xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp (revision ffd08c7759000f55332f1657a1fab64a7adc03fd)
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/DomTreeUpdater.h"
71 #include "llvm/Analysis/IVUsers.h"
72 #include "llvm/Analysis/LoopAnalysisManager.h"
73 #include "llvm/Analysis/LoopInfo.h"
74 #include "llvm/Analysis/LoopPass.h"
75 #include "llvm/Analysis/MemorySSA.h"
76 #include "llvm/Analysis/MemorySSAUpdater.h"
77 #include "llvm/Analysis/ScalarEvolution.h"
78 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
79 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
80 #include "llvm/Analysis/TargetLibraryInfo.h"
81 #include "llvm/Analysis/TargetTransformInfo.h"
82 #include "llvm/Analysis/ValueTracking.h"
83 #include "llvm/BinaryFormat/Dwarf.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/BasicBlock.h"
86 #include "llvm/IR/Constant.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DebugInfoMetadata.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/GlobalValue.h"
92 #include "llvm/IR/IRBuilder.h"
93 #include "llvm/IR/InstrTypes.h"
94 #include "llvm/IR/Instruction.h"
95 #include "llvm/IR/Instructions.h"
96 #include "llvm/IR/IntrinsicInst.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/PassManager.h"
100 #include "llvm/IR/Type.h"
101 #include "llvm/IR/Use.h"
102 #include "llvm/IR/User.h"
103 #include "llvm/IR/Value.h"
104 #include "llvm/IR/ValueHandle.h"
105 #include "llvm/InitializePasses.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Support/Casting.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/Debug.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/Support/MathExtras.h"
113 #include "llvm/Support/raw_ostream.h"
114 #include "llvm/Transforms/Scalar.h"
115 #include "llvm/Transforms/Utils.h"
116 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
117 #include "llvm/Transforms/Utils/Local.h"
118 #include "llvm/Transforms/Utils/LoopUtils.h"
119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
120 #include <algorithm>
121 #include <cassert>
122 #include <cstddef>
123 #include <cstdint>
124 #include <iterator>
125 #include <limits>
126 #include <map>
127 #include <numeric>
128 #include <optional>
129 #include <utility>
130 
131 using namespace llvm;
132 
133 #define DEBUG_TYPE "loop-reduce"
134 
135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
136 /// bail out. This threshold is far beyond the number of users that LSR can
137 /// conceivably solve, so it should not affect generated code, but catches the
138 /// worst cases before LSR burns too much compile time and stack space.
139 static const unsigned MaxIVUsers = 200;
140 
141 /// Limit the size of expression that SCEV-based salvaging will attempt to
142 /// translate into a DIExpression.
143 /// Choose a maximum size such that debuginfo is not excessively increased and
144 /// the salvaging is not too expensive for the compiler.
145 static const unsigned MaxSCEVSalvageExpressionSize = 64;
146 
147 // Cleanup congruent phis after LSR phi expansion.
148 static cl::opt<bool> EnablePhiElim(
149   "enable-lsr-phielim", cl::Hidden, cl::init(true),
150   cl::desc("Enable LSR phi elimination"));
151 
152 // The flag adds instruction count to solutions cost comparison.
153 static cl::opt<bool> InsnsCost(
154   "lsr-insns-cost", cl::Hidden, cl::init(true),
155   cl::desc("Add instruction count to a LSR cost model"));
156 
157 // Flag to choose how to narrow complex lsr solution
158 static cl::opt<bool> LSRExpNarrow(
159   "lsr-exp-narrow", cl::Hidden, cl::init(false),
160   cl::desc("Narrow LSR complex solution using"
161            " expectation of registers number"));
162 
163 // Flag to narrow search space by filtering non-optimal formulae with
164 // the same ScaledReg and Scale.
165 static cl::opt<bool> FilterSameScaledReg(
166     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
167     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
168              " with the same ScaledReg and Scale"));
169 
170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
171   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
172    cl::desc("A flag that overrides the target's preferred addressing mode."),
173    cl::values(clEnumValN(TTI::AMK_None,
174                          "none",
175                          "Don't prefer any addressing mode"),
176               clEnumValN(TTI::AMK_PreIndexed,
177                          "preindexed",
178                          "Prefer pre-indexed addressing mode"),
179               clEnumValN(TTI::AMK_PostIndexed,
180                          "postindexed",
181                          "Prefer post-indexed addressing mode")));
182 
183 static cl::opt<unsigned> ComplexityLimit(
184   "lsr-complexity-limit", cl::Hidden,
185   cl::init(std::numeric_limits<uint16_t>::max()),
186   cl::desc("LSR search space complexity limit"));
187 
188 static cl::opt<unsigned> SetupCostDepthLimit(
189     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
190     cl::desc("The limit on recursion depth for LSRs setup cost"));
191 
192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR(
193     "lsr-term-fold", cl::Hidden,
194     cl::desc("Attempt to replace primary IV with other IV."));
195 
196 static cl::opt<bool> AllowDropSolutionIfLessProfitable(
197     "lsr-drop-solution", cl::Hidden, cl::init(false),
198     cl::desc("Attempt to drop solution if it is less profitable"));
199 
200 STATISTIC(NumTermFold,
201           "Number of terminating condition fold recognized and performed");
202 
203 #ifndef NDEBUG
204 // Stress test IV chain generation.
205 static cl::opt<bool> StressIVChain(
206   "stress-ivchain", cl::Hidden, cl::init(false),
207   cl::desc("Stress test LSR IV chains"));
208 #else
209 static bool StressIVChain = false;
210 #endif
211 
212 namespace {
213 
214 struct MemAccessTy {
215   /// Used in situations where the accessed memory type is unknown.
216   static const unsigned UnknownAddressSpace =
217       std::numeric_limits<unsigned>::max();
218 
219   Type *MemTy = nullptr;
220   unsigned AddrSpace = UnknownAddressSpace;
221 
222   MemAccessTy() = default;
223   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
224 
225   bool operator==(MemAccessTy Other) const {
226     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
227   }
228 
229   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
230 
231   static MemAccessTy getUnknown(LLVMContext &Ctx,
232                                 unsigned AS = UnknownAddressSpace) {
233     return MemAccessTy(Type::getVoidTy(Ctx), AS);
234   }
235 
236   Type *getType() { return MemTy; }
237 };
238 
239 /// This class holds data which is used to order reuse candidates.
240 class RegSortData {
241 public:
242   /// This represents the set of LSRUse indices which reference
243   /// a particular register.
244   SmallBitVector UsedByIndices;
245 
246   void print(raw_ostream &OS) const;
247   void dump() const;
248 };
249 
250 } // end anonymous namespace
251 
252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
253 void RegSortData::print(raw_ostream &OS) const {
254   OS << "[NumUses=" << UsedByIndices.count() << ']';
255 }
256 
257 LLVM_DUMP_METHOD void RegSortData::dump() const {
258   print(errs()); errs() << '\n';
259 }
260 #endif
261 
262 namespace {
263 
264 /// Map register candidates to information about how they are used.
265 class RegUseTracker {
266   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
267 
268   RegUsesTy RegUsesMap;
269   SmallVector<const SCEV *, 16> RegSequence;
270 
271 public:
272   void countRegister(const SCEV *Reg, size_t LUIdx);
273   void dropRegister(const SCEV *Reg, size_t LUIdx);
274   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
275 
276   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
277 
278   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
279 
280   void clear();
281 
282   using iterator = SmallVectorImpl<const SCEV *>::iterator;
283   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
284 
285   iterator begin() { return RegSequence.begin(); }
286   iterator end()   { return RegSequence.end(); }
287   const_iterator begin() const { return RegSequence.begin(); }
288   const_iterator end() const   { return RegSequence.end(); }
289 };
290 
291 } // end anonymous namespace
292 
293 void
294 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
295   std::pair<RegUsesTy::iterator, bool> Pair =
296     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
297   RegSortData &RSD = Pair.first->second;
298   if (Pair.second)
299     RegSequence.push_back(Reg);
300   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
301   RSD.UsedByIndices.set(LUIdx);
302 }
303 
304 void
305 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
306   RegUsesTy::iterator It = RegUsesMap.find(Reg);
307   assert(It != RegUsesMap.end());
308   RegSortData &RSD = It->second;
309   assert(RSD.UsedByIndices.size() > LUIdx);
310   RSD.UsedByIndices.reset(LUIdx);
311 }
312 
313 void
314 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
315   assert(LUIdx <= LastLUIdx);
316 
317   // Update RegUses. The data structure is not optimized for this purpose;
318   // we must iterate through it and update each of the bit vectors.
319   for (auto &Pair : RegUsesMap) {
320     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
321     if (LUIdx < UsedByIndices.size())
322       UsedByIndices[LUIdx] =
323         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
324     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
325   }
326 }
327 
328 bool
329 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
330   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
331   if (I == RegUsesMap.end())
332     return false;
333   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
334   int i = UsedByIndices.find_first();
335   if (i == -1) return false;
336   if ((size_t)i != LUIdx) return true;
337   return UsedByIndices.find_next(i) != -1;
338 }
339 
340 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
341   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
342   assert(I != RegUsesMap.end() && "Unknown register!");
343   return I->second.UsedByIndices;
344 }
345 
346 void RegUseTracker::clear() {
347   RegUsesMap.clear();
348   RegSequence.clear();
349 }
350 
351 namespace {
352 
353 /// This class holds information that describes a formula for computing
354 /// satisfying a use. It may include broken-out immediates and scaled registers.
355 struct Formula {
356   /// Global base address used for complex addressing.
357   GlobalValue *BaseGV = nullptr;
358 
359   /// Base offset for complex addressing.
360   int64_t BaseOffset = 0;
361 
362   /// Whether any complex addressing has a base register.
363   bool HasBaseReg = false;
364 
365   /// The scale of any complex addressing.
366   int64_t Scale = 0;
367 
368   /// The list of "base" registers for this use. When this is non-empty. The
369   /// canonical representation of a formula is
370   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
371   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
372   /// 3. The reg containing recurrent expr related with currect loop in the
373   /// formula should be put in the ScaledReg.
374   /// #1 enforces that the scaled register is always used when at least two
375   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
376   /// #2 enforces that 1 * reg is reg.
377   /// #3 ensures invariant regs with respect to current loop can be combined
378   /// together in LSR codegen.
379   /// This invariant can be temporarily broken while building a formula.
380   /// However, every formula inserted into the LSRInstance must be in canonical
381   /// form.
382   SmallVector<const SCEV *, 4> BaseRegs;
383 
384   /// The 'scaled' register for this use. This should be non-null when Scale is
385   /// not zero.
386   const SCEV *ScaledReg = nullptr;
387 
388   /// An additional constant offset which added near the use. This requires a
389   /// temporary register, but the offset itself can live in an add immediate
390   /// field rather than a register.
391   int64_t UnfoldedOffset = 0;
392 
393   Formula() = default;
394 
395   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
396 
397   bool isCanonical(const Loop &L) const;
398 
399   void canonicalize(const Loop &L);
400 
401   bool unscale();
402 
403   bool hasZeroEnd() const;
404 
405   size_t getNumRegs() const;
406   Type *getType() const;
407 
408   void deleteBaseReg(const SCEV *&S);
409 
410   bool referencesReg(const SCEV *S) const;
411   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
412                                   const RegUseTracker &RegUses) const;
413 
414   void print(raw_ostream &OS) const;
415   void dump() const;
416 };
417 
418 } // end anonymous namespace
419 
420 /// Recursion helper for initialMatch.
421 static void DoInitialMatch(const SCEV *S, Loop *L,
422                            SmallVectorImpl<const SCEV *> &Good,
423                            SmallVectorImpl<const SCEV *> &Bad,
424                            ScalarEvolution &SE) {
425   // Collect expressions which properly dominate the loop header.
426   if (SE.properlyDominates(S, L->getHeader())) {
427     Good.push_back(S);
428     return;
429   }
430 
431   // Look at add operands.
432   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
433     for (const SCEV *S : Add->operands())
434       DoInitialMatch(S, L, Good, Bad, SE);
435     return;
436   }
437 
438   // Look at addrec operands.
439   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440     if (!AR->getStart()->isZero() && AR->isAffine()) {
441       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
442       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
443                                       AR->getStepRecurrence(SE),
444                                       // FIXME: AR->getNoWrapFlags()
445                                       AR->getLoop(), SCEV::FlagAnyWrap),
446                      L, Good, Bad, SE);
447       return;
448     }
449 
450   // Handle a multiplication by -1 (negation) if it didn't fold.
451   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
452     if (Mul->getOperand(0)->isAllOnesValue()) {
453       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
454       const SCEV *NewMul = SE.getMulExpr(Ops);
455 
456       SmallVector<const SCEV *, 4> MyGood;
457       SmallVector<const SCEV *, 4> MyBad;
458       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
459       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
460         SE.getEffectiveSCEVType(NewMul->getType())));
461       for (const SCEV *S : MyGood)
462         Good.push_back(SE.getMulExpr(NegOne, S));
463       for (const SCEV *S : MyBad)
464         Bad.push_back(SE.getMulExpr(NegOne, S));
465       return;
466     }
467 
468   // Ok, we can't do anything interesting. Just stuff the whole thing into a
469   // register and hope for the best.
470   Bad.push_back(S);
471 }
472 
473 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
474 /// all loop-invariant and loop-computable values in a single base register.
475 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
476   SmallVector<const SCEV *, 4> Good;
477   SmallVector<const SCEV *, 4> Bad;
478   DoInitialMatch(S, L, Good, Bad, SE);
479   if (!Good.empty()) {
480     const SCEV *Sum = SE.getAddExpr(Good);
481     if (!Sum->isZero())
482       BaseRegs.push_back(Sum);
483     HasBaseReg = true;
484   }
485   if (!Bad.empty()) {
486     const SCEV *Sum = SE.getAddExpr(Bad);
487     if (!Sum->isZero())
488       BaseRegs.push_back(Sum);
489     HasBaseReg = true;
490   }
491   canonicalize(*L);
492 }
493 
494 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
495   return SCEVExprContains(S, [&L](const SCEV *S) {
496     return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
497   });
498 }
499 
500 /// Check whether or not this formula satisfies the canonical
501 /// representation.
502 /// \see Formula::BaseRegs.
503 bool Formula::isCanonical(const Loop &L) const {
504   if (!ScaledReg)
505     return BaseRegs.size() <= 1;
506 
507   if (Scale != 1)
508     return true;
509 
510   if (Scale == 1 && BaseRegs.empty())
511     return false;
512 
513   if (containsAddRecDependentOnLoop(ScaledReg, L))
514     return true;
515 
516   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
517   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
518   // loop, we want to swap the reg in BaseRegs with ScaledReg.
519   return none_of(BaseRegs, [&L](const SCEV *S) {
520     return containsAddRecDependentOnLoop(S, L);
521   });
522 }
523 
524 /// Helper method to morph a formula into its canonical representation.
525 /// \see Formula::BaseRegs.
526 /// Every formula having more than one base register, must use the ScaledReg
527 /// field. Otherwise, we would have to do special cases everywhere in LSR
528 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
529 /// On the other hand, 1*reg should be canonicalized into reg.
530 void Formula::canonicalize(const Loop &L) {
531   if (isCanonical(L))
532     return;
533 
534   if (BaseRegs.empty()) {
535     // No base reg? Use scale reg with scale = 1 as such.
536     assert(ScaledReg && "Expected 1*reg => reg");
537     assert(Scale == 1 && "Expected 1*reg => reg");
538     BaseRegs.push_back(ScaledReg);
539     Scale = 0;
540     ScaledReg = nullptr;
541     return;
542   }
543 
544   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
545   if (!ScaledReg) {
546     ScaledReg = BaseRegs.pop_back_val();
547     Scale = 1;
548   }
549 
550   // If ScaledReg is an invariant with respect to L, find the reg from
551   // BaseRegs containing the recurrent expr related with Loop L. Swap the
552   // reg with ScaledReg.
553   if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
554     auto I = find_if(BaseRegs, [&L](const SCEV *S) {
555       return containsAddRecDependentOnLoop(S, L);
556     });
557     if (I != BaseRegs.end())
558       std::swap(ScaledReg, *I);
559   }
560   assert(isCanonical(L) && "Failed to canonicalize?");
561 }
562 
563 /// Get rid of the scale in the formula.
564 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
565 /// \return true if it was possible to get rid of the scale, false otherwise.
566 /// \note After this operation the formula may not be in the canonical form.
567 bool Formula::unscale() {
568   if (Scale != 1)
569     return false;
570   Scale = 0;
571   BaseRegs.push_back(ScaledReg);
572   ScaledReg = nullptr;
573   return true;
574 }
575 
576 bool Formula::hasZeroEnd() const {
577   if (UnfoldedOffset || BaseOffset)
578     return false;
579   if (BaseRegs.size() != 1 || ScaledReg)
580     return false;
581   return true;
582 }
583 
584 /// Return the total number of register operands used by this formula. This does
585 /// not include register uses implied by non-constant addrec strides.
586 size_t Formula::getNumRegs() const {
587   return !!ScaledReg + BaseRegs.size();
588 }
589 
590 /// Return the type of this formula, if it has one, or null otherwise. This type
591 /// is meaningless except for the bit size.
592 Type *Formula::getType() const {
593   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
594          ScaledReg ? ScaledReg->getType() :
595          BaseGV ? BaseGV->getType() :
596          nullptr;
597 }
598 
599 /// Delete the given base reg from the BaseRegs list.
600 void Formula::deleteBaseReg(const SCEV *&S) {
601   if (&S != &BaseRegs.back())
602     std::swap(S, BaseRegs.back());
603   BaseRegs.pop_back();
604 }
605 
606 /// Test if this formula references the given register.
607 bool Formula::referencesReg(const SCEV *S) const {
608   return S == ScaledReg || is_contained(BaseRegs, S);
609 }
610 
611 /// Test whether this formula uses registers which are used by uses other than
612 /// the use with the given index.
613 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
614                                          const RegUseTracker &RegUses) const {
615   if (ScaledReg)
616     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
617       return true;
618   for (const SCEV *BaseReg : BaseRegs)
619     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
620       return true;
621   return false;
622 }
623 
624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
625 void Formula::print(raw_ostream &OS) const {
626   bool First = true;
627   if (BaseGV) {
628     if (!First) OS << " + "; else First = false;
629     BaseGV->printAsOperand(OS, /*PrintType=*/false);
630   }
631   if (BaseOffset != 0) {
632     if (!First) OS << " + "; else First = false;
633     OS << BaseOffset;
634   }
635   for (const SCEV *BaseReg : BaseRegs) {
636     if (!First) OS << " + "; else First = false;
637     OS << "reg(" << *BaseReg << ')';
638   }
639   if (HasBaseReg && BaseRegs.empty()) {
640     if (!First) OS << " + "; else First = false;
641     OS << "**error: HasBaseReg**";
642   } else if (!HasBaseReg && !BaseRegs.empty()) {
643     if (!First) OS << " + "; else First = false;
644     OS << "**error: !HasBaseReg**";
645   }
646   if (Scale != 0) {
647     if (!First) OS << " + "; else First = false;
648     OS << Scale << "*reg(";
649     if (ScaledReg)
650       OS << *ScaledReg;
651     else
652       OS << "<unknown>";
653     OS << ')';
654   }
655   if (UnfoldedOffset != 0) {
656     if (!First) OS << " + ";
657     OS << "imm(" << UnfoldedOffset << ')';
658   }
659 }
660 
661 LLVM_DUMP_METHOD void Formula::dump() const {
662   print(errs()); errs() << '\n';
663 }
664 #endif
665 
666 /// Return true if the given addrec can be sign-extended without changing its
667 /// value.
668 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
669   Type *WideTy =
670     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
671   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
672 }
673 
674 /// Return true if the given add can be sign-extended without changing its
675 /// value.
676 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
677   Type *WideTy =
678     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
679   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
680 }
681 
682 /// Return true if the given mul can be sign-extended without changing its
683 /// value.
684 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
685   Type *WideTy =
686     IntegerType::get(SE.getContext(),
687                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
688   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
689 }
690 
691 /// Return an expression for LHS /s RHS, if it can be determined and if the
692 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
693 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
694 /// the multiplication may overflow, which is useful when the result will be
695 /// used in a context where the most significant bits are ignored.
696 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
697                                 ScalarEvolution &SE,
698                                 bool IgnoreSignificantBits = false) {
699   // Handle the trivial case, which works for any SCEV type.
700   if (LHS == RHS)
701     return SE.getConstant(LHS->getType(), 1);
702 
703   // Handle a few RHS special cases.
704   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
705   if (RC) {
706     const APInt &RA = RC->getAPInt();
707     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
708     // some folding.
709     if (RA.isAllOnes()) {
710       if (LHS->getType()->isPointerTy())
711         return nullptr;
712       return SE.getMulExpr(LHS, RC);
713     }
714     // Handle x /s 1 as x.
715     if (RA == 1)
716       return LHS;
717   }
718 
719   // Check for a division of a constant by a constant.
720   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
721     if (!RC)
722       return nullptr;
723     const APInt &LA = C->getAPInt();
724     const APInt &RA = RC->getAPInt();
725     if (LA.srem(RA) != 0)
726       return nullptr;
727     return SE.getConstant(LA.sdiv(RA));
728   }
729 
730   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
731   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
732     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
733       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
734                                       IgnoreSignificantBits);
735       if (!Step) return nullptr;
736       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
737                                        IgnoreSignificantBits);
738       if (!Start) return nullptr;
739       // FlagNW is independent of the start value, step direction, and is
740       // preserved with smaller magnitude steps.
741       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
742       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
743     }
744     return nullptr;
745   }
746 
747   // Distribute the sdiv over add operands, if the add doesn't overflow.
748   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
749     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
750       SmallVector<const SCEV *, 8> Ops;
751       for (const SCEV *S : Add->operands()) {
752         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
753         if (!Op) return nullptr;
754         Ops.push_back(Op);
755       }
756       return SE.getAddExpr(Ops);
757     }
758     return nullptr;
759   }
760 
761   // Check for a multiply operand that we can pull RHS out of.
762   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
763     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
764       // Handle special case C1*X*Y /s C2*X*Y.
765       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
766         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
767           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
768           const SCEVConstant *RC =
769               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
770           if (LC && RC) {
771             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
772             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
773             if (LOps == ROps)
774               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
775           }
776         }
777       }
778 
779       SmallVector<const SCEV *, 4> Ops;
780       bool Found = false;
781       for (const SCEV *S : Mul->operands()) {
782         if (!Found)
783           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
784                                            IgnoreSignificantBits)) {
785             S = Q;
786             Found = true;
787           }
788         Ops.push_back(S);
789       }
790       return Found ? SE.getMulExpr(Ops) : nullptr;
791     }
792     return nullptr;
793   }
794 
795   // Otherwise we don't know.
796   return nullptr;
797 }
798 
799 /// If S involves the addition of a constant integer value, return that integer
800 /// value, and mutate S to point to a new SCEV with that value excluded.
801 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
802   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
803     if (C->getAPInt().getSignificantBits() <= 64) {
804       S = SE.getConstant(C->getType(), 0);
805       return C->getValue()->getSExtValue();
806     }
807   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
808     SmallVector<const SCEV *, 8> NewOps(Add->operands());
809     int64_t Result = ExtractImmediate(NewOps.front(), SE);
810     if (Result != 0)
811       S = SE.getAddExpr(NewOps);
812     return Result;
813   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
814     SmallVector<const SCEV *, 8> NewOps(AR->operands());
815     int64_t Result = ExtractImmediate(NewOps.front(), SE);
816     if (Result != 0)
817       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
818                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
819                            SCEV::FlagAnyWrap);
820     return Result;
821   }
822   return 0;
823 }
824 
825 /// If S involves the addition of a GlobalValue address, return that symbol, and
826 /// mutate S to point to a new SCEV with that value excluded.
827 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
828   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
829     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
830       S = SE.getConstant(GV->getType(), 0);
831       return GV;
832     }
833   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
834     SmallVector<const SCEV *, 8> NewOps(Add->operands());
835     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
836     if (Result)
837       S = SE.getAddExpr(NewOps);
838     return Result;
839   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
840     SmallVector<const SCEV *, 8> NewOps(AR->operands());
841     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
842     if (Result)
843       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
844                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
845                            SCEV::FlagAnyWrap);
846     return Result;
847   }
848   return nullptr;
849 }
850 
851 /// Returns true if the specified instruction is using the specified value as an
852 /// address.
853 static bool isAddressUse(const TargetTransformInfo &TTI,
854                          Instruction *Inst, Value *OperandVal) {
855   bool isAddress = isa<LoadInst>(Inst);
856   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
857     if (SI->getPointerOperand() == OperandVal)
858       isAddress = true;
859   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
860     // Addressing modes can also be folded into prefetches and a variety
861     // of intrinsics.
862     switch (II->getIntrinsicID()) {
863     case Intrinsic::memset:
864     case Intrinsic::prefetch:
865     case Intrinsic::masked_load:
866       if (II->getArgOperand(0) == OperandVal)
867         isAddress = true;
868       break;
869     case Intrinsic::masked_store:
870       if (II->getArgOperand(1) == OperandVal)
871         isAddress = true;
872       break;
873     case Intrinsic::memmove:
874     case Intrinsic::memcpy:
875       if (II->getArgOperand(0) == OperandVal ||
876           II->getArgOperand(1) == OperandVal)
877         isAddress = true;
878       break;
879     default: {
880       MemIntrinsicInfo IntrInfo;
881       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
882         if (IntrInfo.PtrVal == OperandVal)
883           isAddress = true;
884       }
885     }
886     }
887   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
888     if (RMW->getPointerOperand() == OperandVal)
889       isAddress = true;
890   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
891     if (CmpX->getPointerOperand() == OperandVal)
892       isAddress = true;
893   }
894   return isAddress;
895 }
896 
897 /// Return the type of the memory being accessed.
898 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
899                                  Instruction *Inst, Value *OperandVal) {
900   MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
901 
902   // First get the type of memory being accessed.
903   if (Type *Ty = Inst->getAccessType())
904     AccessTy.MemTy = Ty;
905 
906   // Then get the pointer address space.
907   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
908     AccessTy.AddrSpace = SI->getPointerAddressSpace();
909   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
910     AccessTy.AddrSpace = LI->getPointerAddressSpace();
911   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
912     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
913   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
914     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
915   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
916     switch (II->getIntrinsicID()) {
917     case Intrinsic::prefetch:
918     case Intrinsic::memset:
919       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
920       AccessTy.MemTy = OperandVal->getType();
921       break;
922     case Intrinsic::memmove:
923     case Intrinsic::memcpy:
924       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
925       AccessTy.MemTy = OperandVal->getType();
926       break;
927     case Intrinsic::masked_load:
928       AccessTy.AddrSpace =
929           II->getArgOperand(0)->getType()->getPointerAddressSpace();
930       break;
931     case Intrinsic::masked_store:
932       AccessTy.AddrSpace =
933           II->getArgOperand(1)->getType()->getPointerAddressSpace();
934       break;
935     default: {
936       MemIntrinsicInfo IntrInfo;
937       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
938         AccessTy.AddrSpace
939           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
940       }
941 
942       break;
943     }
944     }
945   }
946 
947   return AccessTy;
948 }
949 
950 /// Return true if this AddRec is already a phi in its loop.
951 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
952   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
953     if (SE.isSCEVable(PN.getType()) &&
954         (SE.getEffectiveSCEVType(PN.getType()) ==
955          SE.getEffectiveSCEVType(AR->getType())) &&
956         SE.getSCEV(&PN) == AR)
957       return true;
958   }
959   return false;
960 }
961 
962 /// Check if expanding this expression is likely to incur significant cost. This
963 /// is tricky because SCEV doesn't track which expressions are actually computed
964 /// by the current IR.
965 ///
966 /// We currently allow expansion of IV increments that involve adds,
967 /// multiplication by constants, and AddRecs from existing phis.
968 ///
969 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
970 /// obvious multiple of the UDivExpr.
971 static bool isHighCostExpansion(const SCEV *S,
972                                 SmallPtrSetImpl<const SCEV*> &Processed,
973                                 ScalarEvolution &SE) {
974   // Zero/One operand expressions
975   switch (S->getSCEVType()) {
976   case scUnknown:
977   case scConstant:
978   case scVScale:
979     return false;
980   case scTruncate:
981     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
982                                Processed, SE);
983   case scZeroExtend:
984     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
985                                Processed, SE);
986   case scSignExtend:
987     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
988                                Processed, SE);
989   default:
990     break;
991   }
992 
993   if (!Processed.insert(S).second)
994     return false;
995 
996   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
997     for (const SCEV *S : Add->operands()) {
998       if (isHighCostExpansion(S, Processed, SE))
999         return true;
1000     }
1001     return false;
1002   }
1003 
1004   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1005     if (Mul->getNumOperands() == 2) {
1006       // Multiplication by a constant is ok
1007       if (isa<SCEVConstant>(Mul->getOperand(0)))
1008         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1009 
1010       // If we have the value of one operand, check if an existing
1011       // multiplication already generates this expression.
