the first iteration, we
642     // won't find them on later ones too.
643     if (UnrolledCost == RolledDynamicCost) {
644       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
645                         << "  UnrolledCost: " << UnrolledCost << "\n");
646       return None;
647     }
648   }
649 
650   while (!ExitWorklist.empty()) {
651     BasicBlock *ExitingBB, *ExitBB;
652     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
653 
654     for (Instruction &I : *ExitBB) {
655       auto *PN = dyn_cast<PHINode>(&I);
656       if (!PN)
657         break;
658 
659       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
660       if (auto *OpI = dyn_cast<Instruction>(Op))
661         if (L->contains(OpI))
662           AddCostRecursively(*OpI, TripCount - 1);
663     }
664   }
665 
666   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
667                     << "UnrolledCost: " << UnrolledCost << ", "
668                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
669   return {{UnrolledCost, RolledDynamicCost}};
670 }
671 
672 /// ApproximateLoopSize - Approximate the size of the loop.
673 unsigned llvm::ApproximateLoopSize(
674     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
675     const TargetTransformInfo &TTI,
676     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
677   CodeMetrics Metrics;
678   for (BasicBlock *BB : L->blocks())
679     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
680   NumCalls = Metrics.NumInlineCandidates;
681   NotDuplicatable = Metrics.notDuplicatable;
682   Convergent = Metrics.convergent;
683 
684   unsigned LoopSize = Metrics.NumInsts;
685 
686   // Don't allow an estimate of size zero.  This would allows unrolling of loops
687   // with huge iteration counts, which is a compile time problem even if it's
688   // not a problem for code quality. Also, the code using this size may assume
689   // that each loop has at least three instructions (likely a conditional
690   // branch, a comparison feeding that branch, and some kind of loop increment
691   // feeding that comparison instruction).
692   LoopSize = std::max(LoopSize, BEInsns + 1);
693 
694   return LoopSize;
695 }
696 
697 // Returns the loop hint metadata node with the given name (for example,
698 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
699 // returned.
700 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
701   if (MDNode *LoopID = L->getLoopID())
702     return GetUnrollMetadata(LoopID, Name);
703   return nullptr;
704 }
705 
706 // Returns true if the loop has an unroll(full) pragma.
707 static bool hasUnrollFullPragma(const Loop *L) {
708   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
709 }
710 
711 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
712 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
713 static bool hasUnrollEnablePragma(const Loop *L) {
714   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
715 }
716 
717 // Returns true if the loop has an runtime unroll(disable) pragma.
718 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
719   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
720 }
721 
722 // If loop has an unroll_count pragma return the (necessarily
723 // positive) value from the pragma.  Otherwise return 0.
724 static unsigned unrollCountPragmaValue(const Loop *L) {
725   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
726   if (MD) {
727     assert(MD->getNumOperands() == 2 &&
728            "Unroll count hint metadata should have two operands.");
729     unsigned Count =
730         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
731     assert(Count >= 1 && "Unroll count must be positive.");
732     return Count;
733   }
734   return 0;
735 }
736 
737 // Computes the boosting factor for complete unrolling.
738 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
739 // be beneficial to fully unroll the loop even if unrolledcost is large. We
740 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
741 // the unroll threshold.
742 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
743                                             unsigned MaxPercentThresholdBoost) {
744   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
745     return 100;
746   else if (Cost.UnrolledCost != 0)
747     // The boosting factor is RolledDynamicCost / UnrolledCost
748     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
749                     MaxPercentThresholdBoost);
750   else
751     return MaxPercentThresholdBoost;
752 }
753 
754 // Returns loop size estimation for unrolled loop.
755 static uint64_t getUnrolledLoopSize(
756     unsigned LoopSize,
757     TargetTransformInfo::UnrollingPreferences &UP) {
758   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
759   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
760 }
761 
762 // Returns true if unroll count was set explicitly.
763 // Calculates unroll count and writes it to UP.Count.
764 // Unless IgnoreUser is true, will also use metadata and command-line options
765 // that are specific to to the LoopUnroll pass (which, for instance, are
766 // irrelevant for the LoopUnrollAndJam pass).
