1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/LoopUtils.h" 119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstddef> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <optional> 129 #include <utility> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "loop-reduce" 134 135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 136 /// bail out. This threshold is far beyond the number of users that LSR can 137 /// conceivably solve, so it should not affect generated code, but catches the 138 /// worst cases before LSR burns too much compile time and stack space. 139 static const unsigned MaxIVUsers = 200; 140 141 /// Limit the size of expression that SCEV-based salvaging will attempt to 142 /// translate into a DIExpression. 143 /// Choose a maximum size such that debuginfo is not excessively increased and 144 /// the salvaging is not too expensive for the compiler. 145 static const unsigned MaxSCEVSalvageExpressionSize = 64; 146 147 // Cleanup congruent phis after LSR phi expansion. 148 static cl::opt<bool> EnablePhiElim( 149 "enable-lsr-phielim", cl::Hidden, cl::init(true), 150 cl::desc("Enable LSR phi elimination")); 151 152 // The flag adds instruction count to solutions cost comparison. 153 static cl::opt<bool> InsnsCost( 154 "lsr-insns-cost", cl::Hidden, cl::init(true), 155 cl::desc("Add instruction count to a LSR cost model")); 156 157 // Flag to choose how to narrow complex lsr solution 158 static cl::opt<bool> LSRExpNarrow( 159 "lsr-exp-narrow", cl::Hidden, cl::init(false), 160 cl::desc("Narrow LSR complex solution using" 161 " expectation of registers number")); 162 163 // Flag to narrow search space by filtering non-optimal formulae with 164 // the same ScaledReg and Scale. 165 static cl::opt<bool> FilterSameScaledReg( 166 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 167 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 168 " with the same ScaledReg and Scale")); 169 170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 171 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 172 cl::desc("A flag that overrides the target's preferred addressing mode."), 173 cl::values(clEnumValN(TTI::AMK_None, 174 "none", 175 "Don't prefer any addressing mode"), 176 clEnumValN(TTI::AMK_PreIndexed, 177 "preindexed", 178 "Prefer pre-indexed addressing mode"), 179 clEnumValN(TTI::AMK_PostIndexed, 180 "postindexed", 181 "Prefer post-indexed addressing mode"))); 182 183 static cl::opt<unsigned> ComplexityLimit( 184 "lsr-complexity-limit", cl::Hidden, 185 cl::init(std::numeric_limits<uint16_t>::max()), 186 cl::desc("LSR search space complexity limit")); 187 188 static cl::opt<unsigned> SetupCostDepthLimit( 189 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 190 cl::desc("The limit on recursion depth for LSRs setup cost")); 191 192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR( 193 "lsr-term-fold", cl::Hidden, 194 cl::desc("Attempt to replace primary IV with other IV.")); 195 196 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( 197 "lsr-drop-solution", cl::Hidden, 198 cl::desc("Attempt to drop solution if it is less profitable")); 199 200 static cl::opt<bool> EnableVScaleImmediates( 201 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true), 202 cl::desc("Enable analysis of vscale-relative immediates in LSR")); 203 204 static cl::opt<bool> DropScaledForVScale( 205 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true), 206 cl::desc("Avoid using scaled registers with vscale-relative addressing")); 207 208 STATISTIC(NumTermFold, 209 "Number of terminating condition fold recognized and performed"); 210 211 #ifndef NDEBUG 212 // Stress test IV chain generation. 213 static cl::opt<bool> StressIVChain( 214 "stress-ivchain", cl::Hidden, cl::init(false), 215 cl::desc("Stress test LSR IV chains")); 216 #else 217 static bool StressIVChain = false; 218 #endif 219 220 namespace { 221 222 struct MemAccessTy { 223 /// Used in situations where the accessed memory type is unknown. 224 static const unsigned UnknownAddressSpace = 225 std::numeric_limits<unsigned>::max(); 226 227 Type *MemTy = nullptr; 228 unsigned AddrSpace = UnknownAddressSpace; 229 230 MemAccessTy() = default; 231 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 232 233 bool operator==(MemAccessTy Other) const { 234 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 235 } 236 237 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 238 239 static MemAccessTy getUnknown(LLVMContext &Ctx, 240 unsigned AS = UnknownAddressSpace) { 241 return MemAccessTy(Type::getVoidTy(Ctx), AS); 242 } 243 244 Type *getType() { return MemTy; } 245 }; 246 247 /// This class holds data which is used to order reuse candidates. 248 class RegSortData { 249 public: 250 /// This represents the set of LSRUse indices which reference 251 /// a particular register. 252 SmallBitVector UsedByIndices; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 // An offset from an address that is either scalable or fixed. Used for 259 // per-target optimizations of addressing modes. 260 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { 261 constexpr Immediate(ScalarTy MinVal, bool Scalable) 262 : FixedOrScalableQuantity(MinVal, Scalable) {} 263 264 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) 265 : FixedOrScalableQuantity(V) {} 266 267 public: 268 constexpr Immediate() = delete; 269 270 static constexpr Immediate getFixed(ScalarTy MinVal) { 271 return {MinVal, false}; 272 } 273 static constexpr Immediate getScalable(ScalarTy MinVal) { 274 return {MinVal, true}; 275 } 276 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { 277 return {MinVal, Scalable}; 278 } 279 static constexpr Immediate getZero() { return {0, false}; } 280 static constexpr Immediate getFixedMin() { 281 return {std::numeric_limits<int64_t>::min(), false}; 282 } 283 static constexpr Immediate getFixedMax() { 284 return {std::numeric_limits<int64_t>::max(), false}; 285 } 286 static constexpr Immediate getScalableMin() { 287 return {std::numeric_limits<int64_t>::min(), true}; 288 } 289 static constexpr Immediate getScalableMax() { 290 return {std::numeric_limits<int64_t>::max(), true}; 291 } 292 293 constexpr bool isLessThanZero() const { return Quantity < 0; } 294 295 constexpr bool isGreaterThanZero() const { return Quantity > 0; } 296 297 constexpr bool isCompatibleImmediate(const Immediate &Imm) const { 298 return isZero() || Imm.isZero() || Imm.Scalable == Scalable; 299 } 300 301 constexpr bool isMin() const { 302 return Quantity == std::numeric_limits<ScalarTy>::min(); 303 } 304 305 constexpr bool isMax() const { 306 return Quantity == std::numeric_limits<ScalarTy>::max(); 307 } 308 309 // Arithmetic 'operators' that cast to unsigned types first. 310 constexpr Immediate addUnsigned(const Immediate &RHS) const { 311 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 312 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); 313 return {Value, Scalable || RHS.isScalable()}; 314 } 315 316 constexpr Immediate subUnsigned(const Immediate &RHS) const { 317 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 318 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); 319 return {Value, Scalable || RHS.isScalable()}; 320 } 321 322 // Scale the quantity by a constant without caring about runtime scalability. 323 constexpr Immediate mulUnsigned(const ScalarTy RHS) const { 324 ScalarTy Value = (uint64_t)Quantity * RHS; 325 return {Value, Scalable}; 326 } 327 328 // Helpers for generating SCEVs with vscale terms where needed. 329 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { 330 const SCEV *S = SE.getConstant(Ty, Quantity); 331 if (Scalable) 332 S = SE.getMulExpr(S, SE.getVScale(S->getType())); 333 return S; 334 } 335 336 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { 337 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity); 338 if (Scalable) 339 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType())); 340 return NegS; 341 } 342 343 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { 344 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity)); 345 if (Scalable) 346 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType())); 347 return SU; 348 } 349 }; 350 351 // This is needed for the Compare type of std::map when Immediate is used 352 // as a key. We don't need it to be fully correct against any value of vscale, 353 // just to make sure that vscale-related terms in the map are considered against 354 // each other rather than being mixed up and potentially missing opportunities. 355 struct KeyOrderTargetImmediate { 356 bool operator()(const Immediate &LHS, const Immediate &RHS) const { 357 if (LHS.isScalable() && !RHS.isScalable()) 358 return false; 359 if (!LHS.isScalable() && RHS.isScalable()) 360 return true; 361 return LHS.getKnownMinValue() < RHS.getKnownMinValue(); 362 } 363 }; 364 365 // This would be nicer if we could be generic instead of directly using size_t, 366 // but there doesn't seem to be a type trait for is_orderable or 367 // is_lessthan_comparable or similar. 368 struct KeyOrderSizeTAndImmediate { 369 bool operator()(const std::pair<size_t, Immediate> &LHS, 370 const std::pair<size_t, Immediate> &RHS) const { 371 size_t LSize = LHS.first; 372 size_t RSize = RHS.first; 373 if (LSize != RSize) 374 return LSize < RSize; 375 return KeyOrderTargetImmediate()(LHS.second, RHS.second); 376 } 377 }; 378 } // end anonymous namespace 379 380 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 381 void RegSortData::print(raw_ostream &OS) const { 382 OS << "[NumUses=" << UsedByIndices.count() << ']'; 383 } 384 385 LLVM_DUMP_METHOD void RegSortData::dump() const { 386 print(errs()); errs() << '\n'; 387 } 388 #endif 389 390 namespace { 391 392 /// Map register candidates to information about how they are used. 393 class RegUseTracker { 394 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 395 396 RegUsesTy RegUsesMap; 397 SmallVector<const SCEV *, 16> RegSequence; 398 399 public: 400 void countRegister(const SCEV *Reg, size_t LUIdx); 401 void dropRegister(const SCEV *Reg, size_t LUIdx); 402 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 403 404 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 405 406 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 407 408 void clear(); 409 410 using iterator = SmallVectorImpl<const SCEV *>::iterator; 411 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 412 413 iterator begin() { return RegSequence.begin(); } 414 iterator end() { return RegSequence.end(); } 415 const_iterator begin() const { return RegSequence.begin(); } 416 const_iterator end() const { return RegSequence.end(); } 417 }; 418 419 } // end anonymous namespace 420 421 void 422 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 423 std::pair<RegUsesTy::iterator, bool> Pair = 424 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 425 RegSortData &RSD = Pair.first->second; 426 if (Pair.second) 427 RegSequence.push_back(Reg); 428 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 429 RSD.UsedByIndices.set(LUIdx); 430 } 431 432 void 433 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 434 RegUsesTy::iterator It = RegUsesMap.find(Reg); 435 assert(It != RegUsesMap.end()); 436 RegSortData &RSD = It->second; 437 assert(RSD.UsedByIndices.size() > LUIdx); 438 RSD.UsedByIndices.reset(LUIdx); 439 } 440 441 void 442 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 443 assert(LUIdx <= LastLUIdx); 444 445 // Update RegUses. The data structure is not optimized for this purpose; 446 // we must iterate through it and update each of the bit vectors. 447 for (auto &Pair : RegUsesMap) { 448 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 449 if (LUIdx < UsedByIndices.size()) 450 UsedByIndices[LUIdx] = 451 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 452 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 453 } 454 } 455 456 bool 457 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 458 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 459 if (I == RegUsesMap.end()) 460 return false; 461 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 462 int i = UsedByIndices.find_first(); 463 if (i == -1) return false; 464 if ((size_t)i != LUIdx) return true; 465 return UsedByIndices.find_next(i) != -1; 466 } 467 468 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 469 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 470 assert(I != RegUsesMap.end() && "Unknown register!"); 471 return I->second.UsedByIndices; 472 } 473 474 void RegUseTracker::clear() { 475 RegUsesMap.clear(); 476 RegSequence.clear(); 477 } 478 479 namespace { 480 481 /// This class holds information that describes a formula for computing 482 /// satisfying a use. It may include broken-out immediates and scaled registers. 483 struct Formula { 484 /// Global base address used for complex addressing. 485 GlobalValue *BaseGV = nullptr; 486 487 /// Base offset for complex addressing. 488 Immediate BaseOffset = Immediate::getZero(); 489 490 /// Whether any complex addressing has a base register. 491 bool HasBaseReg = false; 492 493 /// The scale of any complex addressing. 494 int64_t Scale = 0; 495 496 /// The list of "base" registers for this use. When this is non-empty. The 497 /// canonical representation of a formula is 498 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 499 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 500 /// 3. The reg containing recurrent expr related with currect loop in the 501 /// formula should be put in the ScaledReg. 502 /// #1 enforces that the scaled register is always used when at least two 503 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 504 /// #2 enforces that 1 * reg is reg. 505 /// #3 ensures invariant regs with respect to current loop can be combined 506 /// together in LSR codegen. 507 /// This invariant can be temporarily broken while building a formula. 508 /// However, every formula inserted into the LSRInstance must be in canonical 509 /// form. 510 SmallVector<const SCEV *, 4> BaseRegs; 511 512 /// The 'scaled' register for this use. This should be non-null when Scale is 513 /// not zero. 514 const SCEV *ScaledReg = nullptr; 515 516 /// An additional constant offset which added near the use. This requires a 517 /// temporary register, but the offset itself can live in an add immediate 518 /// field rather than a register. 519 Immediate UnfoldedOffset = Immediate::getZero(); 520 521 Formula() = default; 522 523 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 524 525 bool isCanonical(const Loop &L) const; 526 527 void canonicalize(const Loop &L); 528 529 bool unscale(); 530 531 bool hasZeroEnd() const; 532 533 size_t getNumRegs() const; 534 Type *getType() const; 535 536 void deleteBaseReg(const SCEV *&S); 537 538 bool referencesReg(const SCEV *S) const; 539 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 540 const RegUseTracker &RegUses) const; 541 542 void print(raw_ostream &OS) const; 543 void dump() const; 544 }; 545 546 } // end anonymous namespace 547 548 /// Recursion helper for initialMatch. 549 static void DoInitialMatch(const SCEV *S, Loop *L, 550 SmallVectorImpl<const SCEV *> &Good, 551 SmallVectorImpl<const SCEV *> &Bad, 552 ScalarEvolution &SE) { 553 // Collect expressions which properly dominate the loop header. 554 if (SE.properlyDominates(S, L->getHeader())) { 555 Good.push_back(S); 556 return; 557 } 558 559 // Look at add operands. 560 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 561 for (const SCEV *S : Add->operands()) 562 DoInitialMatch(S, L, Good, Bad, SE); 563 return; 564 } 565 566 // Look at addrec operands. 567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 568 if (!AR->getStart()->isZero() && AR->isAffine()) { 569 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 570 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 571 AR->getStepRecurrence(SE), 572 // FIXME: AR->getNoWrapFlags() 573 AR->getLoop(), SCEV::FlagAnyWrap), 574 L, Good, Bad, SE); 575 return; 576 } 577 578 // Handle a multiplication by -1 (negation) if it didn't fold. 579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 580 if (Mul->getOperand(0)->isAllOnesValue()) { 581 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 582 const SCEV *NewMul = SE.getMulExpr(Ops); 583 584 SmallVector<const SCEV *, 4> MyGood; 585 SmallVector<const SCEV *, 4> MyBad; 586 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 587 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 588 SE.getEffectiveSCEVType(NewMul->getType()))); 589 for (const SCEV *S : MyGood) 590 Good.push_back(SE.getMulExpr(NegOne, S)); 591 for (const SCEV *S : MyBad) 592 Bad.push_back(SE.getMulExpr(NegOne, S)); 593 return; 594 } 595 596 // Ok, we can't do anything interesting. Just stuff the whole thing into a 597 // register and hope for the best. 598 Bad.push_back(S); 599 } 600 601 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 602 /// all loop-invariant and loop-computable values in a single base register. 603 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 604 SmallVector<const SCEV *, 4> Good; 605 SmallVector<const SCEV *, 4> Bad; 606 DoInitialMatch(S, L, Good, Bad, SE); 607 if (!Good.empty()) { 608 const SCEV *Sum = SE.getAddExpr(Good); 609 if (!Sum->isZero()) 610 BaseRegs.push_back(Sum); 611 HasBaseReg = true; 612 } 613 if (!Bad.empty()) { 614 const SCEV *Sum = SE.getAddExpr(Bad); 615 if (!Sum->isZero()) 616 BaseRegs.push_back(Sum); 617 HasBaseReg = true; 618 } 619 canonicalize(*L); 620 } 621 622 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 623 return SCEVExprContains(S, [&L](const SCEV *S) { 624 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 625 }); 626 } 627 628 /// Check whether or not this formula satisfies the canonical 629 /// representation. 630 /// \see Formula::BaseRegs. 631 bool Formula::isCanonical(const Loop &L) const { 632 if (!ScaledReg) 633 return BaseRegs.size() <= 1; 634 635 if (Scale != 1) 636 return true; 637 638 if (Scale == 1 && BaseRegs.empty()) 639 return false; 640 641 if (containsAddRecDependentOnLoop(ScaledReg, L)) 642 return true; 643 644 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 645 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 646 // loop, we want to swap the reg in BaseRegs with ScaledReg. 647 return none_of(BaseRegs, [&L](const SCEV *S) { 648 return containsAddRecDependentOnLoop(S, L); 649 }); 650 } 651 652 /// Helper method to morph a formula into its canonical representation. 653 /// \see Formula::BaseRegs. 654 /// Every formula having more than one base register, must use the ScaledReg 655 /// field. Otherwise, we would have to do special cases everywhere in LSR 656 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 657 /// On the other hand, 1*reg should be canonicalized into reg. 658 void Formula::canonicalize(const Loop &L) { 659 if (isCanonical(L)) 660 return; 661 662 if (BaseRegs.empty()) { 663 // No base reg? Use scale reg with scale = 1 as such. 664 assert(ScaledReg && "Expected 1*reg => reg"); 665 assert(Scale == 1 && "Expected 1*reg => reg"); 666 BaseRegs.push_back(ScaledReg); 667 Scale = 0; 668 ScaledReg = nullptr; 669 return; 670 } 671 672 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 673 if (!ScaledReg) { 674 ScaledReg = BaseRegs.pop_back_val(); 675 Scale = 1; 676 } 677 678 // If ScaledReg is an invariant with respect to L, find the reg from 679 // BaseRegs containing the recurrent expr related with Loop L. Swap the 680 // reg with ScaledReg. 681 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 682 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 683 return containsAddRecDependentOnLoop(S, L); 684 }); 685 if (I != BaseRegs.end()) 686 std::swap(ScaledReg, *I); 687 } 688 assert(isCanonical(L) && "Failed to canonicalize?"); 689 } 690 691 /// Get rid of the scale in the formula. 692 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 693 /// \return true if it was possible to get rid of the scale, false otherwise. 694 /// \note After this operation the formula may not be in the canonical form. 695 bool Formula::unscale() { 696 if (Scale != 1) 697 return false; 698 Scale = 0; 699 BaseRegs.push_back(ScaledReg); 700 ScaledReg = nullptr; 701 return true; 702 } 703 704 bool Formula::hasZeroEnd() const { 705 if (UnfoldedOffset || BaseOffset) 706 return false; 707 if (BaseRegs.size() != 1 || ScaledReg) 708 return false; 709 return true; 710 } 711 712 /// Return the total number of register operands used by this formula. This does 713 /// not include register uses implied by non-constant addrec strides. 