1012       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1013         Value *UVal = U->getValue();
1014         for (User *UR : UVal->users()) {
1015           // If U is a constant, it may be used by a ConstantExpr.
1016           Instruction *UI = dyn_cast<Instruction>(UR);
1017           if (UI && UI->getOpcode() == Instruction::Mul &&
1018               SE.isSCEVable(UI->getType())) {
1019             return SE.getSCEV(UI) == Mul;
1020           }
1021         }
1022       }
1023     }
1024   }
1025 
1026   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1027     if (isExistingPhi(AR, SE))
1028       return false;
1029   }
1030 
1031   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1032   return true;
1033 }
1034 
1035 namespace {
1036 
1037 class LSRUse;
1038 
1039 } // end anonymous namespace
1040 
1041 /// Check if the addressing mode defined by \p F is completely
1042 /// folded in \p LU at isel time.
1043 /// This includes address-mode folding and special icmp tricks.
1044 /// This function returns true if \p LU can accommodate what \p F
1045 /// defines and up to 1 base + 1 scaled + offset.
1046 /// In other words, if \p F has several base registers, this function may
1047 /// still return true. Therefore, users still need to account for
1048 /// additional base registers and/or unfolded offsets to derive an
1049 /// accurate cost model.
1050 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1051                                  const LSRUse &LU, const Formula &F);
1052 
1053 // Get the cost of the scaling factor used in F for LU.
1054 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1055                                             const LSRUse &LU, const Formula &F,
1056                                             const Loop &L);
1057 
1058 namespace {
1059 
1060 /// This class is used to measure and compare candidate formulae.
1061 class Cost {
1062   const Loop *L = nullptr;
1063   ScalarEvolution *SE = nullptr;
1064   const TargetTransformInfo *TTI = nullptr;
1065   TargetTransformInfo::LSRCost C;
1066   TTI::AddressingModeKind AMK = TTI::AMK_None;
1067 
1068 public:
1069   Cost() = delete;
1070   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1071        TTI::AddressingModeKind AMK) :
1072     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1073     C.Insns = 0;
1074     C.NumRegs = 0;
1075     C.AddRecCost = 0;
1076     C.NumIVMuls = 0;
1077     C.NumBaseAdds = 0;
1078     C.ImmCost = 0;
1079     C.SetupCost = 0;
1080     C.ScaleCost = 0;
1081   }
1082 
1083   bool isLess(const Cost &Other) const;
1084 
1085   void Lose();
1086 
1087 #ifndef NDEBUG
1088   // Once any of the metrics loses, they must all remain losers.
1089   bool isValid() {
1090     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1091              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1092       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1093            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1094   }
1095 #endif
1096 
1097   bool isLoser() {
1098     assert(isValid() && "invalid cost");
1099     return C.NumRegs == ~0u;
1100   }
1101 
1102   void RateFormula(const Formula &F,
1103                    SmallPtrSetImpl<const SCEV *> &Regs,
1104                    const DenseSet<const SCEV *> &VisitedRegs,
1105                    const LSRUse &LU,
1106                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1107 
1108   void print(raw_ostream &OS) const;
1109   void dump() const;
1110 
1111 private:
1112   void RateRegister(const Formula &F, const SCEV *Reg,
1113                     SmallPtrSetImpl<const SCEV *> &Regs);
1114   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1115                            SmallPtrSetImpl<const SCEV *> &Regs,
1116                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1117 };
1118 
1119 /// An operand value in an instruction which is to be replaced with some
1120 /// equivalent, possibly strength-reduced, replacement.
1121 struct LSRFixup {
1122   /// The instruction which will be updated.
1123   Instruction *UserInst = nullptr;
1124 
1125   /// The operand of the instruction which will be replaced. The operand may be
1126   /// used more than once; every instance will be replaced.
1127   Value *OperandValToReplace = nullptr;
1128 
1129   /// If this user is to use the post-incremented value of an induction
1130   /// variable, this set is non-empty and holds the loops associated with the
1131   /// induction variable.
1132   PostIncLoopSet PostIncLoops;
1133 
1134   /// A constant offset to be added to the LSRUse expression.  This allows
1135   /// multiple fixups to share the same LSRUse with different offsets, for
1136   /// example in an unrolled loop.
1137   int64_t Offset = 0;
1138 
1139   LSRFixup() = default;
1140 
1141   bool isUseFullyOutsideLoop(const Loop *L) const;
1142 
1143   void print(raw_ostream &OS) const;
1144   void dump() const;
1145 };
1146 
1147 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1148 /// SmallVectors of const SCEV*.
1149 struct UniquifierDenseMapInfo {
1150   static SmallVector<const SCEV *, 4> getEmptyKey() {
1151     SmallVector<const SCEV *, 4>  V;
1152     V.push_back(reinterpret_cast<const SCEV *>(-1));
1153     return V;
1154   }
1155 
1156   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1157     SmallVector<const SCEV *, 4> V;
1158     V.push_back(reinterpret_cast<const SCEV *>(-2));
1159     return V;
1160   }
1161 
1162   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1163     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1164   }
1165 
1166   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1167                       const SmallVector<const SCEV *, 4> &RHS) {
1168     return LHS == RHS;
1169   }
1170 };
1171 
1172 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1173 /// as uses invented by LSR itself. It includes information about what kinds of
1174 /// things can be folded into the user, information about the user itself, and
1175 /// information about how the use may be satisfied.  TODO: Represent multiple
1176 /// users of the same expression in common?
1177 class LSRUse {
1178   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1179 
1180 public:
1181   /// An enum for a kind of use, indicating what types of scaled and immediate
1182   /// operands it might support.
1183   enum KindType {
1184     Basic,   ///< A normal use, with no folding.
1185     Special, ///< A special case of basic, allowing -1 scales.
1186     Address, ///< An address use; folding according to TargetLowering
1187     ICmpZero ///< An equality icmp with both operands folded into one.
1188     // TODO: Add a generic icmp too?
1189   };
1190 
1191   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1192 
1193   KindType Kind;
1194   MemAccessTy AccessTy;
1195 
1196   /// The list of operands which are to be replaced.
1197   SmallVector<LSRFixup, 8> Fixups;
1198 
1199   /// Keep track of the min and max offsets of the fixups.
1200   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1201   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1202 
1203   /// This records whether all of the fixups using this LSRUse are outside of
1204   /// the loop, in which case some special-case heuristics may be used.
1205   bool AllFixupsOutsideLoop = true;
1206 
1207   /// RigidFormula is set to true to guarantee that this use will be associated
1208   /// with a single formula--the one that initially matched. Some SCEV
1209   /// expressions cannot be expanded. This allows LSR to consider the registers
1210   /// used by those expressions without the need to expand them later after
1211   /// changing the formula.
1212   bool RigidFormula = false;
1213 
1214   /// This records the widest use type for any fixup using this
1215   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1216   /// fixup widths to be equivalent, because the narrower one may be relying on
1217   /// the implicit truncation to truncate away bogus bits.
1218   Type *WidestFixupType = nullptr;
1219 
1220   /// A list of ways to build a value that can satisfy this user.  After the
1221   /// list is populated, one of these is selected heuristically and used to
1222   /// formulate a replacement for OperandValToReplace in UserInst.
1223   SmallVector<Formula, 12> Formulae;
1224 
1225   /// The set of register candidates used by all formulae in this LSRUse.
1226   SmallPtrSet<const SCEV *, 4> Regs;
1227 
1228   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1229 
1230   LSRFixup &getNewFixup() {
1231     Fixups.push_back(LSRFixup());
1232     return Fixups.back();
1233   }
1234 
1235   void pushFixup(LSRFixup &f) {
1236     Fixups.push_back(f);
1237     if (f.Offset > MaxOffset)
1238       MaxOffset = f.Offset;
1239     if (f.Offset < MinOffset)
1240       MinOffset = f.Offset;
1241   }
1242 
1243   bool HasFormulaWithSameRegs(const Formula &F) const;
1244   float getNotSelectedProbability(const SCEV *Reg) const;
1245   bool InsertFormula(const Formula &F, const Loop &L);
1246   void DeleteFormula(Formula &F);
1247   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1248 
1249   void print(raw_ostream &OS) const;
1250   void dump() const;
1251 };
1252 
1253 } // end anonymous namespace
1254 
1255 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1256                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1257                                  GlobalValue *BaseGV, int64_t BaseOffset,
1258                                  bool HasBaseReg, int64_t Scale,
1259                                  Instruction *Fixup = nullptr);
1260 
1261 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1262   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1263     return 1;
1264   if (Depth == 0)
1265     return 0;
1266   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1267     return getSetupCost(S->getStart(), Depth - 1);
1268   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1269     return getSetupCost(S->getOperand(), Depth - 1);
1270   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1271     return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1272                            [&](unsigned i, const SCEV *Reg) {
1273                              return i + getSetupCost(Reg, Depth - 1);
1274                            });
1275   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1276     return getSetupCost(S->getLHS(), Depth - 1) +
1277            getSetupCost(S->getRHS(), Depth - 1);
1278   return 0;
1279 }
1280 
1281 /// Tally up interesting quantities from the given register.
1282 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1283                         SmallPtrSetImpl<const SCEV *> &Regs) {
1284   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1285     // If this is an addrec for another loop, it should be an invariant
1286     // with respect to L since L is the innermost loop (at least
1287     // for now LSR only handles innermost loops).
1288     if (AR->getLoop() != L) {
1289       // If the AddRec exists, consider it's register free and leave it alone.
1290       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1291         return;
1292 
1293       // It is bad to allow LSR for current loop to add induction variables
1294       // for its sibling loops.
1295       if (!AR->getLoop()->contains(L)) {
1296         Lose();
1297         return;
1298       }
1299 
1300       // Otherwise, it will be an invariant with respect to Loop L.
1301       ++C.NumRegs;
1302       return;
1303     }
1304 
1305     unsigned LoopCost = 1;
1306     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1307         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1308 
1309       // If the step size matches the base offset, we could use pre-indexed
1310       // addressing.
1311       if (AMK == TTI::AMK_PreIndexed) {
1312         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1313           if (Step->getAPInt() == F.BaseOffset)
1314             LoopCost = 0;
1315       } else if (AMK == TTI::AMK_PostIndexed) {
1316         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1317         if (isa<SCEVConstant>(LoopStep)) {
1318           const SCEV *LoopStart = AR->getStart();
1319           if (!isa<SCEVConstant>(LoopStart) &&
1320               SE->isLoopInvariant(LoopStart, L))
1321             LoopCost = 0;
1322         }
1323       }
1324     }
1325     C.AddRecCost += LoopCost;
1326 
1327     // Add the step value register, if it needs one.
1328     // TODO: The non-affine case isn't precisely modeled here.
1329     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1330       if (!Regs.count(AR->getOperand(1))) {
1331         RateRegister(F, AR->getOperand(1), Regs);
1332         if (isLoser())
1333           return;
1334       }
1335     }
1336   }
1337   ++C.NumRegs;
1338 
1339   // Rough heuristic; favor registers which don't require extra setup
1340   // instructions in the preheader.
1341   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1342   // Ensure we don't, even with the recusion limit, produce invalid costs.
1343   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1344 
1345   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1346                SE->hasComputableLoopEvolution(Reg, L);
1347 }
1348 
1349 /// Record this register in the set. If we haven't seen it before, rate
1350 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1351 /// one of those regs an instant loser.
1352 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1353                                SmallPtrSetImpl<const SCEV *> &Regs,
1354                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355   if (LoserRegs && LoserRegs->count(Reg)) {
1356     Lose();
1357     return;
1358   }
1359   if (Regs.insert(Reg).second) {
1360     RateRegister(F, Reg, Regs);
1361     if (LoserRegs && isLoser())
1362       LoserRegs->insert(Reg);
1363   }
1364 }
1365 
1366 void Cost::RateFormula(const Formula &F,
1367                        SmallPtrSetImpl<const SCEV *> &Regs,
1368                        const DenseSet<const SCEV *> &VisitedRegs,
1369                        const LSRUse &LU,
1370                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1371   if (isLoser())
1372     return;
1373   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1374   // Tally up the registers.
1375   unsigned PrevAddRecCost = C.AddRecCost;
1376   unsigned PrevNumRegs = C.NumRegs;
1377   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1378   if (const SCEV *ScaledReg = F.ScaledReg) {
1379     if (VisitedRegs.count(ScaledReg)) {
1380       Lose();
1381       return;
1382     }
1383     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1384     if (isLoser())
1385       return;
1386   }
1387   for (const SCEV *BaseReg : F.BaseRegs) {
1388     if (VisitedRegs.count(BaseReg)) {
1389       Lose();
1390       return;
1391     }
1392     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1393     if (isLoser())
1394       return;
1395   }
1396 
1397   // Determine how many (unfolded) adds we'll need inside the loop.
1398   size_t NumBaseParts = F.getNumRegs();
1399   if (NumBaseParts > 1)
1400     // Do not count the base and a possible second register if the target
1401     // allows to fold 2 registers.
1402     C.NumBaseAdds +=
1403         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1404   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1405 
1406   // Accumulate non-free scaling amounts.
1407   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1408 
1409   // Tally up the non-zero immediates.
1410   for (const LSRFixup &Fixup : LU.Fixups) {
1411     int64_t O = Fixup.Offset;
1412     int64_t Offset = (uint64_t)O + F.BaseOffset;
1413     if (F.BaseGV)
1414       C.ImmCost += 64; // Handle symbolic values conservatively.
1415                      // TODO: This should probably be the pointer size.
1416     else if (Offset != 0)
1417       C.ImmCost += APInt(64, Offset, true).getSignificantBits();
1418 
1419     // Check with target if this offset with this instruction is
1420     // specifically not supported.
1421     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1422         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1423                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1424       C.NumBaseAdds++;
1425   }
1426 
1427   // If we don't count instruction cost exit here.
1428   if (!InsnsCost) {
1429     assert(isValid() && "invalid cost");
1430     return;
1431   }
1432 
1433   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1434   // additional instruction (at least fill).
1435   // TODO: Need distinguish register class?
1436   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1437                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1438   if (C.NumRegs > TTIRegNum) {
1439     // Cost already exceeded TTIRegNum, then only newly added register can add
1440     // new instructions.
1441     if (PrevNumRegs > TTIRegNum)
1442       C.Insns += (C.NumRegs - PrevNumRegs);
1443     else
1444       C.Insns += (C.NumRegs - TTIRegNum);
1445   }
1446 
1447   // If ICmpZero formula ends with not 0, it could not be replaced by
1448   // just add or sub. We'll need to compare final result of AddRec.
1449   // That means we'll need an additional instruction. But if the target can
1450   // macro-fuse a compare with a branch, don't count this extra instruction.
1451   // For -10 + {0, +, 1}:
1452   // i = i + 1;
1453   // cmp i, 10
1454   //
1455   // For {-10, +, 1}:
1456   // i = i + 1;
1457   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1458       !TTI->canMacroFuseCmp())
1459     C.Insns++;
1460   // Each new AddRec adds 1 instruction to calculation.
1461   C.Insns += (C.AddRecCost - PrevAddRecCost);
1462 
1463   // BaseAdds adds instructions for unfolded registers.
1464   if (LU.Kind != LSRUse::ICmpZero)
1465     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1466   assert(isValid() && "invalid cost");
1467 }
1468 
1469 /// Set this cost to a losing value.
1470 void Cost::Lose() {
1471   C.Insns = std::numeric_limits<unsigned>::max();
1472   C.NumRegs = std::numeric_limits<unsigned>::max();
1473   C.AddRecCost = std::numeric_limits<unsigned>::max();
1474   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1475   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1476   C.ImmCost = std::numeric_limits<unsigned>::max();
1477   C.SetupCost = std::numeric_limits<unsigned>::max();
1478   C.ScaleCost = std::numeric_limits<unsigned>::max();
1479 }
1480 
1481 /// Choose the lower cost.
1482 bool Cost::isLess(const Cost &Other) const {
1483   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1484       C.Insns != Other.C.Insns)
1485     return C.Insns < Other.C.Insns;
1486   return TTI->isLSRCostLess(C, Other.C);
1487 }
1488 
1489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1490 void Cost::print(raw_ostream &OS) const {
1491   if (InsnsCost)
1492     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1493   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1494   if (C.AddRecCost != 0)
1495     OS << ", with addrec cost " << C.AddRecCost;
1496   if (C.NumIVMuls != 0)
1497     OS << ", plus " << C.NumIVMuls << " IV mul"
1498        << (C.NumIVMuls == 1 ? "" : "s");
1499   if (C.NumBaseAdds != 0)
1500     OS << ", plus " << C.NumBaseAdds << " base add"
1501        << (C.NumBaseAdds == 1 ? "" : "s");
1502   if (C.ScaleCost != 0)
1503     OS << ", plus " << C.ScaleCost << " scale cost";
1504   if (C.ImmCost != 0)
1505     OS << ", plus " << C.ImmCost << " imm cost";
1506   if (C.SetupCost != 0)
1507     OS << ", plus " << C.SetupCost << " setup cost";
1508 }
1509 
1510 LLVM_DUMP_METHOD void Cost::dump() const {
1511   print(errs()); errs() << '\n';
1512 }
1513 #endif
1514 
1515 /// Test whether this fixup always uses its value outside of the given loop.
1516 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1517   // PHI nodes use their value in their incoming blocks.
1518   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1519     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1520       if (PN->getIncomingValue(i) == OperandValToReplace &&
1521           L->contains(PN->getIncomingBlock(i)))
1522         return false;
1523     return true;
1524   }
1525 
1526   return !L->contains(UserInst);
1527 }
1528 
1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1530 void LSRFixup::print(raw_ostream &OS) const {
1531   OS << "UserInst=";
1532   // Store is common and interesting enough to be worth special-casing.
1533   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1534     OS << "store ";
1535     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1536   } else if (UserInst->getType()->isVoidTy())
1537     OS << UserInst->getOpcodeName();
1538   else
1539     UserInst->printAsOperand(OS, /*PrintType=*/false);
1540 
1541   OS << ", OperandValToReplace=";
1542   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1543 
1544   for (const Loop *PIL : PostIncLoops) {
1545     OS << ", PostIncLoop=";
1546     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1547   }
1548 
1549   if (Offset != 0)
1550     OS << ", Offset=" << Offset;
1551 }
1552 
1553 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1554   print(errs()); errs() << '\n';
1555 }
1556 #endif
1557 
1558 /// Test whether this use as a formula which has the same registers as the given
1559 /// formula.
1560 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1561   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1562   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1563   // Unstable sort by host order ok, because this is only used for uniquifying.
1564   llvm::sort(Key);
1565   return Uniquifier.count(Key);
1566 }
1567 
1568 /// The function returns a probability of selecting formula without Reg.
1569 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1570   unsigned FNum = 0;
1571   for (const Formula &F : Formulae)
1572     if (F.referencesReg(Reg))
1573       FNum++;
1574   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1575 }
1576 
1577 /// If the given formula has not yet been inserted, add it to the list, and
1578 /// return true. Return false otherwise.  The formula must be in canonical form.
1579 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1580   assert(F.isCanonical(L) && "Invalid canonical representation");
1581 
1582   if (!Formulae.empty() && RigidFormula)
1583     return false;
1584 
1585   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1586   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1587   // Unstable sort by host order ok, because this is only used for uniquifying.
1588   llvm::sort(Key);
1589 
1590   if (!Uniquifier.insert(Key).second)
1591     return false;
1592 
1593   // Using a register to hold the value of 0 is not profitable.
1594   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1595          "Zero allocated in a scaled register!");
1596 #ifndef NDEBUG
1597   for (const SCEV *BaseReg : F.BaseRegs)
1598     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1599 #endif
1600 
1601   // Add the formula to the list.
1602   Formulae.push_back(F);
1603 
1604   // Record registers now being used by this use.
1605   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1606   if (F.ScaledReg)
1607     Regs.insert(F.ScaledReg);
1608 
1609   return true;
1610 }
1611 
1612 /// Remove the given formula from this use's list.
1613 void LSRUse::DeleteFormula(Formula &F) {
1614   if (&F != &Formulae.back())
1615     std::swap(F, Formulae.back());
1616   Formulae.pop_back();
1617 }
1618 
1619 /// Recompute the Regs field, and update RegUses.
1620 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1621   // Now that we've filtered out some formulae, recompute the Regs set.
1622   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1623   Regs.clear();
1624   for (const Formula &F : Formulae) {
1625     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1626     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1627   }
1628 
1629   // Update the RegTracker.
1630   for (const SCEV *S : OldRegs)
1631     if (!Regs.count(S))
1632       RegUses.dropRegister(S, LUIdx);
1633 }
1634 
1635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1636 void LSRUse::print(raw_ostream &OS) const {
1637   OS << "LSR Use: Kind=";
1638   switch (Kind) {
1639   case Basic:    OS << "Basic"; break;
1640   case Special:  OS << "Special"; break;
1641   case ICmpZero: OS << "ICmpZero"; break;
1642   case Address:
1643     OS << "Address of ";
1644     if (AccessTy.MemTy->isPointerTy())
1645       OS << "pointer"; // the full pointer type could be really verbose
1646     else {
1647       OS << *AccessTy.MemTy;
1648     }
1649 
1650     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1651   }
1652 
1653   OS << ", Offsets={";
1654   bool NeedComma = false;
1655   for (const LSRFixup &Fixup : Fixups) {
1656     if (NeedComma) OS << ',';
1657     OS << Fixup.Offset;
1658     NeedComma = true;
1659   }
1660   OS << '}';
1661 
1662   if (AllFixupsOutsideLoop)
1663     OS << ", all-fixups-outside-loop";
1664 
1665   if (WidestFixupType)
1666     OS << ", widest fixup type: " << *WidestFixupType;
1667 }
1668 
1669 LLVM_DUMP_METHOD void LSRUse::dump() const {
1670   print(errs()); errs() << '\n';
1671 }
1672 #endif
1673 
1674 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1675                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1676                                  GlobalValue *BaseGV, int64_t BaseOffset,
1677                                  bool HasBaseReg, int64_t Scale,
1678                                  Instruction *Fixup/*= nullptr*/) {
1679   switch (Kind) {
1680   case LSRUse::Address:
1681     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1682                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1683 
1684   case LSRUse::ICmpZero:
1685     // There's not even a target hook for querying whether it would be legal to
1686     // fold a GV into an ICmp.
1687     if (BaseGV)
1688       return false;
1689 
1690     // ICmp only has two operands; don't allow more than two non-trivial parts.
1691     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1692       return false;
1693 
1694     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1695     // putting the scaled register in the other operand of the icmp.
1696     if (Scale != 0 && Scale != -1)
1697       return false;
1698 
1699     // If we have low-level target information, ask the target if it can fold an
1700     // integer immediate on an icmp.
1701     if (BaseOffset != 0) {
1702       // We have one of:
1703       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1704       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1705       // Offs is the ICmp immediate.
1706       if (Scale == 0)
1707         // The cast does the right thing with
1708         // std::numeric_limits<int64_t>::min().
1709         BaseOffset = -(uint64_t)BaseOffset;
1710       return TTI.isLegalICmpImmediate(BaseOffset);
1711     }
1712 
1713     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1714     return true;
1715 
1716   case LSRUse::Basic:
1717     // Only handle single-register values.
1718     return !BaseGV && Scale == 0 && BaseOffset == 0;
1719 
1720   case LSRUse::Special:
1721     // Special case Basic to handle -1 scales.
1722     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1723   }
1724 
1725   llvm_unreachable("Invalid LSRUse Kind!");
1726 }
1727 
1728 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1729                                  int64_t MinOffset, int64_t MaxOffset,
1730                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1731                                  GlobalValue *BaseGV, int64_t BaseOffset,
1732                                  bool HasBaseReg, int64_t Scale) {
1733   // Check for overflow.
1734   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1735       (MinOffset > 0))
1736     return false;
1737   MinOffset = (uint64_t)BaseOffset + MinOffset;
1738   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1739       (MaxOffset > 0))
1740     return false;
1741   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1742 
1743   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1744                               HasBaseReg, Scale) &&
1745          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1746                               HasBaseReg, Scale);
1747 }
1748 
1749 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1750                                  int64_t MinOffset, int64_t MaxOffset,
1751                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1752                                  const Formula &F, const Loop &L) {
1753   // For the purpose of isAMCompletelyFolded either having a canonical formula
1754   // or a scale not equal to zero is correct.
1755   // Problems may arise from non canonical formulae having a scale == 0.
1756   // Strictly speaking it would best to just rely on canonical formulae.
1757   // However, when we generate the scaled formulae, we first check that the
1758   // scaling factor is profitable before computing the actual ScaledReg for
1759   // compile time sake.
1760   assert((F.isCanonical(L) || F.Scale != 0));
1761   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1762                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1763 }
1764 
1765 /// Test whether we know how to expand the current formula.
1766 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1767                        int64_t MaxOffset, LSRUse::KindType Kind,
1768                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1769                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1770   // We know how to expand completely foldable formulae.
1771   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1772                               BaseOffset, HasBaseReg, Scale) ||
1773          // Or formulae that use a base register produced by a sum of base
1774          // registers.
1775          (Scale == 1 &&
1776           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1777                                BaseGV, BaseOffset, true, 0));
1778 }
1779 
1780 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1781                        int64_t MaxOffset, LSRUse::KindType Kind,
1782                        MemAccessTy AccessTy, const Formula &F) {
1783   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1784                     F.BaseOffset, F.HasBaseReg, F.Scale);
1785 }
1786 
1787 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1788                                  const LSRUse &LU, const Formula &F) {
1789   // Target may want to look at the user instructions.
1790   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1791     for (const LSRFixup &Fixup : LU.Fixups)
1792       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1793                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1794                                 F.Scale, Fixup.UserInst))
1795         return false;
1796     return true;
1797   }
1798 
1799   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1801                               F.Scale);
1802 }
1803 
1804 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1805                                             const LSRUse &LU, const Formula &F,
1806                                             const Loop &L) {
1807   if (!F.Scale)
1808     return 0;
1809 
1810   // If the use is not completely folded in that instruction, we will have to
1811   // pay an extra cost only for scale != 1.
1812   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1813                             LU.AccessTy, F, L))
1814     return F.Scale != 1;
1815 
1816   switch (LU.Kind) {
1817   case LSRUse::Address: {
1818     // Check the scaling factor cost with both the min and max offsets.
1819     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1820         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1821         F.Scale, LU.AccessTy.AddrSpace);
1822     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1823         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1824         F.Scale, LU.AccessTy.AddrSpace);
1825 
1826     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1827            "Legal addressing mode has an illegal cost!");
1828     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1829   }
1830   case LSRUse::ICmpZero:
1831   case LSRUse::Basic:
1832   case LSRUse::Special:
1833     // The use is completely folded, i.e., everything is folded into the
1834     // instruction.
1835     return 0;
1836   }
1837 
1838   llvm_unreachable("Invalid LSRUse Kind!");
1839 }
1840 
1841 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1842                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1843                              GlobalValue *BaseGV, int64_t BaseOffset,
1844                              bool HasBaseReg) {
1845   // Fast-path: zero is always foldable.
1846   if (BaseOffset == 0 && !BaseGV) return true;
1847 
1848   // Conservatively, create an address with an immediate and a
1849   // base and a scale.
1850   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1851 
1852   // Canonicalize a scale of 1 to a base register if the formula doesn't
1853   // already have a base register.
1854   if (!HasBaseReg && Scale == 1) {
1855     Scale = 0;
1856     HasBaseReg = true;
1857   }
1858 
1859   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1860                               HasBaseReg, Scale);
1861 }
1862 
1863 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1864                              ScalarEvolution &SE, int64_t MinOffset,
1865                              int64_t MaxOffset, LSRUse::KindType Kind,
1866                              MemAccessTy AccessTy, const SCEV *S,
1867                              bool HasBaseReg) {
1868   // Fast-path: zero is always foldable.
1869   if (S->isZero()) return true;
1870 
1871   // Conservatively, create an address with an immediate and a
1872   // base and a scale.
1873   int64_t BaseOffset = ExtractImmediate(S, SE);
1874   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1875 
1876   // If there's anything else involved, it's not foldable.
1877   if (!S->isZero()) return false;
1878 
1879   // Fast-path: zero is always foldable.
1880   if (BaseOffset == 0 && !BaseGV) return true;
1881 
1882   // Conservatively, create an address with an immediate and a
1883   // base and a scale.
