1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/LoopUtils.h" 119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstddef> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <optional> 129 #include <utility> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "loop-reduce" 134 135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 136 /// bail out. This threshold is far beyond the number of users that LSR can 137 /// conceivably solve, so it should not affect generated code, but catches the 138 /// worst cases before LSR burns too much compile time and stack space. 139 static const unsigned MaxIVUsers = 200; 140 141 /// Limit the size of expression that SCEV-based salvaging will attempt to 142 /// translate into a DIExpression. 143 /// Choose a maximum size such that debuginfo is not excessively increased and 144 /// the salvaging is not too expensive for the compiler. 145 static const unsigned MaxSCEVSalvageExpressionSize = 64; 146 147 // Cleanup congruent phis after LSR phi expansion. 148 static cl::opt<bool> EnablePhiElim( 149 "enable-lsr-phielim", cl::Hidden, cl::init(true), 150 cl::desc("Enable LSR phi elimination")); 151 152 // The flag adds instruction count to solutions cost comparison. 153 static cl::opt<bool> InsnsCost( 154 "lsr-insns-cost", cl::Hidden, cl::init(true), 155 cl::desc("Add instruction count to a LSR cost model")); 156 157 // Flag to choose how to narrow complex lsr solution 158 static cl::opt<bool> LSRExpNarrow( 159 "lsr-exp-narrow", cl::Hidden, cl::init(false), 160 cl::desc("Narrow LSR complex solution using" 161 " expectation of registers number")); 162 163 // Flag to narrow search space by filtering non-optimal formulae with 164 // the same ScaledReg and Scale. 165 static cl::opt<bool> FilterSameScaledReg( 166 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 167 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 168 " with the same ScaledReg and Scale")); 169 170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 171 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 172 cl::desc("A flag that overrides the target's preferred addressing mode."), 173 cl::values(clEnumValN(TTI::AMK_None, 174 "none", 175 "Don't prefer any addressing mode"), 176 clEnumValN(TTI::AMK_PreIndexed, 177 "preindexed", 178 "Prefer pre-indexed addressing mode"), 179 clEnumValN(TTI::AMK_PostIndexed, 180 "postindexed", 181 "Prefer post-indexed addressing mode"))); 182 183 static cl::opt<unsigned> ComplexityLimit( 184 "lsr-complexity-limit", cl::Hidden, 185 cl::init(std::numeric_limits<uint16_t>::max()), 186 cl::desc("LSR search space complexity limit")); 187 188 static cl::opt<unsigned> SetupCostDepthLimit( 189 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 190 cl::desc("The limit on recursion depth for LSRs setup cost")); 191 192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR( 193 "lsr-term-fold", cl::Hidden, 194 cl::desc("Attempt to replace primary IV with other IV.")); 195 196 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( 197 "lsr-drop-solution", cl::Hidden, 198 cl::desc("Attempt to drop solution if it is less profitable")); 199 200 static cl::opt<bool> EnableVScaleImmediates( 201 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true), 202 cl::desc("Enable analysis of vscale-relative immediates in LSR")); 203 204 static cl::opt<bool> DropScaledForVScale( 205 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true), 206 cl::desc("Avoid using scaled registers with vscale-relative addressing")); 207 208 STATISTIC(NumTermFold, 209 "Number of terminating condition fold recognized and performed"); 210 211 #ifndef NDEBUG 212 // Stress test IV chain generation. 213 static cl::opt<bool> StressIVChain( 214 "stress-ivchain", cl::Hidden, cl::init(false), 215 cl::desc("Stress test LSR IV chains")); 216 #else 217 static bool StressIVChain = false; 218 #endif 219 220 namespace { 221 222 struct MemAccessTy { 223 /// Used in situations where the accessed memory type is unknown. 224 static const unsigned UnknownAddressSpace = 225 std::numeric_limits<unsigned>::max(); 226 227 Type *MemTy = nullptr; 228 unsigned AddrSpace = UnknownAddressSpace; 229 230 MemAccessTy() = default; 231 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 232 233 bool operator==(MemAccessTy Other) const { 234 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 235 } 236 237 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 238 239 static MemAccessTy getUnknown(LLVMContext &Ctx, 240 unsigned AS = UnknownAddressSpace) { 241 return MemAccessTy(Type::getVoidTy(Ctx), AS); 242 } 243 244 Type *getType() { return MemTy; } 245 }; 246 247 /// This class holds data which is used to order reuse candidates. 248 class RegSortData { 249 public: 250 /// This represents the set of LSRUse indices which reference 251 /// a particular register. 252 SmallBitVector UsedByIndices; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 // An offset from an address that is either scalable or fixed. Used for 259 // per-target optimizations of addressing modes. 260 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { 261 constexpr Immediate(ScalarTy MinVal, bool Scalable) 262 : FixedOrScalableQuantity(MinVal, Scalable) {} 263 264 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) 265 : FixedOrScalableQuantity(V) {} 266 267 public: 268 constexpr Immediate() = delete; 269 270 static constexpr Immediate getFixed(ScalarTy MinVal) { 271 return {MinVal, false}; 272 } 273 static constexpr Immediate getScalable(ScalarTy MinVal) { 274 return {MinVal, true}; 275 } 276 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { 277 return {MinVal, Scalable}; 278 } 279 static constexpr Immediate getZero() { return {0, false}; } 280 static constexpr Immediate getFixedMin() { 281 return {std::numeric_limits<int64_t>::min(), false}; 282 } 283 static constexpr Immediate getFixedMax() { 284 return {std::numeric_limits<int64_t>::max(), false}; 285 } 286 static constexpr Immediate getScalableMin() { 287 return {std::numeric_limits<int64_t>::min(), true}; 288 } 289 static constexpr Immediate getScalableMax() { 290 return {std::numeric_limits<int64_t>::max(), true}; 291 } 292 293 constexpr bool isLessThanZero() const { return Quantity < 0; } 294 295 constexpr bool isGreaterThanZero() const { return Quantity > 0; } 296 297 constexpr bool isCompatibleImmediate(const Immediate &Imm) const { 298 return isZero() || Imm.isZero() || Imm.Scalable == Scalable; 299 } 300 301 constexpr bool isMin() const { 302 return Quantity == std::numeric_limits<ScalarTy>::min(); 303 } 304 305 constexpr bool isMax() const { 306 return Quantity == std::numeric_limits<ScalarTy>::max(); 307 } 308 309 // Arithmetic 'operators' that cast to unsigned types first. 310 constexpr Immediate addUnsigned(const Immediate &RHS) const { 311 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 312 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); 313 return {Value, Scalable || RHS.isScalable()}; 314 } 315 316 constexpr Immediate subUnsigned(const Immediate &RHS) const { 317 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 318 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); 319 return {Value, Scalable || RHS.isScalable()}; 320 } 321 322 // Scale the quantity by a constant without caring about runtime scalability. 323 constexpr Immediate mulUnsigned(const ScalarTy RHS) const { 324 ScalarTy Value = (uint64_t)Quantity * RHS; 325 return {Value, Scalable}; 326 } 327 328 // Helpers for generating SCEVs with vscale terms where needed. 329 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { 330 const SCEV *S = SE.getConstant(Ty, Quantity); 331 if (Scalable) 332 S = SE.getMulExpr(S, SE.getVScale(S->getType())); 333 return S; 334 } 335 336 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { 337 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity); 338 if (Scalable) 339 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType())); 340 return NegS; 341 } 342 343 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { 344 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity)); 345 if (Scalable) 346 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType())); 347 return SU; 348 } 349 }; 350 351 // This is needed for the Compare type of std::map when Immediate is used 352 // as a key. We don't need it to be fully correct against any value of vscale, 353 // just to make sure that vscale-related terms in the map are considered against 354 // each other rather than being mixed up and potentially missing opportunities. 355 struct KeyOrderTargetImmediate { 356 bool operator()(const Immediate &LHS, const Immediate &RHS) const { 357 if (LHS.isScalable() && !RHS.isScalable()) 358 return false; 359 if (!LHS.isScalable() && RHS.isScalable()) 360 return true; 361 return LHS.getKnownMinValue() < RHS.getKnownMinValue(); 362 } 363 }; 364 365 // This would be nicer if we could be generic instead of directly using size_t, 366 // but there doesn't seem to be a type trait for is_orderable or 367 // is_lessthan_comparable or similar. 368 struct KeyOrderSizeTAndImmediate { 369 bool operator()(const std::pair<size_t, Immediate> &LHS, 370 const std::pair<size_t, Immediate> &RHS) const { 371 size_t LSize = LHS.first; 372 size_t RSize = RHS.first; 373 if (LSize != RSize) 374 return LSize < RSize; 375 return KeyOrderTargetImmediate()(LHS.second, RHS.second); 376 } 377 }; 378 } // end anonymous namespace 379 380 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 381 void RegSortData::print(raw_ostream &OS) const { 382 OS << "[NumUses=" << UsedByIndices.count() << ']'; 383 } 384 385 LLVM_DUMP_METHOD void RegSortData::dump() const { 386 print(errs()); errs() << '\n'; 387 } 388 #endif 389 390 namespace { 391 392 /// Map register candidates to information about how they are used. 393 class RegUseTracker { 394 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 395 396 RegUsesTy RegUsesMap; 397 SmallVector<const SCEV *, 16> RegSequence; 398 399 public: 400 void countRegister(const SCEV *Reg, size_t LUIdx); 401 void dropRegister(const SCEV *Reg, size_t LUIdx); 402 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 403 404 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 405 406 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 407 408 void clear(); 409 410 using iterator = SmallVectorImpl<const SCEV *>::iterator; 411 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 412 413 iterator begin() { return RegSequence.begin(); } 414 iterator end() { return RegSequence.end(); } 415 const_iterator begin() const { return RegSequence.begin(); } 416 const_iterator end() const { return RegSequence.end(); } 417 }; 418 419 } // end anonymous namespace 420 421 void 422 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 423 std::pair<RegUsesTy::iterator, bool> Pair = 424 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 425 RegSortData &RSD = Pair.first->second; 426 if (Pair.second) 427 RegSequence.push_back(Reg); 428 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 429 RSD.UsedByIndices.set(LUIdx); 430 } 431 432 void 433 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 434 RegUsesTy::iterator It = RegUsesMap.find(Reg); 435 assert(It != RegUsesMap.end()); 436 RegSortData &RSD = It->second; 437 assert(RSD.UsedByIndices.size() > LUIdx); 438 RSD.UsedByIndices.reset(LUIdx); 439 } 440 441 void 442 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 443 assert(LUIdx <= LastLUIdx); 444 445 // Update RegUses. The data structure is not optimized for this purpose; 446 // we must iterate through it and update each of the bit vectors. 447 for (auto &Pair : RegUsesMap) { 448 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 449 if (LUIdx < UsedByIndices.size()) 450 UsedByIndices[LUIdx] = 451 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 452 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 453 } 454 } 455 456 bool 457 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 458 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 459 if (I == RegUsesMap.end()) 460 return false; 461 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 462 int i = UsedByIndices.find_first(); 463 if (i == -1) return false; 464 if ((size_t)i != LUIdx) return true; 465 return UsedByIndices.find_next(i) != -1; 466 } 467 468 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 469 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 470 assert(I != RegUsesMap.end() && "Unknown register!"); 471 return I->second.UsedByIndices; 472 } 473 474 void RegUseTracker::clear() { 475 RegUsesMap.clear(); 476 RegSequence.clear(); 477 } 478 479 namespace { 480 481 /// This class holds information that describes a formula for computing 482 /// satisfying a use. It may include broken-out immediates and scaled registers. 483 struct Formula { 484 /// Global base address used for complex addressing. 485 GlobalValue *BaseGV = nullptr; 486 487 /// Base offset for complex addressing. 488 Immediate BaseOffset = Immediate::getZero(); 489 490 /// Whether any complex addressing has a base register. 491 bool HasBaseReg = false; 492 493 /// The scale of any complex addressing. 494 int64_t Scale = 0; 495 496 /// The list of "base" registers for this use. When this is non-empty. The 497 /// canonical representation of a formula is 498 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 499 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 500 /// 3. The reg containing recurrent expr related with currect loop in the 501 /// formula should be put in the ScaledReg. 502 /// #1 enforces that the scaled register is always used when at least two 503 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 504 /// #2 enforces that 1 * reg is reg. 505 /// #3 ensures invariant regs with respect to current loop can be combined 506 /// together in LSR codegen. 507 /// This invariant can be temporarily broken while building a formula. 508 /// However, every formula inserted into the LSRInstance must be in canonical 509 /// form. 510 SmallVector<const SCEV *, 4> BaseRegs; 511 512 /// The 'scaled' register for this use. This should be non-null when Scale is 513 /// not zero. 514 const SCEV *ScaledReg = nullptr; 515 516 /// An additional constant offset which added near the use. This requires a 517 /// temporary register, but the offset itself can live in an add immediate 518 /// field rather than a register. 519 Immediate UnfoldedOffset = Immediate::getZero(); 520 521 Formula() = default; 522 523 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 524 525 bool isCanonical(const Loop &L) const; 526 527 void canonicalize(const Loop &L); 528 529 bool unscale(); 530 531 bool hasZeroEnd() const; 532 533 size_t getNumRegs() const; 534 Type *getType() const; 535 536 void deleteBaseReg(const SCEV *&S); 537 538 bool referencesReg(const SCEV *S) const; 539 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 540 const RegUseTracker &RegUses) const; 541 542 void print(raw_ostream &OS) const; 543 void dump() const; 544 }; 545 546 } // end anonymous namespace 547 548 /// Recursion helper for initialMatch. 549 static void DoInitialMatch(const SCEV *S, Loop *L, 550 SmallVectorImpl<const SCEV *> &Good, 551 SmallVectorImpl<const SCEV *> &Bad, 552 ScalarEvolution &SE) { 553 // Collect expressions which properly dominate the loop header. 554 if (SE.properlyDominates(S, L->getHeader())) { 555 Good.push_back(S); 556 return; 557 } 558 559 // Look at add operands. 560 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 561 for (const SCEV *S : Add->operands()) 562 DoInitialMatch(S, L, Good, Bad, SE); 563 return; 564 } 565 566 // Look at addrec operands. 567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 568 if (!AR->getStart()->isZero() && AR->isAffine()) { 569 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 570 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 571 AR->getStepRecurrence(SE), 572 // FIXME: AR->getNoWrapFlags() 573 AR->getLoop(), SCEV::FlagAnyWrap), 574 L, Good, Bad, SE); 575 return; 576 } 577 578 // Handle a multiplication by -1 (negation) if it didn't fold. 579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 580 if (Mul->getOperand(0)->isAllOnesValue()) { 581 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 582 const SCEV *NewMul = SE.getMulExpr(Ops); 583 584 SmallVector<const SCEV *, 4> MyGood; 585 SmallVector<const SCEV *, 4> MyBad; 586 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 587 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 588 SE.getEffectiveSCEVType(NewMul->getType()))); 589 for (const SCEV *S : MyGood) 590 Good.push_back(SE.getMulExpr(NegOne, S)); 591 for (const SCEV *S : MyBad) 592 Bad.push_back(SE.getMulExpr(NegOne, S)); 593 return; 594 } 595 596 // Ok, we can't do anything interesting. Just stuff the whole thing into a 597 // register and hope for the best. 598 Bad.push_back(S); 599 } 600 601 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 602 /// all loop-invariant and loop-computable values in a single base register. 603 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 604 SmallVector<const SCEV *, 4> Good; 605 SmallVector<const SCEV *, 4> Bad; 606 DoInitialMatch(S, L, Good, Bad, SE); 607 if (!Good.empty()) { 608 const SCEV *Sum = SE.getAddExpr(Good); 609 if (!Sum->isZero()) 610 BaseRegs.push_back(Sum); 611 HasBaseReg = true; 612 } 613 if (!Bad.empty()) { 614 const SCEV *Sum = SE.getAddExpr(Bad); 615 if (!Sum->isZero()) 616 BaseRegs.push_back(Sum); 617 HasBaseReg = true; 618 } 619 canonicalize(*L); 620 } 621 622 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 623 return SCEVExprContains(S, [&L](const SCEV *S) { 624 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 625 }); 626 } 627 628 /// Check whether or not this formula satisfies the canonical 629 /// representation. 630 /// \see Formula::BaseRegs. 631 bool Formula::isCanonical(const Loop &L) const { 632 if (!ScaledReg) 633 return BaseRegs.size() <= 1; 634 635 if (Scale != 1) 636 return true; 637 638 if (Scale == 1 && BaseRegs.empty()) 639 return false; 640 641 if (containsAddRecDependentOnLoop(ScaledReg, L)) 642 return true; 643 644 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 645 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 646 // loop, we want to swap the reg in BaseRegs with ScaledReg. 647 return none_of(BaseRegs, [&L](const SCEV *S) { 648 return containsAddRecDependentOnLoop(S, L); 649 }); 650 } 651 652 /// Helper method to morph a formula into its canonical representation. 653 /// \see Formula::BaseRegs. 654 /// Every formula having more than one base register, must use the ScaledReg 655 /// field. Otherwise, we would have to do special cases everywhere in LSR 656 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 657 /// On the other hand, 1*reg should be canonicalized into reg. 658 void Formula::canonicalize(const Loop &L) { 659 if (isCanonical(L)) 660 return; 661 662 if (BaseRegs.empty()) { 663 // No base reg? Use scale reg with scale = 1 as such. 664 assert(ScaledReg && "Expected 1*reg => reg"); 665 assert(Scale == 1 && "Expected 1*reg => reg"); 666 BaseRegs.push_back(ScaledReg); 667 Scale = 0; 668 ScaledReg = nullptr; 669 return; 670 } 671 672 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 673 if (!ScaledReg) { 674 ScaledReg = BaseRegs.pop_back_val(); 675 Scale = 1; 676 } 677 678 // If ScaledReg is an invariant with respect to L, find the reg from 679 // BaseRegs containing the recurrent expr related with Loop L. Swap the 680 // reg with ScaledReg. 681 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 682 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 683 return containsAddRecDependentOnLoop(S, L); 684 }); 685 if (I != BaseRegs.end()) 686 std::swap(ScaledReg, *I); 687 } 688 assert(isCanonical(L) && "Failed to canonicalize?"); 689 } 690 691 /// Get rid of the scale in the formula. 692 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 693 /// \return true if it was possible to get rid of the scale, false otherwise. 694 /// \note After this operation the formula may not be in the canonical form. 695 bool Formula::unscale() { 696 if (Scale != 1) 697 return false; 698 Scale = 0; 699 BaseRegs.push_back(ScaledReg); 700 ScaledReg = nullptr; 701 return true; 702 } 703 704 bool Formula::hasZeroEnd() const { 705 if (UnfoldedOffset || BaseOffset) 706 return false; 707 if (BaseRegs.size() != 1 || ScaledReg) 708 return false; 709 return true; 710 } 711 712 /// Return the total number of register operands used by this formula. This does 713 /// not include register uses implied by non-constant addrec strides. 714 size_t Formula::getNumRegs() const { 715 return !!ScaledReg + BaseRegs.size(); 716 } 717 718 /// Return the type of this formula, if it has one, or null otherwise. This type 719 /// is meaningless except for the bit size. 720 Type *Formula::getType() const { 721 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 722 ScaledReg ? ScaledReg->getType() : 723 BaseGV ? BaseGV->getType() : 724 nullptr; 725 } 726 727 /// Delete the given base reg from the BaseRegs list. 728 void Formula::deleteBaseReg(const SCEV *&S) { 729 if (&S != &BaseRegs.back()) 730 std::swap(S, BaseRegs.back()); 731 BaseRegs.pop_back(); 732 } 733 734 /// Test if this formula references the given register. 735 bool Formula::referencesReg(const SCEV *S) const { 736 return S == ScaledReg || is_contained(BaseRegs, S); 737 } 738 739 /// Test whether this formula uses registers which are used by uses other than 740 /// the use with the given index. 741 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 742 const RegUseTracker &RegUses) const { 743 if (ScaledReg) 744 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 745 return true; 746 for (const SCEV *BaseReg : BaseRegs) 747 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 748 return true; 749 return false; 750 } 751 752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 753 void Formula::print(raw_ostream &OS) const { 754 bool First = true; 755 if (BaseGV) { 756 if (!First) OS << " + "; else First = false; 757 BaseGV->printAsOperand(OS, /*PrintType=*/false); 758 } 759 if (BaseOffset.isNonZero()) { 760 if (!First) OS << " + "; else First = false; 761 OS << BaseOffset; 762 } 763 for (const SCEV *BaseReg : BaseRegs) { 764 if (!First) OS << " + "; else First = false; 765 OS << "reg(" << *BaseReg << ')'; 766 } 767 if (HasBaseReg && BaseRegs.empty()) { 768 if (!First) OS << " + "; else First = false; 769 OS << "**error: HasBaseReg**"; 770 } else if (!HasBaseReg && !BaseRegs.empty()) { 771 if (!First) OS << " + "; else First = false; 772 OS << "**error: !HasBaseReg**"; 773 } 774 if (Scale != 0) { 775 if (!First) OS << " + "; else First = false; 776 OS << Scale << "*reg("; 777 if (ScaledReg) 778 OS << *ScaledReg; 779 else 780 OS << "<unknown>"; 781 OS << ')'; 782 } 783 if (UnfoldedOffset.isNonZero()) { 784 if (!First) OS << " + "; 785 OS << "imm(" << UnfoldedOffset << ')'; 786 } 787 } 788 789 LLVM_DUMP_METHOD void Formula::dump() const { 790 print(errs()); errs() << '\n'; 791 } 792 #endif 793 794 /// Return true if the given addrec can be sign-extended without changing its 795 /// value. 796 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 797 Type *WideTy = 798 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 799 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 800 } 801 802 /// Return true if the given add can be sign-extended without changing its 803 /// value. 804 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 805 Type *WideTy = 806 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 807 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 808 } 809 810 /// Return true if the given mul can be sign-extended without changing its 811 /// value. 812 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 813 Type *WideTy = 814 IntegerType::get(SE.getContext(), 815 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 816 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 817 } 818 819 /// Return an expression for LHS /s RHS, if it can be determined and if the 820 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 821 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 822 /// the multiplication may overflow, which is useful when the result will be 823 /// used in a context where the most significant bits are ignored. 824 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 825 ScalarEvolution &SE, 826 bool IgnoreSignificantBits = false) { 827 // Handle the trivial case, which works for any SCEV type. 828 if (LHS == RHS) 829 return SE.getConstant(LHS->getType(), 1); 830 831 // Handle a few RHS special cases. 832 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 833 if (RC) { 834 const APInt &RA = RC->getAPInt(); 835 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 836 // some folding. 837 if (RA.isAllOnes()) { 838 if (LHS->getType()->isPointerTy()) 839 return nullptr; 840 return SE.getMulExpr(LHS, RC); 841 } 842 // Handle x /s 1 as x. 843 if (RA == 1) 844 return LHS; 845 } 846 847 // Check for a division of a constant by a constant. 848 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 849 if (!RC) 850 return nullptr; 851 const APInt &LA = C->getAPInt(); 852 const APInt &RA = RC->getAPInt(); 853 if (LA.srem(RA) != 0) 854 return nullptr; 855 return SE.getConstant(LA.sdiv(RA)); 856 } 857 858 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 859 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 860 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 861 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 862 IgnoreSignificantBits); 863 if (!Step) return nullptr; 864 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 865 IgnoreSignificantBits); 866 if (!Start) return nullptr; 867 // FlagNW is independent of the start value, step direction, and is 868 // preserved with smaller magnitude steps. 869 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 870 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 871 } 872 return nullptr; 873 } 874 875 // Distribute the sdiv over add operands, if the add doesn't overflow. 876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 877 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 878 SmallVector<const SCEV *, 8> Ops; 879 for (const SCEV *S : Add->operands()) { 880 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 881 if (!Op) return nullptr; 882 Ops.push_back(Op); 883 } 884 return SE.getAddExpr(Ops); 885 } 886 return nullptr; 887 } 888 889 // Check for a multiply operand that we can pull RHS out of. 890 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 891 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 892 // Handle special case C1*X*Y /s C2*X*Y. 893 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 894 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 895 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 896 const SCEVConstant *RC = 897 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 898 if (LC && RC) { 899 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 900 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 901 if (LOps == ROps) 902 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 903 } 904 } 905 } 906 907 SmallVector<const SCEV *, 4> Ops; 908 bool Found = false; 909 for (const SCEV *S : Mul->operands()) { 910 if (!Found) 911 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 912 IgnoreSignificantBits)) { 913 S = Q; 914 Found = true; 915 } 916 Ops.push_back(S); 917 } 918 return Found ? SE.getMulExpr(Ops) : nullptr; 919 } 920 return nullptr; 921 } 922 923 // Otherwise we don't know. 924 return nullptr; 925 } 926 927 /// If S involves the addition of a constant integer value, return that integer 928 /// value, and mutate S to point to a new SCEV with that value excluded. 929 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 931 if (C->getAPInt().getSignificantBits() <= 64) { 932 S = SE.getConstant(C->getType(), 0); 933 return Immediate::getFixed(C->getValue()->getSExtValue()); 934 } 935 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 936 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 937 Immediate Result = ExtractImmediate(NewOps.front(), SE); 938 if (Result.isNonZero()) 939 S = SE.getAddExpr(NewOps); 940 return Result; 941 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 942 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 943 Immediate Result = ExtractImmediate(NewOps.front(), SE); 944 if (Result.isNonZero()) 945 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 946 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 947 SCEV::FlagAnyWrap); 948 return Result; 949 } else if (EnableVScaleImmediates) 950 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) 951 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 952 if (isa<SCEVVScale>(M->getOperand(1))) { 953 S = SE.getConstant(M->getType(), 0); 954 return Immediate::getScalable(C->getValue()->getSExtValue()); 955 } 956 return Immediate::getZero(); 957 } 958 959 /// If S involves the addition of a GlobalValue address, return that symbol, and 960 /// mutate S to point to a new SCEV with that value excluded. 961 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 962 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 963 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 964 S = SE.getConstant(GV->getType(), 0); 965 return GV; 966 } 967 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 968 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 969 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 970 if (Result) 971 S = SE.getAddExpr(NewOps); 972 return Result; 973 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 974 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 975 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 976 if (Result) 977 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 978 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 979 SCEV::FlagAnyWrap); 980 return Result; 981 } 982 return nullptr; 983 } 984 985 /// Returns true if the specified instruction is using the specified value as an 986 /// address. 987 static bool isAddressUse(const TargetTransformInfo &TTI, 988 Instruction *Inst, Value *OperandVal) { 989 bool isAddress = isa<LoadInst>(Inst); 990 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 991 if (SI->getPointerOperand() == OperandVal) 992 isAddress = true; 993 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 994 // Addressing modes can also be folded into prefetches and a variety 995 // of intrinsics. 996 switch (II->getIntrinsicID()) { 997 case Intrinsic::memset: 998 case Intrinsic::prefetch: 999 case Intrinsic::masked_load: 1000 if (II->getArgOperand(0) == OperandVal) 1001 isAddress = true; 1002 break; 1003 case Intrinsic::masked_store: 1004 if (II->getArgOperand(1) == OperandVal) 1005 isAddress = true; 1006 break; 1007 case Intrinsic::memmove: 1008 case Intrinsic::memcpy: 1009 if (II->getArgOperand(0) == OperandVal || 1010 II->getArgOperand(1) == OperandVal) 1011 isAddress = true; 1012 break; 1013 default: { 1014 MemIntrinsicInfo IntrInfo; 1015 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 1016 if (IntrInfo.PtrVal == OperandVal) 1017 isAddress = true; 1018 } 1019 } 1020 } 1021 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1022 if (RMW->getPointerOperand() == OperandVal) 1023 isAddress = true; 1024 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1025 if (CmpX->getPointerOperand() == OperandVal) 1026 isAddress = true; 1027 } 1028 return isAddress; 1029 } 1030 1031 /// Return the type of the memory being accessed. 1032 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 1033 Instruction *Inst, Value *OperandVal) { 1034 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 1035 1036 // First get the type of memory being accessed. 1037 if (Type *Ty = Inst->getAccessType()) 1038 AccessTy.MemTy = Ty; 1039 1040 // Then get the pointer address space. 1041 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1042 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 1043 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 1044 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 1045 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1046 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 1047 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1048 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 1049 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1050 switch (II->getIntrinsicID()) { 1051 case Intrinsic::prefetch: 1052 case Intrinsic::memset: 1053 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1054 AccessTy.MemTy = OperandVal->getType(); 1055 break; 1056 case Intrinsic::memmove: 1057 case Intrinsic::memcpy: 1058 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 1059 AccessTy.MemTy = OperandVal->getType(); 1060 break; 1061 case Intrinsic::masked_load: 1062 AccessTy.AddrSpace = 1063 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1064 break; 1065 case Intrinsic::masked_store: 1066 AccessTy.AddrSpace = 1067 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 1068 break; 1069 default: { 1070 MemIntrinsicInfo IntrInfo; 1071 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 1072 AccessTy.AddrSpace 1073 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 1074 } 1075 1076 break; 1077 } 1078 } 1079 } 1080 1081 return AccessTy; 1082 } 1083 1084 /// Return true if this AddRec is already a phi in its loop. 1085 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 1086 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 1087 if (SE.isSCEVable(PN.getType()) && 1088 (SE.getEffectiveSCEVType(PN.getType()) == 1089 SE.getEffectiveSCEVType(AR->getType())) && 1090 SE.getSCEV(&PN) == AR) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 /// Check if expanding this expression is likely to incur significant cost. This 1097 /// is tricky because SCEV doesn't track which expressions are actually computed 1098 /// by the current IR. 1099 /// 1100 /// We currently allow expansion of IV increments that involve adds, 1101 /// multiplication by constants, and AddRecs from existing phis. 1102 /// 1103 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 1104 /// obvious multiple of the UDivExpr. 