714 size_t Formula::getNumRegs() const { 715 return !!ScaledReg + BaseRegs.size(); 716 } 717 718 /// Return the type of this formula, if it has one, or null otherwise. This type 719 /// is meaningless except for the bit size. 720 Type *Formula::getType() const { 721 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 722 ScaledReg ? ScaledReg->getType() : 723 BaseGV ? BaseGV->getType() : 724 nullptr; 725 } 726 727 /// Delete the given base reg from the BaseRegs list. 728 void Formula::deleteBaseReg(const SCEV *&S) { 729 if (&S != &BaseRegs.back()) 730 std::swap(S, BaseRegs.back()); 731 BaseRegs.pop_back(); 732 } 733 734 /// Test if this formula references the given register. 735 bool Formula::referencesReg(const SCEV *S) const { 736 return S == ScaledReg || is_contained(BaseRegs, S); 737 } 738 739 /// Test whether this formula uses registers which are used by uses other than 740 /// the use with the given index. 741 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 742 const RegUseTracker &RegUses) const { 743 if (ScaledReg) 744 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 745 return true; 746 for (const SCEV *BaseReg : BaseRegs) 747 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 748 return true; 749 return false; 750 } 751 752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 753 void Formula::print(raw_ostream &OS) const { 754 bool First = true; 755 if (BaseGV) { 756 if (!First) OS << " + "; else First = false; 757 BaseGV->printAsOperand(OS, /*PrintType=*/false); 758 } 759 if (BaseOffset.isNonZero()) { 760 if (!First) OS << " + "; else First = false; 761 OS << BaseOffset; 762 } 763 for (const SCEV *BaseReg : BaseRegs) { 764 if (!First) OS << " + "; else First = false; 765 OS << "reg(" << *BaseReg << ')'; 766 } 767 if (HasBaseReg && BaseRegs.empty()) { 768 if (!First) OS << " + "; else First = false; 769 OS << "**error: HasBaseReg**"; 770 } else if (!HasBaseReg && !BaseRegs.empty()) { 771 if (!First) OS << " + "; else First = false; 772 OS << "**error: !HasBaseReg**"; 773 } 774 if (Scale != 0) { 775 if (!First) OS << " + "; else First = false; 776 OS << Scale << "*reg("; 777 if (ScaledReg) 778 OS << *ScaledReg; 779 else 780 OS << "<unknown>"; 781 OS << ')'; 782 } 783 if (UnfoldedOffset.isNonZero()) { 784 if (!First) OS << " + "; 785 OS << "imm(" << UnfoldedOffset << ')'; 786 } 787 } 788 789 LLVM_DUMP_METHOD void Formula::dump() const { 790 print(errs()); errs() << '\n'; 791 } 792 #endif 793 794 /// Return true if the given addrec can be sign-extended without changing its 795 /// value. 796 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 797 Type *WideTy = 798 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 799 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 800 } 801 802 /// Return true if the given add can be sign-extended without changing its 803 /// value. 804 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 805 Type *WideTy = 806 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 807 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 808 } 809 810 /// Return true if the given mul can be sign-extended without changing its 811 /// value. 812 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 813 Type *WideTy = 814 IntegerType::get(SE.getContext(), 815 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 816 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 817 } 818 819 /// Return an expression for LHS /s RHS, if it can be determined and if the 820 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 821 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 822 /// the multiplication may overflow, which is useful when the result will be 823 /// used in a context where the most significant bits are ignored. 824 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 825 ScalarEvolution &SE, 826 bool IgnoreSignificantBits = false) { 827 // Handle the trivial case, which works for any SCEV type. 828 if (LHS == RHS) 829 return SE.getConstant(LHS->getType(), 1); 830 831 // Handle a few RHS special cases. 832 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 833 if (RC) { 834 const APInt &RA = RC->getAPInt(); 835 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 836 // some folding. 837 if (RA.isAllOnes()) { 838 if (LHS->getType()->isPointerTy()) 839 return nullptr; 840 return SE.getMulExpr(LHS, RC); 841 } 842 // Handle x /s 1 as x. 843 if (RA == 1) 844 return LHS; 845 } 846 847 // Check for a division of a constant by a constant. 848 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 849 if (!RC) 850 return nullptr; 851 const APInt &LA = C->getAPInt(); 852 const APInt &RA = RC->getAPInt(); 853 if (LA.srem(RA) != 0) 854 return nullptr; 855 return SE.getConstant(LA.sdiv(RA)); 856 } 857 858 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 859 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 860 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 861 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 862 IgnoreSignificantBits); 863 if (!Step) return nullptr; 864 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 865 IgnoreSignificantBits); 866 if (!Start) return nullptr; 867 // FlagNW is independent of the start value, step direction, and is 868 // preserved with smaller magnitude steps. 869 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 870 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 871 } 872 return nullptr; 873 } 874 875 // Distribute the sdiv over add operands, if the add doesn't overflow. 876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 877 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 878 SmallVector<const SCEV *, 8> Ops; 879 for (const SCEV *S : Add->operands()) { 880 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 881 if (!Op) return nullptr; 882 Ops.push_back(Op); 883 } 884 return SE.getAddExpr(Ops); 885 } 886 return nullptr; 887 } 888 889 // Check for a multiply operand that we can pull RHS out of. 890 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 891 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 892 // Handle special case C1*X*Y /s C2*X*Y. 893 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 894 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 895 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 896 const SCEVConstant *RC = 897 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 898 if (LC && RC) { 899 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 900 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 901 if (LOps == ROps) 902 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 903 } 904 } 905 } 906 907 SmallVector<const SCEV *, 4> Ops; 908 bool Found = false; 909 for (const SCEV *S : Mul->operands()) { 910 if (!Found) 911 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 912 IgnoreSignificantBits)) { 913 S = Q; 914 Found = true; 915 } 916 Ops.push_back(S); 917 } 918 return Found ? SE.getMulExpr(Ops) : nullptr; 919 } 920 return nullptr; 921 } 922 923 // Otherwise we don't know. 924 return nullptr; 925 } 926 927 /// If S involves the addition of a constant integer value, return that integer 928 /// value, and mutate S to point to a new SCEV with that value excluded. 929 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 931 if (C->getAPInt().getSignificantBits() <= 64) { 932 S = SE.getConstant(C->getType(), 0); 933 return Immediate::getFixed(C->getValue()->getSExtValue()); 934 } 935 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 936 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 937 Immediate Result = ExtractImmediate(NewOps.front(), SE); 938 if (Result.isNonZero()) 939 S = SE.getAddExpr(NewOps); 940 return Result; 941 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 942 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 943 Immediate Result = ExtractImmediate(NewOps.front(), SE); 944 if (Result.isNonZero()) 945 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 946 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 947 SCEV::FlagAnyWrap); 948 return Result; 949 } else if (EnableVScaleImmediates) 950 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) 951 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 952 if (isa<SCEVVScale>(M->getOperand(1))) { 953 S = SE.getConstant(M->getType(), 0); 954 return Immediate::getScalable(C->getValue()->getSExtValue()); 955 } 956 return Immediate::getZero(); 957 } 958 959 /// If S involves the addition of a GlobalValue address, return that symbol, and 960 /// mutate S to point to a new SCEV with that value excluded. 961 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 962 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 963 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 964 S = SE.getConstant(GV->getType(), 0); 965 return GV; 966 } 967 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 968 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 969 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 970 if (Result) 971 S = SE.getAddExpr(NewOps); 972 return Result; 973 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 974 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 975 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 976 if (Result) 977 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 978 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 979 SCEV::FlagAnyWrap); 980 return Result; 981 } 982 return nullptr; 983 } 984 985 /// Returns true if the specified instruction is using the specified value as an 986 /// address. 987 static bool isAddressUse(const TargetTransformInfo &TTI, 988 Instruction *Inst, Value *OperandVal) { 989 bool isAddress = isa<LoadInst>(Inst); 990 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 991 if (SI->getPointerOperand() == OperandVal) 992 isAddress = true; 993 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 994 // Addressing modes can also be folded into prefetches and a variety 995 // of intrinsics. 996 switch (II->getIntrinsicID()) { 997 case Intrinsic::memset: 998 case Intrinsic::prefetch: 999 case Intrinsic::masked_load: 1000 if (II->getArgOperand(0) == OperandVal) 1001 isAddress = true; 1002 break; 1003 case Intrinsic::masked_store: 1004 if (II->getArgOperand(1) == OperandVal) 1005 isAddress = true; 1006 break; 1007 case Intrinsic::memmove: 1008 case Intrinsic::memcpy: 1009 if (II->getArgOperand(0) == OperandVal || 1010 II->getArgOperand(1) == OperandVal) 1011 isAddress = true; 1012 break; 1013 default: { 1014 MemIntrinsicInfo IntrInfo; 1015 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 1016 if (IntrInfo.PtrVal == OperandVal) 1017 isAddress = true; 1018 } 1019 } 1020 } 1021 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1022 if (RMW->getPointerOperand() == OperandVal) 1023 isAddress = true; 1024 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1025 if (CmpX->getPointerOperand() == OperandVal) 1026 isAddress = true; 1027 } 1028 return isAddress; 1029 } 1030 1031 /// Return the type of the memory being accessed. 1032 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 1033 Instruction *Inst, Value *OperandVal) { 1034 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 1035 1036 // First get the type of memory being accessed. 1037 if (Type *Ty = Inst->getAccessType()) 1038 AccessTy.MemTy = Ty; 1039 1040 // Then get the pointer address space. 1041 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1042 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 1043 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 1044 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 1045 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1046 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 1047 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1048 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 1049 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1050 switch (II->getIntrinsicID()) { 1051 case Intrinsic::prefetch: 1052 case Intrinsic::memset: 1053 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1054 AccessTy.MemTy = OperandVal->getType(); 1055 break; 1056 case Intrinsic::memmove: 1057 case Intrinsic::memcpy: 1058 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 1059 AccessTy.MemTy = OperandVal->getType(); 1060 break; 1061 case Intrinsic::masked_load: 1062 AccessTy.AddrSpace = 1063 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1064 break; 1065 case Intrinsic::masked_store: 1066 AccessTy.AddrSpace = 1067 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 1068 break; 1069 default: { 1070 MemIntrinsicInfo IntrInfo; 1071 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 1072 AccessTy.AddrSpace 1073 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 1074 } 1075 1076 break; 1077 } 1078 } 1079 } 1080 1081 return AccessTy; 1082 } 1083 1084 /// Return true if this AddRec is already a phi in its loop. 1085 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 1086 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 1087 if (SE.isSCEVable(PN.getType()) && 1088 (SE.getEffectiveSCEVType(PN.getType()) == 1089 SE.getEffectiveSCEVType(AR->getType())) && 1090 SE.getSCEV(&PN) == AR) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 /// Check if expanding this expression is likely to incur significant cost. This 1097 /// is tricky because SCEV doesn't track which expressions are actually computed 1098 /// by the current IR. 1099 /// 1100 /// We currently allow expansion of IV increments that involve adds, 1101 /// multiplication by constants, and AddRecs from existing phis. 1102 /// 1103 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 1104 /// obvious multiple of the UDivExpr. 1105 static bool isHighCostExpansion(const SCEV *S, 1106 SmallPtrSetImpl<const SCEV*> &Processed, 1107 ScalarEvolution &SE) { 1108 // Zero/One operand expressions 1109 switch (S->getSCEVType()) { 1110 case scUnknown: 1111 case scConstant: 1112 case scVScale: 1113 return false; 1114 case scTruncate: 1115 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 1116 Processed, SE); 1117 case scZeroExtend: 1118 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1119 Processed, SE); 1120 case scSignExtend: 1121 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 1122 Processed, SE); 1123 default: 1124 break; 1125 } 1126 1127 if (!Processed.insert(S).second) 1128 return false; 1129 1130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1131 for (const SCEV *S : Add->operands()) { 1132 if (isHighCostExpansion(S, Processed, SE)) 1133 return true; 1134 } 1135 return false; 1136 } 1137 1138 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1139 if (Mul->getNumOperands() == 2) { 1140 // Multiplication by a constant is ok 1141 if (isa<SCEVConstant>(Mul->getOperand(0))) 1142 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1143 1144 // If we have the value of one operand, check if an existing 1145 // multiplication already generates this expression. 1146 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1147 Value *UVal = U->getValue(); 1148 for (User *UR : UVal->users()) { 1149 // If U is a constant, it may be used by a ConstantExpr. 1150 Instruction *UI = dyn_cast<Instruction>(UR); 1151 if (UI && UI->getOpcode() == Instruction::Mul && 1152 SE.isSCEVable(UI->getType())) { 1153 return SE.getSCEV(UI) == Mul; 1154 } 1155 } 1156 } 1157 } 1158 } 1159 1160 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1161 if (isExistingPhi(AR, SE)) 1162 return false; 1163 } 1164 1165 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1166 return true; 1167 } 1168 1169 namespace { 1170 1171 class LSRUse; 1172 1173 } // end anonymous namespace 1174 1175 /// Check if the addressing mode defined by \p F is completely 1176 /// folded in \p LU at isel time. 1177 /// This includes address-mode folding and special icmp tricks. 1178 /// This function returns true if \p LU can accommodate what \p F 1179 /// defines and up to 1 base + 1 scaled + offset. 1180 /// In other words, if \p F has several base registers, this function may 1181 /// still return true. Therefore, users still need to account for 1182 /// additional base registers and/or unfolded offsets to derive an 1183 /// accurate cost model. 1184 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1185 const LSRUse &LU, const Formula &F); 1186 1187 // Get the cost of the scaling factor used in F for LU. 1188 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1189 const LSRUse &LU, const Formula &F, 1190 const Loop &L); 1191 1192 namespace { 1193 1194 /// This class is used to measure and compare candidate formulae. 1195 class Cost { 1196 const Loop *L = nullptr; 1197 ScalarEvolution *SE = nullptr; 1198 const TargetTransformInfo *TTI = nullptr; 1199 TargetTransformInfo::LSRCost C; 1200 TTI::AddressingModeKind AMK = TTI::AMK_None; 1201 1202 public: 1203 Cost() = delete; 1204 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1205 TTI::AddressingModeKind AMK) : 1206 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1207 C.Insns = 0; 1208 C.NumRegs = 0; 1209 C.AddRecCost = 0; 1210 C.NumIVMuls = 0; 1211 C.NumBaseAdds = 0; 1212 C.ImmCost = 0; 1213 C.SetupCost = 0; 1214 C.ScaleCost = 0; 1215 } 1216 1217 bool isLess(const Cost &Other) const; 1218 1219 void Lose(); 1220 1221 #ifndef NDEBUG 1222 // Once any of the metrics loses, they must all remain losers. 1223 bool isValid() { 1224 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1225 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1226 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1227 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1228 } 1229 #endif 1230 1231 bool isLoser() { 1232 assert(isValid() && "invalid cost"); 1233 return C.NumRegs == ~0u; 1234 } 1235 1236 void RateFormula(const Formula &F, 1237 SmallPtrSetImpl<const SCEV *> &Regs, 1238 const DenseSet<const SCEV *> &VisitedRegs, 1239 const LSRUse &LU, 1240 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1241 1242 void print(raw_ostream &OS) const; 1243 void dump() const; 1244 1245 private: 1246 void RateRegister(const Formula &F, const SCEV *Reg, 1247 SmallPtrSetImpl<const SCEV *> &Regs); 1248 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1249 SmallPtrSetImpl<const SCEV *> &Regs, 1250 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1251 }; 1252 1253 /// An operand value in an instruction which is to be replaced with some 1254 /// equivalent, possibly strength-reduced, replacement. 1255 struct LSRFixup { 1256 /// The instruction which will be updated. 1257 Instruction *UserInst = nullptr; 1258 1259 /// The operand of the instruction which will be replaced. The operand may be 1260 /// used more than once; every instance will be replaced. 1261 Value *OperandValToReplace = nullptr; 1262 1263 /// If this user is to use the post-incremented value of an induction 1264 /// variable, this set is non-empty and holds the loops associated with the 1265 /// induction variable. 1266 PostIncLoopSet PostIncLoops; 1267 1268 /// A constant offset to be added to the LSRUse expression. This allows 1269 /// multiple fixups to share the same LSRUse with different offsets, for 1270 /// example in an unrolled loop. 1271 Immediate Offset = Immediate::getZero(); 1272 1273 LSRFixup() = default; 1274 1275 bool isUseFullyOutsideLoop(const Loop *L) const; 1276 1277 void print(raw_ostream &OS) const; 1278 void dump() const; 1279 }; 1280 1281 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1282 /// SmallVectors of const SCEV*. 1283 struct UniquifierDenseMapInfo { 1284 static SmallVector<const SCEV *, 4> getEmptyKey() { 1285 SmallVector<const SCEV *, 4> V; 1286 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1287 return V; 1288 } 1289 1290 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1291 SmallVector<const SCEV *, 4> V; 1292 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1293 return V; 1294 } 1295 1296 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1297 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1298 } 1299 1300 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1301 const SmallVector<const SCEV *, 4> &RHS) { 1302 return LHS == RHS; 1303 } 1304 }; 1305 1306 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1307 /// as uses invented by LSR itself. It includes information about what kinds of 1308 /// things can be folded into the user, information about the user itself, and 1309 /// information about how the use may be satisfied. TODO: Represent multiple 1310 /// users of the same expression in common? 