767 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
768 // many LoopUnroll-specific options. The shared functionality should be
769 // refactored into it own function.
770 bool llvm::computeUnrollCount(
771     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
772     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
773     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
774     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
775     TargetTransformInfo::UnrollingPreferences &UP,
776     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
777 
778   // Check for explicit Count.
779   // 1st priority is unroll count set by "unroll-count" option.
780   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
781   if (UserUnrollCount) {
782     UP.Count = UnrollCount;
783     UP.AllowExpensiveTripCount = true;
784     UP.Force = true;
785     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
786       return true;
787   }
788 
789   // 2nd priority is unroll count set by pragma.
790   unsigned PragmaCount = unrollCountPragmaValue(L);
791   if (PragmaCount > 0) {
792     UP.Count = PragmaCount;
793     UP.Runtime = true;
794     UP.AllowExpensiveTripCount = true;
795     UP.Force = true;
796     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
797         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
798       return true;
799   }
800   bool PragmaFullUnroll = hasUnrollFullPragma(L);
801   if (PragmaFullUnroll && TripCount != 0) {
802     UP.Count = TripCount;
803     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
804       return false;
805   }
806 
807   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
808   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
809                         PragmaEnableUnroll || UserUnrollCount;
810 
811   if (ExplicitUnroll && TripCount != 0) {
812     // If the loop has an unrolling pragma, we want to be more aggressive with
813     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
814     // value which is larger than the default limits.
815     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
816     UP.PartialThreshold =
817         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
818   }
819 
820   // 3rd priority is full unroll count.
821   // Full unroll makes sense only when TripCount or its upper bound could be
822   // statically calculated.
823   // Also we need to check if we exceed FullUnrollMaxCount.
824   // If using the upper bound to unroll, TripMultiple should be set to 1 because
825   // we do not know when loop may exit.
826 
827   // We can unroll by the upper bound amount if it's generally allowed or if
828   // we know that the loop is executed either the upper bound or zero times.
829   // (MaxOrZero unrolling keeps only the first loop test, so the number of
830   // loop tests remains the same compared to the non-unrolled version, whereas
831   // the generic upper bound unrolling keeps all but the last loop test so the
832   // number of loop tests goes up which may end up being worse on targets with
833   // constrained branch predictor resources so is controlled by an option.)
834   // In addition we only unroll small upper bounds.
835   unsigned FullUnrollMaxTripCount = MaxTripCount;
836   if (!(UP.UpperBound || MaxOrZero) ||
837       FullUnrollMaxTripCount > UnrollMaxUpperBound)
838     FullUnrollMaxTripCount = 0;
839 
840   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
841   // compute the former when the latter is zero.
842   unsigned ExactTripCount = TripCount;
843   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
844          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
845 
846   unsigned FullUnrollTripCount =
847       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
848   UP.Count = FullUnrollTripCount;
849   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
850     // When computing the unrolled size, note that BEInsns are not replicated
851     // like the rest of the loop body.
852     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
853       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
854       TripCount = FullUnrollTripCount;
855       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
856       return ExplicitUnroll;
857     } else {
858       // The loop isn't that small, but we still can fully unroll it if that
859       // helps to remove a significant number of instructions.
860       // To check that, run additional analysis on the loop.
861       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
862               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
863               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
864               UP.MaxIterationsCountToAnalyze)) {
865         unsigned Boost =
866             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
867         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
868           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
869           TripCount = FullUnrollTripCount;
870           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
871           return ExplicitUnroll;
872         }
873       }
874     }
875   }
876 
877   // 4th priority is loop peeling.
878   computePeelCount(L, LoopSize, UP, PP, TripCount, SE);
879   if (PP.PeelCount) {
880     UP.Runtime = false;
881     UP.Count = 1;
882     return ExplicitUnroll;
883   }
884 
885   // 5th priority is partial unrolling.
886   // Try partial unroll only when TripCount could be statically calculated.
887   if (TripCount) {
888     UP.Partial |= ExplicitUnroll;
889     if (!UP.Partial) {
890       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
891                         << "-unroll-allow-partial not given\n");
892       UP.Count = 0;
893       return false;
894     }
895     if (UP.Count == 0)
896       UP.Count = TripCount;
897     if (UP.PartialThreshold != NoThreshold) {
898       // Reduce unroll count to be modulo of TripCount for partial unrolling.