1105 static bool isHighCostExpansion(const SCEV *S, 1106 SmallPtrSetImpl<const SCEV*> &Processed, 1107 ScalarEvolution &SE) { 1108 // Zero/One operand expressions 1109 switch (S->getSCEVType()) { 1110 case scUnknown: 1111 case scConstant: 1112 case scVScale: 1113 return false; 1114 case scTruncate: 1115 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 1116 Processed, SE); 1117 case scZeroExtend: 1118 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1119 Processed, SE); 1120 case scSignExtend: 1121 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 1122 Processed, SE); 1123 default: 1124 break; 1125 } 1126 1127 if (!Processed.insert(S).second) 1128 return false; 1129 1130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1131 for (const SCEV *S : Add->operands()) { 1132 if (isHighCostExpansion(S, Processed, SE)) 1133 return true; 1134 } 1135 return false; 1136 } 1137 1138 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1139 if (Mul->getNumOperands() == 2) { 1140 // Multiplication by a constant is ok 1141 if (isa<SCEVConstant>(Mul->getOperand(0))) 1142 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1143 1144 // If we have the value of one operand, check if an existing 1145 // multiplication already generates this expression. 1146 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1147 Value *UVal = U->getValue(); 1148 for (User *UR : UVal->users()) { 1149 // If U is a constant, it may be used by a ConstantExpr. 1150 Instruction *UI = dyn_cast<Instruction>(UR); 1151 if (UI && UI->getOpcode() == Instruction::Mul && 1152 SE.isSCEVable(UI->getType())) { 1153 return SE.getSCEV(UI) == Mul; 1154 } 1155 } 1156 } 1157 } 1158 } 1159 1160 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1161 if (isExistingPhi(AR, SE)) 1162 return false; 1163 } 1164 1165 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1166 return true; 1167 } 1168 1169 namespace { 1170 1171 class LSRUse; 1172 1173 } // end anonymous namespace 1174 1175 /// Check if the addressing mode defined by \p F is completely 1176 /// folded in \p LU at isel time. 1177 /// This includes address-mode folding and special icmp tricks. 1178 /// This function returns true if \p LU can accommodate what \p F 1179 /// defines and up to 1 base + 1 scaled + offset. 1180 /// In other words, if \p F has several base registers, this function may 1181 /// still return true. Therefore, users still need to account for 1182 /// additional base registers and/or unfolded offsets to derive an 1183 /// accurate cost model. 1184 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1185 const LSRUse &LU, const Formula &F); 1186 1187 // Get the cost of the scaling factor used in F for LU. 1188 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1189 const LSRUse &LU, const Formula &F, 1190 const Loop &L); 1191 1192 namespace { 1193 1194 /// This class is used to measure and compare candidate formulae. 1195 class Cost { 1196 const Loop *L = nullptr; 1197 ScalarEvolution *SE = nullptr; 1198 const TargetTransformInfo *TTI = nullptr; 1199 TargetTransformInfo::LSRCost C; 1200 TTI::AddressingModeKind AMK = TTI::AMK_None; 1201 1202 public: 1203 Cost() = delete; 1204 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1205 TTI::AddressingModeKind AMK) : 1206 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1207 C.Insns = 0; 1208 C.NumRegs = 0; 1209 C.AddRecCost = 0; 1210 C.NumIVMuls = 0; 1211 C.NumBaseAdds = 0; 1212 C.ImmCost = 0; 1213 C.SetupCost = 0; 1214 C.ScaleCost = 0; 1215 } 1216 1217 bool isLess(const Cost &Other) const; 1218 1219 void Lose(); 1220 1221 #ifndef NDEBUG 1222 // Once any of the metrics loses, they must all remain losers. 1223 bool isValid() { 1224 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1225 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1226 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1227 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1228 } 1229 #endif 1230 1231 bool isLoser() { 1232 assert(isValid() && "invalid cost"); 1233 return C.NumRegs == ~0u; 1234 } 1235 1236 void RateFormula(const Formula &F, 1237 SmallPtrSetImpl<const SCEV *> &Regs, 1238 const DenseSet<const SCEV *> &VisitedRegs, 1239 const LSRUse &LU, 1240 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1241 1242 void print(raw_ostream &OS) const; 1243 void dump() const; 1244 1245 private: 1246 void RateRegister(const Formula &F, const SCEV *Reg, 1247 SmallPtrSetImpl<const SCEV *> &Regs); 1248 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1249 SmallPtrSetImpl<const SCEV *> &Regs, 1250 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1251 }; 1252 1253 /// An operand value in an instruction which is to be replaced with some 1254 /// equivalent, possibly strength-reduced, replacement. 1255 struct LSRFixup { 1256 /// The instruction which will be updated. 1257 Instruction *UserInst = nullptr; 1258 1259 /// The operand of the instruction which will be replaced. The operand may be 1260 /// used more than once; every instance will be replaced. 1261 Value *OperandValToReplace = nullptr; 1262 1263 /// If this user is to use the post-incremented value of an induction 1264 /// variable, this set is non-empty and holds the loops associated with the 1265 /// induction variable. 1266 PostIncLoopSet PostIncLoops; 1267 1268 /// A constant offset to be added to the LSRUse expression. This allows 1269 /// multiple fixups to share the same LSRUse with different offsets, for 1270 /// example in an unrolled loop. 1271 Immediate Offset = Immediate::getZero(); 1272 1273 LSRFixup() = default; 1274 1275 bool isUseFullyOutsideLoop(const Loop *L) const; 1276 1277 void print(raw_ostream &OS) const; 1278 void dump() const; 1279 }; 1280 1281 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1282 /// SmallVectors of const SCEV*. 1283 struct UniquifierDenseMapInfo { 1284 static SmallVector<const SCEV *, 4> getEmptyKey() { 1285 SmallVector<const SCEV *, 4> V; 1286 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1287 return V; 1288 } 1289 1290 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1291 SmallVector<const SCEV *, 4> V; 1292 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1293 return V; 1294 } 1295 1296 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1297 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1298 } 1299 1300 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1301 const SmallVector<const SCEV *, 4> &RHS) { 1302 return LHS == RHS; 1303 } 1304 }; 1305 1306 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1307 /// as uses invented by LSR itself. It includes information about what kinds of 1308 /// things can be folded into the user, information about the user itself, and 1309 /// information about how the use may be satisfied. TODO: Represent multiple 1310 /// users of the same expression in common? 1311 class LSRUse { 1312 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1313 1314 public: 1315 /// An enum for a kind of use, indicating what types of scaled and immediate 1316 /// operands it might support. 1317 enum KindType { 1318 Basic, ///< A normal use, with no folding. 1319 Special, ///< A special case of basic, allowing -1 scales. 1320 Address, ///< An address use; folding according to TargetLowering 1321 ICmpZero ///< An equality icmp with both operands folded into one. 1322 // TODO: Add a generic icmp too? 1323 }; 1324 1325 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1326 1327 KindType Kind; 1328 MemAccessTy AccessTy; 1329 1330 /// The list of operands which are to be replaced. 1331 SmallVector<LSRFixup, 8> Fixups; 1332 1333 /// Keep track of the min and max offsets of the fixups. 1334 Immediate MinOffset = Immediate::getFixedMax(); 1335 Immediate MaxOffset = Immediate::getFixedMin(); 1336 1337 /// This records whether all of the fixups using this LSRUse are outside of 1338 /// the loop, in which case some special-case heuristics may be used. 1339 bool AllFixupsOutsideLoop = true; 1340 1341 /// RigidFormula is set to true to guarantee that this use will be associated 1342 /// with a single formula--the one that initially matched. Some SCEV 1343 /// expressions cannot be expanded. This allows LSR to consider the registers 1344 /// used by those expressions without the need to expand them later after 1345 /// changing the formula. 1346 bool RigidFormula = false; 1347 1348 /// This records the widest use type for any fixup using this 1349 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1350 /// fixup widths to be equivalent, because the narrower one may be relying on 1351 /// the implicit truncation to truncate away bogus bits. 1352 Type *WidestFixupType = nullptr; 1353 1354 /// A list of ways to build a value that can satisfy this user. After the 1355 /// list is populated, one of these is selected heuristically and used to 1356 /// formulate a replacement for OperandValToReplace in UserInst. 1357 SmallVector<Formula, 12> Formulae; 1358 1359 /// The set of register candidates used by all formulae in this LSRUse. 1360 SmallPtrSet<const SCEV *, 4> Regs; 1361 1362 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1363 1364 LSRFixup &getNewFixup() { 1365 Fixups.push_back(LSRFixup()); 1366 return Fixups.back(); 1367 } 1368 1369 void pushFixup(LSRFixup &f) { 1370 Fixups.push_back(f); 1371 if (Immediate::isKnownGT(f.Offset, MaxOffset)) 1372 MaxOffset = f.Offset; 1373 if (Immediate::isKnownLT(f.Offset, MinOffset)) 1374 MinOffset = f.Offset; 1375 } 1376 1377 bool HasFormulaWithSameRegs(const Formula &F) const; 1378 float getNotSelectedProbability(const SCEV *Reg) const; 1379 bool InsertFormula(const Formula &F, const Loop &L); 1380 void DeleteFormula(Formula &F); 1381 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1382 1383 void print(raw_ostream &OS) const; 1384 void dump() const; 1385 }; 1386 1387 } // end anonymous namespace 1388 1389 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1390 LSRUse::KindType Kind, MemAccessTy AccessTy, 1391 GlobalValue *BaseGV, Immediate BaseOffset, 1392 bool HasBaseReg, int64_t Scale, 1393 Instruction *Fixup = nullptr); 1394 1395 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1396 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1397 return 1; 1398 if (Depth == 0) 1399 return 0; 1400 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1401 return getSetupCost(S->getStart(), Depth - 1); 1402 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1403 return getSetupCost(S->getOperand(), Depth - 1); 1404 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1405 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1406 [&](unsigned i, const SCEV *Reg) { 1407 return i + getSetupCost(Reg, Depth - 1); 1408 }); 1409 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1410 return getSetupCost(S->getLHS(), Depth - 1) + 1411 getSetupCost(S->getRHS(), Depth - 1); 1412 return 0; 1413 } 1414 1415 /// Tally up interesting quantities from the given register. 1416 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1417 SmallPtrSetImpl<const SCEV *> &Regs) { 1418 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1419 // If this is an addrec for another loop, it should be an invariant 1420 // with respect to L since L is the innermost loop (at least 1421 // for now LSR only handles innermost loops). 1422 if (AR->getLoop() != L) { 1423 // If the AddRec exists, consider it's register free and leave it alone. 1424 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1425 return; 1426 1427 // It is bad to allow LSR for current loop to add induction variables 1428 // for its sibling loops. 1429 if (!AR->getLoop()->contains(L)) { 1430 Lose(); 1431 return; 1432 } 1433 1434 // Otherwise, it will be an invariant with respect to Loop L. 1435 ++C.NumRegs; 1436 return; 1437 } 1438 1439 unsigned LoopCost = 1; 1440 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1441 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1442 1443 // If the step size matches the base offset, we could use pre-indexed 1444 // addressing. 1445 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) { 1446 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1447 if (Step->getAPInt() == F.BaseOffset.getFixedValue()) 1448 LoopCost = 0; 1449 } else if (AMK == TTI::AMK_PostIndexed) { 1450 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1451 if (isa<SCEVConstant>(LoopStep)) { 1452 const SCEV *LoopStart = AR->getStart(); 1453 if (!isa<SCEVConstant>(LoopStart) && 1454 SE->isLoopInvariant(LoopStart, L)) 1455 LoopCost = 0; 1456 } 1457 } 1458 } 1459 C.AddRecCost += LoopCost; 1460 1461 // Add the step value register, if it needs one. 1462 // TODO: The non-affine case isn't precisely modeled here. 1463 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1464 if (!Regs.count(AR->getOperand(1))) { 1465 RateRegister(F, AR->getOperand(1), Regs); 1466 if (isLoser()) 1467 return; 1468 } 1469 } 1470 } 1471 ++C.NumRegs; 1472 1473 // Rough heuristic; favor registers which don't require extra setup 1474 // instructions in the preheader. 1475 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1476 // Ensure we don't, even with the recusion limit, produce invalid costs. 1477 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1478 1479 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1480 SE->hasComputableLoopEvolution(Reg, L); 1481 } 1482 1483 /// Record this register in the set. If we haven't seen it before, rate 1484 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1485 /// one of those regs an instant loser. 1486 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1487 SmallPtrSetImpl<const SCEV *> &Regs, 1488 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1489 if (LoserRegs && LoserRegs->count(Reg)) { 1490 Lose(); 1491 return; 1492 } 1493 if (Regs.insert(Reg).second) { 1494 RateRegister(F, Reg, Regs); 1495 if (LoserRegs && isLoser()) 1496 LoserRegs->insert(Reg); 1497 } 1498 } 1499 1500 void Cost::RateFormula(const Formula &F, 1501 SmallPtrSetImpl<const SCEV *> &Regs, 1502 const DenseSet<const SCEV *> &VisitedRegs, 1503 const LSRUse &LU, 1504 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1505 if (isLoser()) 1506 return; 1507 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1508 // Tally up the registers. 1509 unsigned PrevAddRecCost = C.AddRecCost; 1510 unsigned PrevNumRegs = C.NumRegs; 1511 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1512 if (const SCEV *ScaledReg = F.ScaledReg) { 1513 if (VisitedRegs.count(ScaledReg)) { 1514 Lose(); 1515 return; 1516 } 1517 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1518 if (isLoser()) 1519 return; 1520 } 1521 for (const SCEV *BaseReg : F.BaseRegs) { 1522 if (VisitedRegs.count(BaseReg)) { 1523 Lose(); 1524 return; 1525 } 1526 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1527 if (isLoser()) 1528 return; 1529 } 1530 1531 // Determine how many (unfolded) adds we'll need inside the loop. 1532 size_t NumBaseParts = F.getNumRegs(); 1533 if (NumBaseParts > 1) 1534 // Do not count the base and a possible second register if the target 1535 // allows to fold 2 registers. 1536 C.NumBaseAdds += 1537 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1538 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); 1539 1540 // Accumulate non-free scaling amounts. 1541 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1542 1543 // Tally up the non-zero immediates. 1544 for (const LSRFixup &Fixup : LU.Fixups) { 1545 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) { 1546 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset); 1547 if (F.BaseGV) 1548 C.ImmCost += 64; // Handle symbolic values conservatively. 1549 // TODO: This should probably be the pointer size. 1550 else if (Offset.isNonZero()) 1551 C.ImmCost += 1552 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); 1553 1554 // Check with target if this offset with this instruction is 1555 // specifically not supported. 1556 if (LU.Kind == LSRUse::Address && Offset.isNonZero() && 1557 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1558 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1559 C.NumBaseAdds++; 1560 } else { 1561 // Incompatible immediate type, increase cost to avoid using 1562 C.ImmCost += 2048; 1563 } 1564 } 1565 1566 // If we don't count instruction cost exit here. 1567 if (!InsnsCost) { 1568 assert(isValid() && "invalid cost"); 1569 return; 1570 } 1571 1572 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1573 // additional instruction (at least fill). 1574 // TODO: Need distinguish register class? 1575 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1576 TTI->getRegisterClassForType(false, F.getType())) - 1; 1577 if (C.NumRegs > TTIRegNum) { 1578 // Cost already exceeded TTIRegNum, then only newly added register can add 1579 // new instructions. 1580 if (PrevNumRegs > TTIRegNum) 1581 C.Insns += (C.NumRegs - PrevNumRegs); 1582 else 1583 C.Insns += (C.NumRegs - TTIRegNum); 1584 } 1585 1586 // If ICmpZero formula ends with not 0, it could not be replaced by 1587 // just add or sub. We'll need to compare final result of AddRec. 1588 // That means we'll need an additional instruction. But if the target can 1589 // macro-fuse a compare with a branch, don't count this extra instruction. 1590 // For -10 + {0, +, 1}: 1591 // i = i + 1; 1592 // cmp i, 10 1593 // 1594 // For {-10, +, 1}: 1595 // i = i + 1; 1596 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1597 !TTI->canMacroFuseCmp()) 1598 C.Insns++; 1599 // Each new AddRec adds 1 instruction to calculation. 1600 C.Insns += (C.AddRecCost - PrevAddRecCost); 1601 1602 // BaseAdds adds instructions for unfolded registers. 1603 if (LU.Kind != LSRUse::ICmpZero) 1604 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1605 assert(isValid() && "invalid cost"); 1606 } 1607 1608 /// Set this cost to a losing value. 1609 void Cost::Lose() { 1610 C.Insns = std::numeric_limits<unsigned>::max(); 1611 C.NumRegs = std::numeric_limits<unsigned>::max(); 1612 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1613 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1614 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1615 C.ImmCost = std::numeric_limits<unsigned>::max(); 1616 C.SetupCost = std::numeric_limits<unsigned>::max(); 1617 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1618 } 1619 1620 /// Choose the lower cost. 1621 bool Cost::isLess(const Cost &Other) const { 1622 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1623 C.Insns != Other.C.Insns) 1624 return C.Insns < Other.C.Insns; 1625 return TTI->isLSRCostLess(C, Other.C); 1626 } 1627 1628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1629 void Cost::print(raw_ostream &OS) const { 1630 if (InsnsCost) 1631 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1632 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1633 if (C.AddRecCost != 0) 1634 OS << ", with addrec cost " << C.AddRecCost; 1635 if (C.NumIVMuls != 0) 1636 OS << ", plus " << C.NumIVMuls << " IV mul" 1637 << (C.NumIVMuls == 1 ? "" : "s"); 1638 if (C.NumBaseAdds != 0) 1639 OS << ", plus " << C.NumBaseAdds << " base add" 1640 << (C.NumBaseAdds == 1 ? "" : "s"); 1641 if (C.ScaleCost != 0) 1642 OS << ", plus " << C.ScaleCost << " scale cost"; 1643 if (C.ImmCost != 0) 1644 OS << ", plus " << C.ImmCost << " imm cost"; 1645 if (C.SetupCost != 0) 1646 OS << ", plus " << C.SetupCost << " setup cost"; 1647 } 1648 1649 LLVM_DUMP_METHOD void Cost::dump() const { 1650 print(errs()); errs() << '\n'; 1651 } 1652 #endif 1653 1654 /// Test whether this fixup always uses its value outside of the given loop. 1655 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1656 // PHI nodes use their value in their incoming blocks. 1657 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1658 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1659 if (PN->getIncomingValue(i) == OperandValToReplace && 1660 L->contains(PN->getIncomingBlock(i))) 1661 return false; 1662 return true; 1663 } 1664 1665 return !L->contains(UserInst); 1666 } 1667 1668 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1669 void LSRFixup::print(raw_ostream &OS) const { 1670 OS << "UserInst="; 1671 // Store is common and interesting enough to be worth special-casing. 1672 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1673 OS << "store "; 1674 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1675 } else if (UserInst->getType()->isVoidTy()) 1676 OS << UserInst->getOpcodeName(); 1677 else 1678 UserInst->printAsOperand(OS, /*PrintType=*/false); 1679 1680 OS << ", OperandValToReplace="; 1681 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1682 1683 for (const Loop *PIL : PostIncLoops) { 1684 OS << ", PostIncLoop="; 1685 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1686 } 1687 1688 if (Offset.isNonZero()) 1689 OS << ", Offset=" << Offset; 1690 } 1691 1692 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1693 print(errs()); errs() << '\n'; 1694 } 1695 #endif 1696 1697 /// Test whether this use as a formula which has the same registers as the given 1698 /// formula. 1699 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1700 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1701 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1702 // Unstable sort by host order ok, because this is only used for uniquifying. 1703 llvm::sort(Key); 1704 return Uniquifier.count(Key); 1705 } 1706 1707 /// The function returns a probability of selecting formula without Reg. 1708 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1709 unsigned FNum = 0; 1710 for (const Formula &F : Formulae) 1711 if (F.referencesReg(Reg)) 1712 FNum++; 1713 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1714 } 1715 1716 /// If the given formula has not yet been inserted, add it to the list, and 1717 /// return true. Return false otherwise. The formula must be in canonical form. 1718 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1719 assert(F.isCanonical(L) && "Invalid canonical representation"); 1720 1721 if (!Formulae.empty() && RigidFormula) 1722 return false; 1723 1724 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1725 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1726 // Unstable sort by host order ok, because this is only used for uniquifying. 1727 llvm::sort(Key); 1728 1729 if (!Uniquifier.insert(Key).second) 1730 return false; 1731 1732 // Using a register to hold the value of 0 is not profitable. 1733 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1734 "Zero allocated in a scaled register!"); 1735 #ifndef NDEBUG 1736 for (const SCEV *BaseReg : F.BaseRegs) 1737 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1738 #endif 1739 1740 // Add the formula to the list. 1741 Formulae.push_back(F); 1742 1743 // Record registers now being used by this use. 1744 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1745 if (F.ScaledReg) 1746 Regs.insert(F.ScaledReg); 1747 1748 return true; 1749 } 1750 1751 /// Remove the given formula from this use's list. 1752 void LSRUse::DeleteFormula(Formula &F) { 1753 if (&F != &Formulae.back()) 1754 std::swap(F, Formulae.back()); 1755 Formulae.pop_back(); 1756 } 1757 1758 /// Recompute the Regs field, and update RegUses. 1759 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1760 // Now that we've filtered out some formulae, recompute the Regs set. 1761 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1762 Regs.clear(); 1763 for (const Formula &F : Formulae) { 1764 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1765 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1766 } 1767 1768 // Update the RegTracker. 1769 for (const SCEV *S : OldRegs) 1770 if (!Regs.count(S)) 1771 RegUses.dropRegister(S, LUIdx); 1772 } 1773 1774 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1775 void LSRUse::print(raw_ostream &OS) const { 1776 OS << "LSR Use: Kind="; 1777 switch (Kind) { 1778 case Basic: OS << "Basic"; break; 1779 case Special: OS << "Special"; break; 1780 case ICmpZero: OS << "ICmpZero"; break; 1781 case Address: 1782 OS << "Address of "; 1783 if (AccessTy.MemTy->isPointerTy()) 1784 OS << "pointer"; // the full pointer type could be really verbose 1785 else { 1786 OS << *AccessTy.MemTy; 1787 } 1788 1789 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1790 } 1791 1792 OS << ", Offsets={"; 1793 bool NeedComma = false; 1794 for (const LSRFixup &Fixup : Fixups) { 1795 if (NeedComma) OS << ','; 1796 OS << Fixup.Offset; 1797 NeedComma = true; 1798 } 1799 OS << '}'; 1800 1801 if (AllFixupsOutsideLoop) 1802 OS << ", all-fixups-outside-loop"; 1803 1804 if (WidestFixupType) 1805 OS << ", widest fixup type: " << *WidestFixupType; 1806 } 1807 1808 LLVM_DUMP_METHOD void LSRUse::dump() const { 1809 print(errs()); errs() << '\n'; 1810 } 1811 #endif 1812 1813 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1814 LSRUse::KindType Kind, MemAccessTy AccessTy, 1815 GlobalValue *BaseGV, Immediate BaseOffset, 1816 bool HasBaseReg, int64_t Scale, 1817 Instruction *Fixup /* = nullptr */) { 1818 switch (Kind) { 1819 case LSRUse::Address: { 1820 int64_t FixedOffset = 1821 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); 1822 int64_t ScalableOffset = 1823 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; 1824 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset, 1825 HasBaseReg, Scale, AccessTy.AddrSpace, 1826 Fixup, ScalableOffset); 1827 } 1828 case LSRUse::ICmpZero: 1829 // There's not even a target hook for querying whether it would be legal to 1830 // fold a GV into an ICmp. 1831 if (BaseGV) 1832 return false; 1833 1834 // ICmp only has two operands; don't allow more than two non-trivial parts. 1835 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) 1836 return false; 1837 1838 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1839 // putting the scaled register in the other operand of the icmp. 1840 if (Scale != 0 && Scale != -1) 1841 return false; 1842 1843 // If we have low-level target information, ask the target if it can fold an 1844 // integer immediate on an icmp. 1845 if (BaseOffset.isNonZero()) { 1846 // We don't have an interface to query whether the target supports 1847 // icmpzero against scalable quantities yet. 1848 if (BaseOffset.isScalable()) 1849 return false; 1850 1851 // We have one of: 1852 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1853 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1854 // Offs is the ICmp immediate. 1855 if (Scale == 0) 1856 // The cast does the right thing with 1857 // std::numeric_limits<int64_t>::min(). 1858 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue()); 1859 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue()); 1860 } 1861 1862 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1863 return true; 1864 1865 case LSRUse::Basic: 1866 // Only handle single-register values. 1867 return !BaseGV && Scale == 0 && BaseOffset.isZero(); 1868 1869 case LSRUse::Special: 1870 // Special case Basic to handle -1 scales. 1871 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); 1872 } 1873 1874 llvm_unreachable("Invalid LSRUse Kind!"); 1875 } 1876 1877 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1878 Immediate MinOffset, Immediate MaxOffset, 1879 LSRUse::KindType Kind, MemAccessTy AccessTy, 1880 GlobalValue *BaseGV, Immediate BaseOffset, 1881 bool HasBaseReg, int64_t Scale) { 1882 if (BaseOffset.isNonZero() && 1883 (BaseOffset.isScalable() != MinOffset.isScalable() || 1884 BaseOffset.isScalable() != MaxOffset.isScalable())) 1885 return false; 1886 // Check for overflow. 1887 int64_t Base = BaseOffset.getKnownMinValue(); 1888 int64_t Min = MinOffset.getKnownMinValue(); 1889 int64_t Max = MaxOffset.getKnownMinValue(); 1890 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) 1891 return false; 1892 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable()); 1893 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) 1894 return false; 1895 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable()); 1896 1897 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1898 HasBaseReg, Scale) && 1899 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1900 HasBaseReg, Scale); 1901 } 1902 1903 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1904 Immediate MinOffset, Immediate MaxOffset, 1905 LSRUse::KindType Kind, MemAccessTy AccessTy, 1906 const Formula &F, const Loop &L) { 1907 // For the purpose of isAMCompletelyFolded either having a canonical formula 1908 // or a scale not equal to zero is correct. 1909 // Problems may arise from non canonical formulae having a scale == 0. 1910 // Strictly speaking it would best to just rely on canonical formulae. 1911 // However, when we generate the scaled formulae, we first check that the 1912 // scaling factor is profitable before computing the actual ScaledReg for 1913 // compile time sake. 1914 assert((F.isCanonical(L) || F.Scale != 0)); 1915 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1916 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1917 } 1918 1919 /// Test whether we know how to expand the current formula. 1920 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1921 Immediate MaxOffset, LSRUse::KindType Kind, 1922 MemAccessTy AccessTy, GlobalValue *BaseGV, 1923 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { 1924 // We know how to expand completely foldable formulae. 1925 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1926 BaseOffset, HasBaseReg, Scale) || 1927 // Or formulae that use a base register produced by a sum of base 1928 // registers. 1929 (Scale == 1 && 1930 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1931 BaseGV, BaseOffset, true, 0)); 1932 } 1933 1934 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1935 Immediate MaxOffset, LSRUse::KindType Kind, 1936 MemAccessTy AccessTy, const Formula &F) { 1937 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1938 F.BaseOffset, F.HasBaseReg, F.Scale); 1939 } 1940 1941 static bool isLegalAddImmediate(const TargetTransformInfo &TTI, 1942 Immediate Offset) { 1943 if (Offset.isScalable()) 1944 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue()); 1945 1946 return TTI.isLegalAddImmediate(Offset.getFixedValue()); 1947 } 1948 1949 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1950 const LSRUse &LU, const Formula &F) { 1951 // Target may want to look at the user instructions. 1952 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1953 for (const LSRFixup &Fixup : LU.Fixups) 1954 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1955 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1956 F.Scale, Fixup.UserInst)) 1957 return false; 1958 return true; 1959 } 1960 1961 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1962 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1963 F.Scale); 1964 } 1965 1966 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1967 const LSRUse &LU, const Formula &F, 1968 const Loop &L) { 1969 if (!F.Scale) 1970 return 0; 1971 1972 // If the use is not completely folded in that instruction, we will have to 1973 // pay an extra cost only for scale != 1. 1974 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1975 LU.AccessTy, F, L)) 1976 return F.Scale != 1; 1977 1978 switch (LU.Kind) { 1979 case LSRUse::Address: { 1980 // Check the scaling factor cost with both the min and max offsets. 1981 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; 1982 if (F.BaseOffset.isScalable()) { 1983 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); 1984 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); 1985 } else { 1986 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); 1987 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); 1988 } 1989 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1990 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin), 1991 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1992 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1993 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax), 1994 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1995 1996 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1997 "Legal addressing mode has an illegal cost!"); 1998 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1999 } 2000 case LSRUse::ICmpZero: 2001 case LSRUse::Basic: 2002 case LSRUse::Special: 2003 // The use is completely folded, i.e., everything is folded into the 2004 // instruction. 2005 return 0; 2006 } 2007 2008 llvm_unreachable("Invalid LSRUse Kind!"); 2009 } 2010 2011 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2012 LSRUse::KindType Kind, MemAccessTy AccessTy, 2013 GlobalValue *BaseGV, Immediate BaseOffset, 2014 bool HasBaseReg) { 2015 // Fast-path: zero is always foldable. 2016 if (BaseOffset.isZero() && !BaseGV) 2017 return true; 2018 2019 // Conservatively, create an address with an immediate and a 2020 // base and a scale. 2021 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2022 2023 // Canonicalize a scale of 1 to a base register if the formula doesn't 2024 // already have a base register. 