1311 class LSRUse { 1312 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1313 1314 public: 1315 /// An enum for a kind of use, indicating what types of scaled and immediate 1316 /// operands it might support. 1317 enum KindType { 1318 Basic, ///< A normal use, with no folding. 1319 Special, ///< A special case of basic, allowing -1 scales. 1320 Address, ///< An address use; folding according to TargetLowering 1321 ICmpZero ///< An equality icmp with both operands folded into one. 1322 // TODO: Add a generic icmp too? 1323 }; 1324 1325 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1326 1327 KindType Kind; 1328 MemAccessTy AccessTy; 1329 1330 /// The list of operands which are to be replaced. 1331 SmallVector<LSRFixup, 8> Fixups; 1332 1333 /// Keep track of the min and max offsets of the fixups. 1334 Immediate MinOffset = Immediate::getFixedMax(); 1335 Immediate MaxOffset = Immediate::getFixedMin(); 1336 1337 /// This records whether all of the fixups using this LSRUse are outside of 1338 /// the loop, in which case some special-case heuristics may be used. 1339 bool AllFixupsOutsideLoop = true; 1340 1341 /// RigidFormula is set to true to guarantee that this use will be associated 1342 /// with a single formula--the one that initially matched. Some SCEV 1343 /// expressions cannot be expanded. This allows LSR to consider the registers 1344 /// used by those expressions without the need to expand them later after 1345 /// changing the formula. 1346 bool RigidFormula = false; 1347 1348 /// This records the widest use type for any fixup using this 1349 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1350 /// fixup widths to be equivalent, because the narrower one may be relying on 1351 /// the implicit truncation to truncate away bogus bits. 1352 Type *WidestFixupType = nullptr; 1353 1354 /// A list of ways to build a value that can satisfy this user. After the 1355 /// list is populated, one of these is selected heuristically and used to 1356 /// formulate a replacement for OperandValToReplace in UserInst. 1357 SmallVector<Formula, 12> Formulae; 1358 1359 /// The set of register candidates used by all formulae in this LSRUse. 1360 SmallPtrSet<const SCEV *, 4> Regs; 1361 1362 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1363 1364 LSRFixup &getNewFixup() { 1365 Fixups.push_back(LSRFixup()); 1366 return Fixups.back(); 1367 } 1368 1369 void pushFixup(LSRFixup &f) { 1370 Fixups.push_back(f); 1371 if (Immediate::isKnownGT(f.Offset, MaxOffset)) 1372 MaxOffset = f.Offset; 1373 if (Immediate::isKnownLT(f.Offset, MinOffset)) 1374 MinOffset = f.Offset; 1375 } 1376 1377 bool HasFormulaWithSameRegs(const Formula &F) const; 1378 float getNotSelectedProbability(const SCEV *Reg) const; 1379 bool InsertFormula(const Formula &F, const Loop &L); 1380 void DeleteFormula(Formula &F); 1381 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1382 1383 void print(raw_ostream &OS) const; 1384 void dump() const; 1385 }; 1386 1387 } // end anonymous namespace 1388 1389 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1390 LSRUse::KindType Kind, MemAccessTy AccessTy, 1391 GlobalValue *BaseGV, Immediate BaseOffset, 1392 bool HasBaseReg, int64_t Scale, 1393 Instruction *Fixup = nullptr); 1394 1395 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1396 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1397 return 1; 1398 if (Depth == 0) 1399 return 0; 1400 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1401 return getSetupCost(S->getStart(), Depth - 1); 1402 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1403 return getSetupCost(S->getOperand(), Depth - 1); 1404 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1405 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1406 [&](unsigned i, const SCEV *Reg) { 1407 return i + getSetupCost(Reg, Depth - 1); 1408 }); 1409 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1410 return getSetupCost(S->getLHS(), Depth - 1) + 1411 getSetupCost(S->getRHS(), Depth - 1); 1412 return 0; 1413 } 1414 1415 /// Tally up interesting quantities from the given register. 1416 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1417 SmallPtrSetImpl<const SCEV *> &Regs) { 1418 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1419 // If this is an addrec for another loop, it should be an invariant 1420 // with respect to L since L is the innermost loop (at least 1421 // for now LSR only handles innermost loops). 1422 if (AR->getLoop() != L) { 1423 // If the AddRec exists, consider it's register free and leave it alone. 1424 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1425 return; 1426 1427 // It is bad to allow LSR for current loop to add induction variables 1428 // for its sibling loops. 1429 if (!AR->getLoop()->contains(L)) { 1430 Lose(); 1431 return; 1432 } 1433 1434 // Otherwise, it will be an invariant with respect to Loop L. 1435 ++C.NumRegs; 1436 return; 1437 } 1438 1439 unsigned LoopCost = 1; 1440 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1441 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1442 1443 // If the step size matches the base offset, we could use pre-indexed 1444 // addressing. 1445 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) { 1446 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1447 if (Step->getAPInt() == F.BaseOffset.getFixedValue()) 1448 LoopCost = 0; 1449 } else if (AMK == TTI::AMK_PostIndexed) { 1450 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1451 if (isa<SCEVConstant>(LoopStep)) { 1452 const SCEV *LoopStart = AR->getStart(); 1453 if (!isa<SCEVConstant>(LoopStart) && 1454 SE->isLoopInvariant(LoopStart, L)) 1455 LoopCost = 0; 1456 } 1457 } 1458 } 1459 C.AddRecCost += LoopCost; 1460 1461 // Add the step value register, if it needs one. 1462 // TODO: The non-affine case isn't precisely modeled here. 1463 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1464 if (!Regs.count(AR->getOperand(1))) { 1465 RateRegister(F, AR->getOperand(1), Regs); 1466 if (isLoser()) 1467 return; 1468 } 1469 } 1470 } 1471 ++C.NumRegs; 1472 1473 // Rough heuristic; favor registers which don't require extra setup 1474 // instructions in the preheader. 1475 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1476 // Ensure we don't, even with the recusion limit, produce invalid costs. 1477 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1478 1479 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1480 SE->hasComputableLoopEvolution(Reg, L); 1481 } 1482 1483 /// Record this register in the set. If we haven't seen it before, rate 1484 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1485 /// one of those regs an instant loser. 1486 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1487 SmallPtrSetImpl<const SCEV *> &Regs, 1488 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1489 if (LoserRegs && LoserRegs->count(Reg)) { 1490 Lose(); 1491 return; 1492 } 1493 if (Regs.insert(Reg).second) { 1494 RateRegister(F, Reg, Regs); 1495 if (LoserRegs && isLoser()) 1496 LoserRegs->insert(Reg); 1497 } 1498 } 1499 1500 void Cost::RateFormula(const Formula &F, 1501 SmallPtrSetImpl<const SCEV *> &Regs, 1502 const DenseSet<const SCEV *> &VisitedRegs, 1503 const LSRUse &LU, 1504 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1505 if (isLoser()) 1506 return; 1507 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1508 // Tally up the registers. 1509 unsigned PrevAddRecCost = C.AddRecCost; 1510 unsigned PrevNumRegs = C.NumRegs; 1511 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1512 if (const SCEV *ScaledReg = F.ScaledReg) { 1513 if (VisitedRegs.count(ScaledReg)) { 1514 Lose(); 1515 return; 1516 } 1517 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1518 if (isLoser()) 1519 return; 1520 } 1521 for (const SCEV *BaseReg : F.BaseRegs) { 1522 if (VisitedRegs.count(BaseReg)) { 1523 Lose(); 1524 return; 1525 } 1526 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1527 if (isLoser()) 1528 return; 1529 } 1530 1531 // Determine how many (unfolded) adds we'll need inside the loop. 1532 size_t NumBaseParts = F.getNumRegs(); 1533 if (NumBaseParts > 1) 1534 // Do not count the base and a possible second register if the target 1535 // allows to fold 2 registers. 1536 C.NumBaseAdds += 1537 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1538 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); 1539 1540 // Accumulate non-free scaling amounts. 1541 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1542 1543 // Tally up the non-zero immediates. 1544 for (const LSRFixup &Fixup : LU.Fixups) { 1545 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) { 1546 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset); 1547 if (F.BaseGV) 1548 C.ImmCost += 64; // Handle symbolic values conservatively. 1549 // TODO: This should probably be the pointer size. 1550 else if (Offset.isNonZero()) 1551 C.ImmCost += 1552 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); 1553 1554 // Check with target if this offset with this instruction is 1555 // specifically not supported. 1556 if (LU.Kind == LSRUse::Address && Offset.isNonZero() && 1557 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1558 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1559 C.NumBaseAdds++; 1560 } else { 1561 // Incompatible immediate type, increase cost to avoid using 1562 C.ImmCost += 2048; 1563 } 1564 } 1565 1566 // If we don't count instruction cost exit here. 1567 if (!InsnsCost) { 1568 assert(isValid() && "invalid cost"); 1569 return; 1570 } 1571 1572 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1573 // additional instruction (at least fill). 1574 // TODO: Need distinguish register class? 1575 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1576 TTI->getRegisterClassForType(false, F.getType())) - 1; 1577 if (C.NumRegs > TTIRegNum) { 1578 // Cost already exceeded TTIRegNum, then only newly added register can add 1579 // new instructions. 1580 if (PrevNumRegs > TTIRegNum) 1581 C.Insns += (C.NumRegs - PrevNumRegs); 1582 else 1583 C.Insns += (C.NumRegs - TTIRegNum); 1584 } 1585 1586 // If ICmpZero formula ends with not 0, it could not be replaced by 1587 // just add or sub. We'll need to compare final result of AddRec. 1588 // That means we'll need an additional instruction. But if the target can 1589 // macro-fuse a compare with a branch, don't count this extra instruction. 1590 // For -10 + {0, +, 1}: 1591 // i = i + 1; 1592 // cmp i, 10 1593 // 1594 // For {-10, +, 1}: 1595 // i = i + 1; 1596 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1597 !TTI->canMacroFuseCmp()) 1598 C.Insns++; 1599 // Each new AddRec adds 1 instruction to calculation. 1600 C.Insns += (C.AddRecCost - PrevAddRecCost); 1601 1602 // BaseAdds adds instructions for unfolded registers. 1603 if (LU.Kind != LSRUse::ICmpZero) 1604 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1605 assert(isValid() && "invalid cost"); 1606 } 1607 1608 /// Set this cost to a losing value. 1609 void Cost::Lose() { 1610 C.Insns = std::numeric_limits<unsigned>::max(); 1611 C.NumRegs = std::numeric_limits<unsigned>::max(); 1612 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1613 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1614 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1615 C.ImmCost = std::numeric_limits<unsigned>::max(); 1616 C.SetupCost = std::numeric_limits<unsigned>::max(); 1617 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1618 } 1619 1620 /// Choose the lower cost. 1621 bool Cost::isLess(const Cost &Other) const { 1622 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1623 C.Insns != Other.C.Insns) 1624 return C.Insns < Other.C.Insns; 1625 return TTI->isLSRCostLess(C, Other.C); 1626 } 1627 1628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1629 void Cost::print(raw_ostream &OS) const { 1630 if (InsnsCost) 1631 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1632 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1633 if (C.AddRecCost != 0) 1634 OS << ", with addrec cost " << C.AddRecCost; 1635 if (C.NumIVMuls != 0) 1636 OS << ", plus " << C.NumIVMuls << " IV mul" 1637 << (C.NumIVMuls == 1 ? "" : "s"); 1638 if (C.NumBaseAdds != 0) 1639 OS << ", plus " << C.NumBaseAdds << " base add" 1640 << (C.NumBaseAdds == 1 ? "" : "s"); 1641 if (C.ScaleCost != 0) 1642 OS << ", plus " << C.ScaleCost << " scale cost"; 1643 if (C.ImmCost != 0) 1644 OS << ", plus " << C.ImmCost << " imm cost"; 1645 if (C.SetupCost != 0) 1646 OS << ", plus " << C.SetupCost << " setup cost"; 1647 } 1648 1649 LLVM_DUMP_METHOD void Cost::dump() const { 1650 print(errs()); errs() << '\n'; 1651 } 1652 #endif 1653 1654 /// Test whether this fixup always uses its value outside of the given loop. 1655 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1656 // PHI nodes use their value in their incoming blocks. 1657 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1658 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1659 if (PN->getIncomingValue(i) == OperandValToReplace && 1660 L->contains(PN->getIncomingBlock(i))) 1661 return false; 1662 return true; 1663 } 1664 1665 return !L->contains(UserInst); 1666 } 1667 1668 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1669 void LSRFixup::print(raw_ostream &OS) const { 1670 OS << "UserInst="; 1671 // Store is common and interesting enough to be worth special-casing. 1672 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1673 OS << "store "; 1674 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1675 } else if (UserInst->getType()->isVoidTy()) 1676 OS << UserInst->getOpcodeName(); 1677 else 1678 UserInst->printAsOperand(OS, /*PrintType=*/false); 1679 1680 OS << ", OperandValToReplace="; 1681 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1682 1683 for (const Loop *PIL : PostIncLoops) { 1684 OS << ", PostIncLoop="; 1685 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1686 } 1687 1688 if (Offset.isNonZero()) 1689 OS << ", Offset=" << Offset; 1690 } 1691 1692 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1693 print(errs()); errs() << '\n'; 1694 } 1695 #endif 1696 1697 /// Test whether this use as a formula which has the same registers as the given 1698 /// formula. 1699 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1700 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1701 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1702 // Unstable sort by host order ok, because this is only used for uniquifying. 1703 llvm::sort(Key); 1704 return Uniquifier.count(Key); 1705 } 1706 1707 /// The function returns a probability of selecting formula without Reg. 1708 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1709 unsigned FNum = 0; 1710 for (const Formula &F : Formulae) 1711 if (F.referencesReg(Reg)) 1712 FNum++; 1713 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1714 } 1715 1716 /// If the given formula has not yet been inserted, add it to the list, and 1717 /// return true. Return false otherwise. The formula must be in canonical form. 1718 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1719 assert(F.isCanonical(L) && "Invalid canonical representation"); 1720 1721 if (!Formulae.empty() && RigidFormula) 1722 return false; 1723 1724 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1725 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1726 // Unstable sort by host order ok, because this is only used for uniquifying. 1727 llvm::sort(Key); 1728 1729 if (!Uniquifier.insert(Key).second) 1730 return false; 1731 1732 // Using a register to hold the value of 0 is not profitable. 1733 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1734 "Zero allocated in a scaled register!"); 1735 #ifndef NDEBUG 1736 for (const SCEV *BaseReg : F.BaseRegs) 1737 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1738 #endif 1739 1740 // Add the formula to the list. 1741 Formulae.push_back(F); 1742 1743 // Record registers now being used by this use. 1744 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1745 if (F.ScaledReg) 1746 Regs.insert(F.ScaledReg); 1747 1748 return true; 1749 } 1750 1751 /// Remove the given formula from this use's list. 1752 void LSRUse::DeleteFormula(Formula &F) { 1753 if (&F != &Formulae.back()) 1754 std::swap(F, Formulae.back()); 1755 Formulae.pop_back(); 1756 } 1757 1758 /// Recompute the Regs field, and update RegUses. 1759 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1760 // Now that we've filtered out some formulae, recompute the Regs set. 1761 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1762 Regs.clear(); 1763 for (const Formula &F : Formulae) { 1764 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1765 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1766 } 1767 1768 // Update the RegTracker. 1769 for (const SCEV *S : OldRegs) 1770 if (!Regs.count(S)) 1771 RegUses.dropRegister(S, LUIdx); 1772 } 1773 1774 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1775 void LSRUse::print(raw_ostream &OS) const { 1776 OS << "LSR Use: Kind="; 1777 switch (Kind) { 1778 case Basic: OS << "Basic"; break; 1779 case Special: OS << "Special"; break; 1780 case ICmpZero: OS << "ICmpZero"; break; 1781 case Address: 1782 OS << "Address of "; 1783 if (AccessTy.MemTy->isPointerTy()) 1784 OS << "pointer"; // the full pointer type could be really verbose 1785 else { 1786 OS << *AccessTy.MemTy; 1787 } 1788 1789 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1790 } 1791 1792 OS << ", Offsets={"; 1793 bool NeedComma = false; 1794 for (const LSRFixup &Fixup : Fixups) { 1795 if (NeedComma) OS << ','; 1796 OS << Fixup.Offset; 1797 NeedComma = true; 1798 } 1799 OS << '}'; 1800 1801 if (AllFixupsOutsideLoop) 1802 OS << ", all-fixups-outside-loop"; 1803 1804 if (WidestFixupType) 1805 OS << ", widest fixup type: " << *WidestFixupType; 1806 } 1807 1808 LLVM_DUMP_METHOD void LSRUse::dump() const { 1809 print(errs()); errs() << '\n'; 1810 } 1811 #endif 1812 1813 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1814 LSRUse::KindType Kind, MemAccessTy AccessTy, 1815 GlobalValue *BaseGV, Immediate BaseOffset, 1816 bool HasBaseReg, int64_t Scale, 1817 Instruction *Fixup /* = nullptr */) { 1818 switch (Kind) { 1819 case LSRUse::Address: { 1820 int64_t FixedOffset = 1821 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); 1822 int64_t ScalableOffset = 1823 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; 1824 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset, 1825 HasBaseReg, Scale, AccessTy.AddrSpace, 1826 Fixup, ScalableOffset); 1827 } 1828 case LSRUse::ICmpZero: 1829 // There's not even a target hook for querying whether it would be legal to 1830 // fold a GV into an ICmp. 1831 if (BaseGV) 1832 return false; 1833 1834 // ICmp only has two operands; don't allow more than two non-trivial parts. 1835 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) 1836 return false; 1837 1838 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1839 // putting the scaled register in the other operand of the icmp. 1840 if (Scale != 0 && Scale != -1) 1841 return false; 1842 1843 // If we have low-level target information, ask the target if it can fold an 1844 // integer immediate on an icmp. 1845 if (BaseOffset.isNonZero()) { 1846 // We don't have an interface to query whether the target supports 1847 // icmpzero against scalable quantities yet. 1848 if (BaseOffset.isScalable()) 1849 return false; 1850 1851 // We have one of: 1852 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1853 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1854 // Offs is the ICmp immediate. 1855 if (Scale == 0) 1856 // The cast does the right thing with 1857 // std::numeric_limits<int64_t>::min(). 1858 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue()); 1859 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue()); 1860 } 1861 1862 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1863 return true; 1864 1865 case LSRUse::Basic: 1866 // Only handle single-register values. 1867 return !BaseGV && Scale == 0 && BaseOffset.isZero(); 1868 1869 case LSRUse::Special: 1870 // Special case Basic to handle -1 scales. 1871 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); 1872 } 1873 1874 llvm_unreachable("Invalid LSRUse Kind!"); 1875 } 1876 1877 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1878 Immediate MinOffset, Immediate MaxOffset, 1879 LSRUse::KindType Kind, MemAccessTy AccessTy, 1880 GlobalValue *BaseGV, Immediate BaseOffset, 1881 bool HasBaseReg, int64_t Scale) { 1882 if (BaseOffset.isNonZero() && 1883 (BaseOffset.isScalable() != MinOffset.isScalable() || 1884 BaseOffset.isScalable() != MaxOffset.isScalable())) 1885 return false; 1886 // Check for overflow. 