1884   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1885 
1886   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1887                               BaseOffset, HasBaseReg, Scale);
1888 }
1889 
1890 namespace {
1891 
1892 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1893 /// an expression that computes the IV it uses from the IV used by the previous
1894 /// link in the Chain.
1895 ///
1896 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1897 /// original IVOperand. The head of the chain's IVOperand is only valid during
1898 /// chain collection, before LSR replaces IV users. During chain generation,
1899 /// IncExpr can be used to find the new IVOperand that computes the same
1900 /// expression.
1901 struct IVInc {
1902   Instruction *UserInst;
1903   Value* IVOperand;
1904   const SCEV *IncExpr;
1905 
1906   IVInc(Instruction *U, Value *O, const SCEV *E)
1907       : UserInst(U), IVOperand(O), IncExpr(E) {}
1908 };
1909 
1910 // The list of IV increments in program order.  We typically add the head of a
1911 // chain without finding subsequent links.
1912 struct IVChain {
1913   SmallVector<IVInc, 1> Incs;
1914   const SCEV *ExprBase = nullptr;
1915 
1916   IVChain() = default;
1917   IVChain(const IVInc &Head, const SCEV *Base)
1918       : Incs(1, Head), ExprBase(Base) {}
1919 
1920   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1921 
1922   // Return the first increment in the chain.
1923   const_iterator begin() const {
1924     assert(!Incs.empty());
1925     return std::next(Incs.begin());
1926   }
1927   const_iterator end() const {
1928     return Incs.end();
1929   }
1930 
1931   // Returns true if this chain contains any increments.
1932   bool hasIncs() const { return Incs.size() >= 2; }
1933 
1934   // Add an IVInc to the end of this chain.
1935   void add(const IVInc &X) { Incs.push_back(X); }
1936 
1937   // Returns the last UserInst in the chain.
1938   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1939 
1940   // Returns true if IncExpr can be profitably added to this chain.
1941   bool isProfitableIncrement(const SCEV *OperExpr,
1942                              const SCEV *IncExpr,
1943                              ScalarEvolution&);
1944 };
1945 
1946 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1947 /// between FarUsers that definitely cross IV increments and NearUsers that may
1948 /// be used between IV increments.
1949 struct ChainUsers {
1950   SmallPtrSet<Instruction*, 4> FarUsers;
1951   SmallPtrSet<Instruction*, 4> NearUsers;
1952 };
1953 
1954 /// This class holds state for the main loop strength reduction logic.
1955 class LSRInstance {
1956   IVUsers &IU;
1957   ScalarEvolution &SE;
1958   DominatorTree &DT;
1959   LoopInfo &LI;
1960   AssumptionCache &AC;
1961   TargetLibraryInfo &TLI;
1962   const TargetTransformInfo &TTI;
1963   Loop *const L;
1964   MemorySSAUpdater *MSSAU;
1965   TTI::AddressingModeKind AMK;
1966   mutable SCEVExpander Rewriter;
1967   bool Changed = false;
1968 
1969   /// This is the insert position that the current loop's induction variable
1970   /// increment should be placed. In simple loops, this is the latch block's
1971   /// terminator. But in more complicated cases, this is a position which will
1972   /// dominate all the in-loop post-increment users.
1973   Instruction *IVIncInsertPos = nullptr;
1974 
1975   /// Interesting factors between use strides.
1976   ///
1977   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1978   /// default, a SmallDenseSet, because we need to use the full range of
1979   /// int64_ts, and there's currently no good way of doing that with
1980   /// SmallDenseSet.
1981   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1982 
1983   /// The cost of the current SCEV, the best solution by LSR will be dropped if
1984   /// the solution is not profitable.
1985   Cost BaselineCost;
1986 
1987   /// Interesting use types, to facilitate truncation reuse.
1988   SmallSetVector<Type *, 4> Types;
1989 
1990   /// The list of interesting uses.
1991   mutable SmallVector<LSRUse, 16> Uses;
1992 
1993   /// Track which uses use which register candidates.
1994   RegUseTracker RegUses;
1995 
1996   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1997   // have more than a few IV increment chains in a loop. Missing a Chain falls
1998   // back to normal LSR behavior for those uses.
1999   static const unsigned MaxChains = 8;
2000 
2001   /// IV users can form a chain of IV increments.
2002   SmallVector<IVChain, MaxChains> IVChainVec;
2003 
2004   /// IV users that belong to profitable IVChains.
2005   SmallPtrSet<Use*, MaxChains> IVIncSet;
2006 
2007   /// Induction variables that were generated and inserted by the SCEV Expander.
2008   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2009 
2010   void OptimizeShadowIV();
2011   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2012   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2013   void OptimizeLoopTermCond();
2014 
2015   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2016                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
2017   void FinalizeChain(IVChain &Chain);
2018   void CollectChains();
2019   void GenerateIVChain(const IVChain &Chain,
2020                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2021 
2022   void CollectInterestingTypesAndFactors();
2023   void CollectFixupsAndInitialFormulae();
2024 
2025   // Support for sharing of LSRUses between LSRFixups.
2026   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2027   UseMapTy UseMap;
2028 
2029   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2030                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2031 
2032   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2033                                     MemAccessTy AccessTy);
2034 
2035   void DeleteUse(LSRUse &LU, size_t LUIdx);
2036 
2037   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2038 
2039   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2040   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2041   void CountRegisters(const Formula &F, size_t LUIdx);
2042   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2043 
2044   void CollectLoopInvariantFixupsAndFormulae();
2045 
2046   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2047                               unsigned Depth = 0);
2048 
2049   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2050                                   const Formula &Base, unsigned Depth,
2051                                   size_t Idx, bool IsScaledReg = false);
2052   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2053   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2054                                    const Formula &Base, size_t Idx,
2055                                    bool IsScaledReg = false);
2056   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2057   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2058                                    const Formula &Base,
2059                                    const SmallVectorImpl<int64_t> &Worklist,
2060                                    size_t Idx, bool IsScaledReg = false);
2061   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2062   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2063   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2064   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2065   void GenerateCrossUseConstantOffsets();
2066   void GenerateAllReuseFormulae();
2067 
2068   void FilterOutUndesirableDedicatedRegisters();
2069 
2070   size_t EstimateSearchSpaceComplexity() const;
2071   void NarrowSearchSpaceByDetectingSupersets();
2072   void NarrowSearchSpaceByCollapsingUnrolledCode();
2073   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2074   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2075   void NarrowSearchSpaceByFilterPostInc();
2076   void NarrowSearchSpaceByDeletingCostlyFormulas();
2077   void NarrowSearchSpaceByPickingWinnerRegs();
2078   void NarrowSearchSpaceUsingHeuristics();
2079 
2080   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2081                     Cost &SolutionCost,
2082                     SmallVectorImpl<const Formula *> &Workspace,
2083                     const Cost &CurCost,
2084                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2085                     DenseSet<const SCEV *> &VisitedRegs) const;
2086   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2087 
2088   BasicBlock::iterator
2089   HoistInsertPosition(BasicBlock::iterator IP,
2090                       const SmallVectorImpl<Instruction *> &Inputs) const;
2091   BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2092                                                      const LSRFixup &LF,
2093                                                      const LSRUse &LU) const;
2094 
2095   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2096                 BasicBlock::iterator IP,
2097                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2098   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2099                      const Formula &F,
2100                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2101   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2102                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2103   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2104 
2105 public:
2106   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2107               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2108               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2109 
2110   bool getChanged() const { return Changed; }
2111   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2112     return ScalarEvolutionIVs;
2113   }
2114 
2115   void print_factors_and_types(raw_ostream &OS) const;
2116   void print_fixups(raw_ostream &OS) const;
2117   void print_uses(raw_ostream &OS) const;
2118   void print(raw_ostream &OS) const;
2119   void dump() const;
2120 };
2121 
2122 } // end anonymous namespace
2123 
2124 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2125 /// the cast operation.
2126 void LSRInstance::OptimizeShadowIV() {
2127   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2128   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2129     return;
2130 
2131   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2132        UI != E; /* empty */) {
2133     IVUsers::const_iterator CandidateUI = UI;
2134     ++UI;
2135     Instruction *ShadowUse = CandidateUI->getUser();
2136     Type *DestTy = nullptr;
2137     bool IsSigned = false;
2138 
2139     /* If shadow use is a int->float cast then insert a second IV
2140        to eliminate this cast.
2141 
2142          for (unsigned i = 0; i < n; ++i)
2143            foo((double)i);
2144 
2145        is transformed into
2146 
2147          double d = 0.0;
2148          for (unsigned i = 0; i < n; ++i, ++d)
2149            foo(d);
2150     */
2151     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2152       IsSigned = false;
2153       DestTy = UCast->getDestTy();
2154     }
2155     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2156       IsSigned = true;
2157       DestTy = SCast->getDestTy();
2158     }
2159     if (!DestTy) continue;
2160 
2161     // If target does not support DestTy natively then do not apply
2162     // this transformation.
2163     if (!TTI.isTypeLegal(DestTy)) continue;
2164 
2165     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2166     if (!PH) continue;
2167     if (PH->getNumIncomingValues() != 2) continue;
2168 
2169     // If the calculation in integers overflows, the result in FP type will
2170     // differ. So we only can do this transformation if we are guaranteed to not
2171     // deal with overflowing values
2172     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2173     if (!AR) continue;
2174     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2175     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2176 
2177     Type *SrcTy = PH->getType();
2178     int Mantissa = DestTy->getFPMantissaWidth();
2179     if (Mantissa == -1) continue;
2180     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2181       continue;
2182 
2183     unsigned Entry, Latch;
2184     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2185       Entry = 0;
2186       Latch = 1;
2187     } else {
2188       Entry = 1;
2189       Latch = 0;
2190     }
2191 
2192     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2193     if (!Init) continue;
2194     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2195                                         (double)Init->getSExtValue() :
2196                                         (double)Init->getZExtValue());
2197 
2198     BinaryOperator *Incr =
2199       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2200     if (!Incr) continue;
2201     if (Incr->getOpcode() != Instruction::Add
2202         && Incr->getOpcode() != Instruction::Sub)
2203       continue;
2204 
2205     /* Initialize new IV, double d = 0.0 in above example. */
2206     ConstantInt *C = nullptr;
2207     if (Incr->getOperand(0) == PH)
2208       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2209     else if (Incr->getOperand(1) == PH)
2210       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2211     else
2212       continue;
2213 
2214     if (!C) continue;
2215 
2216     // Ignore negative constants, as the code below doesn't handle them
2217     // correctly. TODO: Remove this restriction.
2218     if (!C->getValue().isStrictlyPositive())
2219       continue;
2220 
2221     /* Add new PHINode. */
2222     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator());
2223 
2224     /* create new increment. '++d' in above example. */
2225     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2226     BinaryOperator *NewIncr = BinaryOperator::Create(
2227         Incr->getOpcode() == Instruction::Add ? Instruction::FAdd
2228                                               : Instruction::FSub,
2229         NewPH, CFP, "IV.S.next.", Incr->getIterator());
2230 
2231     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2232     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2233 
2234     /* Remove cast operation */
2235     ShadowUse->replaceAllUsesWith(NewPH);
2236     ShadowUse->eraseFromParent();
2237     Changed = true;
2238     break;
2239   }
2240 }
2241 
2242 /// If Cond has an operand that is an expression of an IV, set the IV user and
2243 /// stride information and return true, otherwise return false.
2244 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2245   for (IVStrideUse &U : IU)
2246     if (U.getUser() == Cond) {
2247       // NOTE: we could handle setcc instructions with multiple uses here, but
2248       // InstCombine does it as well for simple uses, it's not clear that it
2249       // occurs enough in real life to handle.
2250       CondUse = &U;
2251       return true;
2252     }
2253   return false;
2254 }
2255 
2256 /// Rewrite the loop's terminating condition if it uses a max computation.
2257 ///
2258 /// This is a narrow solution to a specific, but acute, problem. For loops
2259 /// like this:
2260 ///
2261 ///   i = 0;
2262 ///   do {
2263 ///     p[i] = 0.0;
2264 ///   } while (++i < n);
2265 ///
2266 /// the trip count isn't just 'n', because 'n' might not be positive. And
2267 /// unfortunately this can come up even for loops where the user didn't use
2268 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2269 /// will commonly be lowered like this:
2270 ///
2271 ///   if (n > 0) {
2272 ///     i = 0;
2273 ///     do {
2274 ///       p[i] = 0.0;
2275 ///     } while (++i < n);
2276 ///   }
2277 ///
2278 /// and then it's possible for subsequent optimization to obscure the if
2279 /// test in such a way that indvars can't find it.
2280 ///
2281 /// When indvars can't find the if test in loops like this, it creates a
2282 /// max expression, which allows it to give the loop a canonical
2283 /// induction variable:
2284 ///
2285 ///   i = 0;
2286 ///   max = n < 1 ? 1 : n;
2287 ///   do {
2288 ///     p[i] = 0.0;
2289 ///   } while (++i != max);
2290 ///
2291 /// Canonical induction variables are necessary because the loop passes
2292 /// are designed around them. The most obvious example of this is the
2293 /// LoopInfo analysis, which doesn't remember trip count values. It
2294 /// expects to be able to rediscover the trip count each time it is
2295 /// needed, and it does this using a simple analysis that only succeeds if
2296 /// the loop has a canonical induction variable.
2297 ///
2298 /// However, when it comes time to generate code, the maximum operation
2299 /// can be quite costly, especially if it's inside of an outer loop.
2300 ///
2301 /// This function solves this problem by detecting this type of loop and
2302 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2303 /// the instructions for the maximum computation.
2304 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2305   // Check that the loop matches the pattern we're looking for.
2306   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2307       Cond->getPredicate() != CmpInst::ICMP_NE)
2308     return Cond;
2309 
2310   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2311   if (!Sel || !Sel->hasOneUse()) return Cond;
2312 
2313   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2314   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2315     return Cond;
2316   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2317 
2318   // Add one to the backedge-taken count to get the trip count.
2319   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2320   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2321 
2322   // Check for a max calculation that matches the pattern. There's no check
2323   // for ICMP_ULE here because the comparison would be with zero, which
2324   // isn't interesting.
2325   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2326   const SCEVNAryExpr *Max = nullptr;
2327   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2328     Pred = ICmpInst::ICMP_SLE;
2329     Max = S;
2330   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2331     Pred = ICmpInst::ICMP_SLT;
2332     Max = S;
2333   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2334     Pred = ICmpInst::ICMP_ULT;
2335     Max = U;
2336   } else {
2337     // No match; bail.
2338     return Cond;
2339   }
2340 
2341   // To handle a max with more than two operands, this optimization would
2342   // require additional checking and setup.
2343   if (Max->getNumOperands() != 2)
2344     return Cond;
2345 
2346   const SCEV *MaxLHS = Max->getOperand(0);
2347   const SCEV *MaxRHS = Max->getOperand(1);
2348 
2349   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2350   // for a comparison with 1. For <= and >=, a comparison with zero.
2351   if (!MaxLHS ||
2352       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2353     return Cond;
2354 
2355   // Check the relevant induction variable for conformance to
2356   // the pattern.
2357   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2358   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2359   if (!AR || !AR->isAffine() ||
2360       AR->getStart() != One ||
2361       AR->getStepRecurrence(SE) != One)
2362     return Cond;
2363 
2364   assert(AR->getLoop() == L &&
2365          "Loop condition operand is an addrec in a different loop!");
2366 
2367   // Check the right operand of the select, and remember it, as it will
2368   // be used in the new comparison instruction.
2369   Value *NewRHS = nullptr;
2370   if (ICmpInst::isTrueWhenEqual(Pred)) {
2371     // Look for n+1, and grab n.
2372     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2373       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2374          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2375            NewRHS = BO->getOperand(0);
2376     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2377       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2378         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2379           NewRHS = BO->getOperand(0);
2380     if (!NewRHS)
2381       return Cond;
2382   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2383     NewRHS = Sel->getOperand(1);
2384   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2385     NewRHS = Sel->getOperand(2);
2386   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2387     NewRHS = SU->getValue();
2388   else
2389     // Max doesn't match expected pattern.
2390     return Cond;
2391 
2392   // Determine the new comparison opcode. It may be signed or unsigned,
2393   // and the original comparison may be either equality or inequality.
2394   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2395     Pred = CmpInst::getInversePredicate(Pred);
2396 
2397   // Ok, everything looks ok to change the condition into an SLT or SGE and
2398   // delete the max calculation.
2399   ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred,
2400                                    Cond->getOperand(0), NewRHS, "scmp");
2401 
2402   // Delete the max calculation instructions.
2403   NewCond->setDebugLoc(Cond->getDebugLoc());
2404   Cond->replaceAllUsesWith(NewCond);
2405   CondUse->setUser(NewCond);
2406   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2407   Cond->eraseFromParent();
2408   Sel->eraseFromParent();
2409   if (Cmp->use_empty())
2410     Cmp->eraseFromParent();
2411   return NewCond;
2412 }
2413 
2414 /// Change loop terminating condition to use the postinc iv when possible.
2415 void
2416 LSRInstance::OptimizeLoopTermCond() {
2417   SmallPtrSet<Instruction *, 4> PostIncs;
2418 
2419   // We need a different set of heuristics for rotated and non-rotated loops.
2420   // If a loop is rotated then the latch is also the backedge, so inserting
2421   // post-inc expressions just before the latch is ideal. To reduce live ranges
2422   // it also makes sense to rewrite terminating conditions to use post-inc
2423   // expressions.
2424   //
2425   // If the loop is not rotated then the latch is not a backedge; the latch
2426   // check is done in the loop head. Adding post-inc expressions before the
2427   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2428   // in the loop body. In this case we do *not* want to use post-inc expressions
2429   // in the latch check, and we want to insert post-inc expressions before
2430   // the backedge.
2431   BasicBlock *LatchBlock = L->getLoopLatch();
2432   SmallVector<BasicBlock*, 8> ExitingBlocks;
2433   L->getExitingBlocks(ExitingBlocks);
2434   if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2435     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2436     IVIncInsertPos = LatchBlock->getTerminator();
2437     return;
2438   }
2439 
2440   // Otherwise treat this as a rotated loop.
2441   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2442     // Get the terminating condition for the loop if possible.  If we
2443     // can, we want to change it to use a post-incremented version of its
2444     // induction variable, to allow coalescing the live ranges for the IV into
2445     // one register value.
2446 
2447     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2448     if (!TermBr)
2449       continue;
2450     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2451     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2452       continue;
2453 
2454     // Search IVUsesByStride to find Cond's IVUse if there is one.
2455     IVStrideUse *CondUse = nullptr;
2456     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2457     if (!FindIVUserForCond(Cond, CondUse))
2458       continue;
2459 
2460     // If the trip count is computed in terms of a max (due to ScalarEvolution
2461     // being unable to find a sufficient guard, for example), change the loop
2462     // comparison to use SLT or ULT instead of NE.
2463     // One consequence of doing this now is that it disrupts the count-down
2464     // optimization. That's not always a bad thing though, because in such
2465     // cases it may still be worthwhile to avoid a max.
2466     Cond = OptimizeMax(Cond, CondUse);
2467 
2468     // If this exiting block dominates the latch block, it may also use
2469     // the post-inc value if it won't be shared with other uses.
2470     // Check for dominance.
2471     if (!DT.dominates(ExitingBlock, LatchBlock))
2472       continue;
2473 
2474     // Conservatively avoid trying to use the post-inc value in non-latch
2475     // exits if there may be pre-inc users in intervening blocks.
2476     if (LatchBlock != ExitingBlock)
2477       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2478         // Test if the use is reachable from the exiting block. This dominator
2479         // query is a conservative approximation of reachability.
2480         if (&*UI != CondUse &&
2481             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2482           // Conservatively assume there may be reuse if the quotient of their
2483           // strides could be a legal scale.
2484           const SCEV *A = IU.getStride(*CondUse, L);
2485           const SCEV *B = IU.getStride(*UI, L);
2486           if (!A || !B) continue;
2487           if (SE.getTypeSizeInBits(A->getType()) !=
2488               SE.getTypeSizeInBits(B->getType())) {
2489             if (SE.getTypeSizeInBits(A->getType()) >
2490                 SE.getTypeSizeInBits(B->getType()))
2491               B = SE.getSignExtendExpr(B, A->getType());
2492             else
2493               A = SE.getSignExtendExpr(A, B->getType());
2494           }
2495           if (const SCEVConstant *D =
2496                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2497             const ConstantInt *C = D->getValue();
2498             // Stride of one or negative one can have reuse with non-addresses.
2499             if (C->isOne() || C->isMinusOne())
2500               goto decline_post_inc;
2501             // Avoid weird situations.
2502             if (C->getValue().getSignificantBits() >= 64 ||
2503                 C->getValue().isMinSignedValue())
2504               goto decline_post_inc;
2505             // Check for possible scaled-address reuse.
2506             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2507               MemAccessTy AccessTy = getAccessType(
2508                   TTI, UI->getUser(), UI->getOperandValToReplace());
2509               int64_t Scale = C->getSExtValue();
2510               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2511                                             /*BaseOffset=*/0,
2512                                             /*HasBaseReg=*/true, Scale,
2513                                             AccessTy.AddrSpace))
2514                 goto decline_post_inc;
2515               Scale = -Scale;
2516               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2517                                             /*BaseOffset=*/0,
2518                                             /*HasBaseReg=*/true, Scale,
2519                                             AccessTy.AddrSpace))
2520                 goto decline_post_inc;
2521             }
2522           }
2523         }
2524 
2525     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2526                       << *Cond << '\n');
2527 
2528     // It's possible for the setcc instruction to be anywhere in the loop, and
2529     // possible for it to have multiple users.  If it is not immediately before
2530     // the exiting block branch, move it.
2531     if (Cond->getNextNonDebugInstruction() != TermBr) {
2532       if (Cond->hasOneUse()) {
2533         Cond->moveBefore(TermBr);
2534       } else {
2535         // Clone the terminating condition and insert into the loopend.
2536         ICmpInst *OldCond = Cond;
2537         Cond = cast<ICmpInst>(Cond->clone());
2538         Cond->setName(L->getHeader()->getName() + ".termcond");
2539         Cond->insertInto(ExitingBlock, TermBr->getIterator());
2540 
2541         // Clone the IVUse, as the old use still exists!
2542         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2543         TermBr->replaceUsesOfWith(OldCond, Cond);
2544       }
2545     }
2546 
2547     // If we get to here, we know that we can transform the setcc instruction to
2548     // use the post-incremented version of the IV, allowing us to coalesce the
2549     // live ranges for the IV correctly.
2550     CondUse->transformToPostInc(L);
2551     Changed = true;
2552 
2553     PostIncs.insert(Cond);
2554   decline_post_inc:;
2555   }
2556 
2557   // Determine an insertion point for the loop induction variable increment. It
2558   // must dominate all the post-inc comparisons we just set up, and it must
2559   // dominate the loop latch edge.
2560   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2561   for (Instruction *Inst : PostIncs)
2562     IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2563 }
2564 
2565 /// Determine if the given use can accommodate a fixup at the given offset and
2566 /// other details. If so, update the use and return true.
2567 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2568                                      bool HasBaseReg, LSRUse::KindType Kind,
2569                                      MemAccessTy AccessTy) {
2570   int64_t NewMinOffset = LU.MinOffset;
2571   int64_t NewMaxOffset = LU.MaxOffset;
2572   MemAccessTy NewAccessTy = AccessTy;
2573 
2574   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2575   // something conservative, however this can pessimize in the case that one of
2576   // the uses will have all its uses outside the loop, for example.
2577   if (LU.Kind != Kind)
2578     return false;
2579 
2580   // Check for a mismatched access type, and fall back conservatively as needed.
2581   // TODO: Be less conservative when the type is similar and can use the same
2582   // addressing modes.
2583   if (Kind == LSRUse::Address) {
2584     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2585       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2586                                             AccessTy.AddrSpace);
2587     }
2588   }
2589 
2590   // Conservatively assume HasBaseReg is true for now.
2591   if (NewOffset < LU.MinOffset) {
2592     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2593                           LU.MaxOffset - NewOffset, HasBaseReg))
2594       return false;
2595     NewMinOffset = NewOffset;
2596   } else if (NewOffset > LU.MaxOffset) {
2597     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2598                           NewOffset - LU.MinOffset, HasBaseReg))
2599       return false;
2600     NewMaxOffset = NewOffset;
2601   }
2602 
2603   // Update the use.
2604   LU.MinOffset = NewMinOffset;
2605   LU.MaxOffset = NewMaxOffset;
2606   LU.AccessTy = NewAccessTy;
2607   return true;
2608 }
2609 
2610 /// Return an LSRUse index and an offset value for a fixup which needs the given
2611 /// expression, with the given kind and optional access type.  Either reuse an
2612 /// existing use or create a new one, as needed.
2613 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2614                                                LSRUse::KindType Kind,
2615                                                MemAccessTy AccessTy) {
2616   const SCEV *Copy = Expr;
2617   int64_t Offset = ExtractImmediate(Expr, SE);
2618 
2619   // Basic uses can't accept any offset, for example.
2620   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2621                         Offset, /*HasBaseReg=*/ true)) {
2622     Expr = Copy;
2623     Offset = 0;
2624   }
2625 
2626   std::pair<UseMapTy::iterator, bool> P =
2627     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2628   if (!P.second) {
2629     // A use already existed with this base.
2630     size_t LUIdx = P.first->second;
2631     LSRUse &LU = Uses[LUIdx];
2632     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2633       // Reuse this use.
2634       return std::make_pair(LUIdx, Offset);
2635   }
2636 
2637   // Create a new use.
2638   size_t LUIdx = Uses.size();
2639   P.first->second = LUIdx;
2640   Uses.push_back(LSRUse(Kind, AccessTy));
2641   LSRUse &LU = Uses[LUIdx];
2642 
2643   LU.MinOffset = Offset;
2644   LU.MaxOffset = Offset;
2645   return std::make_pair(LUIdx, Offset);
2646 }
2647 
2648 /// Delete the given use from the Uses list.
2649 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2650   if (&LU != &Uses.back())
2651     std::swap(LU, Uses.back());
2652   Uses.pop_back();
2653 
2654   // Update RegUses.
2655   RegUses.swapAndDropUse(LUIdx, Uses.size());
2656 }
2657 
2658 /// Look for a use distinct from OrigLU which is has a formula that has the same
2659 /// registers as the given formula.
2660 LSRUse *
2661 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2662                                        const LSRUse &OrigLU) {
2663   // Search all uses for the formula. This could be more clever.
2664   for (LSRUse &LU : Uses) {
2665     // Check whether this use is close enough to OrigLU, to see whether it's
2666     // worthwhile looking through its formulae.
2667     // Ignore ICmpZero uses because they may contain formulae generated by
2668     // GenerateICmpZeroScales, in which case adding fixup offsets may
2669     // be invalid.
2670     if (&LU != &OrigLU &&
2671         LU.Kind != LSRUse::ICmpZero &&
2672         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2673         LU.WidestFixupType == OrigLU.WidestFixupType &&
2674         LU.HasFormulaWithSameRegs(OrigF)) {
2675       // Scan through this use's formulae.
2676       for (const Formula &F : LU.Formulae) {
2677         // Check to see if this formula has the same registers and symbols
2678         // as OrigF.
2679         if (F.BaseRegs == OrigF.BaseRegs &&
2680             F.ScaledReg == OrigF.ScaledReg &&
2681             F.BaseGV == OrigF.BaseGV &&
2682             F.Scale == OrigF.Scale &&
2683             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2684           if (F.BaseOffset == 0)
2685             return &LU;
2686           // This is the formula where all the registers and symbols matched;
2687           // there aren't going to be any others. Since we declined it, we
2688           // can skip the rest of the formulae and proceed to the next LSRUse.
2689           break;
2690         }
2691       }
2692     }
2693   }
2694 
2695   // Nothing looked good.
2696   return nullptr;
2697 }
2698 
2699 void LSRInstance::CollectInterestingTypesAndFactors() {
2700   SmallSetVector<const SCEV *, 4> Strides;
2701 
2702   // Collect interesting types and strides.
2703   SmallVector<const SCEV *, 4> Worklist;
2704   for (const IVStrideUse &U : IU) {
2705     const SCEV *Expr = IU.getExpr(U);
2706     if (!Expr)
2707       continue;
2708 
2709     // Collect interesting types.
2710     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2711 
2712     // Add strides for mentioned loops.
2713     Worklist.push_back(Expr);
2714     do {
2715       const SCEV *S = Worklist.pop_back_val();
2716       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2717         if (AR->getLoop() == L)
2718           Strides.insert(AR->getStepRecurrence(SE));
2719         Worklist.push_back(AR->getStart());
2720       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2721         append_range(Worklist, Add->operands());
2722       }
2723     } while (!Worklist.empty());
2724   }
2725 
2726   // Compute interesting factors from the set of interesting strides.