2025 if (!HasBaseReg && Scale == 1) { 2026 Scale = 0; 2027 HasBaseReg = true; 2028 } 2029 2030 // FIXME: Try with + without a scale? Maybe based on TTI? 2031 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' 2032 // default for many architectures, not just AArch64 SVE. More investigation 2033 // needed later to determine if this should be used more widely than just 2034 // on scalable types. 2035 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && 2036 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) 2037 Scale = 0; 2038 2039 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 2040 HasBaseReg, Scale); 2041 } 2042 2043 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2044 ScalarEvolution &SE, Immediate MinOffset, 2045 Immediate MaxOffset, LSRUse::KindType Kind, 2046 MemAccessTy AccessTy, const SCEV *S, 2047 bool HasBaseReg) { 2048 // Fast-path: zero is always foldable. 2049 if (S->isZero()) return true; 2050 2051 // Conservatively, create an address with an immediate and a 2052 // base and a scale. 2053 Immediate BaseOffset = ExtractImmediate(S, SE); 2054 GlobalValue *BaseGV = ExtractSymbol(S, SE); 2055 2056 // If there's anything else involved, it's not foldable. 2057 if (!S->isZero()) return false; 2058 2059 // Fast-path: zero is always foldable. 2060 if (BaseOffset.isZero() && !BaseGV) 2061 return true; 2062 2063 if (BaseOffset.isScalable()) 2064 return false; 2065 2066 // Conservatively, create an address with an immediate and a 2067 // base and a scale. 2068 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2069 2070 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 2071 BaseOffset, HasBaseReg, Scale); 2072 } 2073 2074 namespace { 2075 2076 /// An individual increment in a Chain of IV increments. Relate an IV user to 2077 /// an expression that computes the IV it uses from the IV used by the previous 2078 /// link in the Chain. 2079 /// 2080 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 2081 /// original IVOperand. The head of the chain's IVOperand is only valid during 2082 /// chain collection, before LSR replaces IV users. During chain generation, 2083 /// IncExpr can be used to find the new IVOperand that computes the same 2084 /// expression. 2085 struct IVInc { 2086 Instruction *UserInst; 2087 Value* IVOperand; 2088 const SCEV *IncExpr; 2089 2090 IVInc(Instruction *U, Value *O, const SCEV *E) 2091 : UserInst(U), IVOperand(O), IncExpr(E) {} 2092 }; 2093 2094 // The list of IV increments in program order. We typically add the head of a 2095 // chain without finding subsequent links. 2096 struct IVChain { 2097 SmallVector<IVInc, 1> Incs; 2098 const SCEV *ExprBase = nullptr; 2099 2100 IVChain() = default; 2101 IVChain(const IVInc &Head, const SCEV *Base) 2102 : Incs(1, Head), ExprBase(Base) {} 2103 2104 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 2105 2106 // Return the first increment in the chain. 2107 const_iterator begin() const { 2108 assert(!Incs.empty()); 2109 return std::next(Incs.begin()); 2110 } 2111 const_iterator end() const { 2112 return Incs.end(); 2113 } 2114 2115 // Returns true if this chain contains any increments. 2116 bool hasIncs() const { return Incs.size() >= 2; } 2117 2118 // Add an IVInc to the end of this chain. 2119 void add(const IVInc &X) { Incs.push_back(X); } 2120 2121 // Returns the last UserInst in the chain. 2122 Instruction *tailUserInst() const { return Incs.back().UserInst; } 2123 2124 // Returns true if IncExpr can be profitably added to this chain. 2125 bool isProfitableIncrement(const SCEV *OperExpr, 2126 const SCEV *IncExpr, 2127 ScalarEvolution&); 2128 }; 2129 2130 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 2131 /// between FarUsers that definitely cross IV increments and NearUsers that may 2132 /// be used between IV increments. 2133 struct ChainUsers { 2134 SmallPtrSet<Instruction*, 4> FarUsers; 2135 SmallPtrSet<Instruction*, 4> NearUsers; 2136 }; 2137 2138 /// This class holds state for the main loop strength reduction logic. 2139 class LSRInstance { 2140 IVUsers &IU; 2141 ScalarEvolution &SE; 2142 DominatorTree &DT; 2143 LoopInfo &LI; 2144 AssumptionCache &AC; 2145 TargetLibraryInfo &TLI; 2146 const TargetTransformInfo &TTI; 2147 Loop *const L; 2148 MemorySSAUpdater *MSSAU; 2149 TTI::AddressingModeKind AMK; 2150 mutable SCEVExpander Rewriter; 2151 bool Changed = false; 2152 2153 /// This is the insert position that the current loop's induction variable 2154 /// increment should be placed. In simple loops, this is the latch block's 2155 /// terminator. But in more complicated cases, this is a position which will 2156 /// dominate all the in-loop post-increment users. 2157 Instruction *IVIncInsertPos = nullptr; 2158 2159 /// Interesting factors between use strides. 2160 /// 2161 /// We explicitly use a SetVector which contains a SmallSet, instead of the 2162 /// default, a SmallDenseSet, because we need to use the full range of 2163 /// int64_ts, and there's currently no good way of doing that with 2164 /// SmallDenseSet. 2165 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 2166 2167 /// The cost of the current SCEV, the best solution by LSR will be dropped if 2168 /// the solution is not profitable. 2169 Cost BaselineCost; 2170 2171 /// Interesting use types, to facilitate truncation reuse. 2172 SmallSetVector<Type *, 4> Types; 2173 2174 /// The list of interesting uses. 2175 mutable SmallVector<LSRUse, 16> Uses; 2176 2177 /// Track which uses use which register candidates. 2178 RegUseTracker RegUses; 2179 2180 // Limit the number of chains to avoid quadratic behavior. We don't expect to 2181 // have more than a few IV increment chains in a loop. Missing a Chain falls 2182 // back to normal LSR behavior for those uses. 2183 static const unsigned MaxChains = 8; 2184 2185 /// IV users can form a chain of IV increments. 2186 SmallVector<IVChain, MaxChains> IVChainVec; 2187 2188 /// IV users that belong to profitable IVChains. 2189 SmallPtrSet<Use*, MaxChains> IVIncSet; 2190 2191 /// Induction variables that were generated and inserted by the SCEV Expander. 2192 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2193 2194 void OptimizeShadowIV(); 2195 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2196 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2197 void OptimizeLoopTermCond(); 2198 2199 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2200 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2201 void FinalizeChain(IVChain &Chain); 2202 void CollectChains(); 2203 void GenerateIVChain(const IVChain &Chain, 2204 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2205 2206 void CollectInterestingTypesAndFactors(); 2207 void CollectFixupsAndInitialFormulae(); 2208 2209 // Support for sharing of LSRUses between LSRFixups. 2210 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2211 UseMapTy UseMap; 2212 2213 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, 2214 LSRUse::KindType Kind, MemAccessTy AccessTy); 2215 2216 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2217 MemAccessTy AccessTy); 2218 2219 void DeleteUse(LSRUse &LU, size_t LUIdx); 2220 2221 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2222 2223 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2224 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2225 void CountRegisters(const Formula &F, size_t LUIdx); 2226 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2227 2228 void CollectLoopInvariantFixupsAndFormulae(); 2229 2230 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2231 unsigned Depth = 0); 2232 2233 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2234 const Formula &Base, unsigned Depth, 2235 size_t Idx, bool IsScaledReg = false); 2236 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2237 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2238 const Formula &Base, size_t Idx, 2239 bool IsScaledReg = false); 2240 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2241 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2242 const Formula &Base, 2243 const SmallVectorImpl<Immediate> &Worklist, 2244 size_t Idx, bool IsScaledReg = false); 2245 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2246 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2247 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2248 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2249 void GenerateCrossUseConstantOffsets(); 2250 void GenerateAllReuseFormulae(); 2251 2252 void FilterOutUndesirableDedicatedRegisters(); 2253 2254 size_t EstimateSearchSpaceComplexity() const; 2255 void NarrowSearchSpaceByDetectingSupersets(); 2256 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2257 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2258 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2259 void NarrowSearchSpaceByFilterPostInc(); 2260 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2261 void NarrowSearchSpaceByPickingWinnerRegs(); 2262 void NarrowSearchSpaceUsingHeuristics(); 2263 2264 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2265 Cost &SolutionCost, 2266 SmallVectorImpl<const Formula *> &Workspace, 2267 const Cost &CurCost, 2268 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2269 DenseSet<const SCEV *> &VisitedRegs) const; 2270 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2271 2272 BasicBlock::iterator 2273 HoistInsertPosition(BasicBlock::iterator IP, 2274 const SmallVectorImpl<Instruction *> &Inputs) const; 2275 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2276 const LSRFixup &LF, 2277 const LSRUse &LU) const; 2278 2279 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2280 BasicBlock::iterator IP, 2281 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2282 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2283 const Formula &F, 2284 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2285 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2286 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2287 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2288 2289 public: 2290 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2291 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2292 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2293 2294 bool getChanged() const { return Changed; } 2295 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2296 return ScalarEvolutionIVs; 2297 } 2298 2299 void print_factors_and_types(raw_ostream &OS) const; 2300 void print_fixups(raw_ostream &OS) const; 2301 void print_uses(raw_ostream &OS) const; 2302 void print(raw_ostream &OS) const; 2303 void dump() const; 2304 }; 2305 2306 } // end anonymous namespace 2307 2308 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2309 /// the cast operation. 2310 void LSRInstance::OptimizeShadowIV() { 2311 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2312 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2313 return; 2314 2315 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2316 UI != E; /* empty */) { 2317 IVUsers::const_iterator CandidateUI = UI; 2318 ++UI; 2319 Instruction *ShadowUse = CandidateUI->getUser(); 2320 Type *DestTy = nullptr; 2321 bool IsSigned = false; 2322 2323 /* If shadow use is a int->float cast then insert a second IV 2324 to eliminate this cast. 2325 2326 for (unsigned i = 0; i < n; ++i) 2327 foo((double)i); 2328 2329 is transformed into 2330 2331 double d = 0.0; 2332 for (unsigned i = 0; i < n; ++i, ++d) 2333 foo(d); 2334 */ 2335 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2336 IsSigned = false; 2337 DestTy = UCast->getDestTy(); 2338 } 2339 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2340 IsSigned = true; 2341 DestTy = SCast->getDestTy(); 2342 } 2343 if (!DestTy) continue; 2344 2345 // If target does not support DestTy natively then do not apply 2346 // this transformation. 2347 if (!TTI.isTypeLegal(DestTy)) continue; 2348 2349 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2350 if (!PH) continue; 2351 if (PH->getNumIncomingValues() != 2) continue; 2352 2353 // If the calculation in integers overflows, the result in FP type will 2354 // differ. So we only can do this transformation if we are guaranteed to not 2355 // deal with overflowing values 2356 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2357 if (!AR) continue; 2358 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2359 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2360 2361 Type *SrcTy = PH->getType(); 2362 int Mantissa = DestTy->getFPMantissaWidth(); 2363 if (Mantissa == -1) continue; 2364 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2365 continue; 2366 2367 unsigned Entry, Latch; 2368 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2369 Entry = 0; 2370 Latch = 1; 2371 } else { 2372 Entry = 1; 2373 Latch = 0; 2374 } 2375 2376 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2377 if (!Init) continue; 2378 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2379 (double)Init->getSExtValue() : 2380 (double)Init->getZExtValue()); 2381 2382 BinaryOperator *Incr = 2383 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2384 if (!Incr) continue; 2385 if (Incr->getOpcode() != Instruction::Add 2386 && Incr->getOpcode() != Instruction::Sub) 2387 continue; 2388 2389 /* Initialize new IV, double d = 0.0 in above example. */ 2390 ConstantInt *C = nullptr; 2391 if (Incr->getOperand(0) == PH) 2392 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2393 else if (Incr->getOperand(1) == PH) 2394 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2395 else 2396 continue; 2397 2398 if (!C) continue; 2399 2400 // Ignore negative constants, as the code below doesn't handle them 2401 // correctly. TODO: Remove this restriction. 2402 if (!C->getValue().isStrictlyPositive()) 2403 continue; 2404 2405 /* Add new PHINode. */ 2406 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator()); 2407 NewPH->setDebugLoc(PH->getDebugLoc()); 2408 2409 /* create new increment. '++d' in above example. */ 2410 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2411 BinaryOperator *NewIncr = BinaryOperator::Create( 2412 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd 2413 : Instruction::FSub, 2414 NewPH, CFP, "IV.S.next.", Incr->getIterator()); 2415 NewIncr->setDebugLoc(Incr->getDebugLoc()); 2416 2417 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2418 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2419 2420 /* Remove cast operation */ 2421 ShadowUse->replaceAllUsesWith(NewPH); 2422 ShadowUse->eraseFromParent(); 2423 Changed = true; 2424 break; 2425 } 2426 } 2427 2428 /// If Cond has an operand that is an expression of an IV, set the IV user and 2429 /// stride information and return true, otherwise return false. 2430 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2431 for (IVStrideUse &U : IU) 2432 if (U.getUser() == Cond) { 2433 // NOTE: we could handle setcc instructions with multiple uses here, but 2434 // InstCombine does it as well for simple uses, it's not clear that it 2435 // occurs enough in real life to handle. 2436 CondUse = &U; 2437 return true; 2438 } 2439 return false; 2440 } 2441 2442 /// Rewrite the loop's terminating condition if it uses a max computation. 2443 /// 2444 /// This is a narrow solution to a specific, but acute, problem. For loops 2445 /// like this: 2446 /// 2447 /// i = 0; 2448 /// do { 2449 /// p[i] = 0.0; 2450 /// } while (++i < n); 2451 /// 2452 /// the trip count isn't just 'n', because 'n' might not be positive. And 2453 /// unfortunately this can come up even for loops where the user didn't use 2454 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2455 /// will commonly be lowered like this: 2456 /// 2457 /// if (n > 0) { 2458 /// i = 0; 2459 /// do { 2460 /// p[i] = 0.0; 2461 /// } while (++i < n); 2462 /// } 2463 /// 2464 /// and then it's possible for subsequent optimization to obscure the if 2465 /// test in such a way that indvars can't find it. 2466 /// 2467 /// When indvars can't find the if test in loops like this, it creates a 2468 /// max expression, which allows it to give the loop a canonical 2469 /// induction variable: 2470 /// 2471 /// i = 0; 2472 /// max = n < 1 ? 1 : n; 2473 /// do { 2474 /// p[i] = 0.0; 2475 /// } while (++i != max); 2476 /// 2477 /// Canonical induction variables are necessary because the loop passes 2478 /// are designed around them. The most obvious example of this is the 2479 /// LoopInfo analysis, which doesn't remember trip count values. It 2480 /// expects to be able to rediscover the trip count each time it is 2481 /// needed, and it does this using a simple analysis that only succeeds if 2482 /// the loop has a canonical induction variable. 2483 /// 2484 /// However, when it comes time to generate code, the maximum operation 2485 /// can be quite costly, especially if it's inside of an outer loop. 2486 /// 2487 /// This function solves this problem by detecting this type of loop and 2488 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2489 /// the instructions for the maximum computation. 2490 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2491 // Check that the loop matches the pattern we're looking for. 2492 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2493 Cond->getPredicate() != CmpInst::ICMP_NE) 2494 return Cond; 2495 2496 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2497 if (!Sel || !Sel->hasOneUse()) return Cond; 2498 2499 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2500 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2501 return Cond; 2502 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2503 2504 // Add one to the backedge-taken count to get the trip count. 2505 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2506 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2507 2508 // Check for a max calculation that matches the pattern. There's no check 2509 // for ICMP_ULE here because the comparison would be with zero, which 2510 // isn't interesting. 2511 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2512 const SCEVNAryExpr *Max = nullptr; 2513 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2514 Pred = ICmpInst::ICMP_SLE; 2515 Max = S; 2516 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2517 Pred = ICmpInst::ICMP_SLT; 2518 Max = S; 2519 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2520 Pred = ICmpInst::ICMP_ULT; 2521 Max = U; 2522 } else { 2523 // No match; bail. 2524 return Cond; 2525 } 2526 2527 // To handle a max with more than two operands, this optimization would 2528 // require additional checking and setup. 2529 if (Max->getNumOperands() != 2) 2530 return Cond; 2531 2532 const SCEV *MaxLHS = Max->getOperand(0); 2533 const SCEV *MaxRHS = Max->getOperand(1); 2534 2535 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2536 // for a comparison with 1. For <= and >=, a comparison with zero. 2537 if (!MaxLHS || 2538 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2539 return Cond; 2540 2541 // Check the relevant induction variable for conformance to 2542 // the pattern. 2543 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2545 if (!AR || !AR->isAffine() || 2546 AR->getStart() != One || 2547 AR->getStepRecurrence(SE) != One) 2548 return Cond; 2549 2550 assert(AR->getLoop() == L && 2551 "Loop condition operand is an addrec in a different loop!"); 2552 2553 // Check the right operand of the select, and remember it, as it will 2554 // be used in the new comparison instruction. 2555 Value *NewRHS = nullptr; 2556 if (ICmpInst::isTrueWhenEqual(Pred)) { 2557 // Look for n+1, and grab n. 2558 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2559 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2560 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2561 NewRHS = BO->getOperand(0); 2562 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2563 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2564 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2565 NewRHS = BO->getOperand(0); 2566 if (!NewRHS) 2567 return Cond; 2568 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2569 NewRHS = Sel->getOperand(1); 2570 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2571 NewRHS = Sel->getOperand(2); 2572 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2573 NewRHS = SU->getValue(); 2574 else 2575 // Max doesn't match expected pattern. 2576 return Cond; 2577 2578 // Determine the new comparison opcode. It may be signed or unsigned, 2579 // and the original comparison may be either equality or inequality. 2580 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2581 Pred = CmpInst::getInversePredicate(Pred); 2582 2583 // Ok, everything looks ok to change the condition into an SLT or SGE and 2584 // delete the max calculation. 2585 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, 2586 Cond->getOperand(0), NewRHS, "scmp"); 2587 2588 // Delete the max calculation instructions. 2589 NewCond->setDebugLoc(Cond->getDebugLoc()); 2590 Cond->replaceAllUsesWith(NewCond); 2591 CondUse->setUser(NewCond); 2592 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2593 Cond->eraseFromParent(); 2594 Sel->eraseFromParent(); 2595 if (Cmp->use_empty()) 2596 Cmp->eraseFromParent(); 2597 return NewCond; 2598 } 2599 2600 /// Change loop terminating condition to use the postinc iv when possible. 2601 void 2602 LSRInstance::OptimizeLoopTermCond() { 2603 SmallPtrSet<Instruction *, 4> PostIncs; 2604 2605 // We need a different set of heuristics for rotated and non-rotated loops. 2606 // If a loop is rotated then the latch is also the backedge, so inserting 2607 // post-inc expressions just before the latch is ideal. To reduce live ranges 2608 // it also makes sense to rewrite terminating conditions to use post-inc 2609 // expressions. 2610 // 2611 // If the loop is not rotated then the latch is not a backedge; the latch 2612 // check is done in the loop head. Adding post-inc expressions before the 2613 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2614 // in the loop body. In this case we do *not* want to use post-inc expressions 2615 // in the latch check, and we want to insert post-inc expressions before 2616 // the backedge. 2617 BasicBlock *LatchBlock = L->getLoopLatch(); 2618 SmallVector<BasicBlock*, 8> ExitingBlocks; 2619 L->getExitingBlocks(ExitingBlocks); 2620 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2621 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2622 IVIncInsertPos = LatchBlock->getTerminator(); 2623 return; 2624 } 2625 2626 // Otherwise treat this as a rotated loop. 2627 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2628 // Get the terminating condition for the loop if possible. If we 2629 // can, we want to change it to use a post-incremented version of its 2630 // induction variable, to allow coalescing the live ranges for the IV into 2631 // one register value. 2632 2633 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2634 if (!TermBr) 2635 continue; 2636 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2637 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2638 continue; 2639 2640 // Search IVUsesByStride to find Cond's IVUse if there is one. 2641 IVStrideUse *CondUse = nullptr; 2642 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2643 if (!FindIVUserForCond(Cond, CondUse)) 2644 continue; 2645 2646 // If the trip count is computed in terms of a max (due to ScalarEvolution 2647 // being unable to find a sufficient guard, for example), change the loop 2648 // comparison to use SLT or ULT instead of NE. 2649 // One consequence of doing this now is that it disrupts the count-down 2650 // optimization. That's not always a bad thing though, because in such 2651 // cases it may still be worthwhile to avoid a max. 2652 Cond = OptimizeMax(Cond, CondUse); 2653 2654 // If this exiting block dominates the latch block, it may also use 2655 // the post-inc value if it won't be shared with other uses. 2656 // Check for dominance. 2657 if (!DT.dominates(ExitingBlock, LatchBlock)) 2658 continue; 2659 2660 // Conservatively avoid trying to use the post-inc value in non-latch 2661 // exits if there may be pre-inc users in intervening blocks. 2662 if (LatchBlock != ExitingBlock) 2663 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2664 // Test if the use is reachable from the exiting block. This dominator 2665 // query is a conservative approximation of reachability. 2666 if (&*UI != CondUse && 2667 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2668 // Conservatively assume there may be reuse if the quotient of their 2669 // strides could be a legal scale. 2670 const SCEV *A = IU.getStride(*CondUse, L); 2671 const SCEV *B = IU.getStride(*UI, L); 2672 if (!A || !B) continue; 2673 if (SE.getTypeSizeInBits(A->getType()) != 2674 SE.getTypeSizeInBits(B->getType())) { 2675 if (SE.getTypeSizeInBits(A->getType()) > 2676 SE.getTypeSizeInBits(B->getType())) 2677 B = SE.getSignExtendExpr(B, A->getType()); 2678 else 2679 A = SE.getSignExtendExpr(A, B->getType()); 2680 } 2681 if (const SCEVConstant *D = 2682 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2683 const ConstantInt *C = D->getValue(); 2684 // Stride of one or negative one can have reuse with non-addresses. 2685 if (C->isOne() || C->isMinusOne()) 2686 goto decline_post_inc; 2687 // Avoid weird situations. 2688 if (C->getValue().getSignificantBits() >= 64 || 2689 C->getValue().isMinSignedValue()) 2690 goto decline_post_inc; 2691 // Check for possible scaled-address reuse. 2692 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2693 MemAccessTy AccessTy = getAccessType( 2694 TTI, UI->getUser(), UI->getOperandValToReplace()); 2695 int64_t Scale = C->getSExtValue(); 2696 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2697 /*BaseOffset=*/0, 2698 /*HasBaseReg=*/true, Scale, 2699 AccessTy.AddrSpace)) 2700 goto decline_post_inc; 2701 Scale = -Scale; 2702 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2703 /*BaseOffset=*/0, 2704 /*HasBaseReg=*/true, Scale, 2705 AccessTy.AddrSpace)) 2706 goto decline_post_inc; 2707 } 2708 } 2709 } 2710 2711 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2712 << *Cond << '\n'); 2713 2714 // It's possible for the setcc instruction to be anywhere in the loop, and 2715 // possible for it to have multiple users. If it is not immediately before 2716 // the exiting block branch, move it. 2717 if (Cond->getNextNonDebugInstruction() != TermBr) { 2718 if (Cond->hasOneUse()) { 2719 Cond->moveBefore(TermBr); 2720 } else { 2721 // Clone the terminating condition and insert into the loopend. 2722 ICmpInst *OldCond = Cond; 2723 Cond = cast<ICmpInst>(Cond->clone()); 2724 Cond->setName(L->getHeader()->getName() + ".termcond"); 2725 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2726 2727 // Clone the IVUse, as the old use still exists! 2728 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2729 TermBr->replaceUsesOfWith(OldCond, Cond); 2730 } 2731 } 2732 2733 // If we get to here, we know that we can transform the setcc instruction to 2734 // use the post-incremented version of the IV, allowing us to coalesce the 2735 // live ranges for the IV correctly. 2736 CondUse->transformToPostInc(L); 2737 Changed = true; 2738 2739 PostIncs.insert(Cond); 2740 decline_post_inc:; 2741 } 2742 2743 // Determine an insertion point for the loop induction variable increment. It 2744 // must dominate all the post-inc comparisons we just set up, and it must 2745 // dominate the loop latch edge. 2746 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2747 for (Instruction *Inst : PostIncs) 2748 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2749 } 2750 2751 /// Determine if the given use can accommodate a fixup at the given offset and 2752 /// other details. If so, update the use and return true. 2753 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, 2754 bool HasBaseReg, LSRUse::KindType Kind, 2755 MemAccessTy AccessTy) { 2756 Immediate NewMinOffset = LU.MinOffset; 2757 Immediate NewMaxOffset = LU.MaxOffset; 2758 MemAccessTy NewAccessTy = AccessTy; 2759 2760 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2761 // something conservative, however this can pessimize in the case that one of 2762 // the uses will have all its uses outside the loop, for example. 2763 if (LU.Kind != Kind) 2764 return false; 2765 2766 // Check for a mismatched access type, and fall back conservatively as needed. 2767 // TODO: Be less conservative when the type is similar and can use the same 2768 // addressing modes. 2769 if (Kind == LSRUse::Address) { 2770 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2771 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2772 AccessTy.AddrSpace); 2773 } 2774 } 2775 2776 // Conservatively assume HasBaseReg is true for now. 2777 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) { 2778 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2779 LU.MaxOffset - NewOffset, HasBaseReg)) 2780 return false; 2781 NewMinOffset = NewOffset; 2782 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) { 2783 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2784 NewOffset - LU.MinOffset, HasBaseReg)) 2785 return false; 2786 NewMaxOffset = NewOffset; 2787 } 2788 2789 // FIXME: We should be able to handle some level of scalable offset support 2790 // for 'void', but in order to get basic support up and running this is 2791 // being left out. 2792 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && 2793 (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) 2794 return false; 2795 2796 // Update the use. 2797 LU.MinOffset = NewMinOffset; 2798 LU.MaxOffset = NewMaxOffset; 2799 LU.AccessTy = NewAccessTy; 2800 return true; 2801 } 2802 2803 /// Return an LSRUse index and an offset value for a fixup which needs the given 2804 /// expression, with the given kind and optional access type. Either reuse an 2805 /// existing use or create a new one, as needed. 2806 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, 2807 LSRUse::KindType Kind, 2808 MemAccessTy AccessTy) { 2809 const SCEV *Copy = Expr; 2810 Immediate Offset = ExtractImmediate(Expr, SE); 2811 2812 // Basic uses can't accept any offset, for example. 2813 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2814 Offset, /*HasBaseReg=*/ true)) { 2815 Expr = Copy; 2816 Offset = Immediate::getFixed(0); 2817 } 2818 2819 std::pair<UseMapTy::iterator, bool> P = 2820 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2821 if (!P.second) { 2822 // A use already existed with this base. 2823 size_t LUIdx = P.first->second; 2824 LSRUse &LU = Uses[LUIdx]; 2825 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2826 // Reuse this use. 2827 return std::make_pair(LUIdx, Offset); 2828 } 2829 2830 // Create a new use. 2831 size_t LUIdx = Uses.size(); 2832 P.first->second = LUIdx; 2833 Uses.push_back(LSRUse(Kind, AccessTy)); 2834 LSRUse &LU = Uses[LUIdx]; 2835 2836 LU.MinOffset = Offset; 2837 LU.MaxOffset = Offset; 2838 return std::make_pair(LUIdx, Offset); 2839 } 2840 2841 /// Delete the given use from the Uses list. 2842 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2843 if (&LU != &Uses.back()) 2844 std::swap(LU, Uses.back()); 2845 Uses.pop_back(); 2846 2847 // Update RegUses. 2848 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2849 } 2850 2851 /// Look for a use distinct from OrigLU which is has a formula that has the same 2852 /// registers as the given formula. 2853 LSRUse * 2854 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2855 const LSRUse &OrigLU) { 2856 // Search all uses for the formula. This could be more clever. 2857 for (LSRUse &LU : Uses) { 2858 // Check whether this use is close enough to OrigLU, to see whether it's 2859 // worthwhile looking through its formulae. 2860 // Ignore ICmpZero uses because they may contain formulae generated by 2861 // GenerateICmpZeroScales, in which case adding fixup offsets may 2862 // be invalid. 2863 if (&LU != &OrigLU && 2864 LU.Kind != LSRUse::ICmpZero && 2865 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2866 LU.WidestFixupType == OrigLU.WidestFixupType && 2867 LU.HasFormulaWithSameRegs(OrigF)) { 2868 // Scan through this use's formulae. 2869 for (const Formula &F : LU.Formulae) { 2870 // Check to see if this formula has the same registers and symbols 2871 // as OrigF. 2872 if (F.BaseRegs == OrigF.BaseRegs && 2873 F.ScaledReg == OrigF.ScaledReg && 2874 F.BaseGV == OrigF.BaseGV && 2875 F.Scale == OrigF.Scale && 2876 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2877 if (F.BaseOffset.isZero()) 2878 return &LU; 2879 // This is the formula where all the registers and symbols matched; 2880 // there aren't going to be any others. Since we declined it, we 2881 // can skip the rest of the formulae and proceed to the next LSRUse. 2882 break; 2883 } 2884 } 2885 } 2886 } 2887 2888 // Nothing looked good. 2889 return nullptr; 2890 } 2891 2892 void LSRInstance::CollectInterestingTypesAndFactors() { 2893 SmallSetVector<const SCEV *, 4> Strides; 2894 2895 // Collect interesting types and strides. 2896 SmallVector<const SCEV *, 4> Worklist; 2897 for (const IVStrideUse &U : IU) { 2898 const SCEV *Expr = IU.getExpr(U); 2899 if (!Expr) 2900 continue; 2901 2902 // Collect interesting types. 2903 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2904 2905 // Add strides for mentioned loops. 2906 Worklist.push_back(Expr); 2907 do { 2908 const SCEV *S = Worklist.pop_back_val(); 2909 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2910 if (AR->getLoop() == L) 2911 Strides.insert(AR->getStepRecurrence(SE)); 2912 Worklist.push_back(AR->getStart()); 2913 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2914 append_range(Worklist, Add->operands()); 2915 } 2916 } while (!Worklist.empty()); 2917 } 2918 2919 // Compute interesting factors from the set of interesting strides. 