899       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
900         UP.Count =
901             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
902             (LoopSize - UP.BEInsns);
903       if (UP.Count > UP.MaxCount)
904         UP.Count = UP.MaxCount;
905       while (UP.Count != 0 && TripCount % UP.Count != 0)
906         UP.Count--;
907       if (UP.AllowRemainder && UP.Count <= 1) {
908         // If there is no Count that is modulo of TripCount, set Count to
909         // largest power-of-two factor that satisfies the threshold limit.
910         // As we'll create fixup loop, do the type of unrolling only if
911         // remainder loop is allowed.
912         UP.Count = UP.DefaultUnrollRuntimeCount;
913         while (UP.Count != 0 &&
914                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
915           UP.Count >>= 1;
916       }
917       if (UP.Count < 2) {
918         if (PragmaEnableUnroll)
919           ORE->emit([&]() {
920             return OptimizationRemarkMissed(DEBUG_TYPE,
921                                             "UnrollAsDirectedTooLarge",
922                                             L->getStartLoc(), L->getHeader())
923                    << "Unable to unroll loop as directed by unroll(enable) "
924                       "pragma "
925                       "because unrolled size is too large.";
926           });
927         UP.Count = 0;
928       }
929     } else {
930       UP.Count = TripCount;
931     }
932     if (UP.Count > UP.MaxCount)
933       UP.Count = UP.MaxCount;
934     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
935         UP.Count != TripCount)
936       ORE->emit([&]() {
937         return OptimizationRemarkMissed(DEBUG_TYPE,
938                                         "FullUnrollAsDirectedTooLarge",
939                                         L->getStartLoc(), L->getHeader())
940                << "Unable to fully unroll loop as directed by unroll pragma "
941                   "because "
942                   "unrolled size is too large.";
943       });
944     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
945                       << "\n");
946     return ExplicitUnroll;
947   }
948   assert(TripCount == 0 &&
949          "All cases when TripCount is constant should be covered here.");
950   if (PragmaFullUnroll)
951     ORE->emit([&]() {
952       return OptimizationRemarkMissed(
953                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
954                  L->getStartLoc(), L->getHeader())
955              << "Unable to fully unroll loop as directed by unroll(full) "
956                 "pragma "
957                 "because loop has a runtime trip count.";
958     });
959 
960   // 6th priority is runtime unrolling.
961   // Don't unroll a runtime trip count loop when it is disabled.
962   if (hasRuntimeUnrollDisablePragma(L)) {
963     UP.Count = 0;
964     return false;
965   }
966 
967   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
968   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
969     UP.Count = 0;
970     return false;
971   }
972 
973   // Check if the runtime trip count is too small when profile is available.
974   if (L->getHeader()->getParent()->hasProfileData()) {
975     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
976       if (*ProfileTripCount < FlatLoopTripCountThreshold)
977         return false;
978       else
979         UP.AllowExpensiveTripCount = true;
980     }
981   }
982 
983   // Reduce count based on the type of unrolling and the threshold values.
984   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
985   if (!UP.Runtime) {
986     LLVM_DEBUG(
987         dbgs() << "  will not try to unroll loop with runtime trip count "
988                << "-unroll-runtime not given\n");
989     UP.Count = 0;
990     return false;
991   }
992   if (UP.Count == 0)
993     UP.Count = UP.DefaultUnrollRuntimeCount;
994 
995   // Reduce unroll count to be the largest power-of-two factor of
996   // the original count which satisfies the threshold limit.