2727   for (SmallSetVector<const SCEV *, 4>::const_iterator
2728        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2729     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2730          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2731       const SCEV *OldStride = *I;
2732       const SCEV *NewStride = *NewStrideIter;
2733 
2734       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2735           SE.getTypeSizeInBits(NewStride->getType())) {
2736         if (SE.getTypeSizeInBits(OldStride->getType()) >
2737             SE.getTypeSizeInBits(NewStride->getType()))
2738           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2739         else
2740           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2741       }
2742       if (const SCEVConstant *Factor =
2743             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2744                                                         SE, true))) {
2745         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2746           Factors.insert(Factor->getAPInt().getSExtValue());
2747       } else if (const SCEVConstant *Factor =
2748                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2749                                                                NewStride,
2750                                                                SE, true))) {
2751         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2752           Factors.insert(Factor->getAPInt().getSExtValue());
2753       }
2754     }
2755 
2756   // If all uses use the same type, don't bother looking for truncation-based
2757   // reuse.
2758   if (Types.size() == 1)
2759     Types.clear();
2760 
2761   LLVM_DEBUG(print_factors_and_types(dbgs()));
2762 }
2763 
2764 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2765 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2766 /// IVStrideUses, we could partially skip this.
2767 static User::op_iterator
2768 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2769               Loop *L, ScalarEvolution &SE) {
2770   for(; OI != OE; ++OI) {
2771     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2772       if (!SE.isSCEVable(Oper->getType()))
2773         continue;
2774 
2775       if (const SCEVAddRecExpr *AR =
2776           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2777         if (AR->getLoop() == L)
2778           break;
2779       }
2780     }
2781   }
2782   return OI;
2783 }
2784 
2785 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2786 /// a convenient helper.
2787 static Value *getWideOperand(Value *Oper) {
2788   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2789     return Trunc->getOperand(0);
2790   return Oper;
2791 }
2792 
2793 /// Return an approximation of this SCEV expression's "base", or NULL for any
2794 /// constant. Returning the expression itself is conservative. Returning a
2795 /// deeper subexpression is more precise and valid as long as it isn't less
2796 /// complex than another subexpression. For expressions involving multiple
2797 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2798 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2799 /// IVInc==b-a.
2800 ///
2801 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2802 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2803 static const SCEV *getExprBase(const SCEV *S) {
2804   switch (S->getSCEVType()) {
2805   default: // including scUnknown.
2806     return S;
2807   case scConstant:
2808   case scVScale:
2809     return nullptr;
2810   case scTruncate:
2811     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2812   case scZeroExtend:
2813     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2814   case scSignExtend:
2815     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2816   case scAddExpr: {
2817     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2818     // there's nothing more complex.
2819     // FIXME: not sure if we want to recognize negation.
2820     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2821     for (const SCEV *SubExpr : reverse(Add->operands())) {
2822       if (SubExpr->getSCEVType() == scAddExpr)
2823         return getExprBase(SubExpr);
2824 
2825       if (SubExpr->getSCEVType() != scMulExpr)
2826         return SubExpr;
2827     }
2828     return S; // all operands are scaled, be conservative.
2829   }
2830   case scAddRecExpr:
2831     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2832   }
2833   llvm_unreachable("Unknown SCEV kind!");
2834 }
2835 
2836 /// Return true if the chain increment is profitable to expand into a loop
2837 /// invariant value, which may require its own register. A profitable chain
2838 /// increment will be an offset relative to the same base. We allow such offsets
2839 /// to potentially be used as chain increment as long as it's not obviously
2840 /// expensive to expand using real instructions.
2841 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2842                                     const SCEV *IncExpr,
2843                                     ScalarEvolution &SE) {
2844   // Aggressively form chains when -stress-ivchain.
2845   if (StressIVChain)
2846     return true;
2847 
2848   // Do not replace a constant offset from IV head with a nonconstant IV
2849   // increment.
2850   if (!isa<SCEVConstant>(IncExpr)) {
2851     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2852     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2853       return false;
2854   }
2855 
2856   SmallPtrSet<const SCEV*, 8> Processed;
2857   return !isHighCostExpansion(IncExpr, Processed, SE);
2858 }
2859 
2860 /// Return true if the number of registers needed for the chain is estimated to
2861 /// be less than the number required for the individual IV users. First prohibit
2862 /// any IV users that keep the IV live across increments (the Users set should
2863 /// be empty). Next count the number and type of increments in the chain.
2864 ///
2865 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2866 /// effectively use postinc addressing modes. Only consider it profitable it the
2867 /// increments can be computed in fewer registers when chained.
2868 ///
2869 /// TODO: Consider IVInc free if it's already used in another chains.
2870 static bool isProfitableChain(IVChain &Chain,
2871                               SmallPtrSetImpl<Instruction *> &Users,
2872                               ScalarEvolution &SE,
2873                               const TargetTransformInfo &TTI) {
2874   if (StressIVChain)
2875     return true;
2876 
2877   if (!Chain.hasIncs())
2878     return false;
2879 
2880   if (!Users.empty()) {
2881     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2882                for (Instruction *Inst
2883                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2884     return false;
2885   }
2886   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2887 
2888   // The chain itself may require a register, so intialize cost to 1.
2889   int cost = 1;
2890 
2891   // A complete chain likely eliminates the need for keeping the original IV in
2892   // a register. LSR does not currently know how to form a complete chain unless
2893   // the header phi already exists.
2894   if (isa<PHINode>(Chain.tailUserInst())
2895       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2896     --cost;
2897   }
2898   const SCEV *LastIncExpr = nullptr;
2899   unsigned NumConstIncrements = 0;
2900   unsigned NumVarIncrements = 0;
2901   unsigned NumReusedIncrements = 0;
2902 
2903   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2904     return true;
2905 
2906   for (const IVInc &Inc : Chain) {
2907     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2908       return true;
2909     if (Inc.IncExpr->isZero())
2910       continue;
2911 
2912     // Incrementing by zero or some constant is neutral. We assume constants can
2913     // be folded into an addressing mode or an add's immediate operand.
2914     if (isa<SCEVConstant>(Inc.IncExpr)) {
2915       ++NumConstIncrements;
2916       continue;
2917     }
2918 
2919     if (Inc.IncExpr == LastIncExpr)
2920       ++NumReusedIncrements;
2921     else
2922       ++NumVarIncrements;
2923 
2924     LastIncExpr = Inc.IncExpr;
2925   }
2926   // An IV chain with a single increment is handled by LSR's postinc
2927   // uses. However, a chain with multiple increments requires keeping the IV's
2928   // value live longer than it needs to be if chained.
2929   if (NumConstIncrements > 1)
2930     --cost;
2931 
2932   // Materializing increment expressions in the preheader that didn't exist in
2933   // the original code may cost a register. For example, sign-extended array
2934   // indices can produce ridiculous increments like this:
2935   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2936   cost += NumVarIncrements;
2937 
2938   // Reusing variable increments likely saves a register to hold the multiple of
2939   // the stride.
2940   cost -= NumReusedIncrements;
2941 
2942   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2943                     << "\n");
2944 
2945   return cost < 0;
2946 }
2947 
2948 /// Add this IV user to an existing chain or make it the head of a new chain.
2949 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2950                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2951   // When IVs are used as types of varying widths, they are generally converted
2952   // to a wider type with some uses remaining narrow under a (free) trunc.
2953   Value *const NextIV = getWideOperand(IVOper);
2954   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2955   const SCEV *const OperExprBase = getExprBase(OperExpr);
2956 
2957   // Visit all existing chains. Check if its IVOper can be computed as a
2958   // profitable loop invariant increment from the last link in the Chain.
2959   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2960   const SCEV *LastIncExpr = nullptr;
2961   for (; ChainIdx < NChains; ++ChainIdx) {
2962     IVChain &Chain = IVChainVec[ChainIdx];
2963 
2964     // Prune the solution space aggressively by checking that both IV operands
2965     // are expressions that operate on the same unscaled SCEVUnknown. This
2966     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2967     // first avoids creating extra SCEV expressions.
2968     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2969       continue;
2970 
2971     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2972     if (PrevIV->getType() != NextIV->getType())
2973       continue;
2974 
2975     // A phi node terminates a chain.
2976     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2977       continue;
2978 
2979     // The increment must be loop-invariant so it can be kept in a register.
2980     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2981     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2982     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2983       continue;
2984 
2985     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2986       LastIncExpr = IncExpr;
2987       break;
2988     }
2989   }
2990   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2991   // bother for phi nodes, because they must be last in the chain.
2992   if (ChainIdx == NChains) {
2993     if (isa<PHINode>(UserInst))
2994       return;
2995     if (NChains >= MaxChains && !StressIVChain) {
2996       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2997       return;
2998     }
2999     LastIncExpr = OperExpr;
3000     // IVUsers may have skipped over sign/zero extensions. We don't currently
3001     // attempt to form chains involving extensions unless they can be hoisted
3002     // into this loop's AddRec.
3003     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3004       return;
3005     ++NChains;
3006     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3007                                  OperExprBase));
3008     ChainUsersVec.resize(NChains);
3009     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3010                       << ") IV=" << *LastIncExpr << "\n");
3011   } else {
3012     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3013                       << ") IV+" << *LastIncExpr << "\n");
3014     // Add this IV user to the end of the chain.
3015     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3016   }
3017   IVChain &Chain = IVChainVec[ChainIdx];
3018 
3019   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3020   // This chain's NearUsers become FarUsers.
3021   if (!LastIncExpr->isZero()) {
3022     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3023                                             NearUsers.end());
3024     NearUsers.clear();
3025   }
3026 
3027   // All other uses of IVOperand become near uses of the chain.
3028   // We currently ignore intermediate values within SCEV expressions, assuming
3029   // they will eventually be used be the current chain, or can be computed
3030   // from one of the chain increments. To be more precise we could
3031   // transitively follow its user and only add leaf IV users to the set.
3032   for (User *U : IVOper->users()) {
3033     Instruction *OtherUse = dyn_cast<Instruction>(U);
3034     if (!OtherUse)
3035       continue;
3036     // Uses in the chain will no longer be uses if the chain is formed.
3037     // Include the head of the chain in this iteration (not Chain.begin()).
3038     IVChain::const_iterator IncIter = Chain.Incs.begin();
3039     IVChain::const_iterator IncEnd = Chain.Incs.end();
3040     for( ; IncIter != IncEnd; ++IncIter) {
3041       if (IncIter->UserInst == OtherUse)
3042         break;
3043     }
3044     if (IncIter != IncEnd)
3045       continue;
3046 
3047     if (SE.isSCEVable(OtherUse->getType())
3048         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3049         && IU.isIVUserOrOperand(OtherUse)) {
3050       continue;
3051     }
3052     NearUsers.insert(OtherUse);
3053   }
3054 
3055   // Since this user is part of the chain, it's no longer considered a use
3056   // of the chain.
3057   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3058 }
3059 
3060 /// Populate the vector of Chains.
3061 ///
3062 /// This decreases ILP at the architecture level. Targets with ample registers,
3063 /// multiple memory ports, and no register renaming probably don't want
3064 /// this. However, such targets should probably disable LSR altogether.
3065 ///
3066 /// The job of LSR is to make a reasonable choice of induction variables across
3067 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3068 /// ILP *within the loop* if the target wants it.
3069 ///
3070 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3071 /// will not reorder memory operations, it will recognize this as a chain, but
3072 /// will generate redundant IV increments. Ideally this would be corrected later
3073 /// by a smart scheduler:
3074 ///        = A[i]
3075 ///        = A[i+x]
3076 /// A[i]   =
3077 /// A[i+x] =
3078 ///
3079 /// TODO: Walk the entire domtree within this loop, not just the path to the
3080 /// loop latch. This will discover chains on side paths, but requires
3081 /// maintaining multiple copies of the Chains state.
3082 void LSRInstance::CollectChains() {
3083   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3084   SmallVector<ChainUsers, 8> ChainUsersVec;
3085 
3086   SmallVector<BasicBlock *,8> LatchPath;
3087   BasicBlock *LoopHeader = L->getHeader();
3088   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3089        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3090     LatchPath.push_back(Rung->getBlock());
3091   }
3092   LatchPath.push_back(LoopHeader);
3093 
3094   // Walk the instruction stream from the loop header to the loop latch.
3095   for (BasicBlock *BB : reverse(LatchPath)) {
3096     for (Instruction &I : *BB) {
3097       // Skip instructions that weren't seen by IVUsers analysis.
3098       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3099         continue;
3100 
3101       // Ignore users that are part of a SCEV expression. This way we only
3102       // consider leaf IV Users. This effectively rediscovers a portion of
3103       // IVUsers analysis but in program order this time.
3104       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3105           continue;
3106 
3107       // Remove this instruction from any NearUsers set it may be in.
3108       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3109            ChainIdx < NChains; ++ChainIdx) {
3110         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3111       }
3112       // Search for operands that can be chained.
3113       SmallPtrSet<Instruction*, 4> UniqueOperands;
3114       User::op_iterator IVOpEnd = I.op_end();
3115       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3116       while (IVOpIter != IVOpEnd) {
3117         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3118         if (UniqueOperands.insert(IVOpInst).second)
3119           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3120         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3121       }
3122     } // Continue walking down the instructions.
3123   } // Continue walking down the domtree.
3124   // Visit phi backedges to determine if the chain can generate the IV postinc.
3125   for (PHINode &PN : L->getHeader()->phis()) {
3126     if (!SE.isSCEVable(PN.getType()))
3127       continue;
3128 
3129     Instruction *IncV =
3130         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3131     if (IncV)
3132       ChainInstruction(&PN, IncV, ChainUsersVec);
3133   }
3134   // Remove any unprofitable chains.
3135   unsigned ChainIdx = 0;
3136   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3137        UsersIdx < NChains; ++UsersIdx) {
3138     if (!isProfitableChain(IVChainVec[UsersIdx],
3139                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3140       continue;
3141     // Preserve the chain at UsesIdx.
3142     if (ChainIdx != UsersIdx)
3143       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3144     FinalizeChain(IVChainVec[ChainIdx]);
3145     ++ChainIdx;
3146   }
3147   IVChainVec.resize(ChainIdx);
3148 }
3149 
3150 void LSRInstance::FinalizeChain(IVChain &Chain) {
3151   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3152   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3153 
3154   for (const IVInc &Inc : Chain) {
3155     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3156     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3157     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3158     IVIncSet.insert(UseI);
3159   }
3160 }
3161 
3162 /// Return true if the IVInc can be folded into an addressing mode.
3163 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3164                              Value *Operand, const TargetTransformInfo &TTI) {
3165   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3166   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3167     return false;
3168 
3169   if (IncConst->getAPInt().getSignificantBits() > 64)
3170     return false;
3171 
3172   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3173   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3174   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3175                         IncOffset, /*HasBaseReg=*/false))
3176     return false;
3177 
3178   return true;
3179 }
3180 
3181 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3182 /// user's operand from the previous IV user's operand.
3183 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3184                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3185   // Find the new IVOperand for the head of the chain. It may have been replaced
3186   // by LSR.
3187   const IVInc &Head = Chain.Incs[0];
3188   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3189   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3190   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3191                                              IVOpEnd, L, SE);
3192   Value *IVSrc = nullptr;
3193   while (IVOpIter != IVOpEnd) {
3194     IVSrc = getWideOperand(*IVOpIter);
3195 
3196     // If this operand computes the expression that the chain needs, we may use
3197     // it. (Check this after setting IVSrc which is used below.)
3198     //
3199     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3200     // narrow for the chain, so we can no longer use it. We do allow using a
3201     // wider phi, assuming the LSR checked for free truncation. In that case we
3202     // should already have a truncate on this operand such that
3203     // getSCEV(IVSrc) == IncExpr.
3204     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3205         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3206       break;
3207     }
3208     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3209   }
3210   if (IVOpIter == IVOpEnd) {
3211     // Gracefully give up on this chain.
3212     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3213     return;
3214   }
3215   assert(IVSrc && "Failed to find IV chain source");
3216 
3217   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3218   Type *IVTy = IVSrc->getType();
3219   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3220   const SCEV *LeftOverExpr = nullptr;
3221   for (const IVInc &Inc : Chain) {
3222     Instruction *InsertPt = Inc.UserInst;
3223     if (isa<PHINode>(InsertPt))
3224       InsertPt = L->getLoopLatch()->getTerminator();
3225 
3226     // IVOper will replace the current IV User's operand. IVSrc is the IV
3227     // value currently held in a register.
3228     Value *IVOper = IVSrc;
3229     if (!Inc.IncExpr->isZero()) {
3230       // IncExpr was the result of subtraction of two narrow values, so must
3231       // be signed.
3232       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3233       LeftOverExpr = LeftOverExpr ?
3234         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3235     }
3236     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3237       // Expand the IV increment.
3238       Rewriter.clearPostInc();
3239       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3240       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3241                                              SE.getUnknown(IncV));
3242       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3243 
3244       // If an IV increment can't be folded, use it as the next IV value.
3245       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3246         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3247         IVSrc = IVOper;
3248         LeftOverExpr = nullptr;
3249       }
3250     }
3251     Type *OperTy = Inc.IVOperand->getType();
3252     if (IVTy != OperTy) {
3253       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3254              "cannot extend a chained IV");
3255       IRBuilder<> Builder(InsertPt);
3256       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3257     }
3258     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3259     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3260       DeadInsts.emplace_back(OperandIsInstr);
3261   }
3262   // If LSR created a new, wider phi, we may also replace its postinc. We only
3263   // do this if we also found a wide value for the head of the chain.
3264   if (isa<PHINode>(Chain.tailUserInst())) {
3265     for (PHINode &Phi : L->getHeader()->phis()) {
3266       if (Phi.getType() != IVSrc->getType())
3267         continue;
3268       Instruction *PostIncV = dyn_cast<Instruction>(
3269           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3270       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3271         continue;
3272       Value *IVOper = IVSrc;
3273       Type *PostIncTy = PostIncV->getType();
3274       if (IVTy != PostIncTy) {
3275         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3276         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3277         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3278         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3279       }
3280       Phi.replaceUsesOfWith(PostIncV, IVOper);
3281       DeadInsts.emplace_back(PostIncV);
3282     }
3283   }
3284 }
3285 
3286 void LSRInstance::CollectFixupsAndInitialFormulae() {
3287   BranchInst *ExitBranch = nullptr;
3288   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3289 
3290   // For calculating baseline cost
3291   SmallPtrSet<const SCEV *, 16> Regs;
3292   DenseSet<const SCEV *> VisitedRegs;
3293   DenseSet<size_t> VisitedLSRUse;
3294 
3295   for (const IVStrideUse &U : IU) {
3296     Instruction *UserInst = U.getUser();
3297     // Skip IV users that are part of profitable IV Chains.
3298     User::op_iterator UseI =
3299         find(UserInst->operands(), U.getOperandValToReplace());
3300     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3301     if (IVIncSet.count(UseI)) {
3302       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3303       continue;
3304     }
3305 
3306     LSRUse::KindType Kind = LSRUse::Basic;
3307     MemAccessTy AccessTy;
3308     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3309       Kind = LSRUse::Address;
3310       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3311     }
3312 
3313     const SCEV *S = IU.getExpr(U);
3314     if (!S)
3315       continue;
3316     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3317 
3318     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3319     // (N - i == 0), and this allows (N - i) to be the expression that we work
3320     // with rather than just N or i, so we can consider the register
3321     // requirements for both N and i at the same time. Limiting this code to
3322     // equality icmps is not a problem because all interesting loops use
3323     // equality icmps, thanks to IndVarSimplify.
3324     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3325       // If CI can be saved in some target, like replaced inside hardware loop
3326       // in PowerPC, no need to generate initial formulae for it.
3327       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3328         continue;
3329       if (CI->isEquality()) {
3330         // Swap the operands if needed to put the OperandValToReplace on the
3331         // left, for consistency.
3332         Value *NV = CI->getOperand(1);
3333         if (NV == U.getOperandValToReplace()) {
3334           CI->setOperand(1, CI->getOperand(0));
3335           CI->setOperand(0, NV);
3336           NV = CI->getOperand(1);
3337           Changed = true;
3338         }
3339 
3340         // x == y  -->  x - y == 0
3341         const SCEV *N = SE.getSCEV(NV);
3342         if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3343             (!NV->getType()->isPointerTy() ||
3344              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3345           // S is normalized, so normalize N before folding it into S
3346           // to keep the result normalized.
3347           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3348           if (!N)
3349             continue;
3350           Kind = LSRUse::ICmpZero;
3351           S = SE.getMinusSCEV(N, S);
3352         } else if (L->isLoopInvariant(NV) &&
3353                    (!isa<Instruction>(NV) ||
3354                     DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3355                    !NV->getType()->isPointerTy()) {
3356           // If we can't generally expand the expression (e.g. it contains
3357           // a divide), but it is already at a loop invariant point before the
3358           // loop, wrap it in an unknown (to prevent the expander from trying
3359           // to re-expand in a potentially unsafe way.)  The restriction to
3360           // integer types is required because the unknown hides the base, and
3361           // SCEV can't compute the difference of two unknown pointers.
3362           N = SE.getUnknown(NV);
3363           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3364           if (!N)
3365             continue;
3366           Kind = LSRUse::ICmpZero;
3367           S = SE.getMinusSCEV(N, S);
3368           assert(!isa<SCEVCouldNotCompute>(S));
3369         }
3370 
3371         // -1 and the negations of all interesting strides (except the negation
3372         // of -1) are now also interesting.
3373         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3374           if (Factors[i] != -1)
3375             Factors.insert(-(uint64_t)Factors[i]);
3376         Factors.insert(-1);
3377       }
3378     }
3379 
3380     // Get or create an LSRUse.
3381     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3382     size_t LUIdx = P.first;
3383     int64_t Offset = P.second;
3384     LSRUse &LU = Uses[LUIdx];
3385 
3386     // Record the fixup.
3387     LSRFixup &LF = LU.getNewFixup();
3388     LF.UserInst = UserInst;
3389     LF.OperandValToReplace = U.getOperandValToReplace();
3390     LF.PostIncLoops = TmpPostIncLoops;
3391     LF.Offset = Offset;
3392     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3393 
3394     // Create SCEV as Formula for calculating baseline cost
3395     if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3396       Formula F;
3397       F.initialMatch(S, L, SE);
3398       BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3399       VisitedLSRUse.insert(LUIdx);
3400     }
3401 
3402     if (!LU.WidestFixupType ||
3403         SE.getTypeSizeInBits(LU.WidestFixupType) <
3404         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3405       LU.WidestFixupType = LF.OperandValToReplace->getType();
3406 
3407     // If this is the first use of this LSRUse, give it a formula.
3408     if (LU.Formulae.empty()) {
3409       InsertInitialFormula(S, LU, LUIdx);
3410       CountRegisters(LU.Formulae.back(), LUIdx);
3411     }
3412   }
3413 
3414   LLVM_DEBUG(print_fixups(dbgs()));
3415 }
3416 
3417 /// Insert a formula for the given expression into the given use, separating out
3418 /// loop-variant portions from loop-invariant and loop-computable portions.
3419 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3420                                        size_t LUIdx) {
3421   // Mark uses whose expressions cannot be expanded.
3422   if (!Rewriter.isSafeToExpand(S))
3423     LU.RigidFormula = true;
3424 
3425   Formula F;
3426   F.initialMatch(S, L, SE);
3427   bool Inserted = InsertFormula(LU, LUIdx, F);
3428   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3429 }
3430 
3431 /// Insert a simple single-register formula for the given expression into the
3432 /// given use.
3433 void
3434 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3435                                        LSRUse &LU, size_t LUIdx) {
3436   Formula F;
3437   F.BaseRegs.push_back(S);
3438   F.HasBaseReg = true;
3439   bool Inserted = InsertFormula(LU, LUIdx, F);
3440   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3441 }
3442 
3443 /// Note which registers are used by the given formula, updating RegUses.
3444 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3445   if (F.ScaledReg)
3446     RegUses.countRegister(F.ScaledReg, LUIdx);
3447   for (const SCEV *BaseReg : F.BaseRegs)
3448     RegUses.countRegister(BaseReg, LUIdx);
3449 }
3450 
3451 /// If the given formula has not yet been inserted, add it to the list, and
3452 /// return true. Return false otherwise.
3453 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3454   // Do not insert formula that we will not be able to expand.
3455   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3456          "Formula is illegal");
3457 
3458   if (!LU.InsertFormula(F, *L))
3459     return false;
3460 
3461   CountRegisters(F, LUIdx);
3462   return true;
3463 }
3464 
3465 /// Check for other uses of loop-invariant values which we're tracking. These
3466 /// other uses will pin these values in registers, making them less profitable
3467 /// for elimination.
3468 /// TODO: This currently misses non-constant addrec step registers.
3469 /// TODO: Should this give more weight to users inside the loop?
3470 void
3471 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3472   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3473   SmallPtrSet<const SCEV *, 32> Visited;
3474 
3475   // Don't collect outside uses if we are favoring postinc - the instructions in
3476   // the loop are more important than the ones outside of it.
3477   if (AMK == TTI::AMK_PostIndexed)
3478     return;
3479 
3480   while (!Worklist.empty()) {
3481     const SCEV *S = Worklist.pop_back_val();
3482 
3483     // Don't process the same SCEV twice
3484     if (!Visited.insert(S).second)
3485       continue;
3486 
3487     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3488       append_range(Worklist, N->operands());
3489     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3490       Worklist.push_back(C->getOperand());
3491     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3492       Worklist.push_back(D->getLHS());
3493       Worklist.push_back(D->getRHS());
3494     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3495       const Value *V = US->getValue();
3496       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3497         // Look for instructions defined outside the loop.
3498         if (L->contains(Inst)) continue;
3499       } else if (isa<Constant>(V))
3500         // Constants can be re-materialized.
3501         continue;
3502       for (const Use &U : V->uses()) {
3503         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3504         // Ignore non-instructions.
3505         if (!UserInst)
3506           continue;
3507         // Don't bother if the instruction is an EHPad.
3508         if (UserInst->isEHPad())
3509           continue;
3510         // Ignore instructions in other functions (as can happen with
3511         // Constants).
3512         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3513           continue;
3514         // Ignore instructions not dominated by the loop.
3515         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3516           UserInst->getParent() :
3517           cast<PHINode>(UserInst)->getIncomingBlock(
3518             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3519         if (!DT.dominates(L->getHeader(), UseBB))
3520           continue;
3521         // Don't bother if the instruction is in a BB which ends in an EHPad.
3522         if (UseBB->getTerminator()->isEHPad())
3523           continue;
3524 
3525         // Ignore cases in which the currently-examined value could come from
3526         // a basic block terminated with an EHPad. This checks all incoming
3527         // blocks of the phi node since it is possible that the same incoming
3528         // value comes from multiple basic blocks, only some of which may end
3529         // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3530         // pass would try to insert instructions into an EHPad, hitting an
3531         // assertion.
3532         if (isa<PHINode>(UserInst)) {
3533           const auto *PhiNode = cast<PHINode>(UserInst);
3534           bool HasIncompatibleEHPTerminatedBlock = false;
3535           llvm::Value *ExpectedValue = U;
3536           for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3537             if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3538               if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3539                 HasIncompatibleEHPTerminatedBlock = true;
3540                 break;
3541               }
3542             }
3543           }
3544           if (HasIncompatibleEHPTerminatedBlock) {
3545             continue;
3546           }
3547         }
3548 
3549         // Don't bother rewriting PHIs in catchswitch blocks.
3550         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3551           continue;
3552         // Ignore uses which are part of other SCEV expressions, to avoid
3553         // analyzing them multiple times.
3554         if (SE.isSCEVable(UserInst->getType())) {
3555           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3556           // If the user is a no-op, look through to its uses.
3557           if (!isa<SCEVUnknown>(UserS))
3558             continue;
3559           if (UserS == US) {
3560             Worklist.push_back(
3561               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3562             continue;
3563           }
3564         }
3565         // Ignore icmp instructions which are already being analyzed.
3566         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3567           unsigned OtherIdx = !U.getOperandNo();
3568           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3569           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3570             continue;
3571         }
3572 
3573         std::pair<size_t, int64_t> P = getUse(
3574             S, LSRUse::Basic, MemAccessTy());
3575         size_t LUIdx = P.first;
3576         int64_t Offset = P.second;
3577         LSRUse &LU = Uses[LUIdx];
3578         LSRFixup &LF = LU.getNewFixup();
3579         LF.UserInst = const_cast<Instruction *>(UserInst);
3580         LF.OperandValToReplace = U;
3581         LF.Offset = Offset;
3582         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3583         if (!LU.WidestFixupType ||
3584             SE.getTypeSizeInBits(LU.WidestFixupType) <
3585             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3586           LU.WidestFixupType = LF.OperandValToReplace->getType();
3587         InsertSupplementalFormula(US, LU, LUIdx);
3588         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3589         break;
3590       }
3591     }
3592   }
3593 }
3594 
3595 /// Split S into subexpressions which can be pulled out into separate
3596 /// registers. If C is non-null, multiply each subexpression by C.