2920 for (SmallSetVector<const SCEV *, 4>::const_iterator 2921 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2922 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2923 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2924 const SCEV *OldStride = *I; 2925 const SCEV *NewStride = *NewStrideIter; 2926 2927 if (SE.getTypeSizeInBits(OldStride->getType()) != 2928 SE.getTypeSizeInBits(NewStride->getType())) { 2929 if (SE.getTypeSizeInBits(OldStride->getType()) > 2930 SE.getTypeSizeInBits(NewStride->getType())) 2931 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2932 else 2933 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2934 } 2935 if (const SCEVConstant *Factor = 2936 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2937 SE, true))) { 2938 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2939 Factors.insert(Factor->getAPInt().getSExtValue()); 2940 } else if (const SCEVConstant *Factor = 2941 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2942 NewStride, 2943 SE, true))) { 2944 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2945 Factors.insert(Factor->getAPInt().getSExtValue()); 2946 } 2947 } 2948 2949 // If all uses use the same type, don't bother looking for truncation-based 2950 // reuse. 2951 if (Types.size() == 1) 2952 Types.clear(); 2953 2954 LLVM_DEBUG(print_factors_and_types(dbgs())); 2955 } 2956 2957 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2958 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2959 /// IVStrideUses, we could partially skip this. 2960 static User::op_iterator 2961 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2962 Loop *L, ScalarEvolution &SE) { 2963 for(; OI != OE; ++OI) { 2964 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2965 if (!SE.isSCEVable(Oper->getType())) 2966 continue; 2967 2968 if (const SCEVAddRecExpr *AR = 2969 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2970 if (AR->getLoop() == L) 2971 break; 2972 } 2973 } 2974 } 2975 return OI; 2976 } 2977 2978 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2979 /// a convenient helper. 2980 static Value *getWideOperand(Value *Oper) { 2981 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2982 return Trunc->getOperand(0); 2983 return Oper; 2984 } 2985 2986 /// Return an approximation of this SCEV expression's "base", or NULL for any 2987 /// constant. Returning the expression itself is conservative. Returning a 2988 /// deeper subexpression is more precise and valid as long as it isn't less 2989 /// complex than another subexpression. For expressions involving multiple 2990 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2991 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2992 /// IVInc==b-a. 2993 /// 2994 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2995 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2996 static const SCEV *getExprBase(const SCEV *S) { 2997 switch (S->getSCEVType()) { 2998 default: // including scUnknown. 2999 return S; 3000 case scConstant: 3001 case scVScale: 3002 return nullptr; 3003 case scTruncate: 3004 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 3005 case scZeroExtend: 3006 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 3007 case scSignExtend: 3008 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 3009 case scAddExpr: { 3010 // Skip over scaled operands (scMulExpr) to follow add operands as long as 3011 // there's nothing more complex. 3012 // FIXME: not sure if we want to recognize negation. 3013 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 3014 for (const SCEV *SubExpr : reverse(Add->operands())) { 3015 if (SubExpr->getSCEVType() == scAddExpr) 3016 return getExprBase(SubExpr); 3017 3018 if (SubExpr->getSCEVType() != scMulExpr) 3019 return SubExpr; 3020 } 3021 return S; // all operands are scaled, be conservative. 3022 } 3023 case scAddRecExpr: 3024 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 3025 } 3026 llvm_unreachable("Unknown SCEV kind!"); 3027 } 3028 3029 /// Return true if the chain increment is profitable to expand into a loop 3030 /// invariant value, which may require its own register. A profitable chain 3031 /// increment will be an offset relative to the same base. We allow such offsets 3032 /// to potentially be used as chain increment as long as it's not obviously 3033 /// expensive to expand using real instructions. 3034 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 3035 const SCEV *IncExpr, 3036 ScalarEvolution &SE) { 3037 // Aggressively form chains when -stress-ivchain. 3038 if (StressIVChain) 3039 return true; 3040 3041 // Do not replace a constant offset from IV head with a nonconstant IV 3042 // increment. 3043 if (!isa<SCEVConstant>(IncExpr)) { 3044 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 3045 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 3046 return false; 3047 } 3048 3049 SmallPtrSet<const SCEV*, 8> Processed; 3050 return !isHighCostExpansion(IncExpr, Processed, SE); 3051 } 3052 3053 /// Return true if the number of registers needed for the chain is estimated to 3054 /// be less than the number required for the individual IV users. First prohibit 3055 /// any IV users that keep the IV live across increments (the Users set should 3056 /// be empty). Next count the number and type of increments in the chain. 3057 /// 3058 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 3059 /// effectively use postinc addressing modes. Only consider it profitable it the 3060 /// increments can be computed in fewer registers when chained. 3061 /// 3062 /// TODO: Consider IVInc free if it's already used in another chains. 3063 static bool isProfitableChain(IVChain &Chain, 3064 SmallPtrSetImpl<Instruction *> &Users, 3065 ScalarEvolution &SE, 3066 const TargetTransformInfo &TTI) { 3067 if (StressIVChain) 3068 return true; 3069 3070 if (!Chain.hasIncs()) 3071 return false; 3072 3073 if (!Users.empty()) { 3074 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 3075 for (Instruction *Inst 3076 : Users) { dbgs() << " " << *Inst << "\n"; }); 3077 return false; 3078 } 3079 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3080 3081 // The chain itself may require a register, so intialize cost to 1. 3082 int cost = 1; 3083 3084 // A complete chain likely eliminates the need for keeping the original IV in 3085 // a register. LSR does not currently know how to form a complete chain unless 3086 // the header phi already exists. 3087 if (isa<PHINode>(Chain.tailUserInst()) 3088 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 3089 --cost; 3090 } 3091 const SCEV *LastIncExpr = nullptr; 3092 unsigned NumConstIncrements = 0; 3093 unsigned NumVarIncrements = 0; 3094 unsigned NumReusedIncrements = 0; 3095 3096 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 3097 return true; 3098 3099 for (const IVInc &Inc : Chain) { 3100 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 3101 return true; 3102 if (Inc.IncExpr->isZero()) 3103 continue; 3104 3105 // Incrementing by zero or some constant is neutral. We assume constants can 3106 // be folded into an addressing mode or an add's immediate operand. 3107 if (isa<SCEVConstant>(Inc.IncExpr)) { 3108 ++NumConstIncrements; 3109 continue; 3110 } 3111 3112 if (Inc.IncExpr == LastIncExpr) 3113 ++NumReusedIncrements; 3114 else 3115 ++NumVarIncrements; 3116 3117 LastIncExpr = Inc.IncExpr; 3118 } 3119 // An IV chain with a single increment is handled by LSR's postinc 3120 // uses. However, a chain with multiple increments requires keeping the IV's 3121 // value live longer than it needs to be if chained. 3122 if (NumConstIncrements > 1) 3123 --cost; 3124 3125 // Materializing increment expressions in the preheader that didn't exist in 3126 // the original code may cost a register. For example, sign-extended array 3127 // indices can produce ridiculous increments like this: 3128 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 3129 cost += NumVarIncrements; 3130 3131 // Reusing variable increments likely saves a register to hold the multiple of 3132 // the stride. 3133 cost -= NumReusedIncrements; 3134 3135 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 3136 << "\n"); 3137 3138 return cost < 0; 3139 } 3140 3141 /// Add this IV user to an existing chain or make it the head of a new chain. 3142 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 3143 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 3144 // When IVs are used as types of varying widths, they are generally converted 3145 // to a wider type with some uses remaining narrow under a (free) trunc. 3146 Value *const NextIV = getWideOperand(IVOper); 3147 const SCEV *const OperExpr = SE.getSCEV(NextIV); 3148 const SCEV *const OperExprBase = getExprBase(OperExpr); 3149 3150 // Visit all existing chains. Check if its IVOper can be computed as a 3151 // profitable loop invariant increment from the last link in the Chain. 3152 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3153 const SCEV *LastIncExpr = nullptr; 3154 for (; ChainIdx < NChains; ++ChainIdx) { 3155 IVChain &Chain = IVChainVec[ChainIdx]; 3156 3157 // Prune the solution space aggressively by checking that both IV operands 3158 // are expressions that operate on the same unscaled SCEVUnknown. This 3159 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 3160 // first avoids creating extra SCEV expressions. 3161 if (!StressIVChain && Chain.ExprBase != OperExprBase) 3162 continue; 3163 3164 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 3165 if (PrevIV->getType() != NextIV->getType()) 3166 continue; 3167 3168 // A phi node terminates a chain. 3169 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 3170 continue; 3171 3172 // The increment must be loop-invariant so it can be kept in a register. 3173 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 3174 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 3175 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 3176 continue; 3177 3178 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 3179 LastIncExpr = IncExpr; 3180 break; 3181 } 3182 } 3183 // If we haven't found a chain, create a new one, unless we hit the max. Don't 3184 // bother for phi nodes, because they must be last in the chain. 3185 if (ChainIdx == NChains) { 3186 if (isa<PHINode>(UserInst)) 3187 return; 3188 if (NChains >= MaxChains && !StressIVChain) { 3189 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3190 return; 3191 } 3192 LastIncExpr = OperExpr; 3193 // IVUsers may have skipped over sign/zero extensions. We don't currently 3194 // attempt to form chains involving extensions unless they can be hoisted 3195 // into this loop's AddRec. 3196 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3197 return; 3198 ++NChains; 3199 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3200 OperExprBase)); 3201 ChainUsersVec.resize(NChains); 3202 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3203 << ") IV=" << *LastIncExpr << "\n"); 3204 } else { 3205 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3206 << ") IV+" << *LastIncExpr << "\n"); 3207 // Add this IV user to the end of the chain. 3208 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3209 } 3210 IVChain &Chain = IVChainVec[ChainIdx]; 3211 3212 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3213 // This chain's NearUsers become FarUsers. 3214 if (!LastIncExpr->isZero()) { 3215 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3216 NearUsers.end()); 3217 NearUsers.clear(); 3218 } 3219 3220 // All other uses of IVOperand become near uses of the chain. 3221 // We currently ignore intermediate values within SCEV expressions, assuming 3222 // they will eventually be used be the current chain, or can be computed 3223 // from one of the chain increments. To be more precise we could 3224 // transitively follow its user and only add leaf IV users to the set. 3225 for (User *U : IVOper->users()) { 3226 Instruction *OtherUse = dyn_cast<Instruction>(U); 3227 if (!OtherUse) 3228 continue; 3229 // Uses in the chain will no longer be uses if the chain is formed. 3230 // Include the head of the chain in this iteration (not Chain.begin()). 3231 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3232 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3233 for( ; IncIter != IncEnd; ++IncIter) { 3234 if (IncIter->UserInst == OtherUse) 3235 break; 3236 } 3237 if (IncIter != IncEnd) 3238 continue; 3239 3240 if (SE.isSCEVable(OtherUse->getType()) 3241 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3242 && IU.isIVUserOrOperand(OtherUse)) { 3243 continue; 3244 } 3245 NearUsers.insert(OtherUse); 3246 } 3247 3248 // Since this user is part of the chain, it's no longer considered a use 3249 // of the chain. 3250 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3251 } 3252 3253 /// Populate the vector of Chains. 3254 /// 3255 /// This decreases ILP at the architecture level. Targets with ample registers, 3256 /// multiple memory ports, and no register renaming probably don't want 3257 /// this. However, such targets should probably disable LSR altogether. 3258 /// 3259 /// The job of LSR is to make a reasonable choice of induction variables across 3260 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3261 /// ILP *within the loop* if the target wants it. 3262 /// 3263 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3264 /// will not reorder memory operations, it will recognize this as a chain, but 3265 /// will generate redundant IV increments. Ideally this would be corrected later 3266 /// by a smart scheduler: 3267 /// = A[i] 3268 /// = A[i+x] 3269 /// A[i] = 3270 /// A[i+x] = 3271 /// 3272 /// TODO: Walk the entire domtree within this loop, not just the path to the 3273 /// loop latch. This will discover chains on side paths, but requires 3274 /// maintaining multiple copies of the Chains state. 3275 void LSRInstance::CollectChains() { 3276 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3277 SmallVector<ChainUsers, 8> ChainUsersVec; 3278 3279 SmallVector<BasicBlock *,8> LatchPath; 3280 BasicBlock *LoopHeader = L->getHeader(); 3281 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3282 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3283 LatchPath.push_back(Rung->getBlock()); 3284 } 3285 LatchPath.push_back(LoopHeader); 3286 3287 // Walk the instruction stream from the loop header to the loop latch. 3288 for (BasicBlock *BB : reverse(LatchPath)) { 3289 for (Instruction &I : *BB) { 3290 // Skip instructions that weren't seen by IVUsers analysis. 3291 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3292 continue; 3293 3294 // Ignore users that are part of a SCEV expression. This way we only 3295 // consider leaf IV Users. This effectively rediscovers a portion of 3296 // IVUsers analysis but in program order this time. 3297 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3298 continue; 3299 3300 // Remove this instruction from any NearUsers set it may be in. 3301 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3302 ChainIdx < NChains; ++ChainIdx) { 3303 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3304 } 3305 // Search for operands that can be chained. 3306 SmallPtrSet<Instruction*, 4> UniqueOperands; 3307 User::op_iterator IVOpEnd = I.op_end(); 3308 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3309 while (IVOpIter != IVOpEnd) { 3310 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3311 if (UniqueOperands.insert(IVOpInst).second) 3312 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3313 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3314 } 3315 } // Continue walking down the instructions. 3316 } // Continue walking down the domtree. 3317 // Visit phi backedges to determine if the chain can generate the IV postinc. 3318 for (PHINode &PN : L->getHeader()->phis()) { 3319 if (!SE.isSCEVable(PN.getType())) 3320 continue; 3321 3322 Instruction *IncV = 3323 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3324 if (IncV) 3325 ChainInstruction(&PN, IncV, ChainUsersVec); 3326 } 3327 // Remove any unprofitable chains. 3328 unsigned ChainIdx = 0; 3329 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3330 UsersIdx < NChains; ++UsersIdx) { 3331 if (!isProfitableChain(IVChainVec[UsersIdx], 3332 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3333 continue; 3334 // Preserve the chain at UsesIdx. 3335 if (ChainIdx != UsersIdx) 3336 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3337 FinalizeChain(IVChainVec[ChainIdx]); 3338 ++ChainIdx; 3339 } 3340 IVChainVec.resize(ChainIdx); 3341 } 3342 3343 void LSRInstance::FinalizeChain(IVChain &Chain) { 3344 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3345 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3346 3347 for (const IVInc &Inc : Chain) { 3348 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3349 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3350 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3351 IVIncSet.insert(UseI); 3352 } 3353 } 3354 3355 /// Return true if the IVInc can be folded into an addressing mode. 3356 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3357 Value *Operand, const TargetTransformInfo &TTI) { 3358 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3359 Immediate IncOffset = Immediate::getZero(); 3360 if (IncConst) { 3361 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) 3362 return false; 3363 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue()); 3364 } else { 3365 // Look for mul(vscale, constant), to detect a scalable offset. 3366 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr); 3367 if (!IncVScale || IncVScale->getNumOperands() != 2 || 3368 !isa<SCEVVScale>(IncVScale->getOperand(1))) 3369 return false; 3370 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0)); 3371 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64) 3372 return false; 3373 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue()); 3374 } 3375 3376 if (!isAddressUse(TTI, UserInst, Operand)) 3377 return false; 3378 3379 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3380 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3381 IncOffset, /*HasBaseReg=*/false)) 3382 return false; 3383 3384 return true; 3385 } 3386 3387 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3388 /// user's operand from the previous IV user's operand. 3389 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3390 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3391 // Find the new IVOperand for the head of the chain. It may have been replaced 3392 // by LSR. 3393 const IVInc &Head = Chain.Incs[0]; 3394 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3395 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3396 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3397 IVOpEnd, L, SE); 3398 Value *IVSrc = nullptr; 3399 while (IVOpIter != IVOpEnd) { 3400 IVSrc = getWideOperand(*IVOpIter); 3401 3402 // If this operand computes the expression that the chain needs, we may use 3403 // it. (Check this after setting IVSrc which is used below.) 3404 // 3405 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3406 // narrow for the chain, so we can no longer use it. We do allow using a 3407 // wider phi, assuming the LSR checked for free truncation. In that case we 3408 // should already have a truncate on this operand such that 3409 // getSCEV(IVSrc) == IncExpr. 3410 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3411 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3412 break; 3413 } 3414 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3415 } 3416 if (IVOpIter == IVOpEnd) { 3417 // Gracefully give up on this chain. 3418 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3419 return; 3420 } 3421 assert(IVSrc && "Failed to find IV chain source"); 3422 3423 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3424 Type *IVTy = IVSrc->getType(); 3425 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3426 const SCEV *LeftOverExpr = nullptr; 3427 const SCEV *Accum = SE.getZero(IntTy); 3428 SmallVector<std::pair<const SCEV *, Value *>> Bases; 3429 Bases.emplace_back(Accum, IVSrc); 3430 3431 for (const IVInc &Inc : Chain) { 3432 Instruction *InsertPt = Inc.UserInst; 3433 if (isa<PHINode>(InsertPt)) 3434 InsertPt = L->getLoopLatch()->getTerminator(); 3435 3436 // IVOper will replace the current IV User's operand. IVSrc is the IV 3437 // value currently held in a register. 3438 Value *IVOper = IVSrc; 3439 if (!Inc.IncExpr->isZero()) { 3440 // IncExpr was the result of subtraction of two narrow values, so must 3441 // be signed. 3442 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3443 Accum = SE.getAddExpr(Accum, IncExpr); 3444 LeftOverExpr = LeftOverExpr ? 3445 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3446 } 3447 3448 // Look through each base to see if any can produce a nice addressing mode. 3449 bool FoundBase = false; 3450 for (auto [MapScev, MapIVOper] : reverse(Bases)) { 3451 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev); 3452 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) { 3453 if (!Remainder->isZero()) { 3454 Rewriter.clearPostInc(); 3455 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt); 3456 const SCEV *IVOperExpr = 3457 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV)); 3458 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3459 } else { 3460 IVOper = MapIVOper; 3461 } 3462 3463 FoundBase = true; 3464 break; 3465 } 3466 } 3467 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { 3468 // Expand the IV increment. 3469 Rewriter.clearPostInc(); 3470 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3471 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3472 SE.getUnknown(IncV)); 3473 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3474 3475 // If an IV increment can't be folded, use it as the next IV value. 3476 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3477 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3478 Bases.emplace_back(Accum, IVOper); 3479 IVSrc = IVOper; 3480 LeftOverExpr = nullptr; 3481 } 3482 } 3483 Type *OperTy = Inc.IVOperand->getType(); 3484 if (IVTy != OperTy) { 3485 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3486 "cannot extend a chained IV"); 3487 IRBuilder<> Builder(InsertPt); 3488 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3489 } 3490 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3491 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3492 DeadInsts.emplace_back(OperandIsInstr); 3493 } 3494 // If LSR created a new, wider phi, we may also replace its postinc. We only 3495 // do this if we also found a wide value for the head of the chain. 3496 if (isa<PHINode>(Chain.tailUserInst())) { 3497 for (PHINode &Phi : L->getHeader()->phis()) { 3498 if (Phi.getType() != IVSrc->getType()) 3499 continue; 3500 Instruction *PostIncV = dyn_cast<Instruction>( 3501 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3502 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3503 continue; 3504 Value *IVOper = IVSrc; 3505 Type *PostIncTy = PostIncV->getType(); 3506 if (IVTy != PostIncTy) { 3507 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3508 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3509 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3510 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3511 } 3512 Phi.replaceUsesOfWith(PostIncV, IVOper); 3513 DeadInsts.emplace_back(PostIncV); 3514 } 3515 } 3516 } 3517 3518 void LSRInstance::CollectFixupsAndInitialFormulae() { 3519 BranchInst *ExitBranch = nullptr; 3520 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3521 3522 // For calculating baseline cost 3523 SmallPtrSet<const SCEV *, 16> Regs; 3524 DenseSet<const SCEV *> VisitedRegs; 3525 DenseSet<size_t> VisitedLSRUse; 3526 3527 for (const IVStrideUse &U : IU) { 3528 Instruction *UserInst = U.getUser(); 3529 // Skip IV users that are part of profitable IV Chains. 3530 User::op_iterator UseI = 3531 find(UserInst->operands(), U.getOperandValToReplace()); 3532 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3533 if (IVIncSet.count(UseI)) { 3534 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3535 continue; 3536 } 3537 3538 LSRUse::KindType Kind = LSRUse::Basic; 3539 MemAccessTy AccessTy; 3540 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3541 Kind = LSRUse::Address; 3542 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3543 } 3544 3545 const SCEV *S = IU.getExpr(U); 3546 if (!S) 3547 continue; 3548 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3549 3550 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3551 // (N - i == 0), and this allows (N - i) to be the expression that we work 3552 // with rather than just N or i, so we can consider the register 3553 // requirements for both N and i at the same time. Limiting this code to 3554 // equality icmps is not a problem because all interesting loops use 3555 // equality icmps, thanks to IndVarSimplify. 3556 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3557 // If CI can be saved in some target, like replaced inside hardware loop 3558 // in PowerPC, no need to generate initial formulae for it. 3559 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3560 continue; 3561 if (CI->isEquality()) { 3562 // Swap the operands if needed to put the OperandValToReplace on the 3563 // left, for consistency. 3564 Value *NV = CI->getOperand(1); 3565 if (NV == U.getOperandValToReplace()) { 3566 CI->setOperand(1, CI->getOperand(0)); 3567 CI->setOperand(0, NV); 3568 NV = CI->getOperand(1); 3569 Changed = true; 3570 } 3571 3572 // x == y --> x - y == 0 3573 const SCEV *N = SE.getSCEV(NV); 3574 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3575 (!NV->getType()->isPointerTy() || 3576 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3577 // S is normalized, so normalize N before folding it into S 3578 // to keep the result normalized. 3579 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3580 if (!N) 3581 continue; 3582 Kind = LSRUse::ICmpZero; 3583 S = SE.getMinusSCEV(N, S); 3584 } else if (L->isLoopInvariant(NV) && 3585 (!isa<Instruction>(NV) || 3586 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3587 !NV->getType()->isPointerTy()) { 3588 // If we can't generally expand the expression (e.g. it contains 3589 // a divide), but it is already at a loop invariant point before the 3590 // loop, wrap it in an unknown (to prevent the expander from trying 3591 // to re-expand in a potentially unsafe way.) The restriction to 3592 // integer types is required because the unknown hides the base, and 3593 // SCEV can't compute the difference of two unknown pointers. 3594 N = SE.getUnknown(NV); 3595 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3596 if (!N) 3597 continue; 3598 Kind = LSRUse::ICmpZero; 3599 S = SE.getMinusSCEV(N, S); 3600 assert(!isa<SCEVCouldNotCompute>(S)); 3601 } 3602 3603 // -1 and the negations of all interesting strides (except the negation 3604 // of -1) are now also interesting. 3605 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3606 if (Factors[i] != -1) 3607 Factors.insert(-(uint64_t)Factors[i]); 3608 Factors.insert(-1); 3609 } 3610 } 3611 3612 // Get or create an LSRUse. 3613 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy); 3614 size_t LUIdx = P.first; 3615 Immediate Offset = P.second; 3616 LSRUse &LU = Uses[LUIdx]; 3617 3618 // Record the fixup. 3619 LSRFixup &LF = LU.getNewFixup(); 3620 LF.UserInst = UserInst; 3621 LF.OperandValToReplace = U.getOperandValToReplace(); 3622 LF.PostIncLoops = TmpPostIncLoops; 3623 LF.Offset = Offset; 3624 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3625 3626 // Create SCEV as Formula for calculating baseline cost 3627 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3628 Formula F; 3629 F.initialMatch(S, L, SE); 3630 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3631 VisitedLSRUse.insert(LUIdx); 3632 } 3633 3634 if (!LU.WidestFixupType || 3635 SE.getTypeSizeInBits(LU.WidestFixupType) < 3636 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3637 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3638 3639 // If this is the first use of this LSRUse, give it a formula. 3640 if (LU.Formulae.empty()) { 3641 InsertInitialFormula(S, LU, LUIdx); 3642 CountRegisters(LU.Formulae.back(), LUIdx); 3643 } 3644 } 3645 3646 LLVM_DEBUG(print_fixups(dbgs())); 3647 } 3648 3649 /// Insert a formula for the given expression into the given use, separating out 3650 /// loop-variant portions from loop-invariant and loop-computable portions. 3651 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3652 size_t LUIdx) { 3653 // Mark uses whose expressions cannot be expanded. 3654 if (!Rewriter.isSafeToExpand(S)) 3655 LU.RigidFormula = true; 3656 3657 Formula F; 3658 F.initialMatch(S, L, SE); 3659 bool Inserted = InsertFormula(LU, LUIdx, F); 3660 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3661 } 3662 3663 /// Insert a simple single-register formula for the given expression into the 3664 /// given use. 3665 void 3666 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3667 LSRUse &LU, size_t LUIdx) { 3668 Formula F; 3669 F.BaseRegs.push_back(S); 3670 F.HasBaseReg = true; 3671 bool Inserted = InsertFormula(LU, LUIdx, F); 3672 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3673 } 3674 3675 /// Note which registers are used by the given formula, updating RegUses. 3676 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3677 if (F.ScaledReg) 3678 RegUses.countRegister(F.ScaledReg, LUIdx); 3679 for (const SCEV *BaseReg : F.BaseRegs) 3680 RegUses.countRegister(BaseReg, LUIdx); 3681 } 3682 3683 /// If the given formula has not yet been inserted, add it to the list, and 3684 /// return true. Return false otherwise. 3685 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3686 // Do not insert formula that we will not be able to expand. 3687 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3688 "Formula is illegal"); 3689 3690 if (!LU.InsertFormula(F, *L)) 3691 return false; 3692 3693 CountRegisters(F, LUIdx); 3694 return true; 3695 } 3696 3697 /// Check for other uses of loop-invariant values which we're tracking. These 3698 /// other uses will pin these values in registers, making them less profitable 3699 /// for elimination. 3700 /// TODO: This currently misses non-constant addrec step registers. 3701 /// TODO: Should this give more weight to users inside the loop? 3702 void 3703 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3704 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3705 SmallPtrSet<const SCEV *, 32> Visited; 3706 3707 // Don't collect outside uses if we are favoring postinc - the instructions in 3708 // the loop are more important than the ones outside of it. 3709 if (AMK == TTI::AMK_PostIndexed) 3710 return; 3711 3712 while (!Worklist.empty()) { 3713 const SCEV *S = Worklist.pop_back_val(); 3714 3715 // Don't process the same SCEV twice 3716 if (!Visited.insert(S).second) 3717 continue; 3718 3719 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3720 append_range(Worklist, N->operands()); 3721 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3722 Worklist.push_back(C->getOperand()); 3723 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3724 Worklist.push_back(D->getLHS()); 3725 Worklist.push_back(D->getRHS()); 3726 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3727 const Value *V = US->getValue(); 3728 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3729 // Look for instructions defined outside the loop. 3730 if (L->contains(Inst)) continue; 3731 } else if (isa<Constant>(V)) 3732 // Constants can be re-materialized. 3733 continue; 3734 for (const Use &U : V->uses()) { 3735 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3736 // Ignore non-instructions. 3737 if (!UserInst) 3738 continue; 3739 // Don't bother if the instruction is an EHPad. 3740 if (UserInst->isEHPad()) 3741 continue; 3742 // Ignore instructions in other functions (as can happen with 3743 // Constants). 3744 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3745 continue; 3746 // Ignore instructions not dominated by the loop. 3747 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3748 UserInst->getParent() : 3749 cast<PHINode>(UserInst)->getIncomingBlock( 3750 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3751 if (!DT.dominates(L->getHeader(), UseBB)) 3752 continue; 3753 // Don't bother if the instruction is in a BB which ends in an EHPad. 3754 if (UseBB->getTerminator()->isEHPad()) 3755 continue; 3756 3757 // Ignore cases in which the currently-examined value could come from 3758 // a basic block terminated with an EHPad. This checks all incoming 3759 // blocks of the phi node since it is possible that the same incoming 3760 // value comes from multiple basic blocks, only some of which may end 3761 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3762 // pass would try to insert instructions into an EHPad, hitting an 3763 // assertion. 3764 if (isa<PHINode>(UserInst)) { 3765 const auto *PhiNode = cast<PHINode>(UserInst); 3766 bool HasIncompatibleEHPTerminatedBlock = false; 3767 llvm::Value *ExpectedValue = U; 3768 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3769 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3770 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3771 HasIncompatibleEHPTerminatedBlock = true; 3772 break; 3773 } 3774 } 3775 } 3776 if (HasIncompatibleEHPTerminatedBlock) { 3777 continue; 3778 } 3779 } 3780 3781 // Don't bother rewriting PHIs in catchswitch blocks. 