997   while (UP.Count != 0 &&
998          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
999     UP.Count >>= 1;
1000 
1001 #ifndef NDEBUG
1002   unsigned OrigCount = UP.Count;
1003 #endif
1004 
1005   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1006     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1007       UP.Count >>= 1;
1008     LLVM_DEBUG(
1009         dbgs() << "Remainder loop is restricted (that could architecture "
1010                   "specific or because the loop contains a convergent "
1011                   "instruction), so unroll count must divide the trip "
1012                   "multiple, "
1013                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1014                << " to " << UP.Count << ".\n");
1015 
1016     using namespace ore;
1017 
1018     if (PragmaCount > 0 && !UP.AllowRemainder)
1019       ORE->emit([&]() {
1020         return OptimizationRemarkMissed(DEBUG_TYPE,
1021                                         "DifferentUnrollCountFromDirected",
1022                                         L->getStartLoc(), L->getHeader())
1023                << "Unable to unroll loop the number of times directed by "
1024                   "unroll_count pragma because remainder loop is restricted "
1025                   "(that could architecture specific or because the loop "
1026                   "contains a convergent instruction) and so must have an "
1027                   "unroll "
1028                   "count that divides the loop trip multiple of "
1029                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1030                << NV("UnrollCount", UP.Count) << " time(s).";
1031       });
1032   }
1033 
1034   if (UP.Count > UP.MaxCount)
1035     UP.Count = UP.MaxCount;
1036 
1037   if (MaxTripCount && UP.Count > MaxTripCount)
1038     UP.Count = MaxTripCount;
1039 
1040   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1041                     << "\n");
1042   if (UP.Count < 2)
1043     UP.Count = 0;
1044   return ExplicitUnroll;
1045 }
1046 
1047 static LoopUnrollResult tryToUnrollLoop(
1048     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1049     const TargetTransformInfo &TTI, AssumptionCache &AC,
1050     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1051     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1052     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1053     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1054     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1055     Optional<bool> ProvidedAllowPeeling,
1056     Optional<bool> ProvidedAllowProfileBasedPeeling,
1057     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1058   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1059                     << L->getHeader()->getParent()->getName() << "] Loop %"
1060                     << L->getHeader()->getName() << "\n");
1061   TransformationMode TM = hasUnrollTransformation(L);
1062   if (TM & TM_Disable)
1063     return LoopUnrollResult::Unmodified;
1064   if (!L->isLoopSimplifyForm()) {
1065     LLVM_DEBUG(
1066         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1067     return LoopUnrollResult::Unmodified;
1068   }
1069 
1070   // When automtatic unrolling is disabled, do not unroll unless overridden for
1071   // this loop.
1072   if (OnlyWhenForced && !(TM & TM_Enable))
1073     return LoopUnrollResult::Unmodified;
1074 
1075   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1076   unsigned NumInlineCandidates;
1077   bool NotDuplicatable;
1078   bool Convergent;
1079   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1080       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1081       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1082       ProvidedFullUnrollMaxCount);
1083   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1084       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling);
1085 
1086   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1087   // as threshold later on.
1088   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1089       !OptForSize)
1090     return LoopUnrollResult::Unmodified;
1091 
1092   SmallPtrSet<const Value *, 32> EphValues;
1093   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1094 
1095   unsigned LoopSize =
1096       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1097                           TTI, EphValues, UP.BEInsns);
1098   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1099   if (NotDuplicatable) {
1100     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1101                       << " instructions.\n");
1102     return LoopUnrollResult::Unmodified;
1103   }
1104 
1105   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1106   // later), to (fully) unroll loops, if it does not increase code size.
1107   if (OptForSize)
1108     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1109 
1110   if (NumInlineCandidates != 0) {
1111     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1112     return LoopUnrollResult::Unmodified;
1113   }
1114 
1115   // Find trip count and trip multiple if count is not available
1116   unsigned TripCount = 0;
1117   unsigned TripMultiple = 1;
1118   // If there are multiple exiting blocks but one of them is the latch, use the
1119   // latch for the trip count estimation. Otherwise insist on a single exiting
1120   // block for the trip count estimation.
1121   BasicBlock *ExitingBlock = L->getLoopLatch();
1122   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1123     ExitingBlock = L->getExitingBlock();
1124   if (ExitingBlock) {
1125     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1126     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1127   }
1128 
1129   // If the loop contains a convergent operation, the prelude we'd add
1130   // to do the first few instructions before we hit the unrolled loop
1131   // is unsafe -- it adds a control-flow dependency to the convergent
1132   // operation.  Therefore restrict remainder loop (try unrollig without).