3597 ///
3598 /// Return remainder expression after factoring the subexpressions captured by
3599 /// Ops. If Ops is complete, return NULL.
3600 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3601                                    SmallVectorImpl<const SCEV *> &Ops,
3602                                    const Loop *L,
3603                                    ScalarEvolution &SE,
3604                                    unsigned Depth = 0) {
3605   // Arbitrarily cap recursion to protect compile time.
3606   if (Depth >= 3)
3607     return S;
3608 
3609   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3610     // Break out add operands.
3611     for (const SCEV *S : Add->operands()) {
3612       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3613       if (Remainder)
3614         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3615     }
3616     return nullptr;
3617   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3618     // Split a non-zero base out of an addrec.
3619     if (AR->getStart()->isZero() || !AR->isAffine())
3620       return S;
3621 
3622     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3623                                             C, Ops, L, SE, Depth+1);
3624     // Split the non-zero AddRec unless it is part of a nested recurrence that
3625     // does not pertain to this loop.
3626     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3627       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3628       Remainder = nullptr;
3629     }
3630     if (Remainder != AR->getStart()) {
3631       if (!Remainder)
3632         Remainder = SE.getConstant(AR->getType(), 0);
3633       return SE.getAddRecExpr(Remainder,
3634                               AR->getStepRecurrence(SE),
3635                               AR->getLoop(),
3636                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3637                               SCEV::FlagAnyWrap);
3638     }
3639   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3640     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3641     if (Mul->getNumOperands() != 2)
3642       return S;
3643     if (const SCEVConstant *Op0 =
3644         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3645       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3646       const SCEV *Remainder =
3647         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3648       if (Remainder)
3649         Ops.push_back(SE.getMulExpr(C, Remainder));
3650       return nullptr;
3651     }
3652   }
3653   return S;
3654 }
3655 
3656 /// Return true if the SCEV represents a value that may end up as a
3657 /// post-increment operation.
3658 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3659                               LSRUse &LU, const SCEV *S, const Loop *L,
3660                               ScalarEvolution &SE) {
3661   if (LU.Kind != LSRUse::Address ||
3662       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3663     return false;
3664   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3665   if (!AR)
3666     return false;
3667   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3668   if (!isa<SCEVConstant>(LoopStep))
3669     return false;
3670   // Check if a post-indexed load/store can be used.
3671   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3672       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3673     const SCEV *LoopStart = AR->getStart();
3674     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3675       return true;
3676   }
3677   return false;
3678 }
3679 
3680 /// Helper function for LSRInstance::GenerateReassociations.
3681 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3682                                              const Formula &Base,
3683                                              unsigned Depth, size_t Idx,
3684                                              bool IsScaledReg) {
3685   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3686   // Don't generate reassociations for the base register of a value that
3687   // may generate a post-increment operator. The reason is that the
3688   // reassociations cause extra base+register formula to be created,
3689   // and possibly chosen, but the post-increment is more efficient.
3690   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3691     return;
3692   SmallVector<const SCEV *, 8> AddOps;
3693   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3694   if (Remainder)
3695     AddOps.push_back(Remainder);
3696 
3697   if (AddOps.size() == 1)
3698     return;
3699 
3700   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3701                                                      JE = AddOps.end();
3702        J != JE; ++J) {
3703     // Loop-variant "unknown" values are uninteresting; we won't be able to
3704     // do anything meaningful with them.
3705     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3706       continue;
3707 
3708     // Don't pull a constant into a register if the constant could be folded
3709     // into an immediate field.
3710     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3711                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3712       continue;
3713 
3714     // Collect all operands except *J.
3715     SmallVector<const SCEV *, 8> InnerAddOps(
3716         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3717     InnerAddOps.append(std::next(J),
3718                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3719 
3720     // Don't leave just a constant behind in a register if the constant could
3721     // be folded into an immediate field.
3722     if (InnerAddOps.size() == 1 &&
3723         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3724                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3725       continue;
3726 
3727     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3728     if (InnerSum->isZero())
3729       continue;
3730     Formula F = Base;
3731 
3732     // Add the remaining pieces of the add back into the new formula.
3733     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3734     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3735         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3736                                 InnerSumSC->getValue()->getZExtValue())) {
3737       F.UnfoldedOffset =
3738           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3739       if (IsScaledReg)
3740         F.ScaledReg = nullptr;
3741       else
3742         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3743     } else if (IsScaledReg)
3744       F.ScaledReg = InnerSum;
3745     else
3746       F.BaseRegs[Idx] = InnerSum;
3747 
3748     // Add J as its own register, or an unfolded immediate.
3749     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3750     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3751         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3752                                 SC->getValue()->getZExtValue()))
3753       F.UnfoldedOffset =
3754           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3755     else
3756       F.BaseRegs.push_back(*J);
3757     // We may have changed the number of register in base regs, adjust the
3758     // formula accordingly.
3759     F.canonicalize(*L);
3760 
3761     if (InsertFormula(LU, LUIdx, F))
3762       // If that formula hadn't been seen before, recurse to find more like
3763       // it.
3764       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3765       // Because just Depth is not enough to bound compile time.
3766       // This means that every time AddOps.size() is greater 16^x we will add
3767       // x to Depth.
3768       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3769                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3770   }
3771 }
3772 
3773 /// Split out subexpressions from adds and the bases of addrecs.
3774 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3775                                          Formula Base, unsigned Depth) {
3776   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3777   // Arbitrarily cap recursion to protect compile time.
3778   if (Depth >= 3)
3779     return;
3780 
3781   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3782     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3783 
3784   if (Base.Scale == 1)
3785     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3786                                /* Idx */ -1, /* IsScaledReg */ true);
3787 }
3788 
3789 ///  Generate a formula consisting of all of the loop-dominating registers added
3790 /// into a single register.
3791 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3792                                        Formula Base) {
3793   // This method is only interesting on a plurality of registers.
3794   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3795       (Base.UnfoldedOffset != 0) <= 1)
3796     return;
3797 
3798   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3799   // processing the formula.
3800   Base.unscale();
3801   SmallVector<const SCEV *, 4> Ops;
3802   Formula NewBase = Base;
3803   NewBase.BaseRegs.clear();
3804   Type *CombinedIntegerType = nullptr;
3805   for (const SCEV *BaseReg : Base.BaseRegs) {
3806     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3807         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3808       if (!CombinedIntegerType)
3809         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3810       Ops.push_back(BaseReg);
3811     }
3812     else
3813       NewBase.BaseRegs.push_back(BaseReg);
3814   }
3815 
3816   // If no register is relevant, we're done.
3817   if (Ops.size() == 0)
3818     return;
3819 
3820   // Utility function for generating the required variants of the combined
3821   // registers.
3822   auto GenerateFormula = [&](const SCEV *Sum) {
3823     Formula F = NewBase;
3824 
3825     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3826     // opportunity to fold something. For now, just ignore such cases
3827     // rather than proceed with zero in a register.
3828     if (Sum->isZero())
3829       return;
3830 
3831     F.BaseRegs.push_back(Sum);
3832     F.canonicalize(*L);
3833     (void)InsertFormula(LU, LUIdx, F);
3834   };
3835 
3836   // If we collected at least two registers, generate a formula combining them.
3837   if (Ops.size() > 1) {
3838     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3839     GenerateFormula(SE.getAddExpr(OpsCopy));
3840   }
3841 
3842   // If we have an unfolded offset, generate a formula combining it with the
3843   // registers collected.
3844   if (NewBase.UnfoldedOffset) {
3845     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3846     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3847                                  true));
3848     NewBase.UnfoldedOffset = 0;
3849     GenerateFormula(SE.getAddExpr(Ops));
3850   }
3851 }
3852 
3853 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3854 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3855                                               const Formula &Base, size_t Idx,
3856                                               bool IsScaledReg) {
3857   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3858   GlobalValue *GV = ExtractSymbol(G, SE);
3859   if (G->isZero() || !GV)
3860     return;
3861   Formula F = Base;
3862   F.BaseGV = GV;
3863   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3864     return;
3865   if (IsScaledReg)
3866     F.ScaledReg = G;
3867   else
3868     F.BaseRegs[Idx] = G;
3869   (void)InsertFormula(LU, LUIdx, F);
3870 }
3871 
3872 /// Generate reuse formulae using symbolic offsets.
3873 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3874                                           Formula Base) {
3875   // We can't add a symbolic offset if the address already contains one.
3876   if (Base.BaseGV) return;
3877 
3878   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3879     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3880   if (Base.Scale == 1)
3881     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3882                                 /* IsScaledReg */ true);
3883 }
3884 
3885 /// Helper function for LSRInstance::GenerateConstantOffsets.
3886 void LSRInstance::GenerateConstantOffsetsImpl(
3887     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3888     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3889 
3890   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3891     Formula F = Base;
3892     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3893 
3894     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3895       // Add the offset to the base register.
3896       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3897       // If it cancelled out, drop the base register, otherwise update it.
3898       if (NewG->isZero()) {
3899         if (IsScaledReg) {
3900           F.Scale = 0;
3901           F.ScaledReg = nullptr;
3902         } else
3903           F.deleteBaseReg(F.BaseRegs[Idx]);
3904         F.canonicalize(*L);
3905       } else if (IsScaledReg)
3906         F.ScaledReg = NewG;
3907       else
3908         F.BaseRegs[Idx] = NewG;
3909 
3910       (void)InsertFormula(LU, LUIdx, F);
3911     }
3912   };
3913 
3914   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3915 
3916   // With constant offsets and constant steps, we can generate pre-inc
3917   // accesses by having the offset equal the step. So, for access #0 with a
3918   // step of 8, we generate a G - 8 base which would require the first access
3919   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3920   // for itself and hopefully becomes the base for other accesses. This means
3921   // means that a single pre-indexed access can be generated to become the new
3922   // base pointer for each iteration of the loop, resulting in no extra add/sub
3923   // instructions for pointer updating.
3924   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3925     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3926       if (auto *StepRec =
3927           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3928         const APInt &StepInt = StepRec->getAPInt();
3929         int64_t Step = StepInt.isNegative() ?
3930           StepInt.getSExtValue() : StepInt.getZExtValue();
3931 
3932         for (int64_t Offset : Worklist) {
3933           Offset -= Step;
3934           GenerateOffset(G, Offset);
3935         }
3936       }
3937     }
3938   }
3939   for (int64_t Offset : Worklist)
3940     GenerateOffset(G, Offset);
3941 
3942   int64_t Imm = ExtractImmediate(G, SE);
3943   if (G->isZero() || Imm == 0)
3944     return;
3945   Formula F = Base;
3946   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3947   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3948     return;
3949   if (IsScaledReg) {
3950     F.ScaledReg = G;
3951   } else {
3952     F.BaseRegs[Idx] = G;
3953     // We may generate non canonical Formula if G is a recurrent expr reg
3954     // related with current loop while F.ScaledReg is not.
3955     F.canonicalize(*L);
3956   }
3957   (void)InsertFormula(LU, LUIdx, F);
3958 }
3959 
3960 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3961 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3962                                           Formula Base) {
3963   // TODO: For now, just add the min and max offset, because it usually isn't
3964   // worthwhile looking at everything inbetween.
3965   SmallVector<int64_t, 2> Worklist;
3966   Worklist.push_back(LU.MinOffset);
3967   if (LU.MaxOffset != LU.MinOffset)
3968     Worklist.push_back(LU.MaxOffset);
3969 
3970   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3971     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3972   if (Base.Scale == 1)
3973     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3974                                 /* IsScaledReg */ true);
3975 }
3976 
3977 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3978 /// == y -> x*c == y*c.
3979 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3980                                          Formula Base) {
3981   if (LU.Kind != LSRUse::ICmpZero) return;
3982 
3983   // Determine the integer type for the base formula.
3984   Type *IntTy = Base.getType();
3985   if (!IntTy) return;
3986   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3987 
3988   // Don't do this if there is more than one offset.
3989   if (LU.MinOffset != LU.MaxOffset) return;
3990 
3991   // Check if transformation is valid. It is illegal to multiply pointer.
3992   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3993     return;
3994   for (const SCEV *BaseReg : Base.BaseRegs)
3995     if (BaseReg->getType()->isPointerTy())
3996       return;
3997   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3998 
3999   // Check each interesting stride.
4000   for (int64_t Factor : Factors) {
4001     // Check that Factor can be represented by IntTy
4002     if (!ConstantInt::isValueValidForType(IntTy, Factor))
4003       continue;
4004     // Check that the multiplication doesn't overflow.
4005     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4006       continue;
4007     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4008     assert(Factor != 0 && "Zero factor not expected!");
4009     if (NewBaseOffset / Factor != Base.BaseOffset)
4010       continue;
4011     // If the offset will be truncated at this use, check that it is in bounds.
4012     if (!IntTy->isPointerTy() &&
4013         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4014       continue;
4015 
4016     // Check that multiplying with the use offset doesn't overflow.
4017     int64_t Offset = LU.MinOffset;
4018     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4019       continue;
4020     Offset = (uint64_t)Offset * Factor;
4021     if (Offset / Factor != LU.MinOffset)
4022       continue;
4023     // If the offset will be truncated at this use, check that it is in bounds.
4024     if (!IntTy->isPointerTy() &&
4025         !ConstantInt::isValueValidForType(IntTy, Offset))
4026       continue;
4027 
4028     Formula F = Base;
4029     F.BaseOffset = NewBaseOffset;
4030 
4031     // Check that this scale is legal.
4032     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4033       continue;
4034 
4035     // Compensate for the use having MinOffset built into it.
4036     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4037 
4038     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4039 
4040     // Check that multiplying with each base register doesn't overflow.
4041     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4042       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4043       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4044         goto next;
4045     }
4046 
4047     // Check that multiplying with the scaled register doesn't overflow.
4048     if (F.ScaledReg) {
4049       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4050       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4051         continue;
4052     }
4053 
4054     // Check that multiplying with the unfolded offset doesn't overflow.
4055     if (F.UnfoldedOffset != 0) {
4056       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4057           Factor == -1)
4058         continue;
4059       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4060       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4061         continue;
4062       // If the offset will be truncated, check that it is in bounds.
4063       if (!IntTy->isPointerTy() &&
4064           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4065         continue;
4066     }
4067 
4068     // If we make it here and it's legal, add it.
4069     (void)InsertFormula(LU, LUIdx, F);
4070   next:;
4071   }
4072 }
4073 
4074 /// Generate stride factor reuse formulae by making use of scaled-offset address
4075 /// modes, for example.
4076 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4077   // Determine the integer type for the base formula.
4078   Type *IntTy = Base.getType();
4079   if (!IntTy) return;
4080 
4081   // If this Formula already has a scaled register, we can't add another one.
4082   // Try to unscale the formula to generate a better scale.
4083   if (Base.Scale != 0 && !Base.unscale())
4084     return;
4085 
4086   assert(Base.Scale == 0 && "unscale did not did its job!");
4087 
4088   // Check each interesting stride.
4089   for (int64_t Factor : Factors) {
4090     Base.Scale = Factor;
4091     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4092     // Check whether this scale is going to be legal.
4093     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4094                     Base)) {
4095       // As a special-case, handle special out-of-loop Basic users specially.
4096       // TODO: Reconsider this special case.
4097       if (LU.Kind == LSRUse::Basic &&
4098           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4099                      LU.AccessTy, Base) &&
4100           LU.AllFixupsOutsideLoop)
4101         LU.Kind = LSRUse::Special;
4102       else
4103         continue;
4104     }
4105     // For an ICmpZero, negating a solitary base register won't lead to
4106     // new solutions.
4107     if (LU.Kind == LSRUse::ICmpZero &&
4108         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4109       continue;
4110     // For each addrec base reg, if its loop is current loop, apply the scale.
4111     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4112       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4113       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4114         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4115         if (FactorS->isZero())
4116           continue;
4117         // Divide out the factor, ignoring high bits, since we'll be
4118         // scaling the value back up in the end.
4119         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4120           if (!Quotient->isZero()) {
4121             // TODO: This could be optimized to avoid all the copying.
4122             Formula F = Base;
4123             F.ScaledReg = Quotient;
4124             F.deleteBaseReg(F.BaseRegs[i]);
4125             // The canonical representation of 1*reg is reg, which is already in
4126             // Base. In that case, do not try to insert the formula, it will be
4127             // rejected anyway.
4128             if (F.Scale == 1 && (F.BaseRegs.empty() ||
4129                                  (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4130               continue;
4131             // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4132             // non canonical Formula with ScaledReg's loop not being L.
4133             if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4134               F.canonicalize(*L);
4135             (void)InsertFormula(LU, LUIdx, F);
4136           }
4137       }
4138     }
4139   }
4140 }
4141 
4142 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4143 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4144 /// perform the extension/truncate and normalize again, as the normalized form
4145 /// can result in folds that are not valid in the post-inc use contexts. The
4146 /// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4147 static const SCEV *
4148 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4149                                    const SCEV *Expr, Type *ToTy,
4150                                    ScalarEvolution &SE) {
4151   const SCEV *Result = nullptr;
4152   for (auto &L : Loops) {
4153     auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4154     const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4155     const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4156     if (!New || (Result && New != Result))
4157       return nullptr;
4158     Result = New;
4159   }
4160 
4161   assert(Result && "failed to create expression");
4162   return Result;
4163 }
4164 
4165 /// Generate reuse formulae from different IV types.
4166 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4167   // Don't bother truncating symbolic values.
4168   if (Base.BaseGV) return;
4169 
4170   // Determine the integer type for the base formula.
4171   Type *DstTy = Base.getType();
4172   if (!DstTy) return;
4173   if (DstTy->isPointerTy())
4174     return;
4175 
4176   // It is invalid to extend a pointer type so exit early if ScaledReg or
4177   // any of the BaseRegs are pointers.
4178   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4179     return;
4180   if (any_of(Base.BaseRegs,
4181              [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4182     return;
4183 
4184   SmallVector<PostIncLoopSet> Loops;
4185   for (auto &LF : LU.Fixups)
4186     Loops.push_back(LF.PostIncLoops);
4187 
4188   for (Type *SrcTy : Types) {
4189     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4190       Formula F = Base;
4191 
4192       // Sometimes SCEV is able to prove zero during ext transform. It may
4193       // happen if SCEV did not do all possible transforms while creating the
4194       // initial node (maybe due to depth limitations), but it can do them while
4195       // taking ext.
4196       if (F.ScaledReg) {
4197         const SCEV *NewScaledReg =
4198             getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4199         if (!NewScaledReg || NewScaledReg->isZero())
4200           continue;
4201         F.ScaledReg = NewScaledReg;
4202       }
4203       bool HasZeroBaseReg = false;
4204       for (const SCEV *&BaseReg : F.BaseRegs) {
4205         const SCEV *NewBaseReg =
4206             getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4207         if (!NewBaseReg || NewBaseReg->isZero()) {
4208           HasZeroBaseReg = true;
4209           break;
4210         }
4211         BaseReg = NewBaseReg;
4212       }
4213       if (HasZeroBaseReg)
4214         continue;
4215 
4216       // TODO: This assumes we've done basic processing on all uses and
4217       // have an idea what the register usage is.
4218       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4219         continue;
4220 
4221       F.canonicalize(*L);
4222       (void)InsertFormula(LU, LUIdx, F);
4223     }
4224   }
4225 }
4226 
4227 namespace {
4228 
4229 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4230 /// modifications so that the search phase doesn't have to worry about the data
4231 /// structures moving underneath it.
4232 struct WorkItem {
4233   size_t LUIdx;
4234   int64_t Imm;
4235   const SCEV *OrigReg;
4236 
4237   WorkItem(size_t LI, int64_t I, const SCEV *R)
4238       : LUIdx(LI), Imm(I), OrigReg(R) {}
4239 
4240   void print(raw_ostream &OS) const;
4241   void dump() const;
4242 };
4243 
4244 } // end anonymous namespace
4245 
4246 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4247 void WorkItem::print(raw_ostream &OS) const {
4248   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4249      << " , add offset " << Imm;
4250 }
4251 
4252 LLVM_DUMP_METHOD void WorkItem::dump() const {
4253   print(errs()); errs() << '\n';
4254 }
4255 #endif
4256 
4257 /// Look for registers which are a constant distance apart and try to form reuse
4258 /// opportunities between them.
4259 void LSRInstance::GenerateCrossUseConstantOffsets() {
4260   // Group the registers by their value without any added constant offset.
4261   using ImmMapTy = std::map<int64_t, const SCEV *>;
4262 
4263   DenseMap<const SCEV *, ImmMapTy> Map;
4264   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4265   SmallVector<const SCEV *, 8> Sequence;
4266   for (const SCEV *Use : RegUses) {
4267     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4268     int64_t Imm = ExtractImmediate(Reg, SE);
4269     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4270     if (Pair.second)
4271       Sequence.push_back(Reg);
4272     Pair.first->second.insert(std::make_pair(Imm, Use));
4273     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4274   }
4275 
4276   // Now examine each set of registers with the same base value. Build up
4277   // a list of work to do and do the work in a separate step so that we're
4278   // not adding formulae and register counts while we're searching.
4279   SmallVector<WorkItem, 32> WorkItems;
4280   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4281   for (const SCEV *Reg : Sequence) {
4282     const ImmMapTy &Imms = Map.find(Reg)->second;
4283 
4284     // It's not worthwhile looking for reuse if there's only one offset.
4285     if (Imms.size() == 1)
4286       continue;
4287 
4288     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4289                for (const auto &Entry
4290                     : Imms) dbgs()
4291                << ' ' << Entry.first;
4292                dbgs() << '\n');
4293 
4294     // Examine each offset.
4295     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4296          J != JE; ++J) {
4297       const SCEV *OrigReg = J->second;
4298 
4299       int64_t JImm = J->first;
4300       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4301 
4302       if (!isa<SCEVConstant>(OrigReg) &&
4303           UsedByIndicesMap[Reg].count() == 1) {
4304         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4305                           << '\n');
4306         continue;
4307       }
4308 
4309       // Conservatively examine offsets between this orig reg a few selected
4310       // other orig regs.
4311       int64_t First = Imms.begin()->first;
4312       int64_t Last = std::prev(Imms.end())->first;
4313       // Compute (First + Last)  / 2 without overflow using the fact that
4314       // First + Last = 2 * (First + Last) + (First ^ Last).
4315       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4316       // If the result is negative and First is odd and Last even (or vice versa),
4317       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4318       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4319       ImmMapTy::const_iterator OtherImms[] = {
4320           Imms.begin(), std::prev(Imms.end()),
4321          Imms.lower_bound(Avg)};
4322       for (const auto &M : OtherImms) {
4323         if (M == J || M == JE) continue;
4324 
4325         // Compute the difference between the two.
4326         int64_t Imm = (uint64_t)JImm - M->first;
4327         for (unsigned LUIdx : UsedByIndices.set_bits())
4328           // Make a memo of this use, offset, and register tuple.
4329           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4330             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4331       }
4332     }
4333   }
4334 
4335   Map.clear();
4336   Sequence.clear();
4337   UsedByIndicesMap.clear();
4338   UniqueItems.clear();
4339 
4340   // Now iterate through the worklist and add new formulae.
4341   for (const WorkItem &WI : WorkItems) {
4342     size_t LUIdx = WI.LUIdx;
4343     LSRUse &LU = Uses[LUIdx];
4344     int64_t Imm = WI.Imm;
4345     const SCEV *OrigReg = WI.OrigReg;
4346 
4347     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4348     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4349     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4350 
4351     // TODO: Use a more targeted data structure.
4352     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4353       Formula F = LU.Formulae[L];
4354       // FIXME: The code for the scaled and unscaled registers looks
4355       // very similar but slightly different. Investigate if they
4356       // could be merged. That way, we would not have to unscale the
4357       // Formula.
4358       F.unscale();
4359       // Use the immediate in the scaled register.
4360       if (F.ScaledReg == OrigReg) {
4361         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4362         // Don't create 50 + reg(-50).
4363         if (F.referencesReg(SE.getSCEV(
4364                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4365           continue;
4366         Formula NewF = F;
4367         NewF.BaseOffset = Offset;
4368         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4369                         NewF))
4370           continue;
4371         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4372 
4373         // If the new scale is a constant in a register, and adding the constant
4374         // value to the immediate would produce a value closer to zero than the
4375         // immediate itself, then the formula isn't worthwhile.
4376         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4377           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4378               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4379                   .ule(std::abs(NewF.BaseOffset)))
4380             continue;
4381 
4382         // OK, looks good.
4383         NewF.canonicalize(*this->L);
4384         (void)InsertFormula(LU, LUIdx, NewF);
4385       } else {
4386         // Use the immediate in a base register.
4387         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4388           const SCEV *BaseReg = F.BaseRegs[N];
4389           if (BaseReg != OrigReg)
4390             continue;
4391           Formula NewF = F;
4392           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4393           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4394                           LU.Kind, LU.AccessTy, NewF)) {
4395             if (AMK == TTI::AMK_PostIndexed &&
4396                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4397               continue;
4398             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4399               continue;
4400             NewF = F;
4401             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4402           }
4403           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4404 
4405           // If the new formula has a constant in a register, and adding the
4406           // constant value to the immediate would produce a value closer to
4407           // zero than the immediate itself, then the formula isn't worthwhile.
4408           for (const SCEV *NewReg : NewF.BaseRegs)
4409             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4410               if ((C->getAPInt() + NewF.BaseOffset)
4411                       .abs()
4412                       .slt(std::abs(NewF.BaseOffset)) &&
4413                   (C->getAPInt() + NewF.BaseOffset).countr_zero() >=
4414                       (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset))
4415                 goto skip_formula;
4416 
4417           // Ok, looks good.
4418           NewF.canonicalize(*this->L);
4419           (void)InsertFormula(LU, LUIdx, NewF);
4420           break;
4421         skip_formula:;
4422         }
4423       }
4424     }
4425   }
4426 }
4427 
4428 /// Generate formulae for each use.
4429 void
4430 LSRInstance::GenerateAllReuseFormulae() {
4431   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4432   // queries are more precise.
4433   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4434     LSRUse &LU = Uses[LUIdx];
4435     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4436       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4437     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4438       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4439   }
4440   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4441     LSRUse &LU = Uses[LUIdx];
4442     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4443       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4444     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4445       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4446     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4447       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4448     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4449       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4450   }
4451   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4452     LSRUse &LU = Uses[LUIdx];
4453     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4454       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4455   }
4456 
4457   GenerateCrossUseConstantOffsets();
4458 
4459   LLVM_DEBUG(dbgs() << "\n"
4460                        "After generating reuse formulae:\n";
4461              print_uses(dbgs()));
4462 }
4463 
4464 /// If there are multiple formulae with the same set of registers used
4465 /// by other uses, pick the best one and delete the others.
4466 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4467   DenseSet<const SCEV *> VisitedRegs;
4468   SmallPtrSet<const SCEV *, 16> Regs;
4469   SmallPtrSet<const SCEV *, 16> LoserRegs;
4470 #ifndef NDEBUG
4471   bool ChangedFormulae = false;
4472 #endif
4473 
4474   // Collect the best formula for each unique set of shared registers. This
4475   // is reset for each use.
4476   using BestFormulaeTy =
4477       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4478 
4479   BestFormulaeTy BestFormulae;
4480 
4481   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4482     LSRUse &LU = Uses[LUIdx];
4483     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4484                dbgs() << '\n');
4485 
4486     bool Any = false;
4487     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4488          FIdx != NumForms; ++FIdx) {
4489       Formula &F = LU.Formulae[FIdx];
4490 
4491       // Some formulas are instant losers. For example, they may depend on
4492       // nonexistent AddRecs from other loops. These need to be filtered
4493       // immediately, otherwise heuristics could choose them over others leading
4494       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4495       // avoids the need to recompute this information across formulae using the
4496       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4497       // the corresponding bad register from the Regs set.
4498       Cost CostF(L, SE, TTI, AMK);
4499       Regs.clear();
4500       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4501       if (CostF.isLoser()) {
4502         // During initial formula generation, undesirable formulae are generated
4503         // by uses within other loops that have some non-trivial address mode or
4504         // use the postinc form of the IV. LSR needs to provide these formulae
4505         // as the basis of rediscovering the desired formula that uses an AddRec
4506         // corresponding to the existing phi. Once all formulae have been
4507         // generated, these initial losers may be pruned.