3782 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3783 continue; 3784 // Ignore uses which are part of other SCEV expressions, to avoid 3785 // analyzing them multiple times. 3786 if (SE.isSCEVable(UserInst->getType())) { 3787 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3788 // If the user is a no-op, look through to its uses. 3789 if (!isa<SCEVUnknown>(UserS)) 3790 continue; 3791 if (UserS == US) { 3792 Worklist.push_back( 3793 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3794 continue; 3795 } 3796 } 3797 // Ignore icmp instructions which are already being analyzed. 3798 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3799 unsigned OtherIdx = !U.getOperandNo(); 3800 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3801 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3802 continue; 3803 } 3804 3805 std::pair<size_t, Immediate> P = 3806 getUse(S, LSRUse::Basic, MemAccessTy()); 3807 size_t LUIdx = P.first; 3808 Immediate Offset = P.second; 3809 LSRUse &LU = Uses[LUIdx]; 3810 LSRFixup &LF = LU.getNewFixup(); 3811 LF.UserInst = const_cast<Instruction *>(UserInst); 3812 LF.OperandValToReplace = U; 3813 LF.Offset = Offset; 3814 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3815 if (!LU.WidestFixupType || 3816 SE.getTypeSizeInBits(LU.WidestFixupType) < 3817 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3818 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3819 InsertSupplementalFormula(US, LU, LUIdx); 3820 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3821 break; 3822 } 3823 } 3824 } 3825 } 3826 3827 /// Split S into subexpressions which can be pulled out into separate 3828 /// registers. If C is non-null, multiply each subexpression by C. 3829 /// 3830 /// Return remainder expression after factoring the subexpressions captured by 3831 /// Ops. If Ops is complete, return NULL. 3832 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3833 SmallVectorImpl<const SCEV *> &Ops, 3834 const Loop *L, 3835 ScalarEvolution &SE, 3836 unsigned Depth = 0) { 3837 // Arbitrarily cap recursion to protect compile time. 3838 if (Depth >= 3) 3839 return S; 3840 3841 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3842 // Break out add operands. 3843 for (const SCEV *S : Add->operands()) { 3844 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3845 if (Remainder) 3846 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3847 } 3848 return nullptr; 3849 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3850 // Split a non-zero base out of an addrec. 3851 if (AR->getStart()->isZero() || !AR->isAffine()) 3852 return S; 3853 3854 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3855 C, Ops, L, SE, Depth+1); 3856 // Split the non-zero AddRec unless it is part of a nested recurrence that 3857 // does not pertain to this loop. 3858 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3859 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3860 Remainder = nullptr; 3861 } 3862 if (Remainder != AR->getStart()) { 3863 if (!Remainder) 3864 Remainder = SE.getConstant(AR->getType(), 0); 3865 return SE.getAddRecExpr(Remainder, 3866 AR->getStepRecurrence(SE), 3867 AR->getLoop(), 3868 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3869 SCEV::FlagAnyWrap); 3870 } 3871 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3872 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3873 if (Mul->getNumOperands() != 2) 3874 return S; 3875 if (const SCEVConstant *Op0 = 3876 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3877 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3878 const SCEV *Remainder = 3879 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3880 if (Remainder) 3881 Ops.push_back(SE.getMulExpr(C, Remainder)); 3882 return nullptr; 3883 } 3884 } 3885 return S; 3886 } 3887 3888 /// Return true if the SCEV represents a value that may end up as a 3889 /// post-increment operation. 3890 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3891 LSRUse &LU, const SCEV *S, const Loop *L, 3892 ScalarEvolution &SE) { 3893 if (LU.Kind != LSRUse::Address || 3894 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3895 return false; 3896 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3897 if (!AR) 3898 return false; 3899 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3900 if (!isa<SCEVConstant>(LoopStep)) 3901 return false; 3902 // Check if a post-indexed load/store can be used. 3903 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3904 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3905 const SCEV *LoopStart = AR->getStart(); 3906 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3907 return true; 3908 } 3909 return false; 3910 } 3911 3912 /// Helper function for LSRInstance::GenerateReassociations. 3913 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3914 const Formula &Base, 3915 unsigned Depth, size_t Idx, 3916 bool IsScaledReg) { 3917 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3918 // Don't generate reassociations for the base register of a value that 3919 // may generate a post-increment operator. The reason is that the 3920 // reassociations cause extra base+register formula to be created, 3921 // and possibly chosen, but the post-increment is more efficient. 3922 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3923 return; 3924 SmallVector<const SCEV *, 8> AddOps; 3925 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3926 if (Remainder) 3927 AddOps.push_back(Remainder); 3928 3929 if (AddOps.size() == 1) 3930 return; 3931 3932 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3933 JE = AddOps.end(); 3934 J != JE; ++J) { 3935 // Loop-variant "unknown" values are uninteresting; we won't be able to 3936 // do anything meaningful with them. 3937 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3938 continue; 3939 3940 // Don't pull a constant into a register if the constant could be folded 3941 // into an immediate field. 3942 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3943 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3944 continue; 3945 3946 // Collect all operands except *J. 3947 SmallVector<const SCEV *, 8> InnerAddOps( 3948 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3949 InnerAddOps.append(std::next(J), 3950 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3951 3952 // Don't leave just a constant behind in a register if the constant could 3953 // be folded into an immediate field. 3954 if (InnerAddOps.size() == 1 && 3955 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3956 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3957 continue; 3958 3959 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3960 if (InnerSum->isZero()) 3961 continue; 3962 Formula F = Base; 3963 3964 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) 3965 continue; 3966 3967 // Add the remaining pieces of the add back into the new formula. 3968 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3969 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3970 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3971 InnerSumSC->getValue()->getZExtValue())) { 3972 F.UnfoldedOffset = 3973 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3974 InnerSumSC->getValue()->getZExtValue()); 3975 if (IsScaledReg) 3976 F.ScaledReg = nullptr; 3977 else 3978 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3979 } else if (IsScaledReg) 3980 F.ScaledReg = InnerSum; 3981 else 3982 F.BaseRegs[Idx] = InnerSum; 3983 3984 // Add J as its own register, or an unfolded immediate. 3985 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3986 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3987 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3988 SC->getValue()->getZExtValue())) 3989 F.UnfoldedOffset = 3990 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3991 SC->getValue()->getZExtValue()); 3992 else 3993 F.BaseRegs.push_back(*J); 3994 // We may have changed the number of register in base regs, adjust the 3995 // formula accordingly. 3996 F.canonicalize(*L); 3997 3998 if (InsertFormula(LU, LUIdx, F)) 3999 // If that formula hadn't been seen before, recurse to find more like 4000 // it. 4001 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 4002 // Because just Depth is not enough to bound compile time. 4003 // This means that every time AddOps.size() is greater 16^x we will add 4004 // x to Depth. 4005 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 4006 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 4007 } 4008 } 4009 4010 /// Split out subexpressions from adds and the bases of addrecs. 4011 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 4012 Formula Base, unsigned Depth) { 4013 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 4014 // Arbitrarily cap recursion to protect compile time. 4015 if (Depth >= 3) 4016 return; 4017 4018 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4019 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 4020 4021 if (Base.Scale == 1) 4022 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 4023 /* Idx */ -1, /* IsScaledReg */ true); 4024 } 4025 4026 /// Generate a formula consisting of all of the loop-dominating registers added 4027 /// into a single register. 4028 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 4029 Formula Base) { 4030 // This method is only interesting on a plurality of registers. 4031 if (Base.BaseRegs.size() + (Base.Scale == 1) + 4032 (Base.UnfoldedOffset.isNonZero()) <= 4033 1) 4034 return; 4035 4036 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 4037 // processing the formula. 4038 Base.unscale(); 4039 SmallVector<const SCEV *, 4> Ops; 4040 Formula NewBase = Base; 4041 NewBase.BaseRegs.clear(); 4042 Type *CombinedIntegerType = nullptr; 4043 for (const SCEV *BaseReg : Base.BaseRegs) { 4044 if (SE.properlyDominates(BaseReg, L->getHeader()) && 4045 !SE.hasComputableLoopEvolution(BaseReg, L)) { 4046 if (!CombinedIntegerType) 4047 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 4048 Ops.push_back(BaseReg); 4049 } 4050 else 4051 NewBase.BaseRegs.push_back(BaseReg); 4052 } 4053 4054 // If no register is relevant, we're done. 4055 if (Ops.size() == 0) 4056 return; 4057 4058 // Utility function for generating the required variants of the combined 4059 // registers. 4060 auto GenerateFormula = [&](const SCEV *Sum) { 4061 Formula F = NewBase; 4062 4063 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 4064 // opportunity to fold something. For now, just ignore such cases 4065 // rather than proceed with zero in a register. 4066 if (Sum->isZero()) 4067 return; 4068 4069 F.BaseRegs.push_back(Sum); 4070 F.canonicalize(*L); 4071 (void)InsertFormula(LU, LUIdx, F); 4072 }; 4073 4074 // If we collected at least two registers, generate a formula combining them. 4075 if (Ops.size() > 1) { 4076 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 4077 GenerateFormula(SE.getAddExpr(OpsCopy)); 4078 } 4079 4080 // If we have an unfolded offset, generate a formula combining it with the 4081 // registers collected. 4082 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { 4083 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 4084 Ops.push_back(SE.getConstant(CombinedIntegerType, 4085 NewBase.UnfoldedOffset.getFixedValue(), true)); 4086 NewBase.UnfoldedOffset = Immediate::getFixed(0); 4087 GenerateFormula(SE.getAddExpr(Ops)); 4088 } 4089 } 4090 4091 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 4092 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 4093 const Formula &Base, size_t Idx, 4094 bool IsScaledReg) { 4095 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4096 GlobalValue *GV = ExtractSymbol(G, SE); 4097 if (G->isZero() || !GV) 4098 return; 4099 Formula F = Base; 4100 F.BaseGV = GV; 4101 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4102 return; 4103 if (IsScaledReg) 4104 F.ScaledReg = G; 4105 else 4106 F.BaseRegs[Idx] = G; 4107 (void)InsertFormula(LU, LUIdx, F); 4108 } 4109 4110 /// Generate reuse formulae using symbolic offsets. 4111 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 4112 Formula Base) { 4113 // We can't add a symbolic offset if the address already contains one. 4114 if (Base.BaseGV) return; 4115 4116 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4117 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 4118 if (Base.Scale == 1) 4119 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 4120 /* IsScaledReg */ true); 4121 } 4122 4123 /// Helper function for LSRInstance::GenerateConstantOffsets. 4124 void LSRInstance::GenerateConstantOffsetsImpl( 4125 LSRUse &LU, unsigned LUIdx, const Formula &Base, 4126 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { 4127 4128 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { 4129 Formula F = Base; 4130 if (!Base.BaseOffset.isCompatibleImmediate(Offset)) 4131 return; 4132 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset); 4133 4134 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 4135 // Add the offset to the base register. 4136 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType()); 4137 const SCEV *NewG = SE.getAddExpr(NewOffset, G); 4138 // If it cancelled out, drop the base register, otherwise update it. 4139 if (NewG->isZero()) { 4140 if (IsScaledReg) { 4141 F.Scale = 0; 4142 F.ScaledReg = nullptr; 4143 } else 4144 F.deleteBaseReg(F.BaseRegs[Idx]); 4145 F.canonicalize(*L); 4146 } else if (IsScaledReg) 4147 F.ScaledReg = NewG; 4148 else 4149 F.BaseRegs[Idx] = NewG; 4150 4151 (void)InsertFormula(LU, LUIdx, F); 4152 } 4153 }; 4154 4155 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4156 4157 // With constant offsets and constant steps, we can generate pre-inc 4158 // accesses by having the offset equal the step. So, for access #0 with a 4159 // step of 8, we generate a G - 8 base which would require the first access 4160 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 4161 // for itself and hopefully becomes the base for other accesses. This means 4162 // means that a single pre-indexed access can be generated to become the new 4163 // base pointer for each iteration of the loop, resulting in no extra add/sub 4164 // instructions for pointer updating. 4165 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 4166 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 4167 if (auto *StepRec = 4168 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 4169 const APInt &StepInt = StepRec->getAPInt(); 4170 int64_t Step = StepInt.isNegative() ? 4171 StepInt.getSExtValue() : StepInt.getZExtValue(); 4172 4173 for (Immediate Offset : Worklist) { 4174 if (Offset.isFixed()) { 4175 Offset = Immediate::getFixed(Offset.getFixedValue() - Step); 4176 GenerateOffset(G, Offset); 4177 } 4178 } 4179 } 4180 } 4181 } 4182 for (Immediate Offset : Worklist) 4183 GenerateOffset(G, Offset); 4184 4185 Immediate Imm = ExtractImmediate(G, SE); 4186 if (G->isZero() || Imm.isZero() || 4187 !Base.BaseOffset.isCompatibleImmediate(Imm)) 4188 return; 4189 Formula F = Base; 4190 F.BaseOffset = F.BaseOffset.addUnsigned(Imm); 4191 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4192 return; 4193 if (IsScaledReg) { 4194 F.ScaledReg = G; 4195 } else { 4196 F.BaseRegs[Idx] = G; 4197 // We may generate non canonical Formula if G is a recurrent expr reg 4198 // related with current loop while F.ScaledReg is not. 4199 F.canonicalize(*L); 4200 } 4201 (void)InsertFormula(LU, LUIdx, F); 4202 } 4203 4204 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 4205 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 4206 Formula Base) { 4207 // TODO: For now, just add the min and max offset, because it usually isn't 4208 // worthwhile looking at everything inbetween. 4209 SmallVector<Immediate, 2> Worklist; 4210 Worklist.push_back(LU.MinOffset); 4211 if (LU.MaxOffset != LU.MinOffset) 4212 Worklist.push_back(LU.MaxOffset); 4213 4214 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4215 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 4216 if (Base.Scale == 1) 4217 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 4218 /* IsScaledReg */ true); 4219 } 4220 4221 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 4222 /// == y -> x*c == y*c. 4223 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 4224 Formula Base) { 4225 if (LU.Kind != LSRUse::ICmpZero) return; 4226 4227 // Determine the integer type for the base formula. 4228 Type *IntTy = Base.getType(); 4229 if (!IntTy) return; 4230 if (SE.getTypeSizeInBits(IntTy) > 64) return; 4231 4232 // Don't do this if there is more than one offset. 4233 if (LU.MinOffset != LU.MaxOffset) return; 4234 4235 // Check if transformation is valid. It is illegal to multiply pointer. 4236 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4237 return; 4238 for (const SCEV *BaseReg : Base.BaseRegs) 4239 if (BaseReg->getType()->isPointerTy()) 4240 return; 4241 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 4242 4243 // Check each interesting stride. 4244 for (int64_t Factor : Factors) { 4245 // Check that Factor can be represented by IntTy 4246 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4247 continue; 4248 // Check that the multiplication doesn't overflow. 4249 if (Base.BaseOffset.isMin() && Factor == -1) 4250 continue; 4251 // Not supporting scalable immediates. 4252 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) 4253 continue; 4254 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor); 4255 assert(Factor != 0 && "Zero factor not expected!"); 4256 if (NewBaseOffset.getFixedValue() / Factor != 4257 Base.BaseOffset.getFixedValue()) 4258 continue; 4259 // If the offset will be truncated at this use, check that it is in bounds. 4260 if (!IntTy->isPointerTy() && 4261 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue())) 4262 continue; 4263 4264 // Check that multiplying with the use offset doesn't overflow. 4265 Immediate Offset = LU.MinOffset; 4266 if (Offset.isMin() && Factor == -1) 4267 continue; 4268 Offset = Offset.mulUnsigned(Factor); 4269 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) 4270 continue; 4271 // If the offset will be truncated at this use, check that it is in bounds. 4272 if (!IntTy->isPointerTy() && 4273 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue())) 4274 continue; 4275 4276 Formula F = Base; 4277 F.BaseOffset = NewBaseOffset; 4278 4279 // Check that this scale is legal. 4280 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4281 continue; 4282 4283 // Compensate for the use having MinOffset built into it. 4284 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset); 4285 4286 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4287 4288 // Check that multiplying with each base register doesn't overflow. 4289 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4290 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4291 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4292 goto next; 4293 } 4294 4295 // Check that multiplying with the scaled register doesn't overflow. 4296 if (F.ScaledReg) { 4297 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4298 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4299 continue; 4300 } 4301 4302 // Check that multiplying with the unfolded offset doesn't overflow. 4303 if (F.UnfoldedOffset.isNonZero()) { 4304 if (F.UnfoldedOffset.isMin() && Factor == -1) 4305 continue; 4306 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor); 4307 if (F.UnfoldedOffset.getFixedValue() / Factor != 4308 Base.UnfoldedOffset.getFixedValue()) 4309 continue; 4310 // If the offset will be truncated, check that it is in bounds. 4311 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( 4312 IntTy, F.UnfoldedOffset.getFixedValue())) 4313 continue; 4314 } 4315 4316 // If we make it here and it's legal, add it. 4317 (void)InsertFormula(LU, LUIdx, F); 4318 next:; 4319 } 4320 } 4321 4322 /// Generate stride factor reuse formulae by making use of scaled-offset address 4323 /// modes, for example. 4324 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4325 // Determine the integer type for the base formula. 4326 Type *IntTy = Base.getType(); 4327 if (!IntTy) return; 4328 4329 // If this Formula already has a scaled register, we can't add another one. 4330 // Try to unscale the formula to generate a better scale. 4331 if (Base.Scale != 0 && !Base.unscale()) 4332 return; 4333 4334 assert(Base.Scale == 0 && "unscale did not did its job!"); 4335 4336 // Check each interesting stride. 4337 for (int64_t Factor : Factors) { 4338 Base.Scale = Factor; 4339 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4340 // Check whether this scale is going to be legal. 4341 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4342 Base)) { 4343 // As a special-case, handle special out-of-loop Basic users specially. 4344 // TODO: Reconsider this special case. 4345 if (LU.Kind == LSRUse::Basic && 4346 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4347 LU.AccessTy, Base) && 4348 LU.AllFixupsOutsideLoop) 4349 LU.Kind = LSRUse::Special; 4350 else 4351 continue; 4352 } 4353 // For an ICmpZero, negating a solitary base register won't lead to 4354 // new solutions. 4355 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && 4356 Base.BaseOffset.isZero() && !Base.BaseGV) 4357 continue; 4358 // For each addrec base reg, if its loop is current loop, apply the scale. 4359 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4360 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4361 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4362 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4363 if (FactorS->isZero()) 4364 continue; 4365 // Divide out the factor, ignoring high bits, since we'll be 4366 // scaling the value back up in the end. 4367 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4368 if (!Quotient->isZero()) { 4369 // TODO: This could be optimized to avoid all the copying. 4370 Formula F = Base; 4371 F.ScaledReg = Quotient; 4372 F.deleteBaseReg(F.BaseRegs[i]); 4373 // The canonical representation of 1*reg is reg, which is already in 4374 // Base. In that case, do not try to insert the formula, it will be 4375 // rejected anyway. 4376 if (F.Scale == 1 && (F.BaseRegs.empty() || 4377 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4378 continue; 4379 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4380 // non canonical Formula with ScaledReg's loop not being L. 4381 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4382 F.canonicalize(*L); 4383 (void)InsertFormula(LU, LUIdx, F); 4384 } 4385 } 4386 } 4387 } 4388 } 4389 4390 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4391 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4392 /// perform the extension/truncate and normalize again, as the normalized form 4393 /// can result in folds that are not valid in the post-inc use contexts. The 4394 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4395 static const SCEV * 4396 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4397 const SCEV *Expr, Type *ToTy, 4398 ScalarEvolution &SE) { 4399 const SCEV *Result = nullptr; 4400 for (auto &L : Loops) { 4401 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4402 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4403 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4404 if (!New || (Result && New != Result)) 4405 return nullptr; 4406 Result = New; 4407 } 4408 4409 assert(Result && "failed to create expression"); 4410 return Result; 4411 } 4412 4413 /// Generate reuse formulae from different IV types. 4414 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4415 // Don't bother truncating symbolic values. 4416 if (Base.BaseGV) return; 4417 4418 // Determine the integer type for the base formula. 4419 Type *DstTy = Base.getType(); 4420 if (!DstTy) return; 4421 if (DstTy->isPointerTy()) 4422 return; 4423 4424 // It is invalid to extend a pointer type so exit early if ScaledReg or 4425 // any of the BaseRegs are pointers. 4426 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4427 return; 4428 if (any_of(Base.BaseRegs, 4429 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4430 return; 4431 4432 SmallVector<PostIncLoopSet> Loops; 4433 for (auto &LF : LU.Fixups) 4434 Loops.push_back(LF.PostIncLoops); 4435 4436 for (Type *SrcTy : Types) { 4437 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4438 Formula F = Base; 4439 4440 // Sometimes SCEV is able to prove zero during ext transform. It may 4441 // happen if SCEV did not do all possible transforms while creating the 4442 // initial node (maybe due to depth limitations), but it can do them while 4443 // taking ext. 4444 if (F.ScaledReg) { 4445 const SCEV *NewScaledReg = 4446 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4447 if (!NewScaledReg || NewScaledReg->isZero()) 4448 continue; 4449 F.ScaledReg = NewScaledReg; 4450 } 4451 bool HasZeroBaseReg = false; 4452 for (const SCEV *&BaseReg : F.BaseRegs) { 4453 const SCEV *NewBaseReg = 4454 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4455 if (!NewBaseReg || NewBaseReg->isZero()) { 4456 HasZeroBaseReg = true; 4457 break; 4458 } 4459 BaseReg = NewBaseReg; 4460 } 4461 if (HasZeroBaseReg) 4462 continue; 4463 4464 // TODO: This assumes we've done basic processing on all uses and 4465 // have an idea what the register usage is. 4466 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4467 continue; 4468 4469 F.canonicalize(*L); 4470 (void)InsertFormula(LU, LUIdx, F); 4471 } 4472 } 4473 } 4474 4475 namespace { 4476 4477 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4478 /// modifications so that the search phase doesn't have to worry about the data 4479 /// structures moving underneath it. 4480 struct WorkItem { 4481 size_t LUIdx; 4482 Immediate Imm; 4483 const SCEV *OrigReg; 4484 4485 WorkItem(size_t LI, Immediate I, const SCEV *R) 4486 : LUIdx(LI), Imm(I), OrigReg(R) {} 4487 4488 void print(raw_ostream &OS) const; 4489 void dump() const; 4490 }; 4491 4492 } // end anonymous namespace 4493 4494 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4495 void WorkItem::print(raw_ostream &OS) const { 4496 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4497 << " , add offset " << Imm; 4498 } 4499 4500 LLVM_DUMP_METHOD void WorkItem::dump() const { 4501 print(errs()); errs() << '\n'; 4502 } 4503 #endif 4504 4505 /// Look for registers which are a constant distance apart and try to form reuse 4506 /// opportunities between them. 4507 void LSRInstance::GenerateCrossUseConstantOffsets() { 4508 // Group the registers by their value without any added constant offset. 4509 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; 4510 4511 DenseMap<const SCEV *, ImmMapTy> Map; 4512 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4513 SmallVector<const SCEV *, 8> Sequence; 4514 for (const SCEV *Use : RegUses) { 4515 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4516 Immediate Imm = ExtractImmediate(Reg, SE); 4517 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4518 if (Pair.second) 4519 Sequence.push_back(Reg); 4520 Pair.first->second.insert(std::make_pair(Imm, Use)); 4521 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4522 } 4523 4524 // Now examine each set of registers with the same base value. Build up 4525 // a list of work to do and do the work in a separate step so that we're 4526 // not adding formulae and register counts while we're searching. 4527 SmallVector<WorkItem, 32> WorkItems; 4528 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> 4529 UniqueItems; 4530 for (const SCEV *Reg : Sequence) { 4531 const ImmMapTy &Imms = Map.find(Reg)->second; 4532 4533 // It's not worthwhile looking for reuse if there's only one offset. 4534 if (Imms.size() == 1) 4535 continue; 4536 4537 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4538 for (const auto &Entry 4539 : Imms) dbgs() 4540 << ' ' << Entry.first; 4541 dbgs() << '\n'); 4542 4543 // Examine each offset. 4544 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4545 J != JE; ++J) { 4546 const SCEV *OrigReg = J->second; 4547 4548 Immediate JImm = J->first; 4549 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4550 4551 if (!isa<SCEVConstant>(OrigReg) && 4552 UsedByIndicesMap[Reg].count() == 1) { 4553 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4554 << '\n'); 4555 continue; 4556 } 4557 4558 // Conservatively examine offsets between this orig reg a few selected 4559 // other orig regs. 4560 Immediate First = Imms.begin()->first; 4561 Immediate Last = std::prev(Imms.end())->first; 4562 if (!First.isCompatibleImmediate(Last)) { 4563 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4564 << "\n"); 4565 continue; 4566 } 4567 // Only scalable if both terms are scalable, or if one is scalable and 4568 // the other is 0. 4569 bool Scalable = First.isScalable() || Last.isScalable(); 4570 int64_t FI = First.getKnownMinValue(); 4571 int64_t LI = Last.getKnownMinValue(); 4572 // Compute (First + Last) / 2 without overflow using the fact that 4573 // First + Last = 2 * (First + Last) + (First ^ Last). 4574 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); 4575 // If the result is negative and FI is odd and LI even (or vice versa), 4576 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4577 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); 4578 ImmMapTy::const_iterator OtherImms[] = { 4579 Imms.begin(), std::prev(Imms.end()), 4580 Imms.lower_bound(Immediate::get(Avg, Scalable))}; 4581 for (const auto &M : OtherImms) { 4582 if (M == J || M == JE) continue; 4583 if (!JImm.isCompatibleImmediate(M->first)) 4584 continue; 4585 4586 // Compute the difference between the two. 4587 Immediate Imm = JImm.subUnsigned(M->first); 4588 for (unsigned LUIdx : UsedByIndices.set_bits()) 4589 // Make a memo of this use, offset, and register tuple. 4590 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4591 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4592 } 4593 } 4594 } 4595 4596 Map.clear(); 4597 Sequence.clear(); 4598 UsedByIndicesMap.clear(); 4599 UniqueItems.clear(); 4600 4601 // Now iterate through the worklist and add new formulae. 4602 for (const WorkItem &WI : WorkItems) { 4603 size_t LUIdx = WI.LUIdx; 4604 LSRUse &LU = Uses[LUIdx]; 4605 Immediate Imm = WI.Imm; 4606 const SCEV *OrigReg = WI.OrigReg; 4607 4608 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4609 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy); 4610 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4611 4612 // TODO: Use a more targeted data structure. 4613 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4614 Formula F = LU.Formulae[L]; 4615 // FIXME: The code for the scaled and unscaled registers looks 4616 // very similar but slightly different. Investigate if they 4617 // could be merged. That way, we would not have to unscale the 4618 // Formula. 4619 F.unscale(); 4620 // Use the immediate in the scaled register. 4621 if (F.ScaledReg == OrigReg) { 4622 if (!F.BaseOffset.isCompatibleImmediate(Imm)) 4623 continue; 4624 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale)); 4625 // Don't create 50 + reg(-50). 4626 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy); 4627 if (F.referencesReg(S)) 4628 continue; 4629 Formula NewF = F; 4630 NewF.BaseOffset = Offset; 4631 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4632 NewF)) 4633 continue; 4634 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4635 4636 // If the new scale is a constant in a register, and adding the constant 4637 // value to the immediate would produce a value closer to zero than the 4638 // immediate itself, then the formula isn't worthwhile. 4639 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) { 4640 // FIXME: Do we need to do something for scalable immediates here? 4641 // A scalable SCEV won't be constant, but we might still have 4642 // something in the offset? Bail out for now to be safe. 4643 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4644 continue; 4645 if (C->getValue()->isNegative() != 4646 (NewF.BaseOffset.isLessThanZero()) && 4647 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4648 .ule(std::abs(NewF.BaseOffset.getFixedValue()))) 4649 continue; 4650 } 4651 4652 // OK, looks good. 4653 NewF.canonicalize(*this->L); 4654 (void)InsertFormula(LU, LUIdx, NewF); 4655 } else { 4656 // Use the immediate in a base register. 4657 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4658 const SCEV *BaseReg = F.BaseRegs[N]; 4659 if (BaseReg != OrigReg) 4660 continue; 4661 Formula NewF = F; 4662 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || 4663 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || 4664 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset)) 4665 continue; 4666 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm); 4667 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4668 LU.Kind, LU.AccessTy, NewF)) { 4669 if (AMK == TTI::AMK_PostIndexed && 4670 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4671 continue; 4672 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm); 4673 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset)) 4674 continue; 4675 NewF = F; 4676 NewF.UnfoldedOffset = NewUnfoldedOffset; 4677 } 4678 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4679 4680 // If the new formula has a constant in a register, and adding the 4681 // constant value to the immediate would produce a value closer to 4682 // zero than the immediate itself, then the formula isn't worthwhile. 