1133   //
1134   // TODO: This is quite conservative.  In practice, convergent_op()
1135   // is likely to be called unconditionally in the loop.  In this
1136   // case, the program would be ill-formed (on most architectures)
1137   // unless n were the same on all threads in a thread group.
1138   // Assuming n is the same on all threads, any kind of unrolling is
1139   // safe.  But currently llvm's notion of convergence isn't powerful
1140   // enough to express this.
1141   if (Convergent)
1142     UP.AllowRemainder = false;
1143 
1144   // Try to find the trip count upper bound if we cannot find the exact trip
1145   // count.
1146   unsigned MaxTripCount = 0;
1147   bool MaxOrZero = false;
1148   if (!TripCount) {
1149     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1150     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1151   }
1152 
1153   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1154   // fully unroll the loop.
1155   bool UseUpperBound = false;
1156   bool IsCountSetExplicitly = computeUnrollCount(
1157       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1158       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1159   if (!UP.Count)
1160     return LoopUnrollResult::Unmodified;
1161   // Unroll factor (Count) must be less or equal to TripCount.
1162   if (TripCount && UP.Count > TripCount)
1163     UP.Count = TripCount;
1164 
1165   // Save loop properties before it is transformed.
1166   MDNode *OrigLoopID = L->getLoopID();
1167 
1168   // Unroll the loop.
1169   Loop *RemainderLoop = nullptr;
1170   LoopUnrollResult UnrollResult = UnrollLoop(
1171       L,
1172       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1173        UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
1174        ForgetAllSCEV},
1175       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1176   if (UnrollResult == LoopUnrollResult::Unmodified)
1177     return LoopUnrollResult::Unmodified;
1178 
1179   if (RemainderLoop) {
1180     Optional<MDNode *> RemainderLoopID =
1181         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1182                                         LLVMLoopUnrollFollowupRemainder});
1183     if (RemainderLoopID.hasValue())
1184       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1185   }
1186 
1187   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1188     Optional<MDNode *> NewLoopID =
1189         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1190                                         LLVMLoopUnrollFollowupUnrolled});
1191     if (NewLoopID.hasValue()) {
1192       L->setLoopID(NewLoopID.getValue());
1193 
1194       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1195       // explicitly.
1196       return UnrollResult;
1197     }
1198   }
1199 
1200   // If loop has an unroll count pragma or unrolled by explicitly set count
1201   // mark loop as unrolled to prevent unrolling beyond that requested.
1202   // If the loop was peeled, we already "used up" the profile information
1203   // we had, so we don't want to unroll or peel again.
1204   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1205       (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
1206     L->setLoopAlreadyUnrolled();
1207 
1208   return UnrollResult;
1209 }
1210 
1211 namespace {
1212 
1213 class LoopUnroll : public LoopPass {
1214 public:
1215   static char ID; // Pass ID, replacement for typeid
1216 
1217   int OptLevel;
1218 
1219   /// If false, use a cost model to determine whether unrolling of a loop is
1220   /// profitable. If true, only loops that explicitly request unrolling via
1221   /// metadata are considered. All other loops are skipped.
1222   bool OnlyWhenForced;
1223 
1224   /// If false, when SCEV is invalidated, only forget everything in the
1225   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1226   /// Otherwise, forgetAllLoops and rebuild when needed next.
1227   bool ForgetAllSCEV;
1228 
1229   Optional<unsigned> ProvidedCount;
1230   Optional<unsigned> ProvidedThreshold;
1231   Optional<bool> ProvidedAllowPartial;
1232   Optional<bool> ProvidedRuntime;
1233   Optional<bool> ProvidedUpperBound;
1234   Optional<bool> ProvidedAllowPeeling;
1235   Optional<bool> ProvidedAllowProfileBasedPeeling;
1236   Optional<unsigned> ProvidedFullUnrollMaxCount;
1237 
1238   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1239              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1240              Optional<unsigned> Count = None,
1241              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1242              Optional<bool> UpperBound = None,
1243              Optional<bool> AllowPeeling = None,
1244              Optional<bool> AllowProfileBasedPeeling = None,
1245              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1246       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1247         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1248         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1249         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1250         ProvidedAllowPeeling(AllowPeeling),
1251         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1252         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1253     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1254   }
1255 
1256   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1257     if (skipLoop(L))
1258       return false;
1259 
1260     Function &F = *L->getHeader()->getParent();
1261 
1262     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1263     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1264     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1265     const TargetTransformInfo &TTI =
1266         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1267     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1268     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1269     // pass.  Function analyses need to be preserved across loop transformations
1270     // but ORE cannot be preserved (see comment before the pass definition).