4508         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4509                    dbgs() << "\n");
4510       }
4511       else {
4512         SmallVector<const SCEV *, 4> Key;
4513         for (const SCEV *Reg : F.BaseRegs) {
4514           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4515             Key.push_back(Reg);
4516         }
4517         if (F.ScaledReg &&
4518             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4519           Key.push_back(F.ScaledReg);
4520         // Unstable sort by host order ok, because this is only used for
4521         // uniquifying.
4522         llvm::sort(Key);
4523 
4524         std::pair<BestFormulaeTy::const_iterator, bool> P =
4525           BestFormulae.insert(std::make_pair(Key, FIdx));
4526         if (P.second)
4527           continue;
4528 
4529         Formula &Best = LU.Formulae[P.first->second];
4530 
4531         Cost CostBest(L, SE, TTI, AMK);
4532         Regs.clear();
4533         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4534         if (CostF.isLess(CostBest))
4535           std::swap(F, Best);
4536         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4537                    dbgs() << "\n"
4538                              "    in favor of formula ";
4539                    Best.print(dbgs()); dbgs() << '\n');
4540       }
4541 #ifndef NDEBUG
4542       ChangedFormulae = true;
4543 #endif
4544       LU.DeleteFormula(F);
4545       --FIdx;
4546       --NumForms;
4547       Any = true;
4548     }
4549 
4550     // Now that we've filtered out some formulae, recompute the Regs set.
4551     if (Any)
4552       LU.RecomputeRegs(LUIdx, RegUses);
4553 
4554     // Reset this to prepare for the next use.
4555     BestFormulae.clear();
4556   }
4557 
4558   LLVM_DEBUG(if (ChangedFormulae) {
4559     dbgs() << "\n"
4560               "After filtering out undesirable candidates:\n";
4561     print_uses(dbgs());
4562   });
4563 }
4564 
4565 /// Estimate the worst-case number of solutions the solver might have to
4566 /// consider. It almost never considers this many solutions because it prune the
4567 /// search space, but the pruning isn't always sufficient.
4568 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4569   size_t Power = 1;
4570   for (const LSRUse &LU : Uses) {
4571     size_t FSize = LU.Formulae.size();
4572     if (FSize >= ComplexityLimit) {
4573       Power = ComplexityLimit;
4574       break;
4575     }
4576     Power *= FSize;
4577     if (Power >= ComplexityLimit)
4578       break;
4579   }
4580   return Power;
4581 }
4582 
4583 /// When one formula uses a superset of the registers of another formula, it
4584 /// won't help reduce register pressure (though it may not necessarily hurt
4585 /// register pressure); remove it to simplify the system.
4586 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4587   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4588     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4589 
4590     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4591                          "which use a superset of registers used by other "
4592                          "formulae.\n");
4593 
4594     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4595       LSRUse &LU = Uses[LUIdx];
4596       bool Any = false;
4597       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4598         Formula &F = LU.Formulae[i];
4599         // Look for a formula with a constant or GV in a register. If the use
4600         // also has a formula with that same value in an immediate field,
4601         // delete the one that uses a register.
4602         for (SmallVectorImpl<const SCEV *>::const_iterator
4603              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4604           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4605             Formula NewF = F;
4606             //FIXME: Formulas should store bitwidth to do wrapping properly.
4607             //       See PR41034.
4608             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4609             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4610                                 (I - F.BaseRegs.begin()));
4611             if (LU.HasFormulaWithSameRegs(NewF)) {
4612               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4613                          dbgs() << '\n');
4614               LU.DeleteFormula(F);
4615               --i;
4616               --e;
4617               Any = true;
4618               break;
4619             }
4620           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4621             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4622               if (!F.BaseGV) {
4623                 Formula NewF = F;
4624                 NewF.BaseGV = GV;
4625                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4626                                     (I - F.BaseRegs.begin()));
4627                 if (LU.HasFormulaWithSameRegs(NewF)) {
4628                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4629                              dbgs() << '\n');
4630                   LU.DeleteFormula(F);
4631                   --i;
4632                   --e;
4633                   Any = true;
4634                   break;
4635                 }
4636               }
4637           }
4638         }
4639       }
4640       if (Any)
4641         LU.RecomputeRegs(LUIdx, RegUses);
4642     }
4643 
4644     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4645   }
4646 }
4647 
4648 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4649 /// allocate a single register for them.
4650 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4651   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4652     return;
4653 
4654   LLVM_DEBUG(
4655       dbgs() << "The search space is too complex.\n"
4656                 "Narrowing the search space by assuming that uses separated "
4657                 "by a constant offset will use the same registers.\n");
4658 
4659   // This is especially useful for unrolled loops.
4660 
4661   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4662     LSRUse &LU = Uses[LUIdx];
4663     for (const Formula &F : LU.Formulae) {
4664       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4665         continue;
4666 
4667       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4668       if (!LUThatHas)
4669         continue;
4670 
4671       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4672                               LU.Kind, LU.AccessTy))
4673         continue;
4674 
4675       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4676 
4677       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4678 
4679       // Transfer the fixups of LU to LUThatHas.
4680       for (LSRFixup &Fixup : LU.Fixups) {
4681         Fixup.Offset += F.BaseOffset;
4682         LUThatHas->pushFixup(Fixup);
4683         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4684       }
4685 
4686       // Delete formulae from the new use which are no longer legal.
4687       bool Any = false;
4688       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4689         Formula &F = LUThatHas->Formulae[i];
4690         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4691                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4692           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4693           LUThatHas->DeleteFormula(F);
4694           --i;
4695           --e;
4696           Any = true;
4697         }
4698       }
4699 
4700       if (Any)
4701         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4702 
4703       // Delete the old use.
4704       DeleteUse(LU, LUIdx);
4705       --LUIdx;
4706       --NumUses;
4707       break;
4708     }
4709   }
4710 
4711   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4712 }
4713 
4714 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4715 /// we've done more filtering, as it may be able to find more formulae to
4716 /// eliminate.
4717 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4718   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4719     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4720 
4721     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4722                          "undesirable dedicated registers.\n");
4723 
4724     FilterOutUndesirableDedicatedRegisters();
4725 
4726     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4727   }
4728 }
4729 
4730 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4731 /// Pick the best one and delete the others.
4732 /// This narrowing heuristic is to keep as many formulae with different
4733 /// Scale and ScaledReg pair as possible while narrowing the search space.
4734 /// The benefit is that it is more likely to find out a better solution
4735 /// from a formulae set with more Scale and ScaledReg variations than
4736 /// a formulae set with the same Scale and ScaledReg. The picking winner
4737 /// reg heuristic will often keep the formulae with the same Scale and
4738 /// ScaledReg and filter others, and we want to avoid that if possible.
4739 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4740   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4741     return;
4742 
4743   LLVM_DEBUG(
4744       dbgs() << "The search space is too complex.\n"
4745                 "Narrowing the search space by choosing the best Formula "
4746                 "from the Formulae with the same Scale and ScaledReg.\n");
4747 
4748   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4749   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4750 
4751   BestFormulaeTy BestFormulae;
4752 #ifndef NDEBUG
4753   bool ChangedFormulae = false;
4754 #endif
4755   DenseSet<const SCEV *> VisitedRegs;
4756   SmallPtrSet<const SCEV *, 16> Regs;
4757 
4758   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4759     LSRUse &LU = Uses[LUIdx];
4760     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4761                dbgs() << '\n');
4762 
4763     // Return true if Formula FA is better than Formula FB.
4764     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4765       // First we will try to choose the Formula with fewer new registers.
4766       // For a register used by current Formula, the more the register is
4767       // shared among LSRUses, the less we increase the register number
4768       // counter of the formula.
4769       size_t FARegNum = 0;
4770       for (const SCEV *Reg : FA.BaseRegs) {
4771         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4772         FARegNum += (NumUses - UsedByIndices.count() + 1);
4773       }
4774       size_t FBRegNum = 0;
4775       for (const SCEV *Reg : FB.BaseRegs) {
4776         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4777         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4778       }
4779       if (FARegNum != FBRegNum)
4780         return FARegNum < FBRegNum;
4781 
4782       // If the new register numbers are the same, choose the Formula with
4783       // less Cost.
4784       Cost CostFA(L, SE, TTI, AMK);
4785       Cost CostFB(L, SE, TTI, AMK);
4786       Regs.clear();
4787       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4788       Regs.clear();
4789       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4790       return CostFA.isLess(CostFB);
4791     };
4792 
4793     bool Any = false;
4794     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4795          ++FIdx) {
4796       Formula &F = LU.Formulae[FIdx];
4797       if (!F.ScaledReg)
4798         continue;
4799       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4800       if (P.second)
4801         continue;
4802 
4803       Formula &Best = LU.Formulae[P.first->second];
4804       if (IsBetterThan(F, Best))
4805         std::swap(F, Best);
4806       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4807                  dbgs() << "\n"
4808                            "    in favor of formula ";
4809                  Best.print(dbgs()); dbgs() << '\n');
4810 #ifndef NDEBUG
4811       ChangedFormulae = true;
4812 #endif
4813       LU.DeleteFormula(F);
4814       --FIdx;
4815       --NumForms;
4816       Any = true;
4817     }
4818     if (Any)
4819       LU.RecomputeRegs(LUIdx, RegUses);
4820 
4821     // Reset this to prepare for the next use.
4822     BestFormulae.clear();
4823   }
4824 
4825   LLVM_DEBUG(if (ChangedFormulae) {
4826     dbgs() << "\n"
4827               "After filtering out undesirable candidates:\n";
4828     print_uses(dbgs());
4829   });
4830 }
4831 
4832 /// If we are over the complexity limit, filter out any post-inc prefering
4833 /// variables to only post-inc values.
4834 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4835   if (AMK != TTI::AMK_PostIndexed)
4836     return;
4837   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4838     return;
4839 
4840   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4841                        "Narrowing the search space by choosing the lowest "
4842                        "register Formula for PostInc Uses.\n");
4843 
4844   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4845     LSRUse &LU = Uses[LUIdx];
4846 
4847     if (LU.Kind != LSRUse::Address)
4848       continue;
4849     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4850         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4851       continue;
4852 
4853     size_t MinRegs = std::numeric_limits<size_t>::max();
4854     for (const Formula &F : LU.Formulae)
4855       MinRegs = std::min(F.getNumRegs(), MinRegs);
4856 
4857     bool Any = false;
4858     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4859          ++FIdx) {
4860       Formula &F = LU.Formulae[FIdx];
4861       if (F.getNumRegs() > MinRegs) {
4862         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4863                    dbgs() << "\n");
4864         LU.DeleteFormula(F);
4865         --FIdx;
4866         --NumForms;
4867         Any = true;
4868       }
4869     }
4870     if (Any)
4871       LU.RecomputeRegs(LUIdx, RegUses);
4872 
4873     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4874       break;
4875   }
4876 
4877   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4878 }
4879 
4880 /// The function delete formulas with high registers number expectation.
4881 /// Assuming we don't know the value of each formula (already delete
4882 /// all inefficient), generate probability of not selecting for each
4883 /// register.
4884 /// For example,
4885 /// Use1:
4886 ///  reg(a) + reg({0,+,1})
4887 ///  reg(a) + reg({-1,+,1}) + 1
4888 ///  reg({a,+,1})
4889 /// Use2:
4890 ///  reg(b) + reg({0,+,1})
4891 ///  reg(b) + reg({-1,+,1}) + 1
4892 ///  reg({b,+,1})
4893 /// Use3:
4894 ///  reg(c) + reg(b) + reg({0,+,1})
4895 ///  reg(c) + reg({b,+,1})
4896 ///
4897 /// Probability of not selecting
4898 ///                 Use1   Use2    Use3
4899 /// reg(a)         (1/3) *   1   *   1
4900 /// reg(b)           1   * (1/3) * (1/2)
4901 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4902 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4903 /// reg({a,+,1})   (2/3) *   1   *   1
4904 /// reg({b,+,1})     1   * (2/3) * (2/3)
4905 /// reg(c)           1   *   1   *   0
4906 ///
4907 /// Now count registers number mathematical expectation for each formula:
4908 /// Note that for each use we exclude probability if not selecting for the use.
4909 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4910 /// probabilty 1/3 of not selecting for Use1).
4911 /// Use1:
4912 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4913 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4914 ///  reg({a,+,1})                   1
4915 /// Use2:
4916 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4917 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4918 ///  reg({b,+,1})                   2/3
4919 /// Use3:
4920 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4921 ///  reg(c) + reg({b,+,1})          1 + 2/3
4922 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4923   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4924     return;
4925   // Ok, we have too many of formulae on our hands to conveniently handle.
4926   // Use a rough heuristic to thin out the list.
4927 
4928   // Set of Regs wich will be 100% used in final solution.
4929   // Used in each formula of a solution (in example above this is reg(c)).
4930   // We can skip them in calculations.
4931   SmallPtrSet<const SCEV *, 4> UniqRegs;
4932   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4933 
4934   // Map each register to probability of not selecting
4935   DenseMap <const SCEV *, float> RegNumMap;
4936   for (const SCEV *Reg : RegUses) {
4937     if (UniqRegs.count(Reg))
4938       continue;
4939     float PNotSel = 1;
4940     for (const LSRUse &LU : Uses) {
4941       if (!LU.Regs.count(Reg))
4942         continue;
4943       float P = LU.getNotSelectedProbability(Reg);
4944       if (P != 0.0)
4945         PNotSel *= P;
4946       else
4947         UniqRegs.insert(Reg);
4948     }
4949     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4950   }
4951 
4952   LLVM_DEBUG(
4953       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4954 
4955   // Delete formulas where registers number expectation is high.
4956   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4957     LSRUse &LU = Uses[LUIdx];
4958     // If nothing to delete - continue.
4959     if (LU.Formulae.size() < 2)
4960       continue;
4961     // This is temporary solution to test performance. Float should be
4962     // replaced with round independent type (based on integers) to avoid
4963     // different results for different target builds.
4964     float FMinRegNum = LU.Formulae[0].getNumRegs();
4965     float FMinARegNum = LU.Formulae[0].getNumRegs();
4966     size_t MinIdx = 0;
4967     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4968       Formula &F = LU.Formulae[i];
4969       float FRegNum = 0;
4970       float FARegNum = 0;
4971       for (const SCEV *BaseReg : F.BaseRegs) {
4972         if (UniqRegs.count(BaseReg))
4973           continue;
4974         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4975         if (isa<SCEVAddRecExpr>(BaseReg))
4976           FARegNum +=
4977               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4978       }
4979       if (const SCEV *ScaledReg = F.ScaledReg) {
4980         if (!UniqRegs.count(ScaledReg)) {
4981           FRegNum +=
4982               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4983           if (isa<SCEVAddRecExpr>(ScaledReg))
4984             FARegNum +=
4985                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4986         }
4987       }
4988       if (FMinRegNum > FRegNum ||
4989           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4990         FMinRegNum = FRegNum;
4991         FMinARegNum = FARegNum;
4992         MinIdx = i;
4993       }
4994     }
4995     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4996                dbgs() << " with min reg num " << FMinRegNum << '\n');
4997     if (MinIdx != 0)
4998       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4999     while (LU.Formulae.size() != 1) {
5000       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
5001                  dbgs() << '\n');
5002       LU.Formulae.pop_back();
5003     }
5004     LU.RecomputeRegs(LUIdx, RegUses);
5005     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5006     Formula &F = LU.Formulae[0];
5007     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
5008     // When we choose the formula, the regs become unique.
5009     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5010     if (F.ScaledReg)
5011       UniqRegs.insert(F.ScaledReg);
5012   }
5013   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5014 }
5015 
5016 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5017 // would the addressing offset +C would be legal where the negative offset -C is
5018 // not.
5019 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5020                                        ScalarEvolution &SE, const SCEV *Best,
5021                                        const SCEV *Reg,
5022                                        MemAccessTy AccessType) {
5023   if (Best->getType() != Reg->getType() ||
5024       (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5025        cast<SCEVAddRecExpr>(Best)->getLoop() !=
5026            cast<SCEVAddRecExpr>(Reg)->getLoop()))
5027     return false;
5028   const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5029   if (!Diff)
5030     return false;
5031 
5032   return TTI.isLegalAddressingMode(
5033              AccessType.MemTy, /*BaseGV=*/nullptr,
5034              /*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5035              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5036          !TTI.isLegalAddressingMode(
5037              AccessType.MemTy, /*BaseGV=*/nullptr,
5038              /*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5039              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5040 }
5041 
5042 /// Pick a register which seems likely to be profitable, and then in any use
5043 /// which has any reference to that register, delete all formulae which do not
5044 /// reference that register.
5045 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5046   // With all other options exhausted, loop until the system is simple
5047   // enough to handle.
5048   SmallPtrSet<const SCEV *, 4> Taken;
5049   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5050     // Ok, we have too many of formulae on our hands to conveniently handle.
5051     // Use a rough heuristic to thin out the list.
5052     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5053 
5054     // Pick the register which is used by the most LSRUses, which is likely
5055     // to be a good reuse register candidate.
5056     const SCEV *Best = nullptr;
5057     unsigned BestNum = 0;
5058     for (const SCEV *Reg : RegUses) {
5059       if (Taken.count(Reg))
5060         continue;
5061       if (!Best) {
5062         Best = Reg;
5063         BestNum = RegUses.getUsedByIndices(Reg).count();
5064       } else {
5065         unsigned Count = RegUses.getUsedByIndices(Reg).count();
5066         if (Count > BestNum) {
5067           Best = Reg;
5068           BestNum = Count;
5069         }
5070 
5071         // If the scores are the same, but the Reg is simpler for the target
5072         // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5073         // handle +C but not -C), opt for the simpler formula.
5074         if (Count == BestNum) {
5075           int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5076           if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5077               IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5078                                          Uses[LUIdx].AccessTy)) {
5079             Best = Reg;
5080             BestNum = Count;
5081           }
5082         }
5083       }
5084     }
5085     assert(Best && "Failed to find best LSRUse candidate");
5086 
5087     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5088                       << " will yield profitable reuse.\n");
5089     Taken.insert(Best);
5090 
5091     // In any use with formulae which references this register, delete formulae
5092     // which don't reference it.
5093     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5094       LSRUse &LU = Uses[LUIdx];
5095       if (!LU.Regs.count(Best)) continue;
5096 
5097       bool Any = false;
5098       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5099         Formula &F = LU.Formulae[i];
5100         if (!F.referencesReg(Best)) {
5101           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
5102           LU.DeleteFormula(F);
5103           --e;
5104           --i;
5105           Any = true;
5106           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5107           continue;
5108         }
5109       }
5110 
5111       if (Any)
5112         LU.RecomputeRegs(LUIdx, RegUses);
5113     }
5114 
5115     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5116   }
5117 }
5118 
5119 /// If there are an extraordinary number of formulae to choose from, use some
5120 /// rough heuristics to prune down the number of formulae. This keeps the main
5121 /// solver from taking an extraordinary amount of time in some worst-case
5122 /// scenarios.
5123 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5124   NarrowSearchSpaceByDetectingSupersets();
5125   NarrowSearchSpaceByCollapsingUnrolledCode();
5126   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5127   if (FilterSameScaledReg)
5128     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5129   NarrowSearchSpaceByFilterPostInc();
5130   if (LSRExpNarrow)
5131     NarrowSearchSpaceByDeletingCostlyFormulas();
5132   else
5133     NarrowSearchSpaceByPickingWinnerRegs();
5134 }
5135 
5136 /// This is the recursive solver.
5137 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5138                                Cost &SolutionCost,
5139                                SmallVectorImpl<const Formula *> &Workspace,
5140                                const Cost &CurCost,
5141                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
5142                                DenseSet<const SCEV *> &VisitedRegs) const {
5143   // Some ideas:
5144   //  - prune more:
5145   //    - use more aggressive filtering
5146   //    - sort the formula so that the most profitable solutions are found first
5147   //    - sort the uses too
5148   //  - search faster:
5149   //    - don't compute a cost, and then compare. compare while computing a cost
5150   //      and bail early.
5151   //    - track register sets with SmallBitVector
5152 
5153   const LSRUse &LU = Uses[Workspace.size()];
5154 
5155   // If this use references any register that's already a part of the
5156   // in-progress solution, consider it a requirement that a formula must
5157   // reference that register in order to be considered. This prunes out
5158   // unprofitable searching.
5159   SmallSetVector<const SCEV *, 4> ReqRegs;
5160   for (const SCEV *S : CurRegs)
5161     if (LU.Regs.count(S))
5162       ReqRegs.insert(S);
5163 
5164   SmallPtrSet<const SCEV *, 16> NewRegs;
5165   Cost NewCost(L, SE, TTI, AMK);
5166   for (const Formula &F : LU.Formulae) {
5167     // Ignore formulae which may not be ideal in terms of register reuse of
5168     // ReqRegs.  The formula should use all required registers before
5169     // introducing new ones.
5170     // This can sometimes (notably when trying to favour postinc) lead to
5171     // sub-optimial decisions. There it is best left to the cost modelling to
5172     // get correct.
5173     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5174       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5175       for (const SCEV *Reg : ReqRegs) {
5176         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5177             is_contained(F.BaseRegs, Reg)) {
5178           --NumReqRegsToFind;
5179           if (NumReqRegsToFind == 0)
5180             break;
5181         }
5182       }
5183       if (NumReqRegsToFind != 0) {
5184         // If none of the formulae satisfied the required registers, then we could
5185         // clear ReqRegs and try again. Currently, we simply give up in this case.
5186         continue;
5187       }
5188     }
5189 
5190     // Evaluate the cost of the current formula. If it's already worse than
5191     // the current best, prune the search at that point.
5192     NewCost = CurCost;
5193     NewRegs = CurRegs;
5194     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5195     if (NewCost.isLess(SolutionCost)) {
5196       Workspace.push_back(&F);
5197       if (Workspace.size() != Uses.size()) {
5198         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5199                      NewRegs, VisitedRegs);
5200         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5201           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5202       } else {
5203         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5204                    dbgs() << ".\nRegs:\n";
5205                    for (const SCEV *S : NewRegs) dbgs()
5206                       << "- " << *S << "\n";
5207                    dbgs() << '\n');
5208 
5209         SolutionCost = NewCost;
5210         Solution = Workspace;
5211       }
5212       Workspace.pop_back();
5213     }
5214   }
5215 }
5216 
5217 /// Choose one formula from each use. Return the results in the given Solution
5218 /// vector.
5219 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5220   SmallVector<const Formula *, 8> Workspace;
5221   Cost SolutionCost(L, SE, TTI, AMK);
5222   SolutionCost.Lose();
5223   Cost CurCost(L, SE, TTI, AMK);
5224   SmallPtrSet<const SCEV *, 16> CurRegs;
5225   DenseSet<const SCEV *> VisitedRegs;
5226   Workspace.reserve(Uses.size());
5227 
5228   // SolveRecurse does all the work.
5229   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5230                CurRegs, VisitedRegs);
5231   if (Solution.empty()) {
5232     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5233     return;
5234   }
5235 
5236   // Ok, we've now made all our decisions.
5237   LLVM_DEBUG(dbgs() << "\n"
5238                        "The chosen solution requires ";
5239              SolutionCost.print(dbgs()); dbgs() << ":\n";
5240              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5241                dbgs() << "  ";
5242                Uses[i].print(dbgs());
5243                dbgs() << "\n"
5244                          "    ";
5245                Solution[i]->print(dbgs());
5246                dbgs() << '\n';
5247              });
5248 
5249   assert(Solution.size() == Uses.size() && "Malformed solution!");
5250 
5251   if (BaselineCost.isLess(SolutionCost)) {
5252     LLVM_DEBUG(dbgs() << "The baseline solution requires ";
5253                BaselineCost.print(dbgs()); dbgs() << "\n");
5254     if (!AllowDropSolutionIfLessProfitable)
5255       LLVM_DEBUG(
5256           dbgs() << "Baseline is more profitable than chosen solution, "
5257                     "add option 'lsr-drop-solution' to drop LSR solution.\n");
5258     else {
5259       LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5260                            "solution, dropping LSR solution.\n";);
5261       Solution.clear();
5262     }
5263   }
5264 }
5265 
5266 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5267 /// we can go while still being dominated by the input positions. This helps
5268 /// canonicalize the insert position, which encourages sharing.
5269 BasicBlock::iterator
5270 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5271                                  const SmallVectorImpl<Instruction *> &Inputs)
5272                                                                          const {
5273   Instruction *Tentative = &*IP;
5274   while (true) {
5275     bool AllDominate = true;
5276     Instruction *BetterPos = nullptr;
5277     // Don't bother attempting to insert before a catchswitch, their basic block
5278     // cannot have other non-PHI instructions.
5279     if (isa<CatchSwitchInst>(Tentative))
5280       return IP;
5281 
5282     for (Instruction *Inst : Inputs) {
5283       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5284         AllDominate = false;
5285         break;
5286       }
5287       // Attempt to find an insert position in the middle of the block,
5288       // instead of at the end, so that it can be used for other expansions.
5289       if (Tentative->getParent() == Inst->getParent() &&
5290           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5291         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5292     }
5293     if (!AllDominate)
5294       break;
5295     if (BetterPos)
5296       IP = BetterPos->getIterator();
5297     else
5298       IP = Tentative->getIterator();
5299 
5300     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5301     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5302 
5303     BasicBlock *IDom;
5304     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5305       if (!Rung) return IP;
5306       Rung = Rung->getIDom();
5307       if (!Rung) return IP;
5308       IDom = Rung->getBlock();
5309 
5310       // Don't climb into a loop though.
5311       const Loop *IDomLoop = LI.getLoopFor(IDom);
5312       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5313       if (IDomDepth <= IPLoopDepth &&
5314           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5315         break;
5316     }
5317 
5318     Tentative = IDom->getTerminator();
5319   }
5320 
5321   return IP;
5322 }
5323 
5324 /// Determine an input position which will be dominated by the operands and
5325 /// which will dominate the result.
5326 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5327     BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5328   // Collect some instructions which must be dominated by the
5329   // expanding replacement. These must be dominated by any operands that
5330   // will be required in the expansion.
5331   SmallVector<Instruction *, 4> Inputs;
5332   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5333     Inputs.push_back(I);
5334   if (LU.Kind == LSRUse::ICmpZero)
5335     if (Instruction *I =
5336           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5337       Inputs.push_back(I);
5338   if (LF.PostIncLoops.count(L)) {
5339     if (LF.isUseFullyOutsideLoop(L))
5340       Inputs.push_back(L->getLoopLatch()->getTerminator());
5341     else
5342       Inputs.push_back(IVIncInsertPos);
5343   }
5344   // The expansion must also be dominated by the increment positions of any
5345   // loops it for which it is using post-inc mode.
5346   for (const Loop *PIL : LF.PostIncLoops) {
5347     if (PIL == L) continue;
5348 
5349     // Be dominated by the loop exit.
5350     SmallVector<BasicBlock *, 4> ExitingBlocks;
5351     PIL->getExitingBlocks(ExitingBlocks);
5352     if (!ExitingBlocks.empty()) {
5353       BasicBlock *BB = ExitingBlocks[0];
5354       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5355         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5356       Inputs.push_back(BB->getTerminator());
5357     }
5358   }
5359 
5360   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5361          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5362          "Insertion point must be a normal instruction");
5363 
5364   // Then, climb up the immediate dominator tree as far as we can go while
5365   // still being dominated by the input positions.
5366   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5367 
5368   // Don't insert instructions before PHI nodes.
5369   while (isa<PHINode>(IP)) ++IP;
5370 
5371   // Ignore landingpad instructions.
5372   while (IP->isEHPad()) ++IP;
5373 
5374   // Ignore debug intrinsics.
5375   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5376 
5377   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5378   // IP consistent across expansions and allows the previously inserted
5379   // instructions to be reused by subsequent expansion.
5380   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5381     ++IP;
5382 
5383   return IP;
5384 }
5385 
5386 /// Emit instructions for the leading candidate expression for this LSRUse (this
5387 /// is called "expanding").
5388 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5389                            const Formula &F, BasicBlock::iterator IP,
5390                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5391   if (LU.RigidFormula)
5392     return LF.OperandValToReplace;
5393 
5394   // Determine an input position which will be dominated by the operands and
5395   // which will dominate the result.
5396   IP = AdjustInsertPositionForExpand(IP, LF, LU);
5397   Rewriter.setInsertPoint(&*IP);
5398 
5399   // Inform the Rewriter if we have a post-increment use, so that it can
5400   // perform an advantageous expansion.
5401   Rewriter.setPostInc(LF.PostIncLoops);
5402 
5403   // This is the type that the user actually needs.
5404   Type *OpTy = LF.OperandValToReplace->getType();
5405   // This will be the type that we'll initially expand to.