4683 for (const SCEV *NewReg : NewF.BaseRegs) 4684 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) { 4685 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4686 goto skip_formula; 4687 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4688 .abs() 4689 .slt(std::abs(NewF.BaseOffset.getFixedValue())) && 4690 (C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4691 .countr_zero() >= 4692 (unsigned)llvm::countr_zero<uint64_t>( 4693 NewF.BaseOffset.getFixedValue())) 4694 goto skip_formula; 4695 } 4696 4697 // Ok, looks good. 4698 NewF.canonicalize(*this->L); 4699 (void)InsertFormula(LU, LUIdx, NewF); 4700 break; 4701 skip_formula:; 4702 } 4703 } 4704 } 4705 } 4706 } 4707 4708 /// Generate formulae for each use. 4709 void 4710 LSRInstance::GenerateAllReuseFormulae() { 4711 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4712 // queries are more precise. 4713 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4714 LSRUse &LU = Uses[LUIdx]; 4715 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4716 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4717 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4718 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4719 } 4720 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4721 LSRUse &LU = Uses[LUIdx]; 4722 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4723 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4724 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4725 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4727 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4729 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4730 } 4731 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4732 LSRUse &LU = Uses[LUIdx]; 4733 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4734 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4735 } 4736 4737 GenerateCrossUseConstantOffsets(); 4738 4739 LLVM_DEBUG(dbgs() << "\n" 4740 "After generating reuse formulae:\n"; 4741 print_uses(dbgs())); 4742 } 4743 4744 /// If there are multiple formulae with the same set of registers used 4745 /// by other uses, pick the best one and delete the others. 4746 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4747 DenseSet<const SCEV *> VisitedRegs; 4748 SmallPtrSet<const SCEV *, 16> Regs; 4749 SmallPtrSet<const SCEV *, 16> LoserRegs; 4750 #ifndef NDEBUG 4751 bool ChangedFormulae = false; 4752 #endif 4753 4754 // Collect the best formula for each unique set of shared registers. This 4755 // is reset for each use. 4756 using BestFormulaeTy = 4757 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4758 4759 BestFormulaeTy BestFormulae; 4760 4761 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4762 LSRUse &LU = Uses[LUIdx]; 4763 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4764 dbgs() << '\n'); 4765 4766 bool Any = false; 4767 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4768 FIdx != NumForms; ++FIdx) { 4769 Formula &F = LU.Formulae[FIdx]; 4770 4771 // Some formulas are instant losers. For example, they may depend on 4772 // nonexistent AddRecs from other loops. These need to be filtered 4773 // immediately, otherwise heuristics could choose them over others leading 4774 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4775 // avoids the need to recompute this information across formulae using the 4776 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4777 // the corresponding bad register from the Regs set. 4778 Cost CostF(L, SE, TTI, AMK); 4779 Regs.clear(); 4780 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4781 if (CostF.isLoser()) { 4782 // During initial formula generation, undesirable formulae are generated 4783 // by uses within other loops that have some non-trivial address mode or 4784 // use the postinc form of the IV. LSR needs to provide these formulae 4785 // as the basis of rediscovering the desired formula that uses an AddRec 4786 // corresponding to the existing phi. Once all formulae have been 4787 // generated, these initial losers may be pruned. 4788 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4789 dbgs() << "\n"); 4790 } 4791 else { 4792 SmallVector<const SCEV *, 4> Key; 4793 for (const SCEV *Reg : F.BaseRegs) { 4794 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4795 Key.push_back(Reg); 4796 } 4797 if (F.ScaledReg && 4798 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4799 Key.push_back(F.ScaledReg); 4800 // Unstable sort by host order ok, because this is only used for 4801 // uniquifying. 4802 llvm::sort(Key); 4803 4804 std::pair<BestFormulaeTy::const_iterator, bool> P = 4805 BestFormulae.insert(std::make_pair(Key, FIdx)); 4806 if (P.second) 4807 continue; 4808 4809 Formula &Best = LU.Formulae[P.first->second]; 4810 4811 Cost CostBest(L, SE, TTI, AMK); 4812 Regs.clear(); 4813 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4814 if (CostF.isLess(CostBest)) 4815 std::swap(F, Best); 4816 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4817 dbgs() << "\n" 4818 " in favor of formula "; 4819 Best.print(dbgs()); dbgs() << '\n'); 4820 } 4821 #ifndef NDEBUG 4822 ChangedFormulae = true; 4823 #endif 4824 LU.DeleteFormula(F); 4825 --FIdx; 4826 --NumForms; 4827 Any = true; 4828 } 4829 4830 // Now that we've filtered out some formulae, recompute the Regs set. 4831 if (Any) 4832 LU.RecomputeRegs(LUIdx, RegUses); 4833 4834 // Reset this to prepare for the next use. 4835 BestFormulae.clear(); 4836 } 4837 4838 LLVM_DEBUG(if (ChangedFormulae) { 4839 dbgs() << "\n" 4840 "After filtering out undesirable candidates:\n"; 4841 print_uses(dbgs()); 4842 }); 4843 } 4844 4845 /// Estimate the worst-case number of solutions the solver might have to 4846 /// consider. It almost never considers this many solutions because it prune the 4847 /// search space, but the pruning isn't always sufficient. 4848 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4849 size_t Power = 1; 4850 for (const LSRUse &LU : Uses) { 4851 size_t FSize = LU.Formulae.size(); 4852 if (FSize >= ComplexityLimit) { 4853 Power = ComplexityLimit; 4854 break; 4855 } 4856 Power *= FSize; 4857 if (Power >= ComplexityLimit) 4858 break; 4859 } 4860 return Power; 4861 } 4862 4863 /// When one formula uses a superset of the registers of another formula, it 4864 /// won't help reduce register pressure (though it may not necessarily hurt 4865 /// register pressure); remove it to simplify the system. 4866 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4867 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4868 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4869 4870 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4871 "which use a superset of registers used by other " 4872 "formulae.\n"); 4873 4874 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4875 LSRUse &LU = Uses[LUIdx]; 4876 bool Any = false; 4877 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4878 Formula &F = LU.Formulae[i]; 4879 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) 4880 continue; 4881 // Look for a formula with a constant or GV in a register. If the use 4882 // also has a formula with that same value in an immediate field, 4883 // delete the one that uses a register. 4884 for (SmallVectorImpl<const SCEV *>::const_iterator 4885 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4886 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4887 Formula NewF = F; 4888 //FIXME: Formulas should store bitwidth to do wrapping properly. 4889 // See PR41034. 4890 NewF.BaseOffset = 4891 Immediate::getFixed(NewF.BaseOffset.getFixedValue() + 4892 (uint64_t)C->getValue()->getSExtValue()); 4893 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4894 (I - F.BaseRegs.begin())); 4895 if (LU.HasFormulaWithSameRegs(NewF)) { 4896 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4897 dbgs() << '\n'); 4898 LU.DeleteFormula(F); 4899 --i; 4900 --e; 4901 Any = true; 4902 break; 4903 } 4904 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4905 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4906 if (!F.BaseGV) { 4907 Formula NewF = F; 4908 NewF.BaseGV = GV; 4909 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4910 (I - F.BaseRegs.begin())); 4911 if (LU.HasFormulaWithSameRegs(NewF)) { 4912 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4913 dbgs() << '\n'); 4914 LU.DeleteFormula(F); 4915 --i; 4916 --e; 4917 Any = true; 4918 break; 4919 } 4920 } 4921 } 4922 } 4923 } 4924 if (Any) 4925 LU.RecomputeRegs(LUIdx, RegUses); 4926 } 4927 4928 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4929 } 4930 } 4931 4932 /// When there are many registers for expressions like A, A+1, A+2, etc., 4933 /// allocate a single register for them. 4934 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4935 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4936 return; 4937 4938 LLVM_DEBUG( 4939 dbgs() << "The search space is too complex.\n" 4940 "Narrowing the search space by assuming that uses separated " 4941 "by a constant offset will use the same registers.\n"); 4942 4943 // This is especially useful for unrolled loops. 4944 4945 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4946 LSRUse &LU = Uses[LUIdx]; 4947 for (const Formula &F : LU.Formulae) { 4948 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) 4949 continue; 4950 4951 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4952 if (!LUThatHas) 4953 continue; 4954 4955 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4956 LU.Kind, LU.AccessTy)) 4957 continue; 4958 4959 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4960 4961 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4962 4963 // Transfer the fixups of LU to LUThatHas. 4964 for (LSRFixup &Fixup : LU.Fixups) { 4965 Fixup.Offset += F.BaseOffset; 4966 LUThatHas->pushFixup(Fixup); 4967 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4968 } 4969 4970 // Delete formulae from the new use which are no longer legal. 4971 bool Any = false; 4972 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4973 Formula &F = LUThatHas->Formulae[i]; 4974 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4975 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4976 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4977 LUThatHas->DeleteFormula(F); 4978 --i; 4979 --e; 4980 Any = true; 4981 } 4982 } 4983 4984 if (Any) 4985 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4986 4987 // Delete the old use. 4988 DeleteUse(LU, LUIdx); 4989 --LUIdx; 4990 --NumUses; 4991 break; 4992 } 4993 } 4994 4995 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4996 } 4997 4998 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4999 /// we've done more filtering, as it may be able to find more formulae to 5000 /// eliminate. 5001 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 5002 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5003 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5004 5005 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 5006 "undesirable dedicated registers.\n"); 5007 5008 FilterOutUndesirableDedicatedRegisters(); 5009 5010 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5011 } 5012 } 5013 5014 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 5015 /// Pick the best one and delete the others. 5016 /// This narrowing heuristic is to keep as many formulae with different 5017 /// Scale and ScaledReg pair as possible while narrowing the search space. 5018 /// The benefit is that it is more likely to find out a better solution 5019 /// from a formulae set with more Scale and ScaledReg variations than 5020 /// a formulae set with the same Scale and ScaledReg. The picking winner 5021 /// reg heuristic will often keep the formulae with the same Scale and 5022 /// ScaledReg and filter others, and we want to avoid that if possible. 5023 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 5024 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5025 return; 5026 5027 LLVM_DEBUG( 5028 dbgs() << "The search space is too complex.\n" 5029 "Narrowing the search space by choosing the best Formula " 5030 "from the Formulae with the same Scale and ScaledReg.\n"); 5031 5032 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 5033 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 5034 5035 BestFormulaeTy BestFormulae; 5036 #ifndef NDEBUG 5037 bool ChangedFormulae = false; 5038 #endif 5039 DenseSet<const SCEV *> VisitedRegs; 5040 SmallPtrSet<const SCEV *, 16> Regs; 5041 5042 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5043 LSRUse &LU = Uses[LUIdx]; 5044 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 5045 dbgs() << '\n'); 5046 5047 // Return true if Formula FA is better than Formula FB. 5048 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 5049 // First we will try to choose the Formula with fewer new registers. 5050 // For a register used by current Formula, the more the register is 5051 // shared among LSRUses, the less we increase the register number 5052 // counter of the formula. 5053 size_t FARegNum = 0; 5054 for (const SCEV *Reg : FA.BaseRegs) { 5055 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5056 FARegNum += (NumUses - UsedByIndices.count() + 1); 5057 } 5058 size_t FBRegNum = 0; 5059 for (const SCEV *Reg : FB.BaseRegs) { 5060 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5061 FBRegNum += (NumUses - UsedByIndices.count() + 1); 5062 } 5063 if (FARegNum != FBRegNum) 5064 return FARegNum < FBRegNum; 5065 5066 // If the new register numbers are the same, choose the Formula with 5067 // less Cost. 5068 Cost CostFA(L, SE, TTI, AMK); 5069 Cost CostFB(L, SE, TTI, AMK); 5070 Regs.clear(); 5071 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 5072 Regs.clear(); 5073 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 5074 return CostFA.isLess(CostFB); 5075 }; 5076 5077 bool Any = false; 5078 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5079 ++FIdx) { 5080 Formula &F = LU.Formulae[FIdx]; 5081 if (!F.ScaledReg) 5082 continue; 5083 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 5084 if (P.second) 5085 continue; 5086 5087 Formula &Best = LU.Formulae[P.first->second]; 5088 if (IsBetterThan(F, Best)) 5089 std::swap(F, Best); 5090 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5091 dbgs() << "\n" 5092 " in favor of formula "; 5093 Best.print(dbgs()); dbgs() << '\n'); 5094 #ifndef NDEBUG 5095 ChangedFormulae = true; 5096 #endif 5097 LU.DeleteFormula(F); 5098 --FIdx; 5099 --NumForms; 5100 Any = true; 5101 } 5102 if (Any) 5103 LU.RecomputeRegs(LUIdx, RegUses); 5104 5105 // Reset this to prepare for the next use. 5106 BestFormulae.clear(); 5107 } 5108 5109 LLVM_DEBUG(if (ChangedFormulae) { 5110 dbgs() << "\n" 5111 "After filtering out undesirable candidates:\n"; 5112 print_uses(dbgs()); 5113 }); 5114 } 5115 5116 /// If we are over the complexity limit, filter out any post-inc prefering 5117 /// variables to only post-inc values. 5118 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 5119 if (AMK != TTI::AMK_PostIndexed) 5120 return; 5121 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5122 return; 5123 5124 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 5125 "Narrowing the search space by choosing the lowest " 5126 "register Formula for PostInc Uses.\n"); 5127 5128 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5129 LSRUse &LU = Uses[LUIdx]; 5130 5131 if (LU.Kind != LSRUse::Address) 5132 continue; 5133 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 5134 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 5135 continue; 5136 5137 size_t MinRegs = std::numeric_limits<size_t>::max(); 5138 for (const Formula &F : LU.Formulae) 5139 MinRegs = std::min(F.getNumRegs(), MinRegs); 5140 5141 bool Any = false; 5142 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5143 ++FIdx) { 5144 Formula &F = LU.Formulae[FIdx]; 5145 if (F.getNumRegs() > MinRegs) { 5146 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5147 dbgs() << "\n"); 5148 LU.DeleteFormula(F); 5149 --FIdx; 5150 --NumForms; 5151 Any = true; 5152 } 5153 } 5154 if (Any) 5155 LU.RecomputeRegs(LUIdx, RegUses); 5156 5157 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5158 break; 5159 } 5160 5161 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5162 } 5163 5164 /// The function delete formulas with high registers number expectation. 5165 /// Assuming we don't know the value of each formula (already delete 5166 /// all inefficient), generate probability of not selecting for each 5167 /// register. 5168 /// For example, 5169 /// Use1: 5170 /// reg(a) + reg({0,+,1}) 5171 /// reg(a) + reg({-1,+,1}) + 1 5172 /// reg({a,+,1}) 5173 /// Use2: 5174 /// reg(b) + reg({0,+,1}) 5175 /// reg(b) + reg({-1,+,1}) + 1 5176 /// reg({b,+,1}) 5177 /// Use3: 5178 /// reg(c) + reg(b) + reg({0,+,1}) 5179 /// reg(c) + reg({b,+,1}) 5180 /// 5181 /// Probability of not selecting 5182 /// Use1 Use2 Use3 5183 /// reg(a) (1/3) * 1 * 1 5184 /// reg(b) 1 * (1/3) * (1/2) 5185 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 5186 /// reg({-1,+,1}) (2/3) * (2/3) * 1 5187 /// reg({a,+,1}) (2/3) * 1 * 1 5188 /// reg({b,+,1}) 1 * (2/3) * (2/3) 5189 /// reg(c) 1 * 1 * 0 5190 /// 5191 /// Now count registers number mathematical expectation for each formula: 5192 /// Note that for each use we exclude probability if not selecting for the use. 5193 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 5194 /// probabilty 1/3 of not selecting for Use1). 5195 /// Use1: 5196 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 5197 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 5198 /// reg({a,+,1}) 1 5199 /// Use2: 5200 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 5201 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 5202 /// reg({b,+,1}) 2/3 5203 /// Use3: 5204 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 5205 /// reg(c) + reg({b,+,1}) 1 + 2/3 5206 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 5207 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5208 return; 5209 // Ok, we have too many of formulae on our hands to conveniently handle. 5210 // Use a rough heuristic to thin out the list. 5211 5212 // Set of Regs wich will be 100% used in final solution. 5213 // Used in each formula of a solution (in example above this is reg(c)). 5214 // We can skip them in calculations. 5215 SmallPtrSet<const SCEV *, 4> UniqRegs; 5216 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5217 5218 // Map each register to probability of not selecting 5219 DenseMap <const SCEV *, float> RegNumMap; 5220 for (const SCEV *Reg : RegUses) { 5221 if (UniqRegs.count(Reg)) 5222 continue; 5223 float PNotSel = 1; 5224 for (const LSRUse &LU : Uses) { 5225 if (!LU.Regs.count(Reg)) 5226 continue; 5227 float P = LU.getNotSelectedProbability(Reg); 5228 if (P != 0.0) 5229 PNotSel *= P; 5230 else 5231 UniqRegs.insert(Reg); 5232 } 5233 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 5234 } 5235 5236 LLVM_DEBUG( 5237 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 5238 5239 // Delete formulas where registers number expectation is high. 5240 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5241 LSRUse &LU = Uses[LUIdx]; 5242 // If nothing to delete - continue. 5243 if (LU.Formulae.size() < 2) 5244 continue; 5245 // This is temporary solution to test performance. Float should be 5246 // replaced with round independent type (based on integers) to avoid 5247 // different results for different target builds. 5248 float FMinRegNum = LU.Formulae[0].getNumRegs(); 5249 float FMinARegNum = LU.Formulae[0].getNumRegs(); 5250 size_t MinIdx = 0; 5251 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5252 Formula &F = LU.Formulae[i]; 5253 float FRegNum = 0; 5254 float FARegNum = 0; 5255 for (const SCEV *BaseReg : F.BaseRegs) { 5256 if (UniqRegs.count(BaseReg)) 5257 continue; 5258 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5259 if (isa<SCEVAddRecExpr>(BaseReg)) 5260 FARegNum += 5261 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5262 } 5263 if (const SCEV *ScaledReg = F.ScaledReg) { 5264 if (!UniqRegs.count(ScaledReg)) { 5265 FRegNum += 5266 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5267 if (isa<SCEVAddRecExpr>(ScaledReg)) 5268 FARegNum += 5269 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5270 } 5271 } 5272 if (FMinRegNum > FRegNum || 5273 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 5274 FMinRegNum = FRegNum; 5275 FMinARegNum = FARegNum; 5276 MinIdx = i; 5277 } 5278 } 5279 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 5280 dbgs() << " with min reg num " << FMinRegNum << '\n'); 5281 if (MinIdx != 0) 5282 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 5283 while (LU.Formulae.size() != 1) { 5284 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5285 dbgs() << '\n'); 5286 LU.Formulae.pop_back(); 5287 } 5288 LU.RecomputeRegs(LUIdx, RegUses); 5289 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5290 Formula &F = LU.Formulae[0]; 5291 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5292 // When we choose the formula, the regs become unique. 5293 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5294 if (F.ScaledReg) 5295 UniqRegs.insert(F.ScaledReg); 5296 } 5297 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5298 } 5299 5300 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5301 // would the addressing offset +C would be legal where the negative offset -C is 5302 // not. 5303 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5304 ScalarEvolution &SE, const SCEV *Best, 5305 const SCEV *Reg, 5306 MemAccessTy AccessType) { 5307 if (Best->getType() != Reg->getType() || 5308 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5309 cast<SCEVAddRecExpr>(Best)->getLoop() != 5310 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5311 return false; 5312 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg)); 5313 if (!Diff) 5314 return false; 5315 5316 return TTI.isLegalAddressingMode( 5317 AccessType.MemTy, /*BaseGV=*/nullptr, 5318 /*BaseOffset=*/Diff->getAPInt().getSExtValue(), 5319 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5320 !TTI.isLegalAddressingMode( 5321 AccessType.MemTy, /*BaseGV=*/nullptr, 5322 /*BaseOffset=*/-Diff->getAPInt().getSExtValue(), 5323 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5324 } 5325 5326 /// Pick a register which seems likely to be profitable, and then in any use 5327 /// which has any reference to that register, delete all formulae which do not 5328 /// reference that register. 5329 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5330 // With all other options exhausted, loop until the system is simple 5331 // enough to handle. 5332 SmallPtrSet<const SCEV *, 4> Taken; 5333 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5334 // Ok, we have too many of formulae on our hands to conveniently handle. 5335 // Use a rough heuristic to thin out the list. 5336 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5337 5338 // Pick the register which is used by the most LSRUses, which is likely 5339 // to be a good reuse register candidate. 5340 const SCEV *Best = nullptr; 5341 unsigned BestNum = 0; 5342 for (const SCEV *Reg : RegUses) { 5343 if (Taken.count(Reg)) 5344 continue; 5345 if (!Best) { 5346 Best = Reg; 5347 BestNum = RegUses.getUsedByIndices(Reg).count(); 5348 } else { 5349 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5350 if (Count > BestNum) { 5351 Best = Reg; 5352 BestNum = Count; 5353 } 5354 5355 // If the scores are the same, but the Reg is simpler for the target 5356 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5357 // handle +C but not -C), opt for the simpler formula. 5358 if (Count == BestNum) { 5359 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5360 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5361 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5362 Uses[LUIdx].AccessTy)) { 5363 Best = Reg; 5364 BestNum = Count; 5365 } 5366 } 5367 } 5368 } 5369 assert(Best && "Failed to find best LSRUse candidate"); 5370 5371 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5372 << " will yield profitable reuse.\n"); 5373 Taken.insert(Best); 5374 5375 // In any use with formulae which references this register, delete formulae 5376 // which don't reference it. 5377 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5378 LSRUse &LU = Uses[LUIdx]; 5379 if (!LU.Regs.count(Best)) continue; 5380 5381 bool Any = false; 5382 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5383 Formula &F = LU.Formulae[i]; 5384 if (!F.referencesReg(Best)) { 5385 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5386 LU.DeleteFormula(F); 5387 --e; 5388 --i; 5389 Any = true; 5390 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5391 continue; 5392 } 5393 } 5394 5395 if (Any) 5396 LU.RecomputeRegs(LUIdx, RegUses); 5397 } 5398 5399 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5400 } 5401 } 5402 5403 /// If there are an extraordinary number of formulae to choose from, use some 5404 /// rough heuristics to prune down the number of formulae. This keeps the main 5405 /// solver from taking an extraordinary amount of time in some worst-case 5406 /// scenarios. 5407 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5408 NarrowSearchSpaceByDetectingSupersets(); 5409 NarrowSearchSpaceByCollapsingUnrolledCode(); 5410 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5411 if (FilterSameScaledReg) 5412 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5413 NarrowSearchSpaceByFilterPostInc(); 5414 if (LSRExpNarrow) 5415 NarrowSearchSpaceByDeletingCostlyFormulas(); 5416 else 5417 NarrowSearchSpaceByPickingWinnerRegs(); 5418 } 5419 5420 /// This is the recursive solver. 5421 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5422 Cost &SolutionCost, 5423 SmallVectorImpl<const Formula *> &Workspace, 5424 const Cost &CurCost, 5425 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5426 DenseSet<const SCEV *> &VisitedRegs) const { 5427 // Some ideas: 5428 // - prune more: 5429 // - use more aggressive filtering 5430 // - sort the formula so that the most profitable solutions are found first 5431 // - sort the uses too 5432 // - search faster: 5433 // - don't compute a cost, and then compare. compare while computing a cost 5434 // and bail early. 5435 // - track register sets with SmallBitVector 5436 5437 const LSRUse &LU = Uses[Workspace.size()]; 5438 5439 // If this use references any register that's already a part of the 5440 // in-progress solution, consider it a requirement that a formula must 5441 // reference that register in order to be considered. This prunes out 5442 // unprofitable searching. 5443 SmallSetVector<const SCEV *, 4> ReqRegs; 5444 for (const SCEV *S : CurRegs) 5445 if (LU.Regs.count(S)) 5446 ReqRegs.insert(S); 5447 5448 SmallPtrSet<const SCEV *, 16> NewRegs; 5449 Cost NewCost(L, SE, TTI, AMK); 5450 for (const Formula &F : LU.Formulae) { 5451 // Ignore formulae which may not be ideal in terms of register reuse of 5452 // ReqRegs. The formula should use all required registers before 5453 // introducing new ones. 5454 // This can sometimes (notably when trying to favour postinc) lead to 5455 // sub-optimial decisions. There it is best left to the cost modelling to 5456 // get correct. 5457 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5458 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5459 for (const SCEV *Reg : ReqRegs) { 5460 if ((F.ScaledReg && F.ScaledReg == Reg) || 5461 is_contained(F.BaseRegs, Reg)) { 5462 --NumReqRegsToFind; 5463 if (NumReqRegsToFind == 0) 5464 break; 5465 } 5466 } 5467 if (NumReqRegsToFind != 0) { 5468 // If none of the formulae satisfied the required registers, then we could 5469 // clear ReqRegs and try again. Currently, we simply give up in this case. 5470 continue; 5471 } 5472 } 5473 5474 // Evaluate the cost of the current formula. If it's already worse than 5475 // the current best, prune the search at that point. 5476 NewCost = CurCost; 5477 NewRegs = CurRegs; 5478 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5479 if (NewCost.isLess(SolutionCost)) { 5480 Workspace.push_back(&F); 5481 if (Workspace.size() != Uses.size()) { 5482 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5483 NewRegs, VisitedRegs); 5484 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5485 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5486 } else { 5487 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5488 dbgs() << ".\nRegs:\n"; 5489 for (const SCEV *S : NewRegs) dbgs() 5490 << "- " << *S << "\n"; 5491 dbgs() << '\n'); 5492 5493 SolutionCost = NewCost; 5494 Solution = Workspace; 5495 } 5496 Workspace.pop_back(); 5497 } 5498 } 5499 } 5500 5501 /// Choose one formula from each use. Return the results in the given Solution 5502 /// vector. 5503 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5504 SmallVector<const Formula *, 8> Workspace; 5505 Cost SolutionCost(L, SE, TTI, AMK); 5506 SolutionCost.Lose(); 5507 Cost CurCost(L, SE, TTI, AMK); 5508 SmallPtrSet<const SCEV *, 16> CurRegs; 5509 DenseSet<const SCEV *> VisitedRegs; 5510 Workspace.reserve(Uses.size()); 5511 5512 // SolveRecurse does all the work. 5513 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5514 CurRegs, VisitedRegs); 5515 if (Solution.empty()) { 5516 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5517 return; 5518 } 5519 5520 // Ok, we've now made all our decisions. 5521 LLVM_DEBUG(dbgs() << "\n" 5522 "The chosen solution requires "; 5523 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5524 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5525 dbgs() << " "; 5526 Uses[i].print(dbgs()); 5527 dbgs() << "\n" 5528 " "; 5529 Solution[i]->print(dbgs()); 5530 dbgs() << '\n'; 5531 }); 5532 5533 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5534 5535 const bool EnableDropUnprofitableSolution = [&] { 5536 switch (AllowDropSolutionIfLessProfitable) { 5537 case cl::BOU_TRUE: 5538 return true; 5539 case cl::BOU_FALSE: 5540 return false; 5541 case cl::BOU_UNSET: 5542 return TTI.shouldDropLSRSolutionIfLessProfitable(); 5543 } 5544 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 5545 }(); 5546 5547 if (BaselineCost.isLess(SolutionCost)) { 5548 if (!EnableDropUnprofitableSolution) 5549 LLVM_DEBUG( 5550 dbgs() << "Baseline is more profitable than chosen solution, " 5551 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5552 else { 5553 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5554 "solution, dropping LSR solution.\n";); 5555 Solution.clear(); 5556 } 5557 } 5558 } 5559 5560 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5561 /// we can go while still being dominated by the input positions. This helps 5562 /// canonicalize the insert position, which encourages sharing. 5563 BasicBlock::iterator 5564 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5565 const SmallVectorImpl<Instruction *> &Inputs) 5566 const { 5567 Instruction *Tentative = &*IP; 5568 while (true) { 5569 bool AllDominate = true; 5570 Instruction *BetterPos = nullptr; 5571 // Don't bother attempting to insert before a catchswitch, their basic block 5572 // cannot have other non-PHI instructions. 5573 if (isa<CatchSwitchInst>(Tentative)) 5574 return IP; 5575 5576 for (Instruction *Inst : Inputs) { 5577 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5578 AllDominate = false; 5579 break; 5580 } 5581 // Attempt to find an insert position in the middle of the block, 5582 // instead of at the end, so that it can be used for other expansions. 5583 if (Tentative->getParent() == Inst->getParent() && 5584 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5585 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5586 } 5587 if (!AllDominate) 5588 break; 5589 if (BetterPos) 5590 IP = BetterPos->getIterator(); 5591 else 5592 IP = Tentative->getIterator(); 5593 5594 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5595 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5596 5597 BasicBlock *IDom; 5598 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5599 if (!Rung) return IP; 5600 Rung = Rung->getIDom(); 5601 if (!Rung) return IP; 5602 IDom = Rung->getBlock(); 5603 5604 // Don't climb into a loop though. 5605 const Loop *IDomLoop = LI.getLoopFor(IDom); 5606 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5607 if (IDomDepth <= IPLoopDepth && 5608 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5609 break; 5610 } 5611 5612 Tentative = IDom->getTerminator(); 5613 } 5614 5615 return IP; 5616 } 5617 5618 /// Determine an input position which will be dominated by the operands and 5619 /// which will dominate the result. 5620 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5621 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5622 // Collect some instructions which must be dominated by the 5623 // expanding replacement. These must be dominated by any operands that 5624 // will be required in the expansion. 5625 SmallVector<Instruction *, 4> Inputs; 5626 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5627 Inputs.push_back(I); 5628 if (LU.Kind == LSRUse::ICmpZero) 5629 if (Instruction *I = 5630 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5631 Inputs.push_back(I); 5632 if (LF.PostIncLoops.count(L)) { 5633 if (LF.isUseFullyOutsideLoop(L)) 5634 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5635 else 5636 Inputs.push_back(IVIncInsertPos); 5637 } 5638 // The expansion must also be dominated by the increment positions of any 5639 // loops it for which it is using post-inc mode. 5640 for (const Loop *PIL : LF.PostIncLoops) { 5641 if (PIL == L) continue; 5642 5643 // Be dominated by the loop exit. 5644 SmallVector<BasicBlock *, 4> ExitingBlocks; 5645 PIL->getExitingBlocks(ExitingBlocks); 5646 if (!ExitingBlocks.empty()) { 5647 BasicBlock *BB = ExitingBlocks[0]; 5648 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5649 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5650 Inputs.push_back(BB->getTerminator()); 5651 } 5652 } 5653 5654 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5655 && !isa<DbgInfoIntrinsic>(LowestIP) && 5656 "Insertion point must be a normal instruction"); 5657 5658 // Then, climb up the immediate dominator tree as far as we can go while 5659 // still being dominated by the input positions. 