1271     OptimizationRemarkEmitter ORE(&F);
1272     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1273 
1274     LoopUnrollResult Result = tryToUnrollLoop(
1275         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1276         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1277         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1278         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1279         ProvidedFullUnrollMaxCount);
1280 
1281     if (Result == LoopUnrollResult::FullyUnrolled)
1282       LPM.markLoopAsDeleted(*L);
1283 
1284     return Result != LoopUnrollResult::Unmodified;
1285   }
1286 
1287   /// This transformation requires natural loop information & requires that
1288   /// loop preheaders be inserted into the CFG...
1289   void getAnalysisUsage(AnalysisUsage &AU) const override {
1290     AU.addRequired<AssumptionCacheTracker>();
1291     AU.addRequired<TargetTransformInfoWrapperPass>();
1292     // FIXME: Loop passes are required to preserve domtree, and for now we just
1293     // recreate dom info if anything gets unrolled.
1294     getLoopAnalysisUsage(AU);
1295   }
1296 };
1297 
1298 } // end anonymous namespace
1299 
1300 char LoopUnroll::ID = 0;
1301 
1302 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1303 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1304 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1305 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1306 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1307 
1308 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1309                                  bool ForgetAllSCEV, int Threshold, int Count,
1310                                  int AllowPartial, int Runtime, int UpperBound,
1311                                  int AllowPeeling) {
1312   // TODO: It would make more sense for this function to take the optionals
1313   // directly, but that's dangerous since it would silently break out of tree
1314   // callers.
1315   return new LoopUnroll(
1316       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1317       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1318       Count == -1 ? None : Optional<unsigned>(Count),
1319       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1320       Runtime == -1 ? None : Optional<bool>(Runtime),
1321       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1322       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1323 }
1324 
1325 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1326                                        bool ForgetAllSCEV) {
1327   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1328                               0, 0, 0, 0);
1329 }
1330 
1331 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1332                                           LoopStandardAnalysisResults &AR,
1333                                           LPMUpdater &Updater) {
1334   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1335   // pass. Function analyses need to be preserved across loop transformations
1336   // but ORE cannot be preserved (see comment before the pass definition).
1337   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1338 
1339   // Keep track of the previous loop structure so we can identify new loops
1340   // created by unrolling.
1341   Loop *ParentL = L.getParentLoop();
1342   SmallPtrSet<Loop *, 4> OldLoops;
1343   if (ParentL)
1344     OldLoops.insert(ParentL->begin(), ParentL->end());
1345   else
1346     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1347 
1348   std::string LoopName = std::string(L.getName());
1349 
1350   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1351                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1352                                  /*PreserveLCSSA*/ true, OptLevel,
1353                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1354                                  /*Threshold*/ None, /*AllowPartial*/ false,
1355                                  /*Runtime*/ false, /*UpperBound*/ false,
1356                                  /*AllowPeeling*/ false,
1357                                  /*AllowProfileBasedPeeling*/ false,
1358                                  /*FullUnrollMaxCount*/ None) !=
1359                  LoopUnrollResult::Unmodified;
1360   if (!Changed)
1361     return PreservedAnalyses::all();
1362 
1363   // The parent must not be damaged by unrolling!
1364 #ifndef NDEBUG
1365   if (ParentL)
1366     ParentL->verifyLoop();
1367 #endif
1368 
1369   // Unrolling can do several things to introduce new loops into a loop nest:
1370   // - Full unrolling clones child loops within the current loop but then
1371   //   removes the current loop making all of the children appear to be new
1372   //   sibling loops.
1373   //
1374   // When a new loop appears as a sibling loop after fully unrolling,
1375   // its nesting structure has fundamentally changed and we want to revisit
1376   // it to reflect that.
1377   //
1378   // When unrolling has removed the current loop, we need to tell the
1379   // infrastructure that it is gone.