1887 int64_t Base = BaseOffset.getKnownMinValue(); 1888 int64_t Min = MinOffset.getKnownMinValue(); 1889 int64_t Max = MaxOffset.getKnownMinValue(); 1890 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) 1891 return false; 1892 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable()); 1893 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) 1894 return false; 1895 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable()); 1896 1897 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1898 HasBaseReg, Scale) && 1899 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1900 HasBaseReg, Scale); 1901 } 1902 1903 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1904 Immediate MinOffset, Immediate MaxOffset, 1905 LSRUse::KindType Kind, MemAccessTy AccessTy, 1906 const Formula &F, const Loop &L) { 1907 // For the purpose of isAMCompletelyFolded either having a canonical formula 1908 // or a scale not equal to zero is correct. 1909 // Problems may arise from non canonical formulae having a scale == 0. 1910 // Strictly speaking it would best to just rely on canonical formulae. 1911 // However, when we generate the scaled formulae, we first check that the 1912 // scaling factor is profitable before computing the actual ScaledReg for 1913 // compile time sake. 1914 assert((F.isCanonical(L) || F.Scale != 0)); 1915 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1916 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1917 } 1918 1919 /// Test whether we know how to expand the current formula. 1920 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1921 Immediate MaxOffset, LSRUse::KindType Kind, 1922 MemAccessTy AccessTy, GlobalValue *BaseGV, 1923 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { 1924 // We know how to expand completely foldable formulae. 1925 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1926 BaseOffset, HasBaseReg, Scale) || 1927 // Or formulae that use a base register produced by a sum of base 1928 // registers. 1929 (Scale == 1 && 1930 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1931 BaseGV, BaseOffset, true, 0)); 1932 } 1933 1934 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1935 Immediate MaxOffset, LSRUse::KindType Kind, 1936 MemAccessTy AccessTy, const Formula &F) { 1937 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1938 F.BaseOffset, F.HasBaseReg, F.Scale); 1939 } 1940 1941 static bool isLegalAddImmediate(const TargetTransformInfo &TTI, 1942 Immediate Offset) { 1943 if (Offset.isScalable()) 1944 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue()); 1945 1946 return TTI.isLegalAddImmediate(Offset.getFixedValue()); 1947 } 1948 1949 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1950 const LSRUse &LU, const Formula &F) { 1951 // Target may want to look at the user instructions. 1952 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1953 for (const LSRFixup &Fixup : LU.Fixups) 1954 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1955 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1956 F.Scale, Fixup.UserInst)) 1957 return false; 1958 return true; 1959 } 1960 1961 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1962 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1963 F.Scale); 1964 } 1965 1966 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1967 const LSRUse &LU, const Formula &F, 1968 const Loop &L) { 1969 if (!F.Scale) 1970 return 0; 1971 1972 // If the use is not completely folded in that instruction, we will have to 1973 // pay an extra cost only for scale != 1. 1974 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1975 LU.AccessTy, F, L)) 1976 return F.Scale != 1; 1977 1978 switch (LU.Kind) { 1979 case LSRUse::Address: { 1980 // Check the scaling factor cost with both the min and max offsets. 1981 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; 1982 if (F.BaseOffset.isScalable()) { 1983 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); 1984 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); 1985 } else { 1986 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); 1987 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); 1988 } 1989 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1990 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin), 1991 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1992 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1993 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax), 1994 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1995 1996 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1997 "Legal addressing mode has an illegal cost!"); 1998 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1999 } 2000 case LSRUse::ICmpZero: 2001 case LSRUse::Basic: 2002 case LSRUse::Special: 2003 // The use is completely folded, i.e., everything is folded into the 2004 // instruction. 2005 return 0; 2006 } 2007 2008 llvm_unreachable("Invalid LSRUse Kind!"); 2009 } 2010 2011 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2012 LSRUse::KindType Kind, MemAccessTy AccessTy, 2013 GlobalValue *BaseGV, Immediate BaseOffset, 2014 bool HasBaseReg) { 2015 // Fast-path: zero is always foldable. 2016 if (BaseOffset.isZero() && !BaseGV) 2017 return true; 2018 2019 // Conservatively, create an address with an immediate and a 2020 // base and a scale. 2021 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2022 2023 // Canonicalize a scale of 1 to a base register if the formula doesn't 2024 // already have a base register. 2025 if (!HasBaseReg && Scale == 1) { 2026 Scale = 0; 2027 HasBaseReg = true; 2028 } 2029 2030 // FIXME: Try with + without a scale? Maybe based on TTI? 2031 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' 2032 // default for many architectures, not just AArch64 SVE. More investigation 2033 // needed later to determine if this should be used more widely than just 2034 // on scalable types. 2035 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && 2036 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) 2037 Scale = 0; 2038 2039 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 2040 HasBaseReg, Scale); 2041 } 2042 2043 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2044 ScalarEvolution &SE, Immediate MinOffset, 2045 Immediate MaxOffset, LSRUse::KindType Kind, 2046 MemAccessTy AccessTy, const SCEV *S, 2047 bool HasBaseReg) { 2048 // Fast-path: zero is always foldable. 2049 if (S->isZero()) return true; 2050 2051 // Conservatively, create an address with an immediate and a 2052 // base and a scale. 2053 Immediate BaseOffset = ExtractImmediate(S, SE); 2054 GlobalValue *BaseGV = ExtractSymbol(S, SE); 2055 2056 // If there's anything else involved, it's not foldable. 2057 if (!S->isZero()) return false; 2058 2059 // Fast-path: zero is always foldable. 2060 if (BaseOffset.isZero() && !BaseGV) 2061 return true; 2062 2063 if (BaseOffset.isScalable()) 2064 return false; 2065 2066 // Conservatively, create an address with an immediate and a 2067 // base and a scale. 2068 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2069 2070 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 2071 BaseOffset, HasBaseReg, Scale); 2072 } 2073 2074 namespace { 2075 2076 /// An individual increment in a Chain of IV increments. Relate an IV user to 2077 /// an expression that computes the IV it uses from the IV used by the previous 2078 /// link in the Chain. 2079 /// 2080 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 2081 /// original IVOperand. The head of the chain's IVOperand is only valid during 2082 /// chain collection, before LSR replaces IV users. During chain generation, 2083 /// IncExpr can be used to find the new IVOperand that computes the same 2084 /// expression. 2085 struct IVInc { 2086 Instruction *UserInst; 2087 Value* IVOperand; 2088 const SCEV *IncExpr; 2089 2090 IVInc(Instruction *U, Value *O, const SCEV *E) 2091 : UserInst(U), IVOperand(O), IncExpr(E) {} 2092 }; 2093 2094 // The list of IV increments in program order. We typically add the head of a 2095 // chain without finding subsequent links. 2096 struct IVChain { 2097 SmallVector<IVInc, 1> Incs; 2098 const SCEV *ExprBase = nullptr; 2099 2100 IVChain() = default; 2101 IVChain(const IVInc &Head, const SCEV *Base) 2102 : Incs(1, Head), ExprBase(Base) {} 2103 2104 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 2105 2106 // Return the first increment in the chain. 2107 const_iterator begin() const { 2108 assert(!Incs.empty()); 2109 return std::next(Incs.begin()); 2110 } 2111 const_iterator end() const { 2112 return Incs.end(); 2113 } 2114 2115 // Returns true if this chain contains any increments. 2116 bool hasIncs() const { return Incs.size() >= 2; } 2117 2118 // Add an IVInc to the end of this chain. 2119 void add(const IVInc &X) { Incs.push_back(X); } 2120 2121 // Returns the last UserInst in the chain. 2122 Instruction *tailUserInst() const { return Incs.back().UserInst; } 2123 2124 // Returns true if IncExpr can be profitably added to this chain. 2125 bool isProfitableIncrement(const SCEV *OperExpr, 2126 const SCEV *IncExpr, 2127 ScalarEvolution&); 2128 }; 2129 2130 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 2131 /// between FarUsers that definitely cross IV increments and NearUsers that may 2132 /// be used between IV increments. 2133 struct ChainUsers { 2134 SmallPtrSet<Instruction*, 4> FarUsers; 2135 SmallPtrSet<Instruction*, 4> NearUsers; 2136 }; 2137 2138 /// This class holds state for the main loop strength reduction logic. 2139 class LSRInstance { 2140 IVUsers &IU; 2141 ScalarEvolution &SE; 2142 DominatorTree &DT; 2143 LoopInfo &LI; 2144 AssumptionCache &AC; 2145 TargetLibraryInfo &TLI; 2146 const TargetTransformInfo &TTI; 2147 Loop *const L; 2148 MemorySSAUpdater *MSSAU; 2149 TTI::AddressingModeKind AMK; 2150 mutable SCEVExpander Rewriter; 2151 bool Changed = false; 2152 2153 /// This is the insert position that the current loop's induction variable 2154 /// increment should be placed. In simple loops, this is the latch block's 2155 /// terminator. But in more complicated cases, this is a position which will 2156 /// dominate all the in-loop post-increment users. 2157 Instruction *IVIncInsertPos = nullptr; 2158 2159 /// Interesting factors between use strides. 2160 /// 2161 /// We explicitly use a SetVector which contains a SmallSet, instead of the 2162 /// default, a SmallDenseSet, because we need to use the full range of 2163 /// int64_ts, and there's currently no good way of doing that with 2164 /// SmallDenseSet. 2165 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 2166 2167 /// The cost of the current SCEV, the best solution by LSR will be dropped if 2168 /// the solution is not profitable. 2169 Cost BaselineCost; 2170 2171 /// Interesting use types, to facilitate truncation reuse. 2172 SmallSetVector<Type *, 4> Types; 2173 2174 /// The list of interesting uses. 2175 mutable SmallVector<LSRUse, 16> Uses; 2176 2177 /// Track which uses use which register candidates. 2178 RegUseTracker RegUses; 2179 2180 // Limit the number of chains to avoid quadratic behavior. We don't expect to 2181 // have more than a few IV increment chains in a loop. Missing a Chain falls 2182 // back to normal LSR behavior for those uses. 2183 static const unsigned MaxChains = 8; 2184 2185 /// IV users can form a chain of IV increments. 2186 SmallVector<IVChain, MaxChains> IVChainVec; 2187 2188 /// IV users that belong to profitable IVChains. 2189 SmallPtrSet<Use*, MaxChains> IVIncSet; 2190 2191 /// Induction variables that were generated and inserted by the SCEV Expander. 2192 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2193 2194 void OptimizeShadowIV(); 2195 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2196 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2197 void OptimizeLoopTermCond(); 2198 2199 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2200 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2201 void FinalizeChain(IVChain &Chain); 2202 void CollectChains(); 2203 void GenerateIVChain(const IVChain &Chain, 2204 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2205 2206 void CollectInterestingTypesAndFactors(); 2207 void CollectFixupsAndInitialFormulae(); 2208 2209 // Support for sharing of LSRUses between LSRFixups. 2210 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2211 UseMapTy UseMap; 2212 2213 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, 2214 LSRUse::KindType Kind, MemAccessTy AccessTy); 2215 2216 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2217 MemAccessTy AccessTy); 2218 2219 void DeleteUse(LSRUse &LU, size_t LUIdx); 2220 2221 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2222 2223 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2224 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2225 void CountRegisters(const Formula &F, size_t LUIdx); 2226 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2227 2228 void CollectLoopInvariantFixupsAndFormulae(); 2229 2230 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2231 unsigned Depth = 0); 2232 2233 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2234 const Formula &Base, unsigned Depth, 2235 size_t Idx, bool IsScaledReg = false); 2236 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2237 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2238 const Formula &Base, size_t Idx, 2239 bool IsScaledReg = false); 2240 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2241 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2242 const Formula &Base, 2243 const SmallVectorImpl<Immediate> &Worklist, 2244 size_t Idx, bool IsScaledReg = false); 2245 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2246 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2247 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2248 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2249 void GenerateCrossUseConstantOffsets(); 2250 void GenerateAllReuseFormulae(); 2251 2252 void FilterOutUndesirableDedicatedRegisters(); 2253 2254 size_t EstimateSearchSpaceComplexity() const; 2255 void NarrowSearchSpaceByDetectingSupersets(); 2256 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2257 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2258 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2259 void NarrowSearchSpaceByFilterPostInc(); 2260 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2261 void NarrowSearchSpaceByPickingWinnerRegs(); 2262 void NarrowSearchSpaceUsingHeuristics(); 2263 2264 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2265 Cost &SolutionCost, 2266 SmallVectorImpl<const Formula *> &Workspace, 2267 const Cost &CurCost, 2268 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2269 DenseSet<const SCEV *> &VisitedRegs) const; 2270 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2271 2272 BasicBlock::iterator 2273 HoistInsertPosition(BasicBlock::iterator IP, 2274 const SmallVectorImpl<Instruction *> &Inputs) const; 2275 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2276 const LSRFixup &LF, 2277 const LSRUse &LU) const; 2278 2279 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2280 BasicBlock::iterator IP, 2281 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2282 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2283 const Formula &F, 2284 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2285 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2286 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2287 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2288 2289 public: 2290 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2291 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2292 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2293 2294 bool getChanged() const { return Changed; } 2295 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2296 return ScalarEvolutionIVs; 2297 } 2298 2299 void print_factors_and_types(raw_ostream &OS) const; 2300 void print_fixups(raw_ostream &OS) const; 2301 void print_uses(raw_ostream &OS) const; 2302 void print(raw_ostream &OS) const; 2303 void dump() const; 2304 }; 2305 2306 } // end anonymous namespace 2307 2308 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2309 /// the cast operation. 2310 void LSRInstance::OptimizeShadowIV() { 2311 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2312 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2313 return; 2314 2315 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2316 UI != E; /* empty */) { 2317 IVUsers::const_iterator CandidateUI = UI; 2318 ++UI; 2319 Instruction *ShadowUse = CandidateUI->getUser(); 2320 Type *DestTy = nullptr; 2321 bool IsSigned = false; 2322 2323 /* If shadow use is a int->float cast then insert a second IV 2324 to eliminate this cast. 2325 2326 for (unsigned i = 0; i < n; ++i) 2327 foo((double)i); 2328 2329 is transformed into 2330 2331 double d = 0.0; 2332 for (unsigned i = 0; i < n; ++i, ++d) 2333 foo(d); 2334 */ 2335 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2336 IsSigned = false; 2337 DestTy = UCast->getDestTy(); 2338 } 2339 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2340 IsSigned = true; 2341 DestTy = SCast->getDestTy(); 2342 } 2343 if (!DestTy) continue; 2344 2345 // If target does not support DestTy natively then do not apply 2346 // this transformation. 2347 if (!TTI.isTypeLegal(DestTy)) continue; 2348 2349 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2350 if (!PH) continue; 2351 if (PH->getNumIncomingValues() != 2) continue; 2352 2353 // If the calculation in integers overflows, the result in FP type will 2354 // differ. So we only can do this transformation if we are guaranteed to not 2355 // deal with overflowing values 2356 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2357 if (!AR) continue; 2358 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2359 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2360 2361 Type *SrcTy = PH->getType(); 2362 int Mantissa = DestTy->getFPMantissaWidth(); 2363 if (Mantissa == -1) continue; 2364 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2365 continue; 2366 2367 unsigned Entry, Latch; 2368 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2369 Entry = 0; 2370 Latch = 1; 2371 } else { 2372 Entry = 1; 2373 Latch = 0; 2374 } 2375 2376 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2377 if (!Init) continue; 2378 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2379 (double)Init->getSExtValue() : 2380 (double)Init->getZExtValue()); 2381 2382 BinaryOperator *Incr = 2383 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2384 if (!Incr) continue; 2385 if (Incr->getOpcode() != Instruction::Add 2386 && Incr->getOpcode() != Instruction::Sub) 2387 continue; 2388 2389 /* Initialize new IV, double d = 0.0 in above example. */ 2390 ConstantInt *C = nullptr; 2391 if (Incr->getOperand(0) == PH) 2392 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2393 else if (Incr->getOperand(1) == PH) 2394 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2395 else 2396 continue; 2397 2398 if (!C) continue; 2399 2400 // Ignore negative constants, as the code below doesn't handle them 2401 // correctly. TODO: Remove this restriction. 2402 if (!C->getValue().isStrictlyPositive()) 2403 continue; 2404 2405 /* Add new PHINode. */ 2406 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator()); 2407 2408 /* create new increment. '++d' in above example. */ 2409 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2410 BinaryOperator *NewIncr = BinaryOperator::Create( 2411 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd 2412 : Instruction::FSub, 2413 NewPH, CFP, "IV.S.next.", Incr->getIterator()); 2414 2415 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2416 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2417 2418 /* Remove cast operation */ 2419 ShadowUse->replaceAllUsesWith(NewPH); 2420 ShadowUse->eraseFromParent(); 2421 Changed = true; 2422 break; 2423 } 2424 } 2425 2426 /// If Cond has an operand that is an expression of an IV, set the IV user and 2427 /// stride information and return true, otherwise return false. 