5406   Type *Ty = F.getType();
5407   if (!Ty)
5408     // No type known; just expand directly to the ultimate type.
5409     Ty = OpTy;
5410   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5411     // Expand directly to the ultimate type if it's the right size.
5412     Ty = OpTy;
5413   // This is the type to do integer arithmetic in.
5414   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5415 
5416   // Build up a list of operands to add together to form the full base.
5417   SmallVector<const SCEV *, 8> Ops;
5418 
5419   // Expand the BaseRegs portion.
5420   for (const SCEV *Reg : F.BaseRegs) {
5421     assert(!Reg->isZero() && "Zero allocated in a base register!");
5422 
5423     // If we're expanding for a post-inc user, make the post-inc adjustment.
5424     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5425     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5426   }
5427 
5428   // Expand the ScaledReg portion.
5429   Value *ICmpScaledV = nullptr;
5430   if (F.Scale != 0) {
5431     const SCEV *ScaledS = F.ScaledReg;
5432 
5433     // If we're expanding for a post-inc user, make the post-inc adjustment.
5434     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5435     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5436 
5437     if (LU.Kind == LSRUse::ICmpZero) {
5438       // Expand ScaleReg as if it was part of the base regs.
5439       if (F.Scale == 1)
5440         Ops.push_back(
5441             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5442       else {
5443         // An interesting way of "folding" with an icmp is to use a negated
5444         // scale, which we'll implement by inserting it into the other operand
5445         // of the icmp.
5446         assert(F.Scale == -1 &&
5447                "The only scale supported by ICmpZero uses is -1!");
5448         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5449       }
5450     } else {
5451       // Otherwise just expand the scaled register and an explicit scale,
5452       // which is expected to be matched as part of the address.
5453 
5454       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5455       // Unless the addressing mode will not be folded.
5456       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5457           isAMCompletelyFolded(TTI, LU, F)) {
5458         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5459         Ops.clear();
5460         Ops.push_back(SE.getUnknown(FullV));
5461       }
5462       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5463       if (F.Scale != 1)
5464         ScaledS =
5465             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5466       Ops.push_back(ScaledS);
5467     }
5468   }
5469 
5470   // Expand the GV portion.
5471   if (F.BaseGV) {
5472     // Flush the operand list to suppress SCEVExpander hoisting.
5473     if (!Ops.empty()) {
5474       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5475       Ops.clear();
5476       Ops.push_back(SE.getUnknown(FullV));
5477     }
5478     Ops.push_back(SE.getUnknown(F.BaseGV));
5479   }
5480 
5481   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5482   // unfolded offsets. LSR assumes they both live next to their uses.
5483   if (!Ops.empty()) {
5484     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5485     Ops.clear();
5486     Ops.push_back(SE.getUnknown(FullV));
5487   }
5488 
5489   // Expand the immediate portion.
5490   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5491   if (Offset != 0) {
5492     if (LU.Kind == LSRUse::ICmpZero) {
5493       // The other interesting way of "folding" with an ICmpZero is to use a
5494       // negated immediate.
5495       if (!ICmpScaledV)
5496         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5497       else {
5498         Ops.push_back(SE.getUnknown(ICmpScaledV));
5499         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5500       }
5501     } else {
5502       // Just add the immediate values. These again are expected to be matched
5503       // as part of the address.
5504       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5505     }
5506   }
5507 
5508   // Expand the unfolded offset portion.
5509   int64_t UnfoldedOffset = F.UnfoldedOffset;
5510   if (UnfoldedOffset != 0) {
5511     // Just add the immediate values.
5512     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5513                                                        UnfoldedOffset)));
5514   }
5515 
5516   // Emit instructions summing all the operands.
5517   const SCEV *FullS = Ops.empty() ?
5518                       SE.getConstant(IntTy, 0) :
5519                       SE.getAddExpr(Ops);
5520   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5521 
5522   // We're done expanding now, so reset the rewriter.
5523   Rewriter.clearPostInc();
5524 
5525   // An ICmpZero Formula represents an ICmp which we're handling as a
5526   // comparison against zero. Now that we've expanded an expression for that
5527   // form, update the ICmp's other operand.
5528   if (LU.Kind == LSRUse::ICmpZero) {
5529     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5530     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5531       DeadInsts.emplace_back(OperandIsInstr);
5532     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5533                            "a scale at the same time!");
5534     if (F.Scale == -1) {
5535       if (ICmpScaledV->getType() != OpTy) {
5536         Instruction *Cast = CastInst::Create(
5537             CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false),
5538             ICmpScaledV, OpTy, "tmp", CI->getIterator());
5539         ICmpScaledV = Cast;
5540       }
5541       CI->setOperand(1, ICmpScaledV);
5542     } else {
5543       // A scale of 1 means that the scale has been expanded as part of the
5544       // base regs.
5545       assert((F.Scale == 0 || F.Scale == 1) &&
5546              "ICmp does not support folding a global value and "
5547              "a scale at the same time!");
5548       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5549                                            -(uint64_t)Offset);
5550       if (C->getType() != OpTy) {
5551         C = ConstantFoldCastOperand(
5552             CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy,
5553             CI->getModule()->getDataLayout());
5554         assert(C && "Cast of ConstantInt should have folded");
5555       }
5556 
5557       CI->setOperand(1, C);
5558     }
5559   }
5560 
5561   return FullV;
5562 }
5563 
5564 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5565 /// effectively happens in their predecessor blocks, so the expression may need
5566 /// to be expanded in multiple places.
5567 void LSRInstance::RewriteForPHI(
5568     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5569     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5570   DenseMap<BasicBlock *, Value *> Inserted;
5571 
5572   // Inserting instructions in the loop and using them as PHI's input could
5573   // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
5574   // corresponding incoming block is not loop exiting). So collect all such
5575   // instructions to form LCSSA for them later.
5576   SmallVector<Instruction *, 4> InsertedNonLCSSAInsts;
5577 
5578   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5579     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5580       bool needUpdateFixups = false;
5581       BasicBlock *BB = PN->getIncomingBlock(i);
5582 
5583       // If this is a critical edge, split the edge so that we do not insert
5584       // the code on all predecessor/successor paths.  We do this unless this
5585       // is the canonical backedge for this loop, which complicates post-inc
5586       // users.
5587       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5588           !isa<IndirectBrInst>(BB->getTerminator()) &&
5589           !isa<CatchSwitchInst>(BB->getTerminator())) {
5590         BasicBlock *Parent = PN->getParent();
5591         Loop *PNLoop = LI.getLoopFor(Parent);
5592         if (!PNLoop || Parent != PNLoop->getHeader()) {
5593           // Split the critical edge.
5594           BasicBlock *NewBB = nullptr;
5595           if (!Parent->isLandingPad()) {
5596             NewBB =
5597                 SplitCriticalEdge(BB, Parent,
5598                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5599                                       .setMergeIdenticalEdges()
5600                                       .setKeepOneInputPHIs());
5601           } else {
5602             SmallVector<BasicBlock*, 2> NewBBs;
5603             DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
5604             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI);
5605             NewBB = NewBBs[0];
5606           }
5607           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5608           // phi predecessors are identical. The simple thing to do is skip
5609           // splitting in this case rather than complicate the API.
5610           if (NewBB) {
5611             // If PN is outside of the loop and BB is in the loop, we want to
5612             // move the block to be immediately before the PHI block, not
5613             // immediately after BB.
5614             if (L->contains(BB) && !L->contains(PN))
5615               NewBB->moveBefore(PN->getParent());
5616 
5617             // Splitting the edge can reduce the number of PHI entries we have.
5618             e = PN->getNumIncomingValues();
5619             BB = NewBB;
5620             i = PN->getBasicBlockIndex(BB);
5621 
5622             needUpdateFixups = true;
5623           }
5624         }
5625       }
5626 
5627       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5628         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5629       if (!Pair.second)
5630         PN->setIncomingValue(i, Pair.first->second);
5631       else {
5632         Value *FullV =
5633             Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5634 
5635         // If this is reuse-by-noop-cast, insert the noop cast.
5636         Type *OpTy = LF.OperandValToReplace->getType();
5637         if (FullV->getType() != OpTy)
5638           FullV = CastInst::Create(
5639               CastInst::getCastOpcode(FullV, false, OpTy, false), FullV,
5640               LF.OperandValToReplace->getType(), "tmp",
5641               BB->getTerminator()->getIterator());
5642 
5643         // If the incoming block for this value is not in the loop, it means the
5644         // current PHI is not in a loop exit, so we must create a LCSSA PHI for
5645         // the inserted value.
5646         if (auto *I = dyn_cast<Instruction>(FullV))
5647           if (L->contains(I) && !L->contains(BB))
5648             InsertedNonLCSSAInsts.push_back(I);
5649 
5650         PN->setIncomingValue(i, FullV);
5651         Pair.first->second = FullV;
5652       }
5653 
5654       // If LSR splits critical edge and phi node has other pending
5655       // fixup operands, we need to update those pending fixups. Otherwise
5656       // formulae will not be implemented completely and some instructions
5657       // will not be eliminated.
5658       if (needUpdateFixups) {
5659         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5660           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5661             // If fixup is supposed to rewrite some operand in the phi
5662             // that was just updated, it may be already moved to
5663             // another phi node. Such fixup requires update.
5664             if (Fixup.UserInst == PN) {
5665               // Check if the operand we try to replace still exists in the
5666               // original phi.
5667               bool foundInOriginalPHI = false;
5668               for (const auto &val : PN->incoming_values())
5669                 if (val == Fixup.OperandValToReplace) {
5670                   foundInOriginalPHI = true;
5671                   break;
5672                 }
5673 
5674               // If fixup operand found in original PHI - nothing to do.
5675               if (foundInOriginalPHI)
5676                 continue;
5677 
5678               // Otherwise it might be moved to another PHI and requires update.
5679               // If fixup operand not found in any of the incoming blocks that
5680               // means we have already rewritten it - nothing to do.
5681               for (const auto &Block : PN->blocks())
5682                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5683                      ++I) {
5684                   PHINode *NewPN = cast<PHINode>(I);
5685                   for (const auto &val : NewPN->incoming_values())
5686                     if (val == Fixup.OperandValToReplace)
5687                       Fixup.UserInst = NewPN;
5688                 }
5689             }
5690       }
5691     }
5692 
5693   formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE);
5694 }
5695 
5696 /// Emit instructions for the leading candidate expression for this LSRUse (this
5697 /// is called "expanding"), and update the UserInst to reference the newly
5698 /// expanded value.
5699 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5700                           const Formula &F,
5701                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5702   // First, find an insertion point that dominates UserInst. For PHI nodes,
5703   // find the nearest block which dominates all the relevant uses.
5704   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5705     RewriteForPHI(PN, LU, LF, F, DeadInsts);
5706   } else {
5707     Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5708 
5709     // If this is reuse-by-noop-cast, insert the noop cast.
5710     Type *OpTy = LF.OperandValToReplace->getType();
5711     if (FullV->getType() != OpTy) {
5712       Instruction *Cast =
5713           CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5714                            FullV, OpTy, "tmp", LF.UserInst->getIterator());
5715       FullV = Cast;
5716     }
5717 
5718     // Update the user. ICmpZero is handled specially here (for now) because
5719     // Expand may have updated one of the operands of the icmp already, and
5720     // its new value may happen to be equal to LF.OperandValToReplace, in
5721     // which case doing replaceUsesOfWith leads to replacing both operands
5722     // with the same value. TODO: Reorganize this.
5723     if (LU.Kind == LSRUse::ICmpZero)
5724       LF.UserInst->setOperand(0, FullV);
5725     else
5726       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5727   }
5728 
5729   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5730     DeadInsts.emplace_back(OperandIsInstr);
5731 }
5732 
5733 // Trying to hoist the IVInc to loop header if all IVInc users are in
5734 // the loop header. It will help backend to generate post index load/store
5735 // when the latch block is different from loop header block.
5736 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
5737                           const LSRUse &LU, Instruction *IVIncInsertPos,
5738                           Loop *L) {
5739   if (LU.Kind != LSRUse::Address)
5740     return false;
5741 
5742   // For now this code do the conservative optimization, only work for
5743   // the header block. Later we can hoist the IVInc to the block post
5744   // dominate all users.
5745   BasicBlock *LHeader = L->getHeader();
5746   if (IVIncInsertPos->getParent() == LHeader)
5747     return false;
5748 
5749   if (!Fixup.OperandValToReplace ||
5750       any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
5751         Instruction *UI = cast<Instruction>(U);
5752         return UI->getParent() != LHeader;
5753       }))
5754     return false;
5755 
5756   Instruction *I = Fixup.UserInst;
5757   Type *Ty = I->getType();
5758   return Ty->isIntegerTy() &&
5759          ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
5760           (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
5761 }
5762 
5763 /// Rewrite all the fixup locations with new values, following the chosen
5764 /// solution.
5765 void LSRInstance::ImplementSolution(
5766     const SmallVectorImpl<const Formula *> &Solution) {
5767   // Keep track of instructions we may have made dead, so that
5768   // we can remove them after we are done working.
5769   SmallVector<WeakTrackingVH, 16> DeadInsts;
5770 
5771   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5772   for (const IVChain &Chain : IVChainVec) {
5773     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5774       Rewriter.setChainedPhi(PN);
5775   }
5776 
5777   // Expand the new value definitions and update the users.
5778   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5779     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5780       Instruction *InsertPos =
5781           canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
5782               ? L->getHeader()->getTerminator()
5783               : IVIncInsertPos;
5784       Rewriter.setIVIncInsertPos(L, InsertPos);
5785       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5786       Changed = true;
5787     }
5788 
5789   for (const IVChain &Chain : IVChainVec) {
5790     GenerateIVChain(Chain, DeadInsts);
5791     Changed = true;
5792   }
5793 
5794   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5795     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5796       ScalarEvolutionIVs.push_back(IV);
5797 
5798   // Clean up after ourselves. This must be done before deleting any
5799   // instructions.
5800   Rewriter.clear();
5801 
5802   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5803                                                                   &TLI, MSSAU);
5804 
5805   // In our cost analysis above, we assume that each addrec consumes exactly
5806   // one register, and arrange to have increments inserted just before the
5807   // latch to maximimize the chance this is true.  However, if we reused
5808   // existing IVs, we now need to move the increments to match our
5809   // expectations.  Otherwise, our cost modeling results in us having a
5810   // chosen a non-optimal result for the actual schedule.  (And yes, this
5811   // scheduling decision does impact later codegen.)
5812   for (PHINode &PN : L->getHeader()->phis()) {
5813     BinaryOperator *BO = nullptr;
5814     Value *Start = nullptr, *Step = nullptr;
5815     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5816       continue;
5817 
5818     switch (BO->getOpcode()) {
5819     case Instruction::Sub:
5820       if (BO->getOperand(0) != &PN)
5821         // sub is non-commutative - match handling elsewhere in LSR
5822         continue;
5823       break;
5824     case Instruction::Add:
5825       break;
5826     default:
5827       continue;
5828     };
5829 
5830     if (!isa<Constant>(Step))
5831       // If not a constant step, might increase register pressure
5832       // (We assume constants have been canonicalized to RHS)
5833       continue;
5834 
5835     if (BO->getParent() == IVIncInsertPos->getParent())
5836       // Only bother moving across blocks.  Isel can handle block local case.
5837       continue;
5838 
5839     // Can we legally schedule inc at the desired point?
5840     if (!llvm::all_of(BO->uses(),
5841                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5842       continue;
5843     BO->moveBefore(IVIncInsertPos);
5844     Changed = true;
5845   }
5846 
5847 
5848 }
5849 
5850 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5851                          DominatorTree &DT, LoopInfo &LI,
5852                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5853                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5854     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5855       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5856                             ? PreferredAddresingMode
5857                             : TTI.getPreferredAddressingMode(L, &SE)),
5858       Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5859       BaselineCost(L, SE, TTI, AMK) {
5860   // If LoopSimplify form is not available, stay out of trouble.
5861   if (!L->isLoopSimplifyForm())
5862     return;
5863 
5864   // If there's no interesting work to be done, bail early.
5865   if (IU.empty()) return;
5866 
5867   // If there's too much analysis to be done, bail early. We won't be able to
5868   // model the problem anyway.
5869   unsigned NumUsers = 0;
5870   for (const IVStrideUse &U : IU) {
5871     if (++NumUsers > MaxIVUsers) {
5872       (void)U;
5873       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5874                         << "\n");
5875       return;
5876     }
5877     // Bail out if we have a PHI on an EHPad that gets a value from a
5878     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5879     // no good place to stick any instructions.
5880     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5881        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5882        if (isa<FuncletPadInst>(FirstNonPHI) ||
5883            isa<CatchSwitchInst>(FirstNonPHI))
5884          for (BasicBlock *PredBB : PN->blocks())
5885            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5886              return;
5887     }
5888   }
5889 
5890   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5891              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5892              dbgs() << ":\n");
5893 
5894   // Configure SCEVExpander already now, so the correct mode is used for
5895   // isSafeToExpand() checks.
5896 #ifndef NDEBUG
5897   Rewriter.setDebugType(DEBUG_TYPE);
5898 #endif
5899   Rewriter.disableCanonicalMode();
5900   Rewriter.enableLSRMode();
5901 
5902   // First, perform some low-level loop optimizations.
5903   OptimizeShadowIV();
5904   OptimizeLoopTermCond();
5905 
5906   // If loop preparation eliminates all interesting IV users, bail.
5907   if (IU.empty()) return;
5908 
5909   // Skip nested loops until we can model them better with formulae.
5910   if (!L->isInnermost()) {
5911     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5912     return;
5913   }
5914 
5915   // Start collecting data and preparing for the solver.
5916   // If number of registers is not the major cost, we cannot benefit from the
5917   // current profitable chain optimization which is based on number of
5918   // registers.
5919   // FIXME: add profitable chain optimization for other kinds major cost, for
5920   // example number of instructions.
5921   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5922     CollectChains();
5923   CollectInterestingTypesAndFactors();
5924   CollectFixupsAndInitialFormulae();
5925   CollectLoopInvariantFixupsAndFormulae();
5926 
5927   if (Uses.empty())
5928     return;
5929 
5930   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5931              print_uses(dbgs()));
5932 
5933   // Now use the reuse data to generate a bunch of interesting ways
5934   // to formulate the values needed for the uses.
5935   GenerateAllReuseFormulae();
5936 
5937   FilterOutUndesirableDedicatedRegisters();
5938   NarrowSearchSpaceUsingHeuristics();
5939 
5940   SmallVector<const Formula *, 8> Solution;
5941   Solve(Solution);
5942 
5943   // Release memory that is no longer needed.
5944   Factors.clear();
5945   Types.clear();
5946   RegUses.clear();
5947 
5948   if (Solution.empty())
5949     return;
5950 
5951 #ifndef NDEBUG
5952   // Formulae should be legal.
5953   for (const LSRUse &LU : Uses) {
5954     for (const Formula &F : LU.Formulae)
5955       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5956                         F) && "Illegal formula generated!");
5957   };
5958 #endif
5959 
5960   // Now that we've decided what we want, make it so.
5961   ImplementSolution(Solution);
5962 }
5963 
5964 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5965 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5966   if (Factors.empty() && Types.empty()) return;
5967 
5968   OS << "LSR has identified the following interesting factors and types: ";
5969   bool First = true;
5970 
5971   for (int64_t Factor : Factors) {
5972     if (!First) OS << ", ";
5973     First = false;
5974     OS << '*' << Factor;
5975   }
5976 
5977   for (Type *Ty : Types) {
5978     if (!First) OS << ", ";
5979     First = false;
5980     OS << '(' << *Ty << ')';
5981   }
5982   OS << '\n';
5983 }
5984 
5985 void LSRInstance::print_fixups(raw_ostream &OS) const {
5986   OS << "LSR is examining the following fixup sites:\n";
5987   for (const LSRUse &LU : Uses)
5988     for (const LSRFixup &LF : LU.Fixups) {
5989       dbgs() << "  ";
5990       LF.print(OS);
5991       OS << '\n';
5992     }
5993 }
5994 
5995 void LSRInstance::print_uses(raw_ostream &OS) const {
5996   OS << "LSR is examining the following uses:\n";
5997   for (const LSRUse &LU : Uses) {
5998     dbgs() << "  ";
5999     LU.print(OS);
6000     OS << '\n';
6001     for (const Formula &F : LU.Formulae) {
6002       OS << "    ";
6003       F.print(OS);
6004       OS << '\n';
6005     }
6006   }
6007 }
6008 
6009 void LSRInstance::print(raw_ostream &OS) const {
6010   print_factors_and_types(OS);
6011   print_fixups(OS);
6012   print_uses(OS);
6013 }
6014 
6015 LLVM_DUMP_METHOD void LSRInstance::dump() const {
6016   print(errs()); errs() << '\n';
6017 }
6018 #endif
6019 
6020 namespace {
6021 
6022 class LoopStrengthReduce : public LoopPass {
6023 public:
6024   static char ID; // Pass ID, replacement for typeid
6025 
6026   LoopStrengthReduce();
6027 
6028 private:
6029   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6030   void getAnalysisUsage(AnalysisUsage &AU) const override;
6031 };
6032 
6033 } // end anonymous namespace
6034 
6035 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6036   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6037 }
6038 
6039 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6040   // We split critical edges, so we change the CFG.  However, we do update
6041   // many analyses if they are around.
6042   AU.addPreservedID(LoopSimplifyID);
6043 
6044   AU.addRequired<LoopInfoWrapperPass>();
6045   AU.addPreserved<LoopInfoWrapperPass>();
6046   AU.addRequiredID(LoopSimplifyID);
6047   AU.addRequired<DominatorTreeWrapperPass>();
6048   AU.addPreserved<DominatorTreeWrapperPass>();
6049   AU.addRequired<ScalarEvolutionWrapperPass>();
6050   AU.addPreserved<ScalarEvolutionWrapperPass>();
6051   AU.addRequired<AssumptionCacheTracker>();
6052   AU.addRequired<TargetLibraryInfoWrapperPass>();
6053   // Requiring LoopSimplify a second time here prevents IVUsers from running
6054   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6055   AU.addRequiredID(LoopSimplifyID);
6056   AU.addRequired<IVUsersWrapperPass>();
6057   AU.addPreserved<IVUsersWrapperPass>();
6058   AU.addRequired<TargetTransformInfoWrapperPass>();
6059   AU.addPreserved<MemorySSAWrapperPass>();
6060 }
6061 
6062 namespace {
6063 
6064 /// Enables more convenient iteration over a DWARF expression vector.
6065 static iterator_range<llvm::DIExpression::expr_op_iterator>
6066 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6067   llvm::DIExpression::expr_op_iterator Begin =
6068       llvm::DIExpression::expr_op_iterator(Expr.begin());
6069   llvm::DIExpression::expr_op_iterator End =
6070       llvm::DIExpression::expr_op_iterator(Expr.end());
6071   return {Begin, End};
6072 }
6073 
6074 struct SCEVDbgValueBuilder {
6075   SCEVDbgValueBuilder() = default;
6076   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6077 
6078   void clone(const SCEVDbgValueBuilder &Base) {
6079     LocationOps = Base.LocationOps;
6080     Expr = Base.Expr;
6081   }
6082 
6083   void clear() {
6084     LocationOps.clear();
6085     Expr.clear();
6086   }
6087 
6088   /// The DIExpression as we translate the SCEV.
6089   SmallVector<uint64_t, 6> Expr;
6090   /// The location ops of the DIExpression.
6091   SmallVector<Value *, 2> LocationOps;
6092 
6093   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6094   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6095 
6096   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6097   /// in the set of values referenced by the expression.
6098   void pushLocation(llvm::Value *V) {
6099     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6100     auto *It = llvm::find(LocationOps, V);
6101     unsigned ArgIndex = 0;
6102     if (It != LocationOps.end()) {
6103       ArgIndex = std::distance(LocationOps.begin(), It);
6104     } else {
6105       ArgIndex = LocationOps.size();
6106       LocationOps.push_back(V);
6107     }
6108     Expr.push_back(ArgIndex);
6109   }
6110 
6111   void pushValue(const SCEVUnknown *U) {
6112     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6113     pushLocation(V);
6114   }
6115 
6116   bool pushConst(const SCEVConstant *C) {
6117     if (C->getAPInt().getSignificantBits() > 64)
6118       return false;
6119     Expr.push_back(llvm::dwarf::DW_OP_consts);
6120     Expr.push_back(C->getAPInt().getSExtValue());
6121     return true;
6122   }
6123 
6124   // Iterating the expression as DWARF ops is convenient when updating
6125   // DWARF_OP_LLVM_args.
6126   iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6127     return ToDwarfOpIter(Expr);
6128   }
6129 
6130   /// Several SCEV types are sequences of the same arithmetic operator applied
6131   /// to constants and values that may be extended or truncated.
6132   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6133                           uint64_t DwarfOp) {
6134     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6135            "Expected arithmetic SCEV type");
6136     bool Success = true;
6137     unsigned EmitOperator = 0;
6138     for (const auto &Op : CommExpr->operands()) {
6139       Success &= pushSCEV(Op);
6140 
6141       if (EmitOperator >= 1)
6142         pushOperator(DwarfOp);
6143       ++EmitOperator;
6144     }
6145     return Success;
6146   }
6147 
6148   // TODO: Identify and omit noop casts.
6149   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6150     const llvm::SCEV *Inner = C->getOperand(0);
6151     const llvm::Type *Type = C->getType();
6152     uint64_t ToWidth = Type->getIntegerBitWidth();
6153     bool Success = pushSCEV(Inner);
6154     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6155                           IsSigned ? llvm::dwarf::DW_ATE_signed
6156                                    : llvm::dwarf::DW_ATE_unsigned};
6157     for (const auto &Op : CastOps)
6158       pushOperator(Op);
6159     return Success;
6160   }
6161 
6162   // TODO: MinMax - although these haven't been encountered in the test suite.
6163   bool pushSCEV(const llvm::SCEV *S) {
6164     bool Success = true;
6165     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6166       Success &= pushConst(StartInt);
6167 
6168     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6169       if (!U->getValue())
6170         return false;
6171       pushLocation(U->getValue());
6172 
6173     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6174       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6175 
6176     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6177       Success &= pushSCEV(UDiv->getLHS());
6178       Success &= pushSCEV(UDiv->getRHS());
6179       pushOperator(llvm::dwarf::DW_OP_div);
6180 
6181     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6182       // Assert if a new and unknown SCEVCastEXpr type is encountered.
6183       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6184               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6185              "Unexpected cast type in SCEV.");
6186       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6187 
6188     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6189       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6190 
6191     } else if (isa<SCEVAddRecExpr>(S)) {
6192       // Nested SCEVAddRecExpr are generated by nested loops and are currently
6193       // unsupported.
6194       return false;
6195 
6196     } else {
6197       return false;
6198     }
6199     return Success;
6200   }
6201 
6202   /// Return true if the combination of arithmetic operator and underlying
6203   /// SCEV constant value is an identity function.
6204   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6205     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6206       if (C->getAPInt().getSignificantBits() > 64)
6207         return false;
6208       int64_t I = C->getAPInt().getSExtValue();
6209       switch (Op) {
6210       case llvm::dwarf::DW_OP_plus:
6211       case llvm::dwarf::DW_OP_minus:
6212         return I == 0;
6213       case llvm::dwarf::DW_OP_mul:
6214       case llvm::dwarf::DW_OP_div:
6215         return I == 1;
6216       }
6217     }
6218     return false;
6219   }
6220 
6221   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6222   /// builder's expression stack. The stack should already contain an
6223   /// expression for the iteration count, so that it can be multiplied by
6224   /// the stride and added to the start.
6225   /// Components of the expression are omitted if they are an identity function.
6226   /// Chain (non-affine) SCEVs are not supported.
6227   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6228     assert(SAR.isAffine() && "Expected affine SCEV");
6229     // TODO: Is this check needed?
6230     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6231       return false;
6232 
6233     const SCEV *Start = SAR.getStart();
6234     const SCEV *Stride = SAR.getStepRecurrence(SE);
6235 
6236     // Skip pushing arithmetic noops.
6237     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6238       if (!pushSCEV(Stride))
6239         return false;
6240       pushOperator(llvm::dwarf::DW_OP_mul);
6241     }
6242     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6243       if (!pushSCEV(Start))
6244         return false;
6245       pushOperator(llvm::dwarf::DW_OP_plus);
6246     }
6247     return true;
6248   }
6249 
6250   /// Create an expression that is an offset from a value (usually the IV).
6251   void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6252     pushLocation(OffsetValue);
6253     DIExpression::appendOffset(Expr, Offset);
6254     LLVM_DEBUG(
6255         dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6256                << std::to_string(Offset) << "\n");
6257   }
6258 
6259   /// Combine a translation of the SCEV and the IV to create an expression that
6260   /// recovers a location's value.