1380   //
1381   // Finally, we support a debugging/testing mode where we revisit child loops
1382   // as well. These are not expected to require further optimizations as either
1383   // they or the loop they were cloned from have been directly visited already.
1384   // But the debugging mode allows us to check this assumption.
1385   bool IsCurrentLoopValid = false;
1386   SmallVector<Loop *, 4> SibLoops;
1387   if (ParentL)
1388     SibLoops.append(ParentL->begin(), ParentL->end());
1389   else
1390     SibLoops.append(AR.LI.begin(), AR.LI.end());
1391   erase_if(SibLoops, [&](Loop *SibLoop) {
1392     if (SibLoop == &L) {
1393       IsCurrentLoopValid = true;
1394       return true;
1395     }
1396 
1397     // Otherwise erase the loop from the list if it was in the old loops.
1398     return OldLoops.count(SibLoop) != 0;
1399   });
1400   Updater.addSiblingLoops(SibLoops);
1401 
1402   if (!IsCurrentLoopValid) {
1403     Updater.markLoopAsDeleted(L, LoopName);
1404   } else {
1405     // We can only walk child loops if the current loop remained valid.
1406     if (UnrollRevisitChildLoops) {
1407       // Walk *all* of the child loops.
1408       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1409       Updater.addChildLoops(ChildLoops);
1410     }
1411   }
1412 
1413   return getLoopPassPreservedAnalyses();
1414 }
1415 
1416 PreservedAnalyses LoopUnrollPass::run(Function &F,
1417                                       FunctionAnalysisManager &AM) {
1418   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1419   auto &LI = AM.getResult<LoopAnalysis>(F);
1420   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1421   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1422   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1423   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1424 
1425   LoopAnalysisManager *LAM = nullptr;
1426   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1427     LAM = &LAMProxy->getManager();
1428 
1429   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1430   ProfileSummaryInfo *PSI =
1431       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1432   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1433       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1434 
1435   bool Changed = false;
1436 
1437   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1438   // Since simplification may add new inner loops, it has to run before the
1439   // legality and profitability checks. This means running the loop unroller
1440   // will simplify all loops, regardless of whether anything end up being
1441   // unrolled.
1442   for (auto &L : LI) {
1443     Changed |=
1444         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1445     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1446   }
1447 
1448   // Add the loop nests in the reverse order of LoopInfo. See method
1449   // declaration.
1450   SmallPriorityWorklist<Loop *, 4> Worklist;
1451   appendLoopsToWorklist(LI, Worklist);
1452 
1453   while (!Worklist.empty()) {
1454     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1455     // from back to front so that we work forward across the CFG, which
1456     // for unrolling is only needed to get optimization remarks emitted in
1457     // a forward order.
1458     Loop &L = *Worklist.pop_back_val();
1459 #ifndef NDEBUG
1460     Loop *ParentL = L.getParentLoop();
1461 #endif
1462 
1463     // Check if the profile summary indicates that the profiled application
1464     // has a huge working set size, in which case we disable peeling to avoid
1465     // bloating it further.
1466     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1467     if (PSI && PSI->hasHugeWorkingSetSize())
1468       LocalAllowPeeling = false;
1469     std::string LoopName = std::string(L.getName());
1470     // The API here is quite complex to call and we allow to select some
1471     // flavors of unrolling during construction time (by setting UnrollOpts).
1472     LoopUnrollResult Result = tryToUnrollLoop(
1473         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1474         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1475         UnrollOpts.ForgetSCEV, /*Count*/ None,
1476         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1477         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1478         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1479     Changed |= Result != LoopUnrollResult::Unmodified;
1480 
1481     // The parent must not be damaged by unrolling!
1482 #ifndef NDEBUG
1483     if (Result != LoopUnrollResult::Unmodified && ParentL)
1484       ParentL->verifyLoop();
1485 #endif
1486 
1487     // Clear any cached analysis results for L if we removed it completely.
1488     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1489       LAM->clear(L, LoopName);
1490   }
1491 
1492   if (!Changed)
1493     return PreservedAnalyses::all();
1494 
1495   return getLoopPassPreservedAnalyses();
1496 }
1497