2428 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2429 for (IVStrideUse &U : IU) 2430 if (U.getUser() == Cond) { 2431 // NOTE: we could handle setcc instructions with multiple uses here, but 2432 // InstCombine does it as well for simple uses, it's not clear that it 2433 // occurs enough in real life to handle. 2434 CondUse = &U; 2435 return true; 2436 } 2437 return false; 2438 } 2439 2440 /// Rewrite the loop's terminating condition if it uses a max computation. 2441 /// 2442 /// This is a narrow solution to a specific, but acute, problem. For loops 2443 /// like this: 2444 /// 2445 /// i = 0; 2446 /// do { 2447 /// p[i] = 0.0; 2448 /// } while (++i < n); 2449 /// 2450 /// the trip count isn't just 'n', because 'n' might not be positive. And 2451 /// unfortunately this can come up even for loops where the user didn't use 2452 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2453 /// will commonly be lowered like this: 2454 /// 2455 /// if (n > 0) { 2456 /// i = 0; 2457 /// do { 2458 /// p[i] = 0.0; 2459 /// } while (++i < n); 2460 /// } 2461 /// 2462 /// and then it's possible for subsequent optimization to obscure the if 2463 /// test in such a way that indvars can't find it. 2464 /// 2465 /// When indvars can't find the if test in loops like this, it creates a 2466 /// max expression, which allows it to give the loop a canonical 2467 /// induction variable: 2468 /// 2469 /// i = 0; 2470 /// max = n < 1 ? 1 : n; 2471 /// do { 2472 /// p[i] = 0.0; 2473 /// } while (++i != max); 2474 /// 2475 /// Canonical induction variables are necessary because the loop passes 2476 /// are designed around them. The most obvious example of this is the 2477 /// LoopInfo analysis, which doesn't remember trip count values. It 2478 /// expects to be able to rediscover the trip count each time it is 2479 /// needed, and it does this using a simple analysis that only succeeds if 2480 /// the loop has a canonical induction variable. 2481 /// 2482 /// However, when it comes time to generate code, the maximum operation 2483 /// can be quite costly, especially if it's inside of an outer loop. 2484 /// 2485 /// This function solves this problem by detecting this type of loop and 2486 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2487 /// the instructions for the maximum computation. 2488 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2489 // Check that the loop matches the pattern we're looking for. 2490 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2491 Cond->getPredicate() != CmpInst::ICMP_NE) 2492 return Cond; 2493 2494 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2495 if (!Sel || !Sel->hasOneUse()) return Cond; 2496 2497 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2498 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2499 return Cond; 2500 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2501 2502 // Add one to the backedge-taken count to get the trip count. 2503 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2504 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2505 2506 // Check for a max calculation that matches the pattern. There's no check 2507 // for ICMP_ULE here because the comparison would be with zero, which 2508 // isn't interesting. 2509 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2510 const SCEVNAryExpr *Max = nullptr; 2511 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2512 Pred = ICmpInst::ICMP_SLE; 2513 Max = S; 2514 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2515 Pred = ICmpInst::ICMP_SLT; 2516 Max = S; 2517 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2518 Pred = ICmpInst::ICMP_ULT; 2519 Max = U; 2520 } else { 2521 // No match; bail. 2522 return Cond; 2523 } 2524 2525 // To handle a max with more than two operands, this optimization would 2526 // require additional checking and setup. 2527 if (Max->getNumOperands() != 2) 2528 return Cond; 2529 2530 const SCEV *MaxLHS = Max->getOperand(0); 2531 const SCEV *MaxRHS = Max->getOperand(1); 2532 2533 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2534 // for a comparison with 1. For <= and >=, a comparison with zero. 2535 if (!MaxLHS || 2536 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2537 return Cond; 2538 2539 // Check the relevant induction variable for conformance to 2540 // the pattern. 2541 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2542 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2543 if (!AR || !AR->isAffine() || 2544 AR->getStart() != One || 2545 AR->getStepRecurrence(SE) != One) 2546 return Cond; 2547 2548 assert(AR->getLoop() == L && 2549 "Loop condition operand is an addrec in a different loop!"); 2550 2551 // Check the right operand of the select, and remember it, as it will 2552 // be used in the new comparison instruction. 2553 Value *NewRHS = nullptr; 2554 if (ICmpInst::isTrueWhenEqual(Pred)) { 2555 // Look for n+1, and grab n. 2556 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2557 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2558 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2559 NewRHS = BO->getOperand(0); 2560 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2561 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2562 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2563 NewRHS = BO->getOperand(0); 2564 if (!NewRHS) 2565 return Cond; 2566 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2567 NewRHS = Sel->getOperand(1); 2568 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2569 NewRHS = Sel->getOperand(2); 2570 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2571 NewRHS = SU->getValue(); 2572 else 2573 // Max doesn't match expected pattern. 2574 return Cond; 2575 2576 // Determine the new comparison opcode. It may be signed or unsigned, 2577 // and the original comparison may be either equality or inequality. 2578 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2579 Pred = CmpInst::getInversePredicate(Pred); 2580 2581 // Ok, everything looks ok to change the condition into an SLT or SGE and 2582 // delete the max calculation. 2583 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, 2584 Cond->getOperand(0), NewRHS, "scmp"); 2585 2586 // Delete the max calculation instructions. 2587 NewCond->setDebugLoc(Cond->getDebugLoc()); 2588 Cond->replaceAllUsesWith(NewCond); 2589 CondUse->setUser(NewCond); 2590 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2591 Cond->eraseFromParent(); 2592 Sel->eraseFromParent(); 2593 if (Cmp->use_empty()) 2594 Cmp->eraseFromParent(); 2595 return NewCond; 2596 } 2597 2598 /// Change loop terminating condition to use the postinc iv when possible. 2599 void 2600 LSRInstance::OptimizeLoopTermCond() { 2601 SmallPtrSet<Instruction *, 4> PostIncs; 2602 2603 // We need a different set of heuristics for rotated and non-rotated loops. 2604 // If a loop is rotated then the latch is also the backedge, so inserting 2605 // post-inc expressions just before the latch is ideal. To reduce live ranges 2606 // it also makes sense to rewrite terminating conditions to use post-inc 2607 // expressions. 2608 // 2609 // If the loop is not rotated then the latch is not a backedge; the latch 2610 // check is done in the loop head. Adding post-inc expressions before the 2611 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2612 // in the loop body. In this case we do *not* want to use post-inc expressions 2613 // in the latch check, and we want to insert post-inc expressions before 2614 // the backedge. 2615 BasicBlock *LatchBlock = L->getLoopLatch(); 2616 SmallVector<BasicBlock*, 8> ExitingBlocks; 2617 L->getExitingBlocks(ExitingBlocks); 2618 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2619 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2620 IVIncInsertPos = LatchBlock->getTerminator(); 2621 return; 2622 } 2623 2624 // Otherwise treat this as a rotated loop. 2625 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2626 // Get the terminating condition for the loop if possible. If we 2627 // can, we want to change it to use a post-incremented version of its 2628 // induction variable, to allow coalescing the live ranges for the IV into 2629 // one register value. 2630 2631 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2632 if (!TermBr) 2633 continue; 2634 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2635 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2636 continue; 2637 2638 // Search IVUsesByStride to find Cond's IVUse if there is one. 2639 IVStrideUse *CondUse = nullptr; 2640 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2641 if (!FindIVUserForCond(Cond, CondUse)) 2642 continue; 2643 2644 // If the trip count is computed in terms of a max (due to ScalarEvolution 2645 // being unable to find a sufficient guard, for example), change the loop 2646 // comparison to use SLT or ULT instead of NE. 2647 // One consequence of doing this now is that it disrupts the count-down 2648 // optimization. That's not always a bad thing though, because in such 2649 // cases it may still be worthwhile to avoid a max. 2650 Cond = OptimizeMax(Cond, CondUse); 2651 2652 // If this exiting block dominates the latch block, it may also use 2653 // the post-inc value if it won't be shared with other uses. 2654 // Check for dominance. 2655 if (!DT.dominates(ExitingBlock, LatchBlock)) 2656 continue; 2657 2658 // Conservatively avoid trying to use the post-inc value in non-latch 2659 // exits if there may be pre-inc users in intervening blocks. 2660 if (LatchBlock != ExitingBlock) 2661 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2662 // Test if the use is reachable from the exiting block. This dominator 2663 // query is a conservative approximation of reachability. 2664 if (&*UI != CondUse && 2665 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2666 // Conservatively assume there may be reuse if the quotient of their 2667 // strides could be a legal scale. 2668 const SCEV *A = IU.getStride(*CondUse, L); 2669 const SCEV *B = IU.getStride(*UI, L); 2670 if (!A || !B) continue; 2671 if (SE.getTypeSizeInBits(A->getType()) != 2672 SE.getTypeSizeInBits(B->getType())) { 2673 if (SE.getTypeSizeInBits(A->getType()) > 2674 SE.getTypeSizeInBits(B->getType())) 2675 B = SE.getSignExtendExpr(B, A->getType()); 2676 else 2677 A = SE.getSignExtendExpr(A, B->getType()); 2678 } 2679 if (const SCEVConstant *D = 2680 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2681 const ConstantInt *C = D->getValue(); 2682 // Stride of one or negative one can have reuse with non-addresses. 2683 if (C->isOne() || C->isMinusOne()) 2684 goto decline_post_inc; 2685 // Avoid weird situations. 2686 if (C->getValue().getSignificantBits() >= 64 || 2687 C->getValue().isMinSignedValue()) 2688 goto decline_post_inc; 2689 // Check for possible scaled-address reuse. 2690 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2691 MemAccessTy AccessTy = getAccessType( 2692 TTI, UI->getUser(), UI->getOperandValToReplace()); 2693 int64_t Scale = C->getSExtValue(); 2694 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2695 /*BaseOffset=*/0, 2696 /*HasBaseReg=*/true, Scale, 2697 AccessTy.AddrSpace)) 2698 goto decline_post_inc; 2699 Scale = -Scale; 2700 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2701 /*BaseOffset=*/0, 2702 /*HasBaseReg=*/true, Scale, 2703 AccessTy.AddrSpace)) 2704 goto decline_post_inc; 2705 } 2706 } 2707 } 2708 2709 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2710 << *Cond << '\n'); 2711 2712 // It's possible for the setcc instruction to be anywhere in the loop, and 2713 // possible for it to have multiple users. If it is not immediately before 2714 // the exiting block branch, move it. 2715 if (Cond->getNextNonDebugInstruction() != TermBr) { 2716 if (Cond->hasOneUse()) { 2717 Cond->moveBefore(TermBr); 2718 } else { 2719 // Clone the terminating condition and insert into the loopend. 2720 ICmpInst *OldCond = Cond; 2721 Cond = cast<ICmpInst>(Cond->clone()); 2722 Cond->setName(L->getHeader()->getName() + ".termcond"); 2723 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2724 2725 // Clone the IVUse, as the old use still exists! 2726 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2727 TermBr->replaceUsesOfWith(OldCond, Cond); 2728 } 2729 } 2730 2731 // If we get to here, we know that we can transform the setcc instruction to 2732 // use the post-incremented version of the IV, allowing us to coalesce the 2733 // live ranges for the IV correctly. 2734 CondUse->transformToPostInc(L); 2735 Changed = true; 2736 2737 PostIncs.insert(Cond); 2738 decline_post_inc:; 2739 } 2740 2741 // Determine an insertion point for the loop induction variable increment. It 2742 // must dominate all the post-inc comparisons we just set up, and it must 2743 // dominate the loop latch edge. 2744 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2745 for (Instruction *Inst : PostIncs) 2746 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2747 } 2748 2749 /// Determine if the given use can accommodate a fixup at the given offset and 2750 /// other details. If so, update the use and return true. 2751 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, 2752 bool HasBaseReg, LSRUse::KindType Kind, 2753 MemAccessTy AccessTy) { 2754 Immediate NewMinOffset = LU.MinOffset; 2755 Immediate NewMaxOffset = LU.MaxOffset; 2756 MemAccessTy NewAccessTy = AccessTy; 2757 2758 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2759 // something conservative, however this can pessimize in the case that one of 2760 // the uses will have all its uses outside the loop, for example. 2761 if (LU.Kind != Kind) 2762 return false; 2763 2764 // Check for a mismatched access type, and fall back conservatively as needed. 2765 // TODO: Be less conservative when the type is similar and can use the same 2766 // addressing modes. 2767 if (Kind == LSRUse::Address) { 2768 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2769 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2770 AccessTy.AddrSpace); 2771 } 2772 } 2773 2774 // Conservatively assume HasBaseReg is true for now. 2775 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) { 2776 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2777 LU.MaxOffset - NewOffset, HasBaseReg)) 2778 return false; 2779 NewMinOffset = NewOffset; 2780 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) { 2781 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2782 NewOffset - LU.MinOffset, HasBaseReg)) 2783 return false; 2784 NewMaxOffset = NewOffset; 2785 } 2786 2787 // FIXME: We should be able to handle some level of scalable offset support 2788 // for 'void', but in order to get basic support up and running this is 2789 // being left out. 2790 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && 2791 (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) 2792 return false; 2793 2794 // Update the use. 2795 LU.MinOffset = NewMinOffset; 2796 LU.MaxOffset = NewMaxOffset; 2797 LU.AccessTy = NewAccessTy; 2798 return true; 2799 } 2800 2801 /// Return an LSRUse index and an offset value for a fixup which needs the given 2802 /// expression, with the given kind and optional access type. Either reuse an 2803 /// existing use or create a new one, as needed. 2804 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, 2805 LSRUse::KindType Kind, 2806 MemAccessTy AccessTy) { 2807 const SCEV *Copy = Expr; 2808 Immediate Offset = ExtractImmediate(Expr, SE); 2809 2810 // Basic uses can't accept any offset, for example. 2811 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2812 Offset, /*HasBaseReg=*/ true)) { 2813 Expr = Copy; 2814 Offset = Immediate::getFixed(0); 2815 } 2816 2817 std::pair<UseMapTy::iterator, bool> P = 2818 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2819 if (!P.second) { 2820 // A use already existed with this base. 2821 size_t LUIdx = P.first->second; 2822 LSRUse &LU = Uses[LUIdx]; 2823 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2824 // Reuse this use. 2825 return std::make_pair(LUIdx, Offset); 2826 } 2827 2828 // Create a new use. 2829 size_t LUIdx = Uses.size(); 2830 P.first->second = LUIdx; 2831 Uses.push_back(LSRUse(Kind, AccessTy)); 2832 LSRUse &LU = Uses[LUIdx]; 2833 2834 LU.MinOffset = Offset; 2835 LU.MaxOffset = Offset; 2836 return std::make_pair(LUIdx, Offset); 2837 } 2838 2839 /// Delete the given use from the Uses list. 2840 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2841 if (&LU != &Uses.back()) 2842 std::swap(LU, Uses.back()); 2843 Uses.pop_back(); 2844 2845 // Update RegUses. 2846 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2847 } 2848 2849 /// Look for a use distinct from OrigLU which is has a formula that has the same 2850 /// registers as the given formula. 2851 LSRUse * 2852 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2853 const LSRUse &OrigLU) { 2854 // Search all uses for the formula. This could be more clever. 2855 for (LSRUse &LU : Uses) { 2856 // Check whether this use is close enough to OrigLU, to see whether it's 2857 // worthwhile looking through its formulae. 2858 // Ignore ICmpZero uses because they may contain formulae generated by 2859 // GenerateICmpZeroScales, in which case adding fixup offsets may 2860 // be invalid. 2861 if (&LU != &OrigLU && 2862 LU.Kind != LSRUse::ICmpZero && 2863 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2864 LU.WidestFixupType == OrigLU.WidestFixupType && 2865 LU.HasFormulaWithSameRegs(OrigF)) { 2866 // Scan through this use's formulae. 2867 for (const Formula &F : LU.Formulae) { 2868 // Check to see if this formula has the same registers and symbols 2869 // as OrigF. 2870 if (F.BaseRegs == OrigF.BaseRegs && 2871 F.ScaledReg == OrigF.ScaledReg && 2872 F.BaseGV == OrigF.BaseGV && 2873 F.Scale == OrigF.Scale && 2874 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2875 if (F.BaseOffset.isZero()) 2876 return &LU; 2877 // This is the formula where all the registers and symbols matched; 2878 // there aren't going to be any others. Since we declined it, we 2879 // can skip the rest of the formulae and proceed to the next LSRUse. 2880 break; 2881 } 2882 } 2883 } 2884 } 2885 2886 // Nothing looked good. 2887 return nullptr; 2888 } 2889 2890 void LSRInstance::CollectInterestingTypesAndFactors() { 2891 SmallSetVector<const SCEV *, 4> Strides; 2892 2893 // Collect interesting types and strides. 2894 SmallVector<const SCEV *, 4> Worklist; 2895 for (const IVStrideUse &U : IU) { 2896 const SCEV *Expr = IU.getExpr(U); 2897 if (!Expr) 2898 continue; 2899 2900 // Collect interesting types. 2901 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2902 2903 // Add strides for mentioned loops. 2904 Worklist.push_back(Expr); 2905 do { 2906 const SCEV *S = Worklist.pop_back_val(); 2907 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2908 if (AR->getLoop() == L) 2909 Strides.insert(AR->getStepRecurrence(SE)); 2910 Worklist.push_back(AR->getStart()); 2911 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2912 append_range(Worklist, Add->operands()); 2913 } 2914 } while (!Worklist.empty()); 2915 } 2916 2917 // Compute interesting factors from the set of interesting strides. 2918 for (SmallSetVector<const SCEV *, 4>::const_iterator 2919 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2920 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2921 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2922 const SCEV *OldStride = *I; 2923 const SCEV *NewStride = *NewStrideIter; 2924 2925 if (SE.getTypeSizeInBits(OldStride->getType()) != 2926 SE.getTypeSizeInBits(NewStride->getType())) { 2927 if (SE.getTypeSizeInBits(OldStride->getType()) > 2928 SE.getTypeSizeInBits(NewStride->getType())) 2929 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2930 else 2931 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2932 } 2933 if (const SCEVConstant *Factor = 2934 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2935 SE, true))) { 2936 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2937 Factors.insert(Factor->getAPInt().getSExtValue()); 2938 } else if (const SCEVConstant *Factor = 2939 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2940 NewStride, 2941 SE, true))) { 2942 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2943 Factors.insert(Factor->getAPInt().getSExtValue()); 2944 } 2945 } 2946 2947 // If all uses use the same type, don't bother looking for truncation-based 2948 // reuse. 