6261   /// returns true if an expression was created.
6262   bool createIterCountExpr(const SCEV *S,
6263                            const SCEVDbgValueBuilder &IterationCount,
6264                            ScalarEvolution &SE) {
6265     // SCEVs for SSA values are most frquently of the form
6266     // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6267     // This is because %a is a PHI node that is not the IV. However, these
6268     // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6269     // so its not expected this point will be reached.
6270     if (!isa<SCEVAddRecExpr>(S))
6271       return false;
6272 
6273     LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6274                       << '\n');
6275 
6276     const auto *Rec = cast<SCEVAddRecExpr>(S);
6277     if (!Rec->isAffine())
6278       return false;
6279 
6280     if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6281       return false;
6282 
6283     // Initialise a new builder with the iteration count expression. In
6284     // combination with the value's SCEV this enables recovery.
6285     clone(IterationCount);
6286     if (!SCEVToValueExpr(*Rec, SE))
6287       return false;
6288 
6289     return true;
6290   }
6291 
6292   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6293   /// builder's expression stack. The stack should already contain an
6294   /// expression for the iteration count, so that it can be multiplied by
6295   /// the stride and added to the start.
6296   /// Components of the expression are omitted if they are an identity function.
6297   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6298                            ScalarEvolution &SE) {
6299     assert(SAR.isAffine() && "Expected affine SCEV");
6300     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6301       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6302                         << SAR << '\n');
6303       return false;
6304     }
6305     const SCEV *Start = SAR.getStart();
6306     const SCEV *Stride = SAR.getStepRecurrence(SE);
6307 
6308     // Skip pushing arithmetic noops.
6309     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6310       if (!pushSCEV(Start))
6311         return false;
6312       pushOperator(llvm::dwarf::DW_OP_minus);
6313     }
6314     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6315       if (!pushSCEV(Stride))
6316         return false;
6317       pushOperator(llvm::dwarf::DW_OP_div);
6318     }
6319     return true;
6320   }
6321 
6322   // Append the current expression and locations to a location list and an
6323   // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6324   // the locations already present in the destination list.
6325   void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6326                        SmallVectorImpl<Value *> &DestLocations) {
6327     assert(!DestLocations.empty() &&
6328            "Expected the locations vector to contain the IV");
6329     // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6330     // modified to account for the locations already in the destination vector.
6331     // All builders contain the IV as the first location op.
6332     assert(!LocationOps.empty() &&
6333            "Expected the location ops to contain the IV.");
6334     // DestIndexMap[n] contains the index in DestLocations for the nth
6335     // location in this SCEVDbgValueBuilder.
6336     SmallVector<uint64_t, 2> DestIndexMap;
6337     for (const auto &Op : LocationOps) {
6338       auto It = find(DestLocations, Op);
6339       if (It != DestLocations.end()) {
6340         // Location already exists in DestLocations, reuse existing ArgIndex.
6341         DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6342         continue;
6343       }
6344       // Location is not in DestLocations, add it.
6345       DestIndexMap.push_back(DestLocations.size());
6346       DestLocations.push_back(Op);
6347     }
6348 
6349     for (const auto &Op : expr_ops()) {
6350       if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6351         Op.appendToVector(DestExpr);
6352         continue;
6353       }
6354 
6355       DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6356       // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6357       // DestIndexMap[n] contains its new index in DestLocations.
6358       uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6359       DestExpr.push_back(NewIndex);
6360     }
6361   }
6362 };
6363 
6364 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6365 /// and DIExpression.
6366 struct DVIRecoveryRec {
6367   DVIRecoveryRec(DbgValueInst *DbgValue)
6368       : DbgRef(DbgValue), Expr(DbgValue->getExpression()),
6369         HadLocationArgList(false) {}
6370   DVIRecoveryRec(DbgVariableRecord *DVR)
6371       : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {}
6372 
6373   PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef;
6374   DIExpression *Expr;
6375   bool HadLocationArgList;
6376   SmallVector<WeakVH, 2> LocationOps;
6377   SmallVector<const llvm::SCEV *, 2> SCEVs;
6378   SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6379 
6380   void clear() {
6381     for (auto &RE : RecoveryExprs)
6382       RE.reset();
6383     RecoveryExprs.clear();
6384   }
6385 
6386   ~DVIRecoveryRec() { clear(); }
6387 };
6388 } // namespace
6389 
6390 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6391 /// This helps in determining if a DIArglist is necessary or can be omitted from
6392 /// the dbg.value.
6393 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6394   auto expr_ops = ToDwarfOpIter(Expr);
6395   unsigned Count = 0;
6396   for (auto Op : expr_ops)
6397     if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6398       Count++;
6399   return Count;
6400 }
6401 
6402 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6403 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6404 /// because a DIArglist is not created for the first argument of the dbg.value.
6405 template <typename T>
6406 static void updateDVIWithLocation(T &DbgVal, Value *Location,
6407                                   SmallVectorImpl<uint64_t> &Ops) {
6408   assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not "
6409                                     "contain any DW_OP_llvm_arg operands.");
6410   DbgVal.setRawLocation(ValueAsMetadata::get(Location));
6411   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6412   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6413 }
6414 
6415 /// Overwrite DVI with locations placed into a DIArglist.
6416 template <typename T>
6417 static void updateDVIWithLocations(T &DbgVal,
6418                                    SmallVectorImpl<Value *> &Locations,
6419                                    SmallVectorImpl<uint64_t> &Ops) {
6420   assert(numLLVMArgOps(Ops) != 0 &&
6421          "Expected expression that references DIArglist locations using "
6422          "DW_OP_llvm_arg operands.");
6423   SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6424   for (Value *V : Locations)
6425     MetadataLocs.push_back(ValueAsMetadata::get(V));
6426   auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6427   DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef));
6428   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6429 }
6430 
6431 /// Write the new expression and new location ops for the dbg.value. If possible
6432 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6433 /// can be omitted if:
6434 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6435 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6436 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6437                                SmallVectorImpl<Value *> &NewLocationOps,
6438                                SmallVectorImpl<uint64_t> &NewExpr) {
6439   auto UpdateDbgValueInstImpl = [&](auto *DbgVal) {
6440     unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6441     if (NumLLVMArgs == 0) {
6442       // Location assumed to be on the stack.
6443       updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr);
6444     } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6445       // There is only a single DW_OP_llvm_arg at the start of the expression,
6446       // so it can be omitted along with DIArglist.
6447       assert(NewExpr[1] == 0 &&
6448              "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6449       llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6450       updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps);
6451     } else {
6452       // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6453       updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr);
6454     }
6455 
6456     // If the DIExpression was previously empty then add the stack terminator.
6457     // Non-empty expressions have only had elements inserted into them and so
6458     // the terminator should already be present e.g. stack_value or fragment.
6459     DIExpression *SalvageExpr = DbgVal->getExpression();
6460     if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6461       SalvageExpr =
6462           DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6463       DbgVal->setExpression(SalvageExpr);
6464     }
6465   };
6466   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6467     UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6468   else
6469     UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6470 }
6471 
6472 /// Cached location ops may be erased during LSR, in which case a poison is
6473 /// required when restoring from the cache. The type of that location is no
6474 /// longer available, so just use int8. The poison will be replaced by one or
6475 /// more locations later when a SCEVDbgValueBuilder selects alternative
6476 /// locations to use for the salvage.
6477 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6478   return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6479 }
6480 
6481 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6482 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6483   auto RestorePreTransformStateImpl = [&](auto *DbgVal) {
6484     LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6485                       << "scev-salvage: post-LSR: " << *DbgVal << '\n');
6486     assert(DVIRec.Expr && "Expected an expression");
6487     DbgVal->setExpression(DVIRec.Expr);
6488 
6489     // Even a single location-op may be inside a DIArgList and referenced with
6490     // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6491     if (!DVIRec.HadLocationArgList) {
6492       assert(DVIRec.LocationOps.size() == 1 &&
6493              "Unexpected number of location ops.");
6494       // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6495       // this case was not present before, so force the location back to a
6496       // single uncontained Value.
6497       Value *CachedValue =
6498           getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext());
6499       DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue));
6500     } else {
6501       SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6502       for (WeakVH VH : DVIRec.LocationOps) {
6503         Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext());
6504         MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6505       }
6506       auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6507       DbgVal->setRawLocation(
6508           llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef));
6509     }
6510     LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n');
6511   };
6512   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6513     RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6514   else
6515     RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6516 }
6517 
6518 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6519                        llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6520                        const SCEV *SCEVInductionVar,
6521                        SCEVDbgValueBuilder IterCountExpr) {
6522 
6523   if (isa<DbgValueInst *>(DVIRec.DbgRef)
6524           ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation()
6525           : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation())
6526     return false;
6527 
6528   // LSR may have caused several changes to the dbg.value in the failed salvage
6529   // attempt. So restore the DIExpression, the location ops and also the
6530   // location ops format, which is always DIArglist for multiple ops, but only
6531   // sometimes for a single op.
6532   restorePreTransformState(DVIRec);
6533 
6534   // LocationOpIndexMap[i] will store the post-LSR location index of
6535   // the non-optimised out location at pre-LSR index i.
6536   SmallVector<int64_t, 2> LocationOpIndexMap;
6537   LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6538   SmallVector<Value *, 2> NewLocationOps;
6539   NewLocationOps.push_back(LSRInductionVar);
6540 
6541   for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6542     WeakVH VH = DVIRec.LocationOps[i];
6543     // Place the locations not optimised out in the list first, avoiding
6544     // inserts later. The map is used to update the DIExpression's
6545     // DW_OP_LLVM_arg arguments as the expression is updated.
6546     if (VH && !isa<UndefValue>(VH)) {
6547       NewLocationOps.push_back(VH);
6548       LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6549       LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6550                         << " now at index " << LocationOpIndexMap[i] << "\n");
6551       continue;
6552     }
6553 
6554     // It's possible that a value referred to in the SCEV may have been
6555     // optimised out by LSR.
6556     if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6557         SE.containsUndefs(DVIRec.SCEVs[i])) {
6558       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6559                         << " refers to a location that is now undef or erased. "
6560                            "Salvage abandoned.\n");
6561       return false;
6562     }
6563 
6564     LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6565                       << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6566 
6567     DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6568     SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6569 
6570     // Create an offset-based salvage expression if possible, as it requires
6571     // less DWARF ops than an iteration count-based expression.
6572     if (std::optional<APInt> Offset =
6573             SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6574       if (Offset->getSignificantBits() <= 64)
6575         SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6576     } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6577                                                  SE))
6578       return false;
6579   }
6580 
6581   // Merge the DbgValueBuilder generated expressions and the original
6582   // DIExpression, place the result into an new vector.
6583   SmallVector<uint64_t, 3> NewExpr;
6584   if (DVIRec.Expr->getNumElements() == 0) {
6585     assert(DVIRec.RecoveryExprs.size() == 1 &&
6586            "Expected only a single recovery expression for an empty "
6587            "DIExpression.");
6588     assert(DVIRec.RecoveryExprs[0] &&
6589            "Expected a SCEVDbgSalvageBuilder for location 0");
6590     SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6591     B->appendToVectors(NewExpr, NewLocationOps);
6592   }
6593   for (const auto &Op : DVIRec.Expr->expr_ops()) {
6594     // Most Ops needn't be updated.
6595     if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6596       Op.appendToVector(NewExpr);
6597       continue;
6598     }
6599 
6600     uint64_t LocationArgIndex = Op.getArg(0);
6601     SCEVDbgValueBuilder *DbgBuilder =
6602         DVIRec.RecoveryExprs[LocationArgIndex].get();
6603     // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6604     // optimise it away. So just translate the argument to the updated
6605     // location index.
6606     if (!DbgBuilder) {
6607       NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6608       assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6609              "Expected a positive index for the location-op position.");
6610       NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6611       continue;
6612     }
6613     // The location has a recovery expression.
6614     DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6615   }
6616 
6617   UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6618   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6619     LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6620                       << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n");
6621   else
6622     LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6623                       << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n");
6624   return true;
6625 }
6626 
6627 /// Obtain an expression for the iteration count, then attempt to salvage the
6628 /// dbg.value intrinsics.
6629 static void DbgRewriteSalvageableDVIs(
6630     llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar,
6631     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6632   if (DVIToUpdate.empty())
6633     return;
6634 
6635   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6636   assert(SCEVInductionVar &&
6637          "Anticipated a SCEV for the post-LSR induction variable");
6638 
6639   if (const SCEVAddRecExpr *IVAddRec =
6640           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6641     if (!IVAddRec->isAffine())
6642       return;
6643 
6644     // Prevent translation using excessive resources.
6645     if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6646       return;
6647 
6648     // The iteration count is required to recover location values.
6649     SCEVDbgValueBuilder IterCountExpr;
6650     IterCountExpr.pushLocation(LSRInductionVar);
6651     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6652       return;
6653 
6654     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6655                       << '\n');
6656 
6657     for (auto &DVIRec : DVIToUpdate) {
6658       SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6659                  IterCountExpr);
6660     }
6661   }
6662 }
6663 
6664 /// Identify and cache salvageable DVI locations and expressions along with the
6665 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6666 /// cacheing and salvaging.
6667 static void DbgGatherSalvagableDVI(
6668     Loop *L, ScalarEvolution &SE,
6669     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6670     SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6671   for (const auto &B : L->getBlocks()) {
6672     for (auto &I : *B) {
6673       auto ProcessDbgValue = [&](auto *DbgVal) -> bool {
6674         // Ensure that if any location op is undef that the dbg.vlue is not
6675         // cached.
6676         if (DbgVal->isKillLocation())
6677           return false;
6678 
6679         // Check that the location op SCEVs are suitable for translation to
6680         // DIExpression.
6681         const auto &HasTranslatableLocationOps =
6682             [&](const auto *DbgValToTranslate) -> bool {
6683           for (const auto LocOp : DbgValToTranslate->location_ops()) {
6684             if (!LocOp)
6685               return false;
6686 
6687             if (!SE.isSCEVable(LocOp->getType()))
6688               return false;
6689 
6690             const SCEV *S = SE.getSCEV(LocOp);
6691             if (SE.containsUndefs(S))
6692               return false;
6693           }
6694           return true;
6695         };
6696 
6697         if (!HasTranslatableLocationOps(DbgVal))
6698           return false;
6699 
6700         std::unique_ptr<DVIRecoveryRec> NewRec =
6701             std::make_unique<DVIRecoveryRec>(DbgVal);
6702         // Each location Op may need a SCEVDbgValueBuilder in order to recover
6703         // it. Pre-allocating a vector will enable quick lookups of the builder
6704         // later during the salvage.
6705         NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps());
6706         for (const auto LocOp : DbgVal->location_ops()) {
6707           NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6708           NewRec->LocationOps.push_back(LocOp);
6709           NewRec->HadLocationArgList = DbgVal->hasArgList();
6710         }
6711         SalvageableDVISCEVs.push_back(std::move(NewRec));
6712         return true;
6713       };
6714       for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
6715         if (DVR.isDbgValue() || DVR.isDbgAssign())
6716           ProcessDbgValue(&DVR);
6717       }
6718       auto DVI = dyn_cast<DbgValueInst>(&I);
6719       if (!DVI)
6720         continue;
6721       if (ProcessDbgValue(DVI))
6722         DVIHandles.insert(DVI);
6723     }
6724   }
6725 }
6726 
6727 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6728 /// any PHi from the loop header is usable, but may have less chance of
6729 /// surviving subsequent transforms.
6730 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6731                                            const LSRInstance &LSR) {
6732 
6733   auto IsSuitableIV = [&](PHINode *P) {
6734     if (!SE.isSCEVable(P->getType()))
6735       return false;
6736     if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6737       return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6738     return false;
6739   };
6740 
6741   // For now, just pick the first IV that was generated and inserted by
6742   // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6743   // by subsequent transforms.
6744   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6745     if (!IV)
6746       continue;
6747 
6748     // There should only be PHI node IVs.
6749     PHINode *P = cast<PHINode>(&*IV);
6750 
6751     if (IsSuitableIV(P))
6752       return P;
6753   }
6754 
6755   for (PHINode &P : L.getHeader()->phis()) {
6756     if (IsSuitableIV(&P))
6757       return &P;
6758   }
6759   return nullptr;
6760 }
6761 
6762 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
6763 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6764                       const LoopInfo &LI, const TargetTransformInfo &TTI) {
6765   if (!L->isInnermost()) {
6766     LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
6767     return std::nullopt;
6768   }
6769   // Only inspect on simple loop structure
6770   if (!L->isLoopSimplifyForm()) {
6771     LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
6772     return std::nullopt;
6773   }
6774 
6775   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6776     LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
6777     return std::nullopt;
6778   }
6779 
6780   BasicBlock *LoopLatch = L->getLoopLatch();
6781   BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
6782   if (!BI || BI->isUnconditional())
6783     return std::nullopt;
6784   auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
6785   if (!TermCond) {
6786     LLVM_DEBUG(
6787         dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
6788     return std::nullopt;
6789   }
6790   if (!TermCond->hasOneUse()) {
6791     LLVM_DEBUG(
6792         dbgs()
6793         << "Cannot replace terminating condition with more than one use\n");
6794     return std::nullopt;
6795   }
6796 
6797   BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
6798   Value *RHS = TermCond->getOperand(1);
6799   if (!LHS || !L->isLoopInvariant(RHS))
6800     // We could pattern match the inverse form of the icmp, but that is
6801     // non-canonical, and this pass is running *very* late in the pipeline.
6802     return std::nullopt;
6803 
6804   // Find the IV used by the current exit condition.
6805   PHINode *ToFold;
6806   Value *ToFoldStart, *ToFoldStep;
6807   if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
6808     return std::nullopt;
6809 
6810   // Ensure the simple recurrence is a part of the current loop.
6811   if (ToFold->getParent() != L->getHeader())
6812     return std::nullopt;
6813 
6814   // If that IV isn't dead after we rewrite the exit condition in terms of
6815   // another IV, there's no point in doing the transform.
6816   if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
6817     return std::nullopt;
6818 
6819   // Inserting instructions in the preheader has a runtime cost, scale
6820   // the allowed cost with the loops trip count as best we can.
6821   const unsigned ExpansionBudget = [&]() {
6822     unsigned Budget = 2 * SCEVCheapExpansionBudget;
6823     if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L))
6824       return std::min(Budget, SmallTC);
6825     if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L))
6826       return std::min(Budget, *SmallTC);
6827     // Unknown trip count, assume long running by default.
6828     return Budget;
6829   }();
6830 
6831   const SCEV *BECount = SE.getBackedgeTakenCount(L);
6832   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6833   SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6834 
6835   PHINode *ToHelpFold = nullptr;
6836   const SCEV *TermValueS = nullptr;
6837   bool MustDropPoison = false;
6838   auto InsertPt = L->getLoopPreheader()->getTerminator();
6839   for (PHINode &PN : L->getHeader()->phis()) {
6840     if (ToFold == &PN)
6841       continue;
6842 
6843     if (!SE.isSCEVable(PN.getType())) {
6844       LLVM_DEBUG(dbgs() << "IV of phi '" << PN
6845                         << "' is not SCEV-able, not qualified for the "
6846                            "terminating condition folding.\n");
6847       continue;
6848     }
6849     const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6850     // Only speculate on affine AddRec
6851     if (!AddRec || !AddRec->isAffine()) {
6852       LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
6853                         << "' is not an affine add recursion, not qualified "
6854                            "for the terminating condition folding.\n");
6855       continue;
6856     }
6857 
6858     // Check that we can compute the value of AddRec on the exiting iteration
6859     // without soundness problems.  evaluateAtIteration internally needs
6860     // to multiply the stride of the iteration number - which may wrap around.
6861     // The issue here is subtle because computing the result accounting for
6862     // wrap is insufficient. In order to use the result in an exit test, we
6863     // must also know that AddRec doesn't take the same value on any previous
6864     // iteration. The simplest case to consider is a candidate IV which is
6865     // narrower than the trip count (and thus original IV), but this can
6866     // also happen due to non-unit strides on the candidate IVs.
6867     if (!AddRec->hasNoSelfWrap() ||
6868         !SE.isKnownNonZero(AddRec->getStepRecurrence(SE)))
6869       continue;
6870 
6871     const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
6872     const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
6873     if (!Expander.isSafeToExpand(TermValueSLocal)) {
6874       LLVM_DEBUG(
6875           dbgs() << "Is not safe to expand terminating value for phi node" << PN
6876                  << "\n");
6877       continue;
6878     }
6879 
6880     if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget,
6881                                      &TTI, InsertPt)) {
6882       LLVM_DEBUG(
6883           dbgs() << "Is too expensive to expand terminating value for phi node"
6884                  << PN << "\n");
6885       continue;
6886     }
6887 
6888     // The candidate IV may have been otherwise dead and poison from the
6889     // very first iteration.  If we can't disprove that, we can't use the IV.
6890     if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
6891       LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "
6892                         << PN << "\n");
6893       continue;
6894     }
6895 
6896     // The candidate IV may become poison on the last iteration.  If this
6897     // value is not branched on, this is a well defined program.  We're
6898     // about to add a new use to this IV, and we have to ensure we don't
6899     // insert UB which didn't previously exist.
6900     bool MustDropPoisonLocal = false;
6901     Instruction *PostIncV =
6902       cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
6903     if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
6904                                        &DT)) {
6905       LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"
6906                         << PN << "\n");
6907 
6908       // If this is a complex recurrance with multiple instructions computing
6909       // the backedge value, we might need to strip poison flags from all of
6910       // them.
6911       if (PostIncV->getOperand(0) != &PN)
6912         continue;
6913 
6914       // In order to perform the transform, we need to drop the poison generating
6915       // flags on this instruction (if any).
6916       MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
6917     }
6918 
6919     // We pick the last legal alternate IV.  We could expore choosing an optimal
6920     // alternate IV if we had a decent heuristic to do so.
6921     ToHelpFold = &PN;
6922     TermValueS = TermValueSLocal;
6923     MustDropPoison = MustDropPoisonLocal;
6924   }
6925 
6926   LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
6927                  << "Cannot find other AddRec IV to help folding\n";);
6928 
6929   LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
6930              << "\nFound loop that can fold terminating condition\n"
6931              << "  BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
6932              << "  TermCond: " << *TermCond << "\n"
6933              << "  BrandInst: " << *BI << "\n"
6934              << "  ToFold: " << *ToFold << "\n"
6935              << "  ToHelpFold: " << *ToHelpFold << "\n");
6936 
6937   if (!ToFold || !ToHelpFold)
6938     return std::nullopt;
6939   return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
6940 }
6941 
6942 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6943                                DominatorTree &DT, LoopInfo &LI,
6944                                const TargetTransformInfo &TTI,
6945                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6946                                MemorySSA *MSSA) {
6947 
6948   // Debug preservation - before we start removing anything identify which DVI
6949   // meet the salvageable criteria and store their DIExpression and SCEVs.
6950   SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6951   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6952   DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6953 
6954   bool Changed = false;
6955   std::unique_ptr<MemorySSAUpdater> MSSAU;
6956   if (MSSA)
6957     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6958 
6959   // Run the main LSR transformation.
6960   const LSRInstance &Reducer =
6961       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6962   Changed |= Reducer.getChanged();
6963 
6964   // Remove any extra phis created by processing inner loops.
6965   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6966   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6967     SmallVector<WeakTrackingVH, 16> DeadInsts;
6968     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6969     SCEVExpander Rewriter(SE, DL, "lsr", false);
6970 #ifndef NDEBUG
6971     Rewriter.setDebugType(DEBUG_TYPE);
6972 #endif
6973     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6974     Rewriter.clear();
6975     if (numFolded) {
6976       Changed = true;
6977       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6978                                                            MSSAU.get());
6979       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6980     }
6981   }
6982   // LSR may at times remove all uses of an induction variable from a loop.
6983   // The only remaining use is the PHI in the exit block.
6984   // When this is the case, if the exit value of the IV can be calculated using
6985   // SCEV, we can replace the exit block PHI with the final value of the IV and
6986   // skip the updates in each loop iteration.
6987   if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6988     SmallVector<WeakTrackingVH, 16> DeadInsts;
6989     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6990     SCEVExpander Rewriter(SE, DL, "lsr", true);
6991     int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6992                                          UnusedIndVarInLoop, DeadInsts);
6993     Rewriter.clear();
6994     if (Rewrites) {
6995       Changed = true;
6996       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6997                                                            MSSAU.get());
6998       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6999     }
7000   }
7001 
7002   const bool EnableFormTerm = [&] {
7003     switch (AllowTerminatingConditionFoldingAfterLSR) {
7004     case cl::BOU_TRUE:
7005       return true;
7006     case cl::BOU_FALSE:
7007       return false;
7008     case cl::BOU_UNSET:
7009       return TTI.shouldFoldTerminatingConditionAfterLSR();
7010     }
7011     llvm_unreachable("Unhandled cl::boolOrDefault enum");
7012   }();
7013 
7014   if (EnableFormTerm) {
7015     if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI)) {
7016       auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
7017 
7018       Changed = true;
7019       NumTermFold++;
7020 
7021       BasicBlock *LoopPreheader = L->getLoopPreheader();
7022       BasicBlock *LoopLatch = L->getLoopLatch();
7023 
7024       (void)ToFold;
7025       LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
7026                         << *ToFold << "\n"
7027                         << "New term-cond phi-node:\n"
7028                         << *ToHelpFold << "\n");
7029 
7030       Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
7031       (void)StartValue;
7032       Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
7033 
7034       // See comment in canFoldTermCondOfLoop on why this is sufficient.
7035       if (MustDrop)
7036         cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
7037 
7038       // SCEVExpander for both use in preheader and latch
7039       const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
7040       SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
7041 
7042       assert(Expander.isSafeToExpand(TermValueS) &&
7043              "Terminating value was checked safe in canFoldTerminatingCondition");
7044 
7045       // Create new terminating value at loop preheader
7046       Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
7047                                                 LoopPreheader->getTerminator());
7048 
7049       LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
7050                         << *StartValue << "\n"
7051                         << "Terminating value of new term-cond phi-node:\n"
7052                         << *TermValue << "\n");
7053 
7054       // Create new terminating condition at loop latch
7055       BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
7056       ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
7057       IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
7058       Value *NewTermCond =
7059           LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
7060                                   "lsr_fold_term_cond.replaced_term_cond");
7061       // Swap successors to exit loop body if IV equals to new TermValue
7062       if (BI->getSuccessor(0) == L->getHeader())
7063         BI->swapSuccessors();
7064 
7065       LLVM_DEBUG(dbgs() << "Old term-cond:\n"
7066                         << *OldTermCond << "\n"
7067                         << "New term-cond:\n" << *NewTermCond << "\n");
7068 
7069       BI->setCondition(NewTermCond);
7070 
7071       Expander.clear();
7072       OldTermCond->eraseFromParent();
7073       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7074     }
7075   }
7076 
7077   if (SalvageableDVIRecords.empty())
7078     return Changed;
7079 
7080   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7081   // expressions composed using the derived iteration count.
7082   // TODO: Allow for multiple IV references for nested AddRecSCEVs
7083   for (const auto &L : LI) {
7084     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7085       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7086     else {
7087       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7088                            "could not be identified.\n");
7089     }
7090   }
7091 
7092   for (auto &Rec : SalvageableDVIRecords)
7093     Rec->clear();
7094   SalvageableDVIRecords.clear();
7095   DVIHandles.clear();
7096   return Changed;
7097 }
7098 
7099 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7100   if (skipLoop(L))
7101     return false;
7102 
7103   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7104   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7105   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7106   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7107   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7108       *L->getHeader()->getParent());
7109   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7110       *L->getHeader()->getParent());
7111   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7112       *L->getHeader()->getParent());
7113   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7114   MemorySSA *MSSA = nullptr;
7115   if (MSSAAnalysis)
7116     MSSA = &MSSAAnalysis->getMSSA();
7117   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7118 }
7119 
7120 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7121                                               LoopStandardAnalysisResults &AR,
7122                                               LPMUpdater &) {
7123   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7124                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7125     return PreservedAnalyses::all();
7126 
7127   auto PA = getLoopPassPreservedAnalyses();
7128   if (AR.MSSA)
7129     PA.preserve<MemorySSAAnalysis>();
7130   return PA;
7131 }
7132 
7133 char LoopStrengthReduce::ID = 0;
7134 
7135 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7136                       "Loop Strength Reduction", false, false)
7137 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7138 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7139 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7140 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7141 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7142 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7143 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7144                     "Loop Strength Reduction", false, false)
7145 
7146 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
7147