5660 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5661 5662 // Don't insert instructions before PHI nodes. 5663 while (isa<PHINode>(IP)) ++IP; 5664 5665 // Ignore landingpad instructions. 5666 while (IP->isEHPad()) ++IP; 5667 5668 // Ignore debug intrinsics. 5669 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5670 5671 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5672 // IP consistent across expansions and allows the previously inserted 5673 // instructions to be reused by subsequent expansion. 5674 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5675 ++IP; 5676 5677 return IP; 5678 } 5679 5680 /// Emit instructions for the leading candidate expression for this LSRUse (this 5681 /// is called "expanding"). 5682 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5683 const Formula &F, BasicBlock::iterator IP, 5684 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5685 if (LU.RigidFormula) 5686 return LF.OperandValToReplace; 5687 5688 // Determine an input position which will be dominated by the operands and 5689 // which will dominate the result. 5690 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5691 Rewriter.setInsertPoint(&*IP); 5692 5693 // Inform the Rewriter if we have a post-increment use, so that it can 5694 // perform an advantageous expansion. 5695 Rewriter.setPostInc(LF.PostIncLoops); 5696 5697 // This is the type that the user actually needs. 5698 Type *OpTy = LF.OperandValToReplace->getType(); 5699 // This will be the type that we'll initially expand to. 5700 Type *Ty = F.getType(); 5701 if (!Ty) 5702 // No type known; just expand directly to the ultimate type. 5703 Ty = OpTy; 5704 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5705 // Expand directly to the ultimate type if it's the right size. 5706 Ty = OpTy; 5707 // This is the type to do integer arithmetic in. 5708 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5709 5710 // Build up a list of operands to add together to form the full base. 5711 SmallVector<const SCEV *, 8> Ops; 5712 5713 // Expand the BaseRegs portion. 5714 for (const SCEV *Reg : F.BaseRegs) { 5715 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5716 5717 // If we're expanding for a post-inc user, make the post-inc adjustment. 5718 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5719 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5720 } 5721 5722 // Expand the ScaledReg portion. 5723 Value *ICmpScaledV = nullptr; 5724 if (F.Scale != 0) { 5725 const SCEV *ScaledS = F.ScaledReg; 5726 5727 // If we're expanding for a post-inc user, make the post-inc adjustment. 5728 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5729 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5730 5731 if (LU.Kind == LSRUse::ICmpZero) { 5732 // Expand ScaleReg as if it was part of the base regs. 5733 if (F.Scale == 1) 5734 Ops.push_back( 5735 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5736 else { 5737 // An interesting way of "folding" with an icmp is to use a negated 5738 // scale, which we'll implement by inserting it into the other operand 5739 // of the icmp. 5740 assert(F.Scale == -1 && 5741 "The only scale supported by ICmpZero uses is -1!"); 5742 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5743 } 5744 } else { 5745 // Otherwise just expand the scaled register and an explicit scale, 5746 // which is expected to be matched as part of the address. 5747 5748 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5749 // Unless the addressing mode will not be folded. 5750 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5751 isAMCompletelyFolded(TTI, LU, F)) { 5752 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5753 Ops.clear(); 5754 Ops.push_back(SE.getUnknown(FullV)); 5755 } 5756 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5757 if (F.Scale != 1) 5758 ScaledS = 5759 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5760 Ops.push_back(ScaledS); 5761 } 5762 } 5763 5764 // Expand the GV portion. 5765 if (F.BaseGV) { 5766 // Flush the operand list to suppress SCEVExpander hoisting. 5767 if (!Ops.empty()) { 5768 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5769 Ops.clear(); 5770 Ops.push_back(SE.getUnknown(FullV)); 5771 } 5772 Ops.push_back(SE.getUnknown(F.BaseGV)); 5773 } 5774 5775 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5776 // unfolded offsets. LSR assumes they both live next to their uses. 5777 if (!Ops.empty()) { 5778 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5779 Ops.clear(); 5780 Ops.push_back(SE.getUnknown(FullV)); 5781 } 5782 5783 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail 5784 // out at this point, or should we generate a SCEV adding together mixed 5785 // offsets? 5786 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && 5787 "Expanding mismatched offsets\n"); 5788 // Expand the immediate portion. 5789 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset); 5790 if (Offset.isNonZero()) { 5791 if (LU.Kind == LSRUse::ICmpZero) { 5792 // The other interesting way of "folding" with an ICmpZero is to use a 5793 // negated immediate. 5794 if (!ICmpScaledV) 5795 ICmpScaledV = 5796 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue()); 5797 else { 5798 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5799 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue()); 5800 } 5801 } else { 5802 // Just add the immediate values. These again are expected to be matched 5803 // as part of the address. 5804 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy)); 5805 } 5806 } 5807 5808 // Expand the unfolded offset portion. 5809 Immediate UnfoldedOffset = F.UnfoldedOffset; 5810 if (UnfoldedOffset.isNonZero()) { 5811 // Just add the immediate values. 5812 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy)); 5813 } 5814 5815 // Emit instructions summing all the operands. 5816 const SCEV *FullS = Ops.empty() ? 5817 SE.getConstant(IntTy, 0) : 5818 SE.getAddExpr(Ops); 5819 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5820 5821 // We're done expanding now, so reset the rewriter. 5822 Rewriter.clearPostInc(); 5823 5824 // An ICmpZero Formula represents an ICmp which we're handling as a 5825 // comparison against zero. Now that we've expanded an expression for that 5826 // form, update the ICmp's other operand. 5827 if (LU.Kind == LSRUse::ICmpZero) { 5828 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5829 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5830 DeadInsts.emplace_back(OperandIsInstr); 5831 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5832 "a scale at the same time!"); 5833 if (F.Scale == -1) { 5834 if (ICmpScaledV->getType() != OpTy) { 5835 Instruction *Cast = CastInst::Create( 5836 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false), 5837 ICmpScaledV, OpTy, "tmp", CI->getIterator()); 5838 ICmpScaledV = Cast; 5839 } 5840 CI->setOperand(1, ICmpScaledV); 5841 } else { 5842 // A scale of 1 means that the scale has been expanded as part of the 5843 // base regs. 5844 assert((F.Scale == 0 || F.Scale == 1) && 5845 "ICmp does not support folding a global value and " 5846 "a scale at the same time!"); 5847 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5848 -(uint64_t)Offset.getFixedValue()); 5849 if (C->getType() != OpTy) { 5850 C = ConstantFoldCastOperand( 5851 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5852 CI->getDataLayout()); 5853 assert(C && "Cast of ConstantInt should have folded"); 5854 } 5855 5856 CI->setOperand(1, C); 5857 } 5858 } 5859 5860 return FullV; 5861 } 5862 5863 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5864 /// effectively happens in their predecessor blocks, so the expression may need 5865 /// to be expanded in multiple places. 5866 void LSRInstance::RewriteForPHI( 5867 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5868 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5869 DenseMap<BasicBlock *, Value *> Inserted; 5870 5871 // Inserting instructions in the loop and using them as PHI's input could 5872 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 5873 // corresponding incoming block is not loop exiting). So collect all such 5874 // instructions to form LCSSA for them later. 5875 SmallVector<Instruction *, 4> InsertedNonLCSSAInsts; 5876 5877 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5878 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5879 bool needUpdateFixups = false; 5880 BasicBlock *BB = PN->getIncomingBlock(i); 5881 5882 // If this is a critical edge, split the edge so that we do not insert 5883 // the code on all predecessor/successor paths. We do this unless this 5884 // is the canonical backedge for this loop, which complicates post-inc 5885 // users. 5886 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5887 !isa<IndirectBrInst>(BB->getTerminator()) && 5888 !isa<CatchSwitchInst>(BB->getTerminator())) { 5889 BasicBlock *Parent = PN->getParent(); 5890 Loop *PNLoop = LI.getLoopFor(Parent); 5891 if (!PNLoop || Parent != PNLoop->getHeader()) { 5892 // Split the critical edge. 5893 BasicBlock *NewBB = nullptr; 5894 if (!Parent->isLandingPad()) { 5895 NewBB = 5896 SplitCriticalEdge(BB, Parent, 5897 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5898 .setMergeIdenticalEdges() 5899 .setKeepOneInputPHIs()); 5900 } else { 5901 SmallVector<BasicBlock*, 2> NewBBs; 5902 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5903 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5904 NewBB = NewBBs[0]; 5905 } 5906 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5907 // phi predecessors are identical. The simple thing to do is skip 5908 // splitting in this case rather than complicate the API. 5909 if (NewBB) { 5910 // If PN is outside of the loop and BB is in the loop, we want to 5911 // move the block to be immediately before the PHI block, not 5912 // immediately after BB. 5913 if (L->contains(BB) && !L->contains(PN)) 5914 NewBB->moveBefore(PN->getParent()); 5915 5916 // Splitting the edge can reduce the number of PHI entries we have. 5917 e = PN->getNumIncomingValues(); 5918 BB = NewBB; 5919 i = PN->getBasicBlockIndex(BB); 5920 5921 needUpdateFixups = true; 5922 } 5923 } 5924 } 5925 5926 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5927 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5928 if (!Pair.second) 5929 PN->setIncomingValue(i, Pair.first->second); 5930 else { 5931 Value *FullV = 5932 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5933 5934 // If this is reuse-by-noop-cast, insert the noop cast. 5935 Type *OpTy = LF.OperandValToReplace->getType(); 5936 if (FullV->getType() != OpTy) 5937 FullV = CastInst::Create( 5938 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV, 5939 LF.OperandValToReplace->getType(), "tmp", 5940 BB->getTerminator()->getIterator()); 5941 5942 // If the incoming block for this value is not in the loop, it means the 5943 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5944 // the inserted value. 5945 if (auto *I = dyn_cast<Instruction>(FullV)) 5946 if (L->contains(I) && !L->contains(BB)) 5947 InsertedNonLCSSAInsts.push_back(I); 5948 5949 PN->setIncomingValue(i, FullV); 5950 Pair.first->second = FullV; 5951 } 5952 5953 // If LSR splits critical edge and phi node has other pending 5954 // fixup operands, we need to update those pending fixups. Otherwise 5955 // formulae will not be implemented completely and some instructions 5956 // will not be eliminated. 5957 if (needUpdateFixups) { 5958 for (LSRUse &LU : Uses) 5959 for (LSRFixup &Fixup : LU.Fixups) 5960 // If fixup is supposed to rewrite some operand in the phi 5961 // that was just updated, it may be already moved to 5962 // another phi node. Such fixup requires update. 5963 if (Fixup.UserInst == PN) { 5964 // Check if the operand we try to replace still exists in the 5965 // original phi. 5966 bool foundInOriginalPHI = false; 5967 for (const auto &val : PN->incoming_values()) 5968 if (val == Fixup.OperandValToReplace) { 5969 foundInOriginalPHI = true; 5970 break; 5971 } 5972 5973 // If fixup operand found in original PHI - nothing to do. 5974 if (foundInOriginalPHI) 5975 continue; 5976 5977 // Otherwise it might be moved to another PHI and requires update. 5978 // If fixup operand not found in any of the incoming blocks that 5979 // means we have already rewritten it - nothing to do. 5980 for (const auto &Block : PN->blocks()) 5981 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5982 ++I) { 5983 PHINode *NewPN = cast<PHINode>(I); 5984 for (const auto &val : NewPN->incoming_values()) 5985 if (val == Fixup.OperandValToReplace) 5986 Fixup.UserInst = NewPN; 5987 } 5988 } 5989 } 5990 } 5991 5992 formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE); 5993 } 5994 5995 /// Emit instructions for the leading candidate expression for this LSRUse (this 5996 /// is called "expanding"), and update the UserInst to reference the newly 5997 /// expanded value. 5998 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5999 const Formula &F, 6000 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 6001 // First, find an insertion point that dominates UserInst. For PHI nodes, 6002 // find the nearest block which dominates all the relevant uses. 6003 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 6004 RewriteForPHI(PN, LU, LF, F, DeadInsts); 6005 } else { 6006 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 6007 6008 // If this is reuse-by-noop-cast, insert the noop cast. 6009 Type *OpTy = LF.OperandValToReplace->getType(); 6010 if (FullV->getType() != OpTy) { 6011 Instruction *Cast = 6012 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 6013 FullV, OpTy, "tmp", LF.UserInst->getIterator()); 6014 FullV = Cast; 6015 } 6016 6017 // Update the user. ICmpZero is handled specially here (for now) because 6018 // Expand may have updated one of the operands of the icmp already, and 6019 // its new value may happen to be equal to LF.OperandValToReplace, in 6020 // which case doing replaceUsesOfWith leads to replacing both operands 6021 // with the same value. TODO: Reorganize this. 6022 if (LU.Kind == LSRUse::ICmpZero) 6023 LF.UserInst->setOperand(0, FullV); 6024 else 6025 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 6026 } 6027 6028 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 6029 DeadInsts.emplace_back(OperandIsInstr); 6030 } 6031 6032 // Trying to hoist the IVInc to loop header if all IVInc users are in 6033 // the loop header. It will help backend to generate post index load/store 6034 // when the latch block is different from loop header block. 6035 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 6036 const LSRUse &LU, Instruction *IVIncInsertPos, 6037 Loop *L) { 6038 if (LU.Kind != LSRUse::Address) 6039 return false; 6040 6041 // For now this code do the conservative optimization, only work for 6042 // the header block. Later we can hoist the IVInc to the block post 6043 // dominate all users. 6044 BasicBlock *LHeader = L->getHeader(); 6045 if (IVIncInsertPos->getParent() == LHeader) 6046 return false; 6047 6048 if (!Fixup.OperandValToReplace || 6049 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 6050 Instruction *UI = cast<Instruction>(U); 6051 return UI->getParent() != LHeader; 6052 })) 6053 return false; 6054 6055 Instruction *I = Fixup.UserInst; 6056 Type *Ty = I->getType(); 6057 return Ty->isIntegerTy() && 6058 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 6059 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 6060 } 6061 6062 /// Rewrite all the fixup locations with new values, following the chosen 6063 /// solution. 6064 void LSRInstance::ImplementSolution( 6065 const SmallVectorImpl<const Formula *> &Solution) { 6066 // Keep track of instructions we may have made dead, so that 6067 // we can remove them after we are done working. 6068 SmallVector<WeakTrackingVH, 16> DeadInsts; 6069 6070 // Mark phi nodes that terminate chains so the expander tries to reuse them. 6071 for (const IVChain &Chain : IVChainVec) { 6072 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 6073 Rewriter.setChainedPhi(PN); 6074 } 6075 6076 // Expand the new value definitions and update the users. 6077 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 6078 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 6079 Instruction *InsertPos = 6080 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 6081 ? L->getHeader()->getTerminator() 6082 : IVIncInsertPos; 6083 Rewriter.setIVIncInsertPos(L, InsertPos); 6084 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 6085 Changed = true; 6086 } 6087 6088 for (const IVChain &Chain : IVChainVec) { 6089 GenerateIVChain(Chain, DeadInsts); 6090 Changed = true; 6091 } 6092 6093 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 6094 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 6095 ScalarEvolutionIVs.push_back(IV); 6096 6097 // Clean up after ourselves. This must be done before deleting any 6098 // instructions. 6099 Rewriter.clear(); 6100 6101 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 6102 &TLI, MSSAU); 6103 6104 // In our cost analysis above, we assume that each addrec consumes exactly 6105 // one register, and arrange to have increments inserted just before the 6106 // latch to maximimize the chance this is true. However, if we reused 6107 // existing IVs, we now need to move the increments to match our 6108 // expectations. Otherwise, our cost modeling results in us having a 6109 // chosen a non-optimal result for the actual schedule. (And yes, this 6110 // scheduling decision does impact later codegen.) 6111 for (PHINode &PN : L->getHeader()->phis()) { 6112 BinaryOperator *BO = nullptr; 6113 Value *Start = nullptr, *Step = nullptr; 6114 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 6115 continue; 6116 6117 switch (BO->getOpcode()) { 6118 case Instruction::Sub: 6119 if (BO->getOperand(0) != &PN) 6120 // sub is non-commutative - match handling elsewhere in LSR 6121 continue; 6122 break; 6123 case Instruction::Add: 6124 break; 6125 default: 6126 continue; 6127 }; 6128 6129 if (!isa<Constant>(Step)) 6130 // If not a constant step, might increase register pressure 6131 // (We assume constants have been canonicalized to RHS) 6132 continue; 6133 6134 if (BO->getParent() == IVIncInsertPos->getParent()) 6135 // Only bother moving across blocks. Isel can handle block local case. 6136 continue; 6137 6138 // Can we legally schedule inc at the desired point? 6139 if (!llvm::all_of(BO->uses(), 6140 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 6141 continue; 6142 BO->moveBefore(IVIncInsertPos); 6143 Changed = true; 6144 } 6145 6146 6147 } 6148 6149 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6150 DominatorTree &DT, LoopInfo &LI, 6151 const TargetTransformInfo &TTI, AssumptionCache &AC, 6152 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 6153 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 6154 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 6155 ? PreferredAddresingMode 6156 : TTI.getPreferredAddressingMode(L, &SE)), 6157 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false), 6158 BaselineCost(L, SE, TTI, AMK) { 6159 // If LoopSimplify form is not available, stay out of trouble. 6160 if (!L->isLoopSimplifyForm()) 6161 return; 6162 6163 // If there's no interesting work to be done, bail early. 6164 if (IU.empty()) return; 6165 6166 // If there's too much analysis to be done, bail early. We won't be able to 6167 // model the problem anyway. 6168 unsigned NumUsers = 0; 6169 for (const IVStrideUse &U : IU) { 6170 if (++NumUsers > MaxIVUsers) { 6171 (void)U; 6172 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 6173 << "\n"); 6174 return; 6175 } 6176 // Bail out if we have a PHI on an EHPad that gets a value from a 6177 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 6178 // no good place to stick any instructions. 6179 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 6180 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 6181 if (isa<FuncletPadInst>(FirstNonPHI) || 6182 isa<CatchSwitchInst>(FirstNonPHI)) 6183 for (BasicBlock *PredBB : PN->blocks()) 6184 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 6185 return; 6186 } 6187 } 6188 6189 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 6190 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 6191 dbgs() << ":\n"); 6192 6193 // Configure SCEVExpander already now, so the correct mode is used for 6194 // isSafeToExpand() checks. 6195 #ifndef NDEBUG 6196 Rewriter.setDebugType(DEBUG_TYPE); 6197 #endif 6198 Rewriter.disableCanonicalMode(); 6199 Rewriter.enableLSRMode(); 6200 6201 // First, perform some low-level loop optimizations. 6202 OptimizeShadowIV(); 6203 OptimizeLoopTermCond(); 6204 6205 // If loop preparation eliminates all interesting IV users, bail. 6206 if (IU.empty()) return; 6207 6208 // Skip nested loops until we can model them better with formulae. 6209 if (!L->isInnermost()) { 6210 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 6211 return; 6212 } 6213 6214 // Start collecting data and preparing for the solver. 6215 // If number of registers is not the major cost, we cannot benefit from the 6216 // current profitable chain optimization which is based on number of 6217 // registers. 6218 // FIXME: add profitable chain optimization for other kinds major cost, for 6219 // example number of instructions. 6220 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 6221 CollectChains(); 6222 CollectInterestingTypesAndFactors(); 6223 CollectFixupsAndInitialFormulae(); 6224 CollectLoopInvariantFixupsAndFormulae(); 6225 6226 if (Uses.empty()) 6227 return; 6228 6229 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 6230 print_uses(dbgs())); 6231 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 6232 BaselineCost.print(dbgs()); dbgs() << "\n"); 6233 6234 // Now use the reuse data to generate a bunch of interesting ways 6235 // to formulate the values needed for the uses. 6236 GenerateAllReuseFormulae(); 6237 6238 FilterOutUndesirableDedicatedRegisters(); 6239 NarrowSearchSpaceUsingHeuristics(); 6240 6241 SmallVector<const Formula *, 8> Solution; 6242 Solve(Solution); 6243 6244 // Release memory that is no longer needed. 6245 Factors.clear(); 6246 Types.clear(); 6247 RegUses.clear(); 6248 6249 if (Solution.empty()) 6250 return; 6251 6252 #ifndef NDEBUG 6253 // Formulae should be legal. 6254 for (const LSRUse &LU : Uses) { 6255 for (const Formula &F : LU.Formulae) 6256 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 6257 F) && "Illegal formula generated!"); 6258 }; 6259 #endif 6260 6261 // Now that we've decided what we want, make it so. 6262 ImplementSolution(Solution); 6263 } 6264 6265 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 6266 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 6267 if (Factors.empty() && Types.empty()) return; 6268 6269 OS << "LSR has identified the following interesting factors and types: "; 6270 bool First = true; 6271 6272 for (int64_t Factor : Factors) { 6273 if (!First) OS << ", "; 6274 First = false; 6275 OS << '*' << Factor; 6276 } 6277 6278 for (Type *Ty : Types) { 6279 if (!First) OS << ", "; 6280 First = false; 6281 OS << '(' << *Ty << ')'; 6282 } 6283 OS << '\n'; 6284 } 6285 6286 void LSRInstance::print_fixups(raw_ostream &OS) const { 6287 OS << "LSR is examining the following fixup sites:\n"; 6288 for (const LSRUse &LU : Uses) 6289 for (const LSRFixup &LF : LU.Fixups) { 6290 dbgs() << " "; 6291 LF.print(OS); 6292 OS << '\n'; 6293 } 6294 } 6295 6296 void LSRInstance::print_uses(raw_ostream &OS) const { 6297 OS << "LSR is examining the following uses:\n"; 6298 for (const LSRUse &LU : Uses) { 6299 dbgs() << " "; 6300 LU.print(OS); 6301 OS << '\n'; 6302 for (const Formula &F : LU.Formulae) { 6303 OS << " "; 6304 F.print(OS); 6305 OS << '\n'; 6306 } 6307 } 6308 } 6309 6310 void LSRInstance::print(raw_ostream &OS) const { 6311 print_factors_and_types(OS); 6312 print_fixups(OS); 6313 print_uses(OS); 6314 } 6315 6316 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6317 print(errs()); errs() << '\n'; 6318 } 6319 #endif 6320 6321 namespace { 6322 6323 class LoopStrengthReduce : public LoopPass { 6324 public: 6325 static char ID; // Pass ID, replacement for typeid 6326 6327 LoopStrengthReduce(); 6328 6329 private: 6330 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6331 void getAnalysisUsage(AnalysisUsage &AU) const override; 6332 }; 6333 6334 } // end anonymous namespace 6335 6336 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6337 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6338 } 6339 6340 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6341 // We split critical edges, so we change the CFG. However, we do update 6342 // many analyses if they are around. 6343 AU.addPreservedID(LoopSimplifyID); 6344 6345 AU.addRequired<LoopInfoWrapperPass>(); 6346 AU.addPreserved<LoopInfoWrapperPass>(); 6347 AU.addRequiredID(LoopSimplifyID); 6348 AU.addRequired<DominatorTreeWrapperPass>(); 6349 AU.addPreserved<DominatorTreeWrapperPass>(); 6350 AU.addRequired<ScalarEvolutionWrapperPass>(); 6351 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6352 AU.addRequired<AssumptionCacheTracker>(); 6353 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6354 // Requiring LoopSimplify a second time here prevents IVUsers from running 6355 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6356 AU.addRequiredID(LoopSimplifyID); 6357 AU.addRequired<IVUsersWrapperPass>(); 6358 AU.addPreserved<IVUsersWrapperPass>(); 6359 AU.addRequired<TargetTransformInfoWrapperPass>(); 6360 AU.addPreserved<MemorySSAWrapperPass>(); 6361 } 6362 6363 namespace { 6364 6365 /// Enables more convenient iteration over a DWARF expression vector. 6366 static iterator_range<llvm::DIExpression::expr_op_iterator> 6367 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6368 llvm::DIExpression::expr_op_iterator Begin = 6369 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6370 llvm::DIExpression::expr_op_iterator End = 6371 llvm::DIExpression::expr_op_iterator(Expr.end()); 6372 return {Begin, End}; 6373 } 6374 6375 struct SCEVDbgValueBuilder { 6376 SCEVDbgValueBuilder() = default; 6377 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6378 6379 void clone(const SCEVDbgValueBuilder &Base) { 6380 LocationOps = Base.LocationOps; 6381 Expr = Base.Expr; 6382 } 6383 6384 void clear() { 6385 LocationOps.clear(); 6386 Expr.clear(); 6387 } 6388 6389 /// The DIExpression as we translate the SCEV. 6390 SmallVector<uint64_t, 6> Expr; 6391 /// The location ops of the DIExpression. 6392 SmallVector<Value *, 2> LocationOps; 6393 6394 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6395 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6396 6397 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6398 /// in the set of values referenced by the expression. 6399 void pushLocation(llvm::Value *V) { 6400 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6401 auto *It = llvm::find(LocationOps, V); 6402 unsigned ArgIndex = 0; 6403 if (It != LocationOps.end()) { 6404 ArgIndex = std::distance(LocationOps.begin(), It); 6405 } else { 6406 ArgIndex = LocationOps.size(); 6407 LocationOps.push_back(V); 6408 } 6409 Expr.push_back(ArgIndex); 6410 } 6411 6412 void pushValue(const SCEVUnknown *U) { 6413 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6414 pushLocation(V); 6415 } 6416 6417 bool pushConst(const SCEVConstant *C) { 6418 if (C->getAPInt().getSignificantBits() > 64) 6419 return false; 6420 Expr.push_back(llvm::dwarf::DW_OP_consts); 6421 Expr.push_back(C->getAPInt().getSExtValue()); 6422 return true; 6423 } 6424 6425 // Iterating the expression as DWARF ops is convenient when updating 6426 // DWARF_OP_LLVM_args. 6427 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6428 return ToDwarfOpIter(Expr); 6429 } 6430 6431 /// Several SCEV types are sequences of the same arithmetic operator applied 6432 /// to constants and values that may be extended or truncated. 6433 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6434 uint64_t DwarfOp) { 6435 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6436 "Expected arithmetic SCEV type"); 6437 bool Success = true; 6438 unsigned EmitOperator = 0; 6439 for (const auto &Op : CommExpr->operands()) { 6440 Success &= pushSCEV(Op); 6441 6442 if (EmitOperator >= 1) 6443 pushOperator(DwarfOp); 6444 ++EmitOperator; 6445 } 6446 return Success; 6447 } 6448 6449 // TODO: Identify and omit noop casts. 6450 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6451 const llvm::SCEV *Inner = C->getOperand(0); 6452 const llvm::Type *Type = C->getType(); 6453 uint64_t ToWidth = Type->getIntegerBitWidth(); 6454 bool Success = pushSCEV(Inner); 6455 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6456 IsSigned ? llvm::dwarf::DW_ATE_signed 6457 : llvm::dwarf::DW_ATE_unsigned}; 6458 for (const auto &Op : CastOps) 6459 pushOperator(Op); 6460 return Success; 6461 } 6462 6463 // TODO: MinMax - although these haven't been encountered in the test suite. 6464 bool pushSCEV(const llvm::SCEV *S) { 6465 bool Success = true; 6466 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6467 Success &= pushConst(StartInt); 6468 6469 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6470 if (!U->getValue()) 6471 return false; 6472 pushLocation(U->getValue()); 6473 6474 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6475 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6476 6477 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6478 Success &= pushSCEV(UDiv->getLHS()); 6479 Success &= pushSCEV(UDiv->getRHS()); 6480 pushOperator(llvm::dwarf::DW_OP_div); 6481 6482 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6483 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6484 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6485 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6486 "Unexpected cast type in SCEV."); 6487 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6488 6489 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6490 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6491 6492 } else if (isa<SCEVAddRecExpr>(S)) { 6493 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6494 // unsupported. 6495 return false; 6496 6497 } else { 6498 return false; 6499 } 6500 return Success; 6501 } 6502 6503 /// Return true if the combination of arithmetic operator and underlying 6504 /// SCEV constant value is an identity function. 6505 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6506 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6507 if (C->getAPInt().getSignificantBits() > 64) 6508 return false; 6509 int64_t I = C->getAPInt().getSExtValue(); 6510 switch (Op) { 6511 case llvm::dwarf::DW_OP_plus: 6512 case llvm::dwarf::DW_OP_minus: 6513 return I == 0; 6514 case llvm::dwarf::DW_OP_mul: 6515 case llvm::dwarf::DW_OP_div: 6516 return I == 1; 6517 } 6518 } 6519 return false; 6520 } 6521 6522 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6523 /// builder's expression stack. The stack should already contain an 6524 /// expression for the iteration count, so that it can be multiplied by 6525 /// the stride and added to the start. 6526 /// Components of the expression are omitted if they are an identity function. 6527 /// Chain (non-affine) SCEVs are not supported. 6528 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6529 assert(SAR.isAffine() && "Expected affine SCEV"); 6530 // TODO: Is this check needed? 6531 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6532 return false; 6533 6534 const SCEV *Start = SAR.getStart(); 6535 const SCEV *Stride = SAR.getStepRecurrence(SE); 6536 6537 // Skip pushing arithmetic noops. 6538 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6539 if (!pushSCEV(Stride)) 6540 return false; 6541 pushOperator(llvm::dwarf::DW_OP_mul); 6542 } 6543 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6544 if (!pushSCEV(Start)) 6545 return false; 6546 pushOperator(llvm::dwarf::DW_OP_plus); 6547 } 6548 return true; 6549 } 6550 6551 /// Create an expression that is an offset from a value (usually the IV). 6552 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6553 pushLocation(OffsetValue); 6554 DIExpression::appendOffset(Expr, Offset); 6555 LLVM_DEBUG( 6556 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6557 << std::to_string(Offset) << "\n"); 6558 } 6559 6560 /// Combine a translation of the SCEV and the IV to create an expression that 6561 /// recovers a location's value. 6562 /// returns true if an expression was created. 6563 bool createIterCountExpr(const SCEV *S, 6564 const SCEVDbgValueBuilder &IterationCount, 6565 ScalarEvolution &SE) { 6566 // SCEVs for SSA values are most frquently of the form 6567 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6568 // This is because %a is a PHI node that is not the IV. However, these 6569 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6570 // so its not expected this point will be reached. 