2949 if (Types.size() == 1) 2950 Types.clear(); 2951 2952 LLVM_DEBUG(print_factors_and_types(dbgs())); 2953 } 2954 2955 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2956 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2957 /// IVStrideUses, we could partially skip this. 2958 static User::op_iterator 2959 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2960 Loop *L, ScalarEvolution &SE) { 2961 for(; OI != OE; ++OI) { 2962 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2963 if (!SE.isSCEVable(Oper->getType())) 2964 continue; 2965 2966 if (const SCEVAddRecExpr *AR = 2967 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2968 if (AR->getLoop() == L) 2969 break; 2970 } 2971 } 2972 } 2973 return OI; 2974 } 2975 2976 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2977 /// a convenient helper. 2978 static Value *getWideOperand(Value *Oper) { 2979 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2980 return Trunc->getOperand(0); 2981 return Oper; 2982 } 2983 2984 /// Return an approximation of this SCEV expression's "base", or NULL for any 2985 /// constant. Returning the expression itself is conservative. Returning a 2986 /// deeper subexpression is more precise and valid as long as it isn't less 2987 /// complex than another subexpression. For expressions involving multiple 2988 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2989 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2990 /// IVInc==b-a. 2991 /// 2992 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2993 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2994 static const SCEV *getExprBase(const SCEV *S) { 2995 switch (S->getSCEVType()) { 2996 default: // including scUnknown. 2997 return S; 2998 case scConstant: 2999 case scVScale: 3000 return nullptr; 3001 case scTruncate: 3002 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 3003 case scZeroExtend: 3004 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 3005 case scSignExtend: 3006 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 3007 case scAddExpr: { 3008 // Skip over scaled operands (scMulExpr) to follow add operands as long as 3009 // there's nothing more complex. 3010 // FIXME: not sure if we want to recognize negation. 3011 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 3012 for (const SCEV *SubExpr : reverse(Add->operands())) { 3013 if (SubExpr->getSCEVType() == scAddExpr) 3014 return getExprBase(SubExpr); 3015 3016 if (SubExpr->getSCEVType() != scMulExpr) 3017 return SubExpr; 3018 } 3019 return S; // all operands are scaled, be conservative. 3020 } 3021 case scAddRecExpr: 3022 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 3023 } 3024 llvm_unreachable("Unknown SCEV kind!"); 3025 } 3026 3027 /// Return true if the chain increment is profitable to expand into a loop 3028 /// invariant value, which may require its own register. A profitable chain 3029 /// increment will be an offset relative to the same base. We allow such offsets 3030 /// to potentially be used as chain increment as long as it's not obviously 3031 /// expensive to expand using real instructions. 3032 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 3033 const SCEV *IncExpr, 3034 ScalarEvolution &SE) { 3035 // Aggressively form chains when -stress-ivchain. 3036 if (StressIVChain) 3037 return true; 3038 3039 // Do not replace a constant offset from IV head with a nonconstant IV 3040 // increment. 3041 if (!isa<SCEVConstant>(IncExpr)) { 3042 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 3043 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 3044 return false; 3045 } 3046 3047 SmallPtrSet<const SCEV*, 8> Processed; 3048 return !isHighCostExpansion(IncExpr, Processed, SE); 3049 } 3050 3051 /// Return true if the number of registers needed for the chain is estimated to 3052 /// be less than the number required for the individual IV users. First prohibit 3053 /// any IV users that keep the IV live across increments (the Users set should 3054 /// be empty). Next count the number and type of increments in the chain. 3055 /// 3056 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 3057 /// effectively use postinc addressing modes. Only consider it profitable it the 3058 /// increments can be computed in fewer registers when chained. 3059 /// 3060 /// TODO: Consider IVInc free if it's already used in another chains. 3061 static bool isProfitableChain(IVChain &Chain, 3062 SmallPtrSetImpl<Instruction *> &Users, 3063 ScalarEvolution &SE, 3064 const TargetTransformInfo &TTI) { 3065 if (StressIVChain) 3066 return true; 3067 3068 if (!Chain.hasIncs()) 3069 return false; 3070 3071 if (!Users.empty()) { 3072 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 3073 for (Instruction *Inst 3074 : Users) { dbgs() << " " << *Inst << "\n"; }); 3075 return false; 3076 } 3077 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3078 3079 // The chain itself may require a register, so intialize cost to 1. 3080 int cost = 1; 3081 3082 // A complete chain likely eliminates the need for keeping the original IV in 3083 // a register. LSR does not currently know how to form a complete chain unless 3084 // the header phi already exists. 3085 if (isa<PHINode>(Chain.tailUserInst()) 3086 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 3087 --cost; 3088 } 3089 const SCEV *LastIncExpr = nullptr; 3090 unsigned NumConstIncrements = 0; 3091 unsigned NumVarIncrements = 0; 3092 unsigned NumReusedIncrements = 0; 3093 3094 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 3095 return true; 3096 3097 for (const IVInc &Inc : Chain) { 3098 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 3099 return true; 3100 if (Inc.IncExpr->isZero()) 3101 continue; 3102 3103 // Incrementing by zero or some constant is neutral. We assume constants can 3104 // be folded into an addressing mode or an add's immediate operand. 3105 if (isa<SCEVConstant>(Inc.IncExpr)) { 3106 ++NumConstIncrements; 3107 continue; 3108 } 3109 3110 if (Inc.IncExpr == LastIncExpr) 3111 ++NumReusedIncrements; 3112 else 3113 ++NumVarIncrements; 3114 3115 LastIncExpr = Inc.IncExpr; 3116 } 3117 // An IV chain with a single increment is handled by LSR's postinc 3118 // uses. However, a chain with multiple increments requires keeping the IV's 3119 // value live longer than it needs to be if chained. 3120 if (NumConstIncrements > 1) 3121 --cost; 3122 3123 // Materializing increment expressions in the preheader that didn't exist in 3124 // the original code may cost a register. For example, sign-extended array 3125 // indices can produce ridiculous increments like this: 3126 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 3127 cost += NumVarIncrements; 3128 3129 // Reusing variable increments likely saves a register to hold the multiple of 3130 // the stride. 3131 cost -= NumReusedIncrements; 3132 3133 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 3134 << "\n"); 3135 3136 return cost < 0; 3137 } 3138 3139 /// Add this IV user to an existing chain or make it the head of a new chain. 3140 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 3141 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 3142 // When IVs are used as types of varying widths, they are generally converted 3143 // to a wider type with some uses remaining narrow under a (free) trunc. 3144 Value *const NextIV = getWideOperand(IVOper); 3145 const SCEV *const OperExpr = SE.getSCEV(NextIV); 3146 const SCEV *const OperExprBase = getExprBase(OperExpr); 3147 3148 // Visit all existing chains. Check if its IVOper can be computed as a 3149 // profitable loop invariant increment from the last link in the Chain. 3150 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3151 const SCEV *LastIncExpr = nullptr; 3152 for (; ChainIdx < NChains; ++ChainIdx) { 3153 IVChain &Chain = IVChainVec[ChainIdx]; 3154 3155 // Prune the solution space aggressively by checking that both IV operands 3156 // are expressions that operate on the same unscaled SCEVUnknown. This 3157 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 3158 // first avoids creating extra SCEV expressions. 3159 if (!StressIVChain && Chain.ExprBase != OperExprBase) 3160 continue; 3161 3162 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 3163 if (PrevIV->getType() != NextIV->getType()) 3164 continue; 3165 3166 // A phi node terminates a chain. 3167 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 3168 continue; 3169 3170 // The increment must be loop-invariant so it can be kept in a register. 3171 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 3172 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 3173 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 3174 continue; 3175 3176 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 3177 LastIncExpr = IncExpr; 3178 break; 3179 } 3180 } 3181 // If we haven't found a chain, create a new one, unless we hit the max. Don't 3182 // bother for phi nodes, because they must be last in the chain. 3183 if (ChainIdx == NChains) { 3184 if (isa<PHINode>(UserInst)) 3185 return; 3186 if (NChains >= MaxChains && !StressIVChain) { 3187 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3188 return; 3189 } 3190 LastIncExpr = OperExpr; 3191 // IVUsers may have skipped over sign/zero extensions. We don't currently 3192 // attempt to form chains involving extensions unless they can be hoisted 3193 // into this loop's AddRec. 3194 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3195 return; 3196 ++NChains; 3197 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3198 OperExprBase)); 3199 ChainUsersVec.resize(NChains); 3200 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3201 << ") IV=" << *LastIncExpr << "\n"); 3202 } else { 3203 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3204 << ") IV+" << *LastIncExpr << "\n"); 3205 // Add this IV user to the end of the chain. 3206 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3207 } 3208 IVChain &Chain = IVChainVec[ChainIdx]; 3209 3210 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3211 // This chain's NearUsers become FarUsers. 3212 if (!LastIncExpr->isZero()) { 3213 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3214 NearUsers.end()); 3215 NearUsers.clear(); 3216 } 3217 3218 // All other uses of IVOperand become near uses of the chain. 3219 // We currently ignore intermediate values within SCEV expressions, assuming 3220 // they will eventually be used be the current chain, or can be computed 3221 // from one of the chain increments. To be more precise we could 3222 // transitively follow its user and only add leaf IV users to the set. 3223 for (User *U : IVOper->users()) { 3224 Instruction *OtherUse = dyn_cast<Instruction>(U); 3225 if (!OtherUse) 3226 continue; 3227 // Uses in the chain will no longer be uses if the chain is formed. 3228 // Include the head of the chain in this iteration (not Chain.begin()). 3229 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3230 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3231 for( ; IncIter != IncEnd; ++IncIter) { 3232 if (IncIter->UserInst == OtherUse) 3233 break; 3234 } 3235 if (IncIter != IncEnd) 3236 continue; 3237 3238 if (SE.isSCEVable(OtherUse->getType()) 3239 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3240 && IU.isIVUserOrOperand(OtherUse)) { 3241 continue; 3242 } 3243 NearUsers.insert(OtherUse); 3244 } 3245 3246 // Since this user is part of the chain, it's no longer considered a use 3247 // of the chain. 3248 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3249 } 3250 3251 /// Populate the vector of Chains. 3252 /// 3253 /// This decreases ILP at the architecture level. Targets with ample registers, 3254 /// multiple memory ports, and no register renaming probably don't want 3255 /// this. However, such targets should probably disable LSR altogether. 3256 /// 3257 /// The job of LSR is to make a reasonable choice of induction variables across 3258 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3259 /// ILP *within the loop* if the target wants it. 3260 /// 3261 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3262 /// will not reorder memory operations, it will recognize this as a chain, but 3263 /// will generate redundant IV increments. Ideally this would be corrected later 3264 /// by a smart scheduler: 3265 /// = A[i] 3266 /// = A[i+x] 3267 /// A[i] = 3268 /// A[i+x] = 3269 /// 3270 /// TODO: Walk the entire domtree within this loop, not just the path to the 3271 /// loop latch. This will discover chains on side paths, but requires 3272 /// maintaining multiple copies of the Chains state. 3273 void LSRInstance::CollectChains() { 3274 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3275 SmallVector<ChainUsers, 8> ChainUsersVec; 3276 3277 SmallVector<BasicBlock *,8> LatchPath; 3278 BasicBlock *LoopHeader = L->getHeader(); 3279 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3280 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3281 LatchPath.push_back(Rung->getBlock()); 3282 } 3283 LatchPath.push_back(LoopHeader); 3284 3285 // Walk the instruction stream from the loop header to the loop latch. 3286 for (BasicBlock *BB : reverse(LatchPath)) { 3287 for (Instruction &I : *BB) { 3288 // Skip instructions that weren't seen by IVUsers analysis. 3289 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3290 continue; 3291 3292 // Ignore users that are part of a SCEV expression. This way we only 3293 // consider leaf IV Users. This effectively rediscovers a portion of 3294 // IVUsers analysis but in program order this time. 3295 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3296 continue; 3297 3298 // Remove this instruction from any NearUsers set it may be in. 3299 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3300 ChainIdx < NChains; ++ChainIdx) { 3301 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3302 } 3303 // Search for operands that can be chained. 3304 SmallPtrSet<Instruction*, 4> UniqueOperands; 3305 User::op_iterator IVOpEnd = I.op_end(); 3306 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3307 while (IVOpIter != IVOpEnd) { 3308 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3309 if (UniqueOperands.insert(IVOpInst).second) 3310 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3311 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3312 } 3313 } // Continue walking down the instructions. 3314 } // Continue walking down the domtree. 3315 // Visit phi backedges to determine if the chain can generate the IV postinc. 3316 for (PHINode &PN : L->getHeader()->phis()) { 3317 if (!SE.isSCEVable(PN.getType())) 3318 continue; 3319 3320 Instruction *IncV = 3321 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3322 if (IncV) 3323 ChainInstruction(&PN, IncV, ChainUsersVec); 3324 } 3325 // Remove any unprofitable chains. 3326 unsigned ChainIdx = 0; 3327 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3328 UsersIdx < NChains; ++UsersIdx) { 3329 if (!isProfitableChain(IVChainVec[UsersIdx], 3330 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3331 continue; 3332 // Preserve the chain at UsesIdx. 3333 if (ChainIdx != UsersIdx) 3334 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3335 FinalizeChain(IVChainVec[ChainIdx]); 3336 ++ChainIdx; 3337 } 3338 IVChainVec.resize(ChainIdx); 3339 } 3340 3341 void LSRInstance::FinalizeChain(IVChain &Chain) { 3342 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3343 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3344 3345 for (const IVInc &Inc : Chain) { 3346 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3347 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3348 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3349 IVIncSet.insert(UseI); 3350 } 3351 } 3352 3353 /// Return true if the IVInc can be folded into an addressing mode. 3354 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3355 Value *Operand, const TargetTransformInfo &TTI) { 3356 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3357 Immediate IncOffset = Immediate::getZero(); 3358 if (IncConst) { 3359 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) 3360 return false; 3361 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue()); 3362 } else { 3363 // Look for mul(vscale, constant), to detect a scalable offset. 3364 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr); 3365 if (!IncVScale || IncVScale->getNumOperands() != 2 || 3366 !isa<SCEVVScale>(IncVScale->getOperand(1))) 3367 return false; 3368 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0)); 3369 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64) 3370 return false; 3371 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue()); 3372 } 3373 3374 if (!isAddressUse(TTI, UserInst, Operand)) 3375 return false; 3376 3377 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3378 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3379 IncOffset, /*HasBaseReg=*/false)) 3380 return false; 3381 3382 return true; 3383 } 3384 3385 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3386 /// user's operand from the previous IV user's operand. 3387 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3388 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3389 // Find the new IVOperand for the head of the chain. It may have been replaced 3390 // by LSR. 3391 const IVInc &Head = Chain.Incs[0]; 3392 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3393 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3394 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3395 IVOpEnd, L, SE); 3396 Value *IVSrc = nullptr; 3397 while (IVOpIter != IVOpEnd) { 3398 IVSrc = getWideOperand(*IVOpIter); 3399 3400 // If this operand computes the expression that the chain needs, we may use 3401 // it. (Check this after setting IVSrc which is used below.) 3402 // 3403 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3404 // narrow for the chain, so we can no longer use it. We do allow using a 3405 // wider phi, assuming the LSR checked for free truncation. In that case we 3406 // should already have a truncate on this operand such that 3407 // getSCEV(IVSrc) == IncExpr. 3408 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3409 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3410 break; 3411 } 3412 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3413 } 3414 if (IVOpIter == IVOpEnd) { 3415 // Gracefully give up on this chain. 3416 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3417 return; 3418 } 3419 assert(IVSrc && "Failed to find IV chain source"); 3420 3421 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3422 Type *IVTy = IVSrc->getType(); 3423 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3424 const SCEV *LeftOverExpr = nullptr; 3425 const SCEV *Accum = SE.getZero(IntTy); 3426 SmallVector<std::pair<const SCEV *, Value *>> Bases; 3427 Bases.emplace_back(Accum, IVSrc); 3428 3429 for (const IVInc &Inc : Chain) { 3430 Instruction *InsertPt = Inc.UserInst; 3431 if (isa<PHINode>(InsertPt)) 3432 InsertPt = L->getLoopLatch()->getTerminator(); 3433 3434 // IVOper will replace the current IV User's operand. IVSrc is the IV 3435 // value currently held in a register. 3436 Value *IVOper = IVSrc; 3437 if (!Inc.IncExpr->isZero()) { 3438 // IncExpr was the result of subtraction of two narrow values, so must 3439 // be signed. 3440 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3441 Accum = SE.getAddExpr(Accum, IncExpr); 3442 LeftOverExpr = LeftOverExpr ? 3443 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3444 } 3445 3446 // Look through each base to see if any can produce a nice addressing mode. 3447 bool FoundBase = false; 3448 for (auto [MapScev, MapIVOper] : reverse(Bases)) { 3449 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev); 3450 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) { 3451 if (!Remainder->isZero()) { 3452 Rewriter.clearPostInc(); 3453 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt); 3454 const SCEV *IVOperExpr = 3455 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV)); 3456 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3457 } else { 3458 IVOper = MapIVOper; 3459 } 3460 3461 FoundBase = true; 3462 break; 3463 } 3464 } 3465 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { 3466 // Expand the IV increment. 3467 Rewriter.clearPostInc(); 3468 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3469 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3470 SE.getUnknown(IncV)); 3471 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3472 3473 // If an IV increment can't be folded, use it as the next IV value. 3474 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3475 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3476 Bases.emplace_back(Accum, IVOper); 3477 IVSrc = IVOper; 3478 LeftOverExpr = nullptr; 3479 } 3480 } 3481 Type *OperTy = Inc.IVOperand->getType(); 3482 if (IVTy != OperTy) { 3483 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3484 "cannot extend a chained IV"); 3485 IRBuilder<> Builder(InsertPt); 3486 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3487 } 3488 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3489 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3490 DeadInsts.emplace_back(OperandIsInstr); 3491 } 3492 // If LSR created a new, wider phi, we may also replace its postinc. We only 3493 // do this if we also found a wide value for the head of the chain. 3494 if (isa<PHINode>(Chain.tailUserInst())) { 3495 for (PHINode &Phi : L->getHeader()->phis()) { 3496 if (Phi.getType() != IVSrc->getType()) 3497 continue; 3498 Instruction *PostIncV = dyn_cast<Instruction>( 3499 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3500 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3501 continue; 3502 Value *IVOper = IVSrc; 3503 Type *PostIncTy = PostIncV->getType(); 3504 if (IVTy != PostIncTy) { 3505 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3506 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3507 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3508 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3509 } 3510 Phi.replaceUsesOfWith(PostIncV, IVOper); 3511 DeadInsts.emplace_back(PostIncV); 3512 } 3513 } 3514 } 3515 3516 void LSRInstance::CollectFixupsAndInitialFormulae() { 3517 BranchInst *ExitBranch = nullptr; 3518 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3519 3520 // For calculating baseline cost 3521 SmallPtrSet<const SCEV *, 16> Regs; 3522 DenseSet<const SCEV *> VisitedRegs; 3523 DenseSet<size_t> VisitedLSRUse; 3524 3525 for (const IVStrideUse &U : IU) { 3526 Instruction *UserInst = U.getUser(); 3527 // Skip IV users that are part of profitable IV Chains. 3528 User::op_iterator UseI = 3529 find(UserInst->operands(), U.getOperandValToReplace()); 3530 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3531 if (IVIncSet.count(UseI)) { 3532 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3533 continue; 3534 } 3535 3536 LSRUse::KindType Kind = LSRUse::Basic; 3537 MemAccessTy AccessTy; 3538 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3539 Kind = LSRUse::Address; 3540 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3541 } 3542 3543 const SCEV *S = IU.getExpr(U); 3544 if (!S) 3545 continue; 3546 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3547 3548 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3549 // (N - i == 0), and this allows (N - i) to be the expression that we work 3550 // with rather than just N or i, so we can consider the register 3551 // requirements for both N and i at the same time. Limiting this code to 3552 // equality icmps is not a problem because all interesting loops use 3553 // equality icmps, thanks to IndVarSimplify. 3554 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3555 // If CI can be saved in some target, like replaced inside hardware loop 3556 // in PowerPC, no need to generate initial formulae for it. 3557 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3558 continue; 3559 if (CI->isEquality()) { 3560 // Swap the operands if needed to put the OperandValToReplace on the 3561 // left, for consistency. 3562 Value *NV = CI->getOperand(1); 3563 if (NV == U.getOperandValToReplace()) { 3564 CI->setOperand(1, CI->getOperand(0)); 3565 CI->setOperand(0, NV); 3566 NV = CI->getOperand(1); 3567 Changed = true; 3568 } 3569 3570 // x == y --> x - y == 0 3571 const SCEV *N = SE.getSCEV(NV); 3572 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3573 (!NV->getType()->isPointerTy() || 3574 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3575 // S is normalized, so normalize N before folding it into S 3576 // to keep the result normalized. 3577 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3578 if (!N) 3579 continue; 3580 Kind = LSRUse::ICmpZero; 3581 S = SE.getMinusSCEV(N, S); 3582 } else if (L->isLoopInvariant(NV) && 3583 (!isa<Instruction>(NV) || 3584 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3585 !NV->getType()->isPointerTy()) { 3586 // If we can't generally expand the expression (e.g. it contains 3587 // a divide), but it is already at a loop invariant point before the 3588 // loop, wrap it in an unknown (to prevent the expander from trying 3589 // to re-expand in a potentially unsafe way.) The restriction to 3590 // integer types is required because the unknown hides the base, and 3591 // SCEV can't compute the difference of two unknown pointers. 3592 N = SE.getUnknown(NV); 3593 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3594 if (!N) 3595 continue; 3596 Kind = LSRUse::ICmpZero; 3597 S = SE.getMinusSCEV(N, S); 3598 assert(!isa<SCEVCouldNotCompute>(S)); 3599 } 3600 3601 // -1 and the negations of all interesting strides (except the negation 3602 // of -1) are now also interesting. 3603 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3604 if (Factors[i] != -1) 3605 Factors.insert(-(uint64_t)Factors[i]); 3606 Factors.insert(-1); 3607 } 3608 } 3609 3610 // Get or create an LSRUse. 3611 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy); 3612 size_t LUIdx = P.first; 3613 Immediate Offset = P.second; 3614 LSRUse &LU = Uses[LUIdx]; 3615 3616 // Record the fixup. 3617 LSRFixup &LF = LU.getNewFixup(); 3618 LF.UserInst = UserInst; 3619 LF.OperandValToReplace = U.getOperandValToReplace(); 3620 LF.PostIncLoops = TmpPostIncLoops; 3621 LF.Offset = Offset; 3622 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3623 3624 // Create SCEV as Formula for calculating baseline cost 3625 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3626 Formula F; 3627 F.initialMatch(S, L, SE); 3628 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3629 VisitedLSRUse.insert(LUIdx); 3630 } 3631 3632 if (!LU.WidestFixupType || 3633 SE.getTypeSizeInBits(LU.WidestFixupType) < 3634 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3635 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3636 3637 // If this is the first use of this LSRUse, give it a formula. 3638 if (LU.Formulae.empty()) { 3639 InsertInitialFormula(S, LU, LUIdx); 3640 CountRegisters(LU.Formulae.back(), LUIdx); 3641 } 3642 } 3643 3644 LLVM_DEBUG(print_fixups(dbgs())); 3645 } 3646 3647 /// Insert a formula for the given expression into the given use, separating out 3648 /// loop-variant portions from loop-invariant and loop-computable portions. 3649 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3650 size_t LUIdx) { 3651 // Mark uses whose expressions cannot be expanded. 3652 if (!Rewriter.isSafeToExpand(S)) 3653 LU.RigidFormula = true; 3654 3655 Formula F; 3656 F.initialMatch(S, L, SE); 3657 bool Inserted = InsertFormula(LU, LUIdx, F); 3658 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3659 } 3660 3661 /// Insert a simple single-register formula for the given expression into the 3662 /// given use. 3663 void 3664 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3665 LSRUse &LU, size_t LUIdx) { 3666 Formula F; 3667 F.BaseRegs.push_back(S); 3668 F.HasBaseReg = true; 3669 bool Inserted = InsertFormula(LU, LUIdx, F); 3670 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3671 } 3672 3673 /// Note which registers are used by the given formula, updating RegUses. 3674 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3675 if (F.ScaledReg) 3676 RegUses.countRegister(F.ScaledReg, LUIdx); 3677 for (const SCEV *BaseReg : F.BaseRegs) 3678 RegUses.countRegister(BaseReg, LUIdx); 3679 } 3680 3681 /// If the given formula has not yet been inserted, add it to the list, and 3682 /// return true. Return false otherwise. 3683 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3684 // Do not insert formula that we will not be able to expand. 3685 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3686 "Formula is illegal"); 3687 3688 if (!LU.InsertFormula(F, *L)) 3689 return false; 3690 3691 CountRegisters(F, LUIdx); 3692 return true; 3693 } 3694 3695 /// Check for other uses of loop-invariant values which we're tracking. These 3696 /// other uses will pin these values in registers, making them less profitable 3697 /// for elimination. 3698 /// TODO: This currently misses non-constant addrec step registers. 3699 /// TODO: Should this give more weight to users inside the loop? 3700 void 3701 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3702 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3703 SmallPtrSet<const SCEV *, 32> Visited; 3704 3705 // Don't collect outside uses if we are favoring postinc - the instructions in 3706 // the loop are more important than the ones outside of it. 3707 if (AMK == TTI::AMK_PostIndexed) 3708 return; 3709 3710 while (!Worklist.empty()) { 3711 const SCEV *S = Worklist.pop_back_val(); 3712 3713 // Don't process the same SCEV twice 3714 if (!Visited.insert(S).second) 3715 continue; 3716 3717 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3718 append_range(Worklist, N->operands()); 3719 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3720 Worklist.push_back(C->getOperand()); 3721 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3722 Worklist.push_back(D->getLHS()); 3723 Worklist.push_back(D->getRHS()); 3724 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3725 const Value *V = US->getValue(); 3726 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3727 // Look for instructions defined outside the loop. 3728 if (L->contains(Inst)) continue; 3729 } else if (isa<Constant>(V)) 3730 // Constants can be re-materialized. 3731 continue; 3732 for (const Use &U : V->uses()) { 3733 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3734 // Ignore non-instructions. 3735 if (!UserInst) 3736 continue; 3737 // Don't bother if the instruction is an EHPad. 3738 if (UserInst->isEHPad()) 3739 continue; 3740 // Ignore instructions in other functions (as can happen with 3741 // Constants). 3742 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3743 continue; 3744 // Ignore instructions not dominated by the loop. 3745 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3746 UserInst->getParent() : 3747 cast<PHINode>(UserInst)->getIncomingBlock( 3748 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3749 if (!DT.dominates(L->getHeader(), UseBB)) 3750 continue; 3751 // Don't bother if the instruction is in a BB which ends in an EHPad. 3752 if (UseBB->getTerminator()->isEHPad()) 3753 continue; 3754 3755 // Ignore cases in which the currently-examined value could come from 3756 // a basic block terminated with an EHPad. This checks all incoming 3757 // blocks of the phi node since it is possible that the same incoming 3758 // value comes from multiple basic blocks, only some of which may end 3759 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3760 // pass would try to insert instructions into an EHPad, hitting an 3761 // assertion. 3762 if (isa<PHINode>(UserInst)) { 3763 const auto *PhiNode = cast<PHINode>(UserInst); 3764 bool HasIncompatibleEHPTerminatedBlock = false; 3765 llvm::Value *ExpectedValue = U; 3766 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3767 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3768 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3769 HasIncompatibleEHPTerminatedBlock = true; 3770 break; 3771 } 3772 } 3773 } 3774 if (HasIncompatibleEHPTerminatedBlock) { 3775 continue; 3776 } 3777 } 3778 3779 // Don't bother rewriting PHIs in catchswitch blocks. 3780 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3781 continue; 3782 // Ignore uses which are part of other SCEV expressions, to avoid 3783 // analyzing them multiple times. 3784 if (SE.isSCEVable(UserInst->getType())) { 3785 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3786 // If the user is a no-op, look through to its uses. 3787 if (!isa<SCEVUnknown>(UserS)) 3788 continue; 3789 if (UserS == US) { 3790 Worklist.push_back( 3791 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3792 continue; 3793 } 3794 } 3795 // Ignore icmp instructions which are already being analyzed. 3796 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3797 unsigned OtherIdx = !U.getOperandNo(); 3798 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3799 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3800 continue; 3801 } 3802 3803 std::pair<size_t, Immediate> P = 3804 getUse(S, LSRUse::Basic, MemAccessTy()); 3805 size_t LUIdx = P.first; 3806 Immediate Offset = P.second; 3807 LSRUse &LU = Uses[LUIdx]; 3808 LSRFixup &LF = LU.getNewFixup(); 3809 LF.UserInst = const_cast<Instruction *>(UserInst); 3810 LF.OperandValToReplace = U; 3811 LF.Offset = Offset; 3812 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3813 if (!LU.WidestFixupType || 3814 SE.getTypeSizeInBits(LU.WidestFixupType) < 3815 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3816 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3817 InsertSupplementalFormula(US, LU, LUIdx); 3818 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3819 break; 3820 } 3821 } 3822 } 3823 } 3824 3825 /// Split S into subexpressions which can be pulled out into separate 3826 /// registers. If C is non-null, multiply each subexpression by C. 3827 /// 3828 /// Return remainder expression after factoring the subexpressions captured by 3829 /// Ops. If Ops is complete, return NULL. 3830 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3831 SmallVectorImpl<const SCEV *> &Ops, 3832 const Loop *L, 3833 ScalarEvolution &SE, 3834 unsigned Depth = 0) { 3835 // Arbitrarily cap recursion to protect compile time. 3836 if (Depth >= 3) 3837 return S; 3838 3839 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3840 // Break out add operands. 3841 for (const SCEV *S : Add->operands()) { 3842 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3843 if (Remainder) 3844 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3845 } 3846 return nullptr; 3847 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3848 // Split a non-zero base out of an addrec. 3849 if (AR->getStart()->isZero() || !AR->isAffine()) 3850 return S; 3851 3852 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3853 C, Ops, L, SE, Depth+1); 3854 // Split the non-zero AddRec unless it is part of a nested recurrence that 3855 // does not pertain to this loop. 3856 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3857 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3858 Remainder = nullptr; 3859 } 3860 if (Remainder != AR->getStart()) { 3861 if (!Remainder) 3862 Remainder = SE.getConstant(AR->getType(), 0); 3863 return SE.getAddRecExpr(Remainder, 3864 AR->getStepRecurrence(SE), 3865 AR->getLoop(), 3866 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3867 SCEV::FlagAnyWrap); 3868 } 3869 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3870 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3871 if (Mul->getNumOperands() != 2) 3872 return S; 3873 if (const SCEVConstant *Op0 = 3874 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3875 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3876 const SCEV *Remainder = 3877 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3878 if (Remainder) 3879 Ops.push_back(SE.getMulExpr(C, Remainder)); 3880 return nullptr; 3881 } 3882 } 3883 return S; 3884 } 3885 3886 /// Return true if the SCEV represents a value that may end up as a 3887 /// post-increment operation. 3888 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3889 LSRUse &LU, const SCEV *S, const Loop *L, 3890 ScalarEvolution &SE) { 3891 if (LU.Kind != LSRUse::Address || 3892 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3893 return false; 3894 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3895 if (!AR) 3896 return false; 3897 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3898 if (!isa<SCEVConstant>(LoopStep)) 3899 return false; 3900 // Check if a post-indexed load/store can be used. 3901 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3902 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3903 const SCEV *LoopStart = AR->getStart(); 3904 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3905 return true; 3906 } 3907 return false; 3908 } 3909 3910 /// Helper function for LSRInstance::GenerateReassociations. 3911 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3912 const Formula &Base, 3913 unsigned Depth, size_t Idx, 3914 bool IsScaledReg) { 3915 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3916 // Don't generate reassociations for the base register of a value that 3917 // may generate a post-increment operator. The reason is that the 3918 // reassociations cause extra base+register formula to be created, 3919 // and possibly chosen, but the post-increment is more efficient. 3920 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3921 return; 3922 SmallVector<const SCEV *, 8> AddOps; 3923 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3924 if (Remainder) 3925 AddOps.push_back(Remainder); 3926 3927 if (AddOps.size() == 1) 3928 return; 3929 3930 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3931 JE = AddOps.end(); 3932 J != JE; ++J) { 3933 // Loop-variant "unknown" values are uninteresting; we won't be able to 3934 // do anything meaningful with them. 3935 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3936 continue; 3937 3938 // Don't pull a constant into a register if the constant could be folded 3939 // into an immediate field. 3940 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3941 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3942 continue; 3943 3944 // Collect all operands except *J. 3945 SmallVector<const SCEV *, 8> InnerAddOps( 3946 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3947 InnerAddOps.append(std::next(J), 3948 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3949 3950 // Don't leave just a constant behind in a register if the constant could 3951 // be folded into an immediate field. 3952 if (InnerAddOps.size() == 1 && 3953 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3954 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3955 continue; 3956 3957 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3958 if (InnerSum->isZero()) 3959 continue; 3960 Formula F = Base; 3961 3962 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) 3963 continue; 3964 3965 // Add the remaining pieces of the add back into the new formula. 3966 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3967 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3968 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3969 InnerSumSC->getValue()->getZExtValue())) { 3970 F.UnfoldedOffset = 3971 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3972 InnerSumSC->getValue()->getZExtValue()); 3973 if (IsScaledReg) 3974 F.ScaledReg = nullptr; 3975 else 3976 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3977 } else if (IsScaledReg) 3978 F.ScaledReg = InnerSum; 3979 else 3980 F.BaseRegs[Idx] = InnerSum; 3981 3982 // Add J as its own register, or an unfolded immediate. 3983 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3984 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3985 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3986 SC->getValue()->getZExtValue())) 3987 F.UnfoldedOffset = 3988 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3989 SC->getValue()->getZExtValue()); 3990 else 3991 F.BaseRegs.push_back(*J); 3992 // We may have changed the number of register in base regs, adjust the 3993 // formula accordingly. 3994 F.canonicalize(*L); 3995 3996 if (InsertFormula(LU, LUIdx, F)) 3997 // If that formula hadn't been seen before, recurse to find more like 3998 // it. 3999 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 4000 // Because just Depth is not enough to bound compile time. 4001 // This means that every time AddOps.size() is greater 16^x we will add 4002 // x to Depth. 4003 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 4004 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 4005 } 4006 } 4007 4008 /// Split out subexpressions from adds and the bases of addrecs. 4009 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 4010 Formula Base, unsigned Depth) { 4011 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 4012 // Arbitrarily cap recursion to protect compile time. 4013 if (Depth >= 3) 4014 return; 4015 4016 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4017 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 4018 4019 if (Base.Scale == 1) 4020 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 4021 /* Idx */ -1, /* IsScaledReg */ true); 4022 } 4023 4024 /// Generate a formula consisting of all of the loop-dominating registers added 4025 /// into a single register. 4026 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 4027 Formula Base) { 4028 // This method is only interesting on a plurality of registers. 4029 if (Base.BaseRegs.size() + (Base.Scale == 1) + 4030 (Base.UnfoldedOffset.isNonZero()) <= 4031 1) 4032 return; 4033 4034 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 4035 // processing the formula. 4036 Base.unscale(); 4037 SmallVector<const SCEV *, 4> Ops; 4038 Formula NewBase = Base; 4039 NewBase.BaseRegs.clear(); 4040 Type *CombinedIntegerType = nullptr; 4041 for (const SCEV *BaseReg : Base.BaseRegs) { 4042 if (SE.properlyDominates(BaseReg, L->getHeader()) && 4043 !SE.hasComputableLoopEvolution(BaseReg, L)) { 4044 if (!CombinedIntegerType) 4045 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 4046 Ops.push_back(BaseReg); 4047 } 4048 else 4049 NewBase.BaseRegs.push_back(BaseReg); 4050 } 4051 4052 // If no register is relevant, we're done. 4053 if (Ops.size() == 0) 4054 return; 4055 4056 // Utility function for generating the required variants of the combined 4057 // registers. 4058 auto GenerateFormula = [&](const SCEV *Sum) { 4059 Formula F = NewBase; 4060 4061 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 4062 // opportunity to fold something. For now, just ignore such cases 4063 // rather than proceed with zero in a register. 4064 if (Sum->isZero()) 4065 return; 4066 4067 F.BaseRegs.push_back(Sum); 4068 F.canonicalize(*L); 4069 (void)InsertFormula(LU, LUIdx, F); 4070 }; 4071 4072 // If we collected at least two registers, generate a formula combining them. 4073 if (Ops.size() > 1) { 4074 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 4075 GenerateFormula(SE.getAddExpr(OpsCopy)); 4076 } 4077 4078 // If we have an unfolded offset, generate a formula combining it with the 4079 // registers collected. 4080 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { 4081 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 4082 Ops.push_back(SE.getConstant(CombinedIntegerType, 4083 NewBase.UnfoldedOffset.getFixedValue(), true)); 4084 NewBase.UnfoldedOffset = Immediate::getFixed(0); 4085 GenerateFormula(SE.getAddExpr(Ops)); 4086 } 4087 } 4088 4089 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 4090 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 4091 const Formula &Base, size_t Idx, 4092 bool IsScaledReg) { 4093 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4094 GlobalValue *GV = ExtractSymbol(G, SE); 4095 if (G->isZero() || !GV) 4096 return; 4097 Formula F = Base; 4098 F.BaseGV = GV; 4099 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4100 return; 4101 if (IsScaledReg) 4102 F.ScaledReg = G; 4103 else 4104 F.BaseRegs[Idx] = G; 4105 (void)InsertFormula(LU, LUIdx, F); 4106 } 4107 4108 /// Generate reuse formulae using symbolic offsets. 4109 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 4110 Formula Base) { 4111 // We can't add a symbolic offset if the address already contains one. 4112 if (Base.BaseGV) return; 4113 4114 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4115 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 4116 if (Base.Scale == 1) 4117 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 4118 /* IsScaledReg */ true); 4119 } 4120 4121 /// Helper function for LSRInstance::GenerateConstantOffsets. 4122 void LSRInstance::GenerateConstantOffsetsImpl( 4123 LSRUse &LU, unsigned LUIdx, const Formula &Base, 4124 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { 4125 4126 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { 4127 Formula F = Base; 4128 if (!Base.BaseOffset.isCompatibleImmediate(Offset)) 4129 return; 4130 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset); 4131 4132 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 4133 // Add the offset to the base register. 4134 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType()); 4135 const SCEV *NewG = SE.getAddExpr(NewOffset, G); 4136 // If it cancelled out, drop the base register, otherwise update it. 4137 if (NewG->isZero()) { 4138 if (IsScaledReg) { 4139 F.Scale = 0; 4140 F.ScaledReg = nullptr; 4141 } else 4142 F.deleteBaseReg(F.BaseRegs[Idx]); 4143 F.canonicalize(*L); 4144 } else if (IsScaledReg) 4145 F.ScaledReg = NewG; 4146 else 4147 F.BaseRegs[Idx] = NewG; 4148 4149 (void)InsertFormula(LU, LUIdx, F); 4150 } 4151 }; 4152 4153 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4154 4155 // With constant offsets and constant steps, we can generate pre-inc 4156 // accesses by having the offset equal the step. So, for access #0 with a 4157 // step of 8, we generate a G - 8 base which would require the first access 4158 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 4159 // for itself and hopefully becomes the base for other accesses. This means 4160 // means that a single pre-indexed access can be generated to become the new 4161 // base pointer for each iteration of the loop, resulting in no extra add/sub 4162 // instructions for pointer updating. 4163 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 4164 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 4165 if (auto *StepRec = 4166 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 4167 const APInt &StepInt = StepRec->getAPInt(); 4168 int64_t Step = StepInt.isNegative() ? 4169 StepInt.getSExtValue() : StepInt.getZExtValue(); 4170 4171 for (Immediate Offset : Worklist) { 4172 if (Offset.isFixed()) { 4173 Offset = Immediate::getFixed(Offset.getFixedValue() - Step); 4174 GenerateOffset(G, Offset); 4175 } 4176 } 4177 } 4178 } 4179 } 4180 for (Immediate Offset : Worklist) 4181 GenerateOffset(G, Offset); 4182 4183 Immediate Imm = ExtractImmediate(G, SE); 4184 if (G->isZero() || Imm.isZero() || 4185 !Base.BaseOffset.isCompatibleImmediate(Imm)) 4186 return; 4187 Formula F = Base; 4188 F.BaseOffset = F.BaseOffset.addUnsigned(Imm); 4189 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4190 return; 4191 if (IsScaledReg) { 4192 F.ScaledReg = G; 4193 } else { 4194 F.BaseRegs[Idx] = G; 4195 // We may generate non canonical Formula if G is a recurrent expr reg 4196 // related with current loop while F.ScaledReg is not. 4197 F.canonicalize(*L); 4198 } 4199 (void)InsertFormula(LU, LUIdx, F); 4200 } 4201 4202 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 4203 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 4204 Formula Base) { 4205 // TODO: For now, just add the min and max offset, because it usually isn't 4206 // worthwhile looking at everything inbetween. 4207 SmallVector<Immediate, 2> Worklist; 4208 Worklist.push_back(LU.MinOffset); 4209 if (LU.MaxOffset != LU.MinOffset) 4210 Worklist.push_back(LU.MaxOffset); 4211 4212 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4213 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 4214 if (Base.Scale == 1) 4215 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 4216 /* IsScaledReg */ true); 4217 } 4218 4219 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 4220 /// == y -> x*c == y*c. 4221 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 4222 Formula Base) { 4223 if (LU.Kind != LSRUse::ICmpZero) return; 4224 4225 // Determine the integer type for the base formula. 4226 Type *IntTy = Base.getType(); 4227 if (!IntTy) return; 4228 if (SE.getTypeSizeInBits(IntTy) > 64) return; 4229 4230 // Don't do this if there is more than one offset. 4231 if (LU.MinOffset != LU.MaxOffset) return; 4232 4233 // Check if transformation is valid. It is illegal to multiply pointer. 4234 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4235 return; 4236 for (const SCEV *BaseReg : Base.BaseRegs) 4237 if (BaseReg->getType()->isPointerTy()) 4238 return; 4239 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 4240 4241 // Check each interesting stride. 4242 for (int64_t Factor : Factors) { 4243 // Check that Factor can be represented by IntTy 4244 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4245 continue; 4246 // Check that the multiplication doesn't overflow. 4247 if (Base.BaseOffset.isMin() && Factor == -1) 4248 continue; 4249 // Not supporting scalable immediates. 4250 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) 4251 continue; 4252 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor); 4253 assert(Factor != 0 && "Zero factor not expected!"); 4254 if (NewBaseOffset.getFixedValue() / Factor != 4255 Base.BaseOffset.getFixedValue()) 4256 continue; 4257 // If the offset will be truncated at this use, check that it is in bounds. 4258 if (!IntTy->isPointerTy() && 4259 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue())) 4260 continue; 4261 4262 // Check that multiplying with the use offset doesn't overflow. 4263 Immediate Offset = LU.MinOffset; 4264 if (Offset.isMin() && Factor == -1) 4265 continue; 4266 Offset = Offset.mulUnsigned(Factor); 4267 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) 4268 continue; 4269 // If the offset will be truncated at this use, check that it is in bounds. 4270 if (!IntTy->isPointerTy() && 4271 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue())) 4272 continue; 4273 4274 Formula F = Base; 4275 F.BaseOffset = NewBaseOffset; 4276 4277 // Check that this scale is legal. 4278 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4279 continue; 4280 4281 // Compensate for the use having MinOffset built into it. 4282 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset); 4283 4284 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4285 4286 // Check that multiplying with each base register doesn't overflow. 4287 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4288 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4289 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4290 goto next; 4291 } 4292 4293 // Check that multiplying with the scaled register doesn't overflow. 4294 if (F.ScaledReg) { 4295 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4296 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4297 continue; 4298 } 4299 4300 // Check that multiplying with the unfolded offset doesn't overflow. 4301 if (F.UnfoldedOffset.isNonZero()) { 4302 if (F.UnfoldedOffset.isMin() && Factor == -1) 4303 continue; 4304 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor); 4305 if (F.UnfoldedOffset.getFixedValue() / Factor != 4306 Base.UnfoldedOffset.getFixedValue()) 4307 continue; 4308 // If the offset will be truncated, check that it is in bounds. 4309 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( 4310 IntTy, F.UnfoldedOffset.getFixedValue())) 4311 continue; 4312 } 4313 4314 // If we make it here and it's legal, add it. 4315 (void)InsertFormula(LU, LUIdx, F); 4316 next:; 4317 } 4318 } 4319 4320 /// Generate stride factor reuse formulae by making use of scaled-offset address 4321 /// modes, for example. 4322 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4323 // Determine the integer type for the base formula. 4324 Type *IntTy = Base.getType(); 4325 if (!IntTy) return; 4326 4327 // If this Formula already has a scaled register, we can't add another one. 4328 // Try to unscale the formula to generate a better scale. 4329 if (Base.Scale != 0 && !Base.unscale()) 4330 return; 4331 4332 assert(Base.Scale == 0 && "unscale did not did its job!"); 4333 4334 // Check each interesting stride. 4335 for (int64_t Factor : Factors) { 4336 Base.Scale = Factor; 4337 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4338 // Check whether this scale is going to be legal. 4339 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4340 Base)) { 4341 // As a special-case, handle special out-of-loop Basic users specially. 4342 // TODO: Reconsider this special case. 4343 if (LU.Kind == LSRUse::Basic && 4344 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4345 LU.AccessTy, Base) && 4346 LU.AllFixupsOutsideLoop) 4347 LU.Kind = LSRUse::Special; 4348 else 4349 continue; 4350 } 4351 // For an ICmpZero, negating a solitary base register won't lead to 4352 // new solutions. 4353 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && 4354 Base.BaseOffset.isZero() && !Base.BaseGV) 4355 continue; 4356 // For each addrec base reg, if its loop is current loop, apply the scale. 4357 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4358 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4359 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4360 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4361 if (FactorS->isZero()) 4362 continue; 4363 // Divide out the factor, ignoring high bits, since we'll be 4364 // scaling the value back up in the end. 4365 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4366 if (!Quotient->isZero()) { 4367 // TODO: This could be optimized to avoid all the copying. 4368 Formula F = Base; 4369 F.ScaledReg = Quotient; 4370 F.deleteBaseReg(F.BaseRegs[i]); 4371 // The canonical representation of 1*reg is reg, which is already in 4372 // Base. In that case, do not try to insert the formula, it will be 4373 // rejected anyway. 4374 if (F.Scale == 1 && (F.BaseRegs.empty() || 4375 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4376 continue; 4377 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4378 // non canonical Formula with ScaledReg's loop not being L. 4379 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4380 F.canonicalize(*L); 4381 (void)InsertFormula(LU, LUIdx, F); 4382 } 4383 } 4384 } 4385 } 4386 } 4387 4388 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4389 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4390 /// perform the extension/truncate and normalize again, as the normalized form 4391 /// can result in folds that are not valid in the post-inc use contexts. The 4392 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4393 static const SCEV * 4394 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4395 const SCEV *Expr, Type *ToTy, 4396 ScalarEvolution &SE) { 4397 const SCEV *Result = nullptr; 4398 for (auto &L : Loops) { 4399 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4400 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4401 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4402 if (!New || (Result && New != Result)) 4403 return nullptr; 4404 Result = New; 4405 } 4406 4407 assert(Result && "failed to create expression"); 4408 return Result; 4409 } 4410 4411 /// Generate reuse formulae from different IV types. 4412 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4413 // Don't bother truncating symbolic values. 4414 if (Base.BaseGV) return; 4415 4416 // Determine the integer type for the base formula. 4417 Type *DstTy = Base.getType(); 4418 if (!DstTy) return; 4419 if (DstTy->isPointerTy()) 4420 return; 4421 4422 // It is invalid to extend a pointer type so exit early if ScaledReg or 4423 // any of the BaseRegs are pointers. 4424 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4425 return; 4426 if (any_of(Base.BaseRegs, 4427 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4428 return; 4429 4430 SmallVector<PostIncLoopSet> Loops; 4431 for (auto &LF : LU.Fixups) 4432 Loops.push_back(LF.PostIncLoops); 4433 4434 for (Type *SrcTy : Types) { 4435 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4436 Formula F = Base; 4437 4438 // Sometimes SCEV is able to prove zero during ext transform. It may 4439 // happen if SCEV did not do all possible transforms while creating the 4440 // initial node (maybe due to depth limitations), but it can do them while 4441 // taking ext. 4442 if (F.ScaledReg) { 4443 const SCEV *NewScaledReg = 4444 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4445 if (!NewScaledReg || NewScaledReg->isZero()) 4446 continue; 4447 F.ScaledReg = NewScaledReg; 4448 } 4449 bool HasZeroBaseReg = false; 4450 for (const SCEV *&BaseReg : F.BaseRegs) { 4451 const SCEV *NewBaseReg = 4452 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4453 if (!NewBaseReg || NewBaseReg->isZero()) { 4454 HasZeroBaseReg = true; 4455 break; 4456 } 4457 BaseReg = NewBaseReg; 4458 } 4459 if (HasZeroBaseReg) 4460 continue; 4461 4462 // TODO: This assumes we've done basic processing on all uses and 4463 // have an idea what the register usage is. 4464 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4465 continue; 4466 4467 F.canonicalize(*L); 4468 (void)InsertFormula(LU, LUIdx, F); 4469 } 4470 } 4471 } 4472 4473 namespace { 4474 4475 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4476 /// modifications so that the search phase doesn't have to worry about the data 4477 /// structures moving underneath it. 4478 struct WorkItem { 4479 size_t LUIdx; 4480 Immediate Imm; 4481 const SCEV *OrigReg; 4482 4483 WorkItem(size_t LI, Immediate I, const SCEV *R) 4484 : LUIdx(LI), Imm(I), OrigReg(R) {} 4485 4486 void print(raw_ostream &OS) const; 4487 void dump() const; 4488 }; 4489 4490 } // end anonymous namespace 4491 4492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4493 void WorkItem::print(raw_ostream &OS) const { 4494 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4495 << " , add offset " << Imm; 4496 } 4497 4498 LLVM_DUMP_METHOD void WorkItem::dump() const { 4499 print(errs()); errs() << '\n'; 4500 } 4501 #endif 4502 4503 /// Look for registers which are a constant distance apart and try to form reuse 4504 /// opportunities between them. 4505 void LSRInstance::GenerateCrossUseConstantOffsets() { 4506 // Group the registers by their value without any added constant offset. 4507 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; 4508 4509 DenseMap<const SCEV *, ImmMapTy> Map; 4510 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4511 SmallVector<const SCEV *, 8> Sequence; 4512 for (const SCEV *Use : RegUses) { 4513 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4514 Immediate Imm = ExtractImmediate(Reg, SE); 4515 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4516 if (Pair.second) 4517 Sequence.push_back(Reg); 4518 Pair.first->second.insert(std::make_pair(Imm, Use)); 4519 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4520 } 4521 4522 // Now examine each set of registers with the same base value. Build up 4523 // a list of work to do and do the work in a separate step so that we're 4524 // not adding formulae and register counts while we're searching. 4525 SmallVector<WorkItem, 32> WorkItems; 4526 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> 4527 UniqueItems; 4528 for (const SCEV *Reg : Sequence) { 4529 const ImmMapTy &Imms = Map.find(Reg)->second; 4530 4531 // It's not worthwhile looking for reuse if there's only one offset. 4532 if (Imms.size() == 1) 4533 continue; 4534 4535 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4536 for (const auto &Entry 4537 : Imms) dbgs() 4538 << ' ' << Entry.first; 4539 dbgs() << '\n'); 4540 4541 // Examine each offset. 4542 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4543 J != JE; ++J) { 4544 const SCEV *OrigReg = J->second; 4545 4546 Immediate JImm = J->first; 4547 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4548 4549 if (!isa<SCEVConstant>(OrigReg) && 4550 UsedByIndicesMap[Reg].count() == 1) { 4551 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4552 << '\n'); 4553 continue; 4554 } 4555 4556 // Conservatively examine offsets between this orig reg a few selected 4557 // other orig regs. 4558 Immediate First = Imms.begin()->first; 4559 Immediate Last = std::prev(Imms.end())->first; 4560 if (!First.isCompatibleImmediate(Last)) { 4561 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4562 << "\n"); 4563 continue; 4564 } 4565 // Only scalable if both terms are scalable, or if one is scalable and 4566 // the other is 0. 4567 bool Scalable = First.isScalable() || Last.isScalable(); 4568 int64_t FI = First.getKnownMinValue(); 4569 int64_t LI = Last.getKnownMinValue(); 4570 // Compute (First + Last) / 2 without overflow using the fact that 4571 // First + Last = 2 * (First + Last) + (First ^ Last). 4572 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); 4573 // If the result is negative and FI is odd and LI even (or vice versa), 4574 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4575 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); 4576 ImmMapTy::const_iterator OtherImms[] = { 4577 Imms