6571 if (!isa<SCEVAddRecExpr>(S)) 6572 return false; 6573 6574 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6575 << '\n'); 6576 6577 const auto *Rec = cast<SCEVAddRecExpr>(S); 6578 if (!Rec->isAffine()) 6579 return false; 6580 6581 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6582 return false; 6583 6584 // Initialise a new builder with the iteration count expression. In 6585 // combination with the value's SCEV this enables recovery. 6586 clone(IterationCount); 6587 if (!SCEVToValueExpr(*Rec, SE)) 6588 return false; 6589 6590 return true; 6591 } 6592 6593 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6594 /// builder's expression stack. The stack should already contain an 6595 /// expression for the iteration count, so that it can be multiplied by 6596 /// the stride and added to the start. 6597 /// Components of the expression are omitted if they are an identity function. 6598 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6599 ScalarEvolution &SE) { 6600 assert(SAR.isAffine() && "Expected affine SCEV"); 6601 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6602 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6603 << SAR << '\n'); 6604 return false; 6605 } 6606 const SCEV *Start = SAR.getStart(); 6607 const SCEV *Stride = SAR.getStepRecurrence(SE); 6608 6609 // Skip pushing arithmetic noops. 6610 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6611 if (!pushSCEV(Start)) 6612 return false; 6613 pushOperator(llvm::dwarf::DW_OP_minus); 6614 } 6615 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6616 if (!pushSCEV(Stride)) 6617 return false; 6618 pushOperator(llvm::dwarf::DW_OP_div); 6619 } 6620 return true; 6621 } 6622 6623 // Append the current expression and locations to a location list and an 6624 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6625 // the locations already present in the destination list. 6626 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6627 SmallVectorImpl<Value *> &DestLocations) { 6628 assert(!DestLocations.empty() && 6629 "Expected the locations vector to contain the IV"); 6630 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6631 // modified to account for the locations already in the destination vector. 6632 // All builders contain the IV as the first location op. 6633 assert(!LocationOps.empty() && 6634 "Expected the location ops to contain the IV."); 6635 // DestIndexMap[n] contains the index in DestLocations for the nth 6636 // location in this SCEVDbgValueBuilder. 6637 SmallVector<uint64_t, 2> DestIndexMap; 6638 for (const auto &Op : LocationOps) { 6639 auto It = find(DestLocations, Op); 6640 if (It != DestLocations.end()) { 6641 // Location already exists in DestLocations, reuse existing ArgIndex. 6642 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6643 continue; 6644 } 6645 // Location is not in DestLocations, add it. 6646 DestIndexMap.push_back(DestLocations.size()); 6647 DestLocations.push_back(Op); 6648 } 6649 6650 for (const auto &Op : expr_ops()) { 6651 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6652 Op.appendToVector(DestExpr); 6653 continue; 6654 } 6655 6656 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6657 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6658 // DestIndexMap[n] contains its new index in DestLocations. 6659 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6660 DestExpr.push_back(NewIndex); 6661 } 6662 } 6663 }; 6664 6665 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6666 /// and DIExpression. 6667 struct DVIRecoveryRec { 6668 DVIRecoveryRec(DbgValueInst *DbgValue) 6669 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6670 HadLocationArgList(false) {} 6671 DVIRecoveryRec(DbgVariableRecord *DVR) 6672 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} 6673 6674 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; 6675 DIExpression *Expr; 6676 bool HadLocationArgList; 6677 SmallVector<WeakVH, 2> LocationOps; 6678 SmallVector<const llvm::SCEV *, 2> SCEVs; 6679 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6680 6681 void clear() { 6682 for (auto &RE : RecoveryExprs) 6683 RE.reset(); 6684 RecoveryExprs.clear(); 6685 } 6686 6687 ~DVIRecoveryRec() { clear(); } 6688 }; 6689 } // namespace 6690 6691 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6692 /// This helps in determining if a DIArglist is necessary or can be omitted from 6693 /// the dbg.value. 6694 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6695 auto expr_ops = ToDwarfOpIter(Expr); 6696 unsigned Count = 0; 6697 for (auto Op : expr_ops) 6698 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6699 Count++; 6700 return Count; 6701 } 6702 6703 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6704 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6705 /// because a DIArglist is not created for the first argument of the dbg.value. 6706 template <typename T> 6707 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6708 SmallVectorImpl<uint64_t> &Ops) { 6709 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6710 "contain any DW_OP_llvm_arg operands."); 6711 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6712 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6713 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6714 } 6715 6716 /// Overwrite DVI with locations placed into a DIArglist. 6717 template <typename T> 6718 static void updateDVIWithLocations(T &DbgVal, 6719 SmallVectorImpl<Value *> &Locations, 6720 SmallVectorImpl<uint64_t> &Ops) { 6721 assert(numLLVMArgOps(Ops) != 0 && 6722 "Expected expression that references DIArglist locations using " 6723 "DW_OP_llvm_arg operands."); 6724 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6725 for (Value *V : Locations) 6726 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6727 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6728 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6729 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6730 } 6731 6732 /// Write the new expression and new location ops for the dbg.value. If possible 6733 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6734 /// can be omitted if: 6735 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6736 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6737 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6738 SmallVectorImpl<Value *> &NewLocationOps, 6739 SmallVectorImpl<uint64_t> &NewExpr) { 6740 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6741 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6742 if (NumLLVMArgs == 0) { 6743 // Location assumed to be on the stack. 6744 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6745 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6746 // There is only a single DW_OP_llvm_arg at the start of the expression, 6747 // so it can be omitted along with DIArglist. 6748 assert(NewExpr[1] == 0 && 6749 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6750 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6751 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6752 } else { 6753 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6754 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6755 } 6756 6757 // If the DIExpression was previously empty then add the stack terminator. 6758 // Non-empty expressions have only had elements inserted into them and so 6759 // the terminator should already be present e.g. stack_value or fragment. 6760 DIExpression *SalvageExpr = DbgVal->getExpression(); 6761 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6762 SalvageExpr = 6763 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6764 DbgVal->setExpression(SalvageExpr); 6765 } 6766 }; 6767 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6768 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6769 else 6770 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6771 } 6772 6773 /// Cached location ops may be erased during LSR, in which case a poison is 6774 /// required when restoring from the cache. The type of that location is no 6775 /// longer available, so just use int8. The poison will be replaced by one or 6776 /// more locations later when a SCEVDbgValueBuilder selects alternative 6777 /// locations to use for the salvage. 6778 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6779 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6780 } 6781 6782 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6783 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6784 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6785 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6786 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6787 assert(DVIRec.Expr && "Expected an expression"); 6788 DbgVal->setExpression(DVIRec.Expr); 6789 6790 // Even a single location-op may be inside a DIArgList and referenced with 6791 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6792 if (!DVIRec.HadLocationArgList) { 6793 assert(DVIRec.LocationOps.size() == 1 && 6794 "Unexpected number of location ops."); 6795 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6796 // this case was not present before, so force the location back to a 6797 // single uncontained Value. 6798 Value *CachedValue = 6799 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6800 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6801 } else { 6802 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6803 for (WeakVH VH : DVIRec.LocationOps) { 6804 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6805 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6806 } 6807 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6808 DbgVal->setRawLocation( 6809 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6810 } 6811 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6812 }; 6813 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6814 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6815 else 6816 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6817 } 6818 6819 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6820 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6821 const SCEV *SCEVInductionVar, 6822 SCEVDbgValueBuilder IterCountExpr) { 6823 6824 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6825 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6826 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation()) 6827 return false; 6828 6829 // LSR may have caused several changes to the dbg.value in the failed salvage 6830 // attempt. So restore the DIExpression, the location ops and also the 6831 // location ops format, which is always DIArglist for multiple ops, but only 6832 // sometimes for a single op. 6833 restorePreTransformState(DVIRec); 6834 6835 // LocationOpIndexMap[i] will store the post-LSR location index of 6836 // the non-optimised out location at pre-LSR index i. 6837 SmallVector<int64_t, 2> LocationOpIndexMap; 6838 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6839 SmallVector<Value *, 2> NewLocationOps; 6840 NewLocationOps.push_back(LSRInductionVar); 6841 6842 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6843 WeakVH VH = DVIRec.LocationOps[i]; 6844 // Place the locations not optimised out in the list first, avoiding 6845 // inserts later. The map is used to update the DIExpression's 6846 // DW_OP_LLVM_arg arguments as the expression is updated. 6847 if (VH && !isa<UndefValue>(VH)) { 6848 NewLocationOps.push_back(VH); 6849 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6850 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6851 << " now at index " << LocationOpIndexMap[i] << "\n"); 6852 continue; 6853 } 6854 6855 // It's possible that a value referred to in the SCEV may have been 6856 // optimised out by LSR. 6857 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6858 SE.containsUndefs(DVIRec.SCEVs[i])) { 6859 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6860 << " refers to a location that is now undef or erased. " 6861 "Salvage abandoned.\n"); 6862 return false; 6863 } 6864 6865 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6866 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6867 6868 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6869 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6870 6871 // Create an offset-based salvage expression if possible, as it requires 6872 // less DWARF ops than an iteration count-based expression. 6873 if (std::optional<APInt> Offset = 6874 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6875 if (Offset->getSignificantBits() <= 64) 6876 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6877 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6878 SE)) 6879 return false; 6880 } 6881 6882 // Merge the DbgValueBuilder generated expressions and the original 6883 // DIExpression, place the result into an new vector. 6884 SmallVector<uint64_t, 3> NewExpr; 6885 if (DVIRec.Expr->getNumElements() == 0) { 6886 assert(DVIRec.RecoveryExprs.size() == 1 && 6887 "Expected only a single recovery expression for an empty " 6888 "DIExpression."); 6889 assert(DVIRec.RecoveryExprs[0] && 6890 "Expected a SCEVDbgSalvageBuilder for location 0"); 6891 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6892 B->appendToVectors(NewExpr, NewLocationOps); 6893 } 6894 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6895 // Most Ops needn't be updated. 6896 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6897 Op.appendToVector(NewExpr); 6898 continue; 6899 } 6900 6901 uint64_t LocationArgIndex = Op.getArg(0); 6902 SCEVDbgValueBuilder *DbgBuilder = 6903 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6904 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6905 // optimise it away. So just translate the argument to the updated 6906 // location index. 6907 if (!DbgBuilder) { 6908 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6909 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6910 "Expected a positive index for the location-op position."); 6911 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6912 continue; 6913 } 6914 // The location has a recovery expression. 6915 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6916 } 6917 6918 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6919 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6920 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6921 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6922 else 6923 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6924 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n"); 6925 return true; 6926 } 6927 6928 /// Obtain an expression for the iteration count, then attempt to salvage the 6929 /// dbg.value intrinsics. 6930 static void DbgRewriteSalvageableDVIs( 6931 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6932 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6933 if (DVIToUpdate.empty()) 6934 return; 6935 6936 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6937 assert(SCEVInductionVar && 6938 "Anticipated a SCEV for the post-LSR induction variable"); 6939 6940 if (const SCEVAddRecExpr *IVAddRec = 6941 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6942 if (!IVAddRec->isAffine()) 6943 return; 6944 6945 // Prevent translation using excessive resources. 6946 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6947 return; 6948 6949 // The iteration count is required to recover location values. 6950 SCEVDbgValueBuilder IterCountExpr; 6951 IterCountExpr.pushLocation(LSRInductionVar); 6952 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6953 return; 6954 6955 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6956 << '\n'); 6957 6958 for (auto &DVIRec : DVIToUpdate) { 6959 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6960 IterCountExpr); 6961 } 6962 } 6963 } 6964 6965 /// Identify and cache salvageable DVI locations and expressions along with the 6966 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6967 /// cacheing and salvaging. 6968 static void DbgGatherSalvagableDVI( 6969 Loop *L, ScalarEvolution &SE, 6970 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6971 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6972 for (const auto &B : L->getBlocks()) { 6973 for (auto &I : *B) { 6974 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6975 // Ensure that if any location op is undef that the dbg.vlue is not 6976 // cached. 6977 if (DbgVal->isKillLocation()) 6978 return false; 6979 6980 // Check that the location op SCEVs are suitable for translation to 6981 // DIExpression. 6982 const auto &HasTranslatableLocationOps = 6983 [&](const auto *DbgValToTranslate) -> bool { 6984 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6985 if (!LocOp) 6986 return false; 6987 6988 if (!SE.isSCEVable(LocOp->getType())) 6989 return false; 6990 6991 const SCEV *S = SE.getSCEV(LocOp); 6992 if (SE.containsUndefs(S)) 6993 return false; 6994 } 6995 return true; 6996 }; 6997 6998 if (!HasTranslatableLocationOps(DbgVal)) 6999 return false; 7000 7001 std::unique_ptr<DVIRecoveryRec> NewRec = 7002 std::make_unique<DVIRecoveryRec>(DbgVal); 7003 // Each location Op may need a SCEVDbgValueBuilder in order to recover 7004 // it. Pre-allocating a vector will enable quick lookups of the builder 7005 // later during the salvage. 7006 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 7007 for (const auto LocOp : DbgVal->location_ops()) { 7008 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 7009 NewRec->LocationOps.push_back(LocOp); 7010 NewRec->HadLocationArgList = DbgVal->hasArgList(); 7011 } 7012 SalvageableDVISCEVs.push_back(std::move(NewRec)); 7013 return true; 7014 }; 7015 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 7016 if (DVR.isDbgValue() || DVR.isDbgAssign()) 7017 ProcessDbgValue(&DVR); 7018 } 7019 auto DVI = dyn_cast<DbgValueInst>(&I); 7020 if (!DVI) 7021 continue; 7022 if (ProcessDbgValue(DVI)) 7023 DVIHandles.insert(DVI); 7024 } 7025 } 7026 } 7027 7028 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 7029 /// any PHi from the loop header is usable, but may have less chance of 7030 /// surviving subsequent transforms. 7031 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 7032 const LSRInstance &LSR) { 7033 7034 auto IsSuitableIV = [&](PHINode *P) { 7035 if (!SE.isSCEVable(P->getType())) 7036 return false; 7037 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 7038 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 7039 return false; 7040 }; 7041 7042 // For now, just pick the first IV that was generated and inserted by 7043 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 7044 // by subsequent transforms. 7045 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 7046 if (!IV) 7047 continue; 7048 7049 // There should only be PHI node IVs. 7050 PHINode *P = cast<PHINode>(&*IV); 7051 7052 if (IsSuitableIV(P)) 7053 return P; 7054 } 7055 7056 for (PHINode &P : L.getHeader()->phis()) { 7057 if (IsSuitableIV(&P)) 7058 return &P; 7059 } 7060 return nullptr; 7061 } 7062 7063 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>> 7064 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT, 7065 const LoopInfo &LI, const TargetTransformInfo &TTI) { 7066 if (!L->isInnermost()) { 7067 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n"); 7068 return std::nullopt; 7069 } 7070 // Only inspect on simple loop structure 7071 if (!L->isLoopSimplifyForm()) { 7072 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n"); 7073 return std::nullopt; 7074 } 7075 7076 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 7077 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n"); 7078 return std::nullopt; 7079 } 7080 7081 BasicBlock *LoopLatch = L->getLoopLatch(); 7082 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 7083 if (!BI || BI->isUnconditional()) 7084 return std::nullopt; 7085 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition()); 7086 if (!TermCond) { 7087 LLVM_DEBUG( 7088 dbgs() << "Cannot fold on branching condition that is not an ICmpInst"); 7089 return std::nullopt; 7090 } 7091 if (!TermCond->hasOneUse()) { 7092 LLVM_DEBUG( 7093 dbgs() 7094 << "Cannot replace terminating condition with more than one use\n"); 7095 return std::nullopt; 7096 } 7097 7098 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0)); 7099 Value *RHS = TermCond->getOperand(1); 7100 if (!LHS || !L->isLoopInvariant(RHS)) 7101 // We could pattern match the inverse form of the icmp, but that is 7102 // non-canonical, and this pass is running *very* late in the pipeline. 7103 return std::nullopt; 7104 7105 // Find the IV used by the current exit condition. 7106 PHINode *ToFold; 7107 Value *ToFoldStart, *ToFoldStep; 7108 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep)) 7109 return std::nullopt; 7110 7111 // Ensure the simple recurrence is a part of the current loop. 7112 if (ToFold->getParent() != L->getHeader()) 7113 return std::nullopt; 7114 7115 // If that IV isn't dead after we rewrite the exit condition in terms of 7116 // another IV, there's no point in doing the transform. 7117 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond)) 7118 return std::nullopt; 7119 7120 // Inserting instructions in the preheader has a runtime cost, scale 7121 // the allowed cost with the loops trip count as best we can. 7122 const unsigned ExpansionBudget = [&]() { 7123 unsigned Budget = 2 * SCEVCheapExpansionBudget; 7124 if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L)) 7125 return std::min(Budget, SmallTC); 7126 if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L)) 7127 return std::min(Budget, *SmallTC); 7128 // Unknown trip count, assume long running by default. 7129 return Budget; 7130 }(); 7131 7132 const SCEV *BECount = SE.getBackedgeTakenCount(L); 7133 const DataLayout &DL = L->getHeader()->getDataLayout(); 7134 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7135 7136 PHINode *ToHelpFold = nullptr; 7137 const SCEV *TermValueS = nullptr; 7138 bool MustDropPoison = false; 7139 auto InsertPt = L->getLoopPreheader()->getTerminator(); 7140 for (PHINode &PN : L->getHeader()->phis()) { 7141 if (ToFold == &PN) 7142 continue; 7143 7144 if (!SE.isSCEVable(PN.getType())) { 7145 LLVM_DEBUG(dbgs() << "IV of phi '" << PN 7146 << "' is not SCEV-able, not qualified for the " 7147 "terminating condition folding.\n"); 7148 continue; 7149 } 7150 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 7151 // Only speculate on affine AddRec 7152 if (!AddRec || !AddRec->isAffine()) { 7153 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN 7154 << "' is not an affine add recursion, not qualified " 7155 "for the terminating condition folding.\n"); 7156 continue; 7157 } 7158 7159 // Check that we can compute the value of AddRec on the exiting iteration 7160 // without soundness problems. evaluateAtIteration internally needs 7161 // to multiply the stride of the iteration number - which may wrap around. 7162 // The issue here is subtle because computing the result accounting for 7163 // wrap is insufficient. In order to use the result in an exit test, we 7164 // must also know that AddRec doesn't take the same value on any previous 7165 // iteration. The simplest case to consider is a candidate IV which is 7166 // narrower than the trip count (and thus original IV), but this can 7167 // also happen due to non-unit strides on the candidate IVs. 7168 if (!AddRec->hasNoSelfWrap() || 7169 !SE.isKnownNonZero(AddRec->getStepRecurrence(SE))) 7170 continue; 7171 7172 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE); 7173 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE); 7174 if (!Expander.isSafeToExpand(TermValueSLocal)) { 7175 LLVM_DEBUG( 7176 dbgs() << "Is not safe to expand terminating value for phi node" << PN 7177 << "\n"); 7178 continue; 7179 } 7180 7181 if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget, 7182 &TTI, InsertPt)) { 7183 LLVM_DEBUG( 7184 dbgs() << "Is too expensive to expand terminating value for phi node" 7185 << PN << "\n"); 7186 continue; 7187 } 7188 7189 // The candidate IV may have been otherwise dead and poison from the 7190 // very first iteration. If we can't disprove that, we can't use the IV. 7191 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) { 7192 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV " 7193 << PN << "\n"); 7194 continue; 7195 } 7196 7197 // The candidate IV may become poison on the last iteration. If this 7198 // value is not branched on, this is a well defined program. We're 7199 // about to add a new use to this IV, and we have to ensure we don't 7200 // insert UB which didn't previously exist. 7201 bool MustDropPoisonLocal = false; 7202 Instruction *PostIncV = 7203 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch)); 7204 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(), 7205 &DT)) { 7206 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use" 7207 << PN << "\n"); 7208 7209 // If this is a complex recurrance with multiple instructions computing 7210 // the backedge value, we might need to strip poison flags from all of 7211 // them. 7212 if (PostIncV->getOperand(0) != &PN) 7213 continue; 7214 7215 // In order to perform the transform, we need to drop the poison generating 7216 // flags on this instruction (if any). 7217 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags(); 7218 } 7219 7220 // We pick the last legal alternate IV. We could expore choosing an optimal 7221 // alternate IV if we had a decent heuristic to do so. 7222 ToHelpFold = &PN; 7223 TermValueS = TermValueSLocal; 7224 MustDropPoison = MustDropPoisonLocal; 7225 } 7226 7227 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs() 7228 << "Cannot find other AddRec IV to help folding\n";); 7229 7230 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs() 7231 << "\nFound loop that can fold terminating condition\n" 7232 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n" 7233 << " TermCond: " << *TermCond << "\n" 7234 << " BrandInst: " << *BI << "\n" 7235 << " ToFold: " << *ToFold << "\n" 7236 << " ToHelpFold: " << *ToHelpFold << "\n"); 7237 7238 if (!ToFold || !ToHelpFold) 7239 return std::nullopt; 7240 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison); 7241 } 7242 7243 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 7244 DominatorTree &DT, LoopInfo &LI, 7245 const TargetTransformInfo &TTI, 7246 AssumptionCache &AC, TargetLibraryInfo &TLI, 7247 MemorySSA *MSSA) { 7248 7249 // Debug preservation - before we start removing anything identify which DVI 7250 // meet the salvageable criteria and store their DIExpression and SCEVs. 7251 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 7252 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 7253 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 7254 7255 bool Changed = false; 7256 std::unique_ptr<MemorySSAUpdater> MSSAU; 7257 if (MSSA) 7258 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 7259 7260 // Run the main LSR transformation. 7261 const LSRInstance &Reducer = 7262 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 7263 Changed |= Reducer.getChanged(); 7264 7265 // Remove any extra phis created by processing inner loops. 7266 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7267 if (EnablePhiElim && L->isLoopSimplifyForm()) { 7268 SmallVector<WeakTrackingVH, 16> DeadInsts; 7269 const DataLayout &DL = L->getHeader()->getDataLayout(); 7270 SCEVExpander Rewriter(SE, DL, "lsr", false); 7271 #ifndef NDEBUG 7272 Rewriter.setDebugType(DEBUG_TYPE); 7273 #endif 7274 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 7275 Rewriter.clear(); 7276 if (numFolded) { 7277 Changed = true; 7278 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7279 MSSAU.get()); 7280 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7281 } 7282 } 7283 // LSR may at times remove all uses of an induction variable from a loop. 7284 // The only remaining use is the PHI in the exit block. 7285 // When this is the case, if the exit value of the IV can be calculated using 7286 // SCEV, we can replace the exit block PHI with the final value of the IV and 7287 // skip the updates in each loop iteration. 7288 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 7289 SmallVector<WeakTrackingVH, 16> DeadInsts; 7290 const DataLayout &DL = L->getHeader()->getDataLayout(); 7291 SCEVExpander Rewriter(SE, DL, "lsr", true); 7292 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 7293 UnusedIndVarInLoop, DeadInsts); 7294 Rewriter.clear(); 7295 if (Rewrites) { 7296 Changed = true; 7297 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7298 MSSAU.get()); 7299 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7300 } 7301 } 7302 7303 const bool EnableFormTerm = [&] { 7304 switch (AllowTerminatingConditionFoldingAfterLSR) { 7305 case cl::BOU_TRUE: 7306 return true; 7307 case cl::BOU_FALSE: 7308 return false; 7309 case cl::BOU_UNSET: 7310 return TTI.shouldFoldTerminatingConditionAfterLSR(); 7311 } 7312 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 7313 }(); 7314 7315 if (EnableFormTerm) { 7316 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI)) { 7317 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt; 7318 7319 Changed = true; 7320 NumTermFold++; 7321 7322 BasicBlock *LoopPreheader = L->getLoopPreheader(); 7323 BasicBlock *LoopLatch = L->getLoopLatch(); 7324 7325 (void)ToFold; 7326 LLVM_DEBUG(dbgs() << "To fold phi-node:\n" 7327 << *ToFold << "\n" 7328 << "New term-cond phi-node:\n" 7329 << *ToHelpFold << "\n"); 7330 7331 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader); 7332 (void)StartValue; 7333 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch); 7334 7335 // See comment in canFoldTermCondOfLoop on why this is sufficient. 7336 if (MustDrop) 7337 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags(); 7338 7339 // SCEVExpander for both use in preheader and latch 7340 const DataLayout &DL = L->getHeader()->getDataLayout(); 7341 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7342 7343 assert(Expander.isSafeToExpand(TermValueS) && 7344 "Terminating value was checked safe in canFoldTerminatingCondition"); 7345 7346 // Create new terminating value at loop preheader 7347 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(), 7348 LoopPreheader->getTerminator()); 7349 7350 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n" 7351 << *StartValue << "\n" 7352 << "Terminating value of new term-cond phi-node:\n" 7353 << *TermValue << "\n"); 7354 7355 // Create new terminating condition at loop latch 7356 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator()); 7357 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition()); 7358 IRBuilder<> LatchBuilder(LoopLatch->getTerminator()); 7359 Value *NewTermCond = 7360 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue, 7361 "lsr_fold_term_cond.replaced_term_cond"); 7362 // Swap successors to exit loop body if IV equals to new TermValue 7363 if (BI->getSuccessor(0) == L->getHeader()) 7364 BI->swapSuccessors(); 7365 7366 LLVM_DEBUG(dbgs() << "Old term-cond:\n" 7367 << *OldTermCond << "\n" 7368 << "New term-cond:\n" << *NewTermCond << "\n"); 7369 7370 BI->setCondition(NewTermCond); 7371 7372 Expander.clear(); 7373 OldTermCond->eraseFromParent(); 7374 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7375 } 7376 } 7377 7378 if (SalvageableDVIRecords.empty()) 7379 return Changed; 7380 7381 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7382 // expressions composed using the derived iteration count. 7383 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7384 for (const auto &L : LI) { 7385 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7386 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7387 else { 7388 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7389 "could not be identified.\n"); 7390 } 7391 } 7392 7393 for (auto &Rec : SalvageableDVIRecords) 7394 Rec->clear(); 7395 SalvageableDVIRecords.clear(); 7396 DVIHandles.clear(); 7397 return Changed; 7398 } 7399 7400 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7401 if (skipLoop(L)) 7402 return false; 7403 7404 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7405 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7406 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7407 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7408 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7409 *L->getHeader()->getParent()); 7410 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7411 *L->getHeader()->getParent()); 7412 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7413 *L->getHeader()->getParent()); 7414 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7415 MemorySSA *MSSA = nullptr; 7416 if (MSSAAnalysis) 7417 MSSA = &MSSAAnalysis->getMSSA(); 7418 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7419 } 7420 7421 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7422 LoopStandardAnalysisResults &AR, 7423 LPMUpdater &) { 7424 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7425 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7426 return PreservedAnalyses::all(); 7427 7428 auto PA = getLoopPassPreservedAnalyses(); 7429 if (AR.MSSA) 7430 PA.preserve<MemorySSAAnalysis>(); 7431 return PA; 7432 } 7433 7434 char LoopStrengthReduce::ID = 0; 7435 7436 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7437 "Loop Strength Reduction", false, false) 7438 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7439 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7440 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7444 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7445 "Loop Strength Reduction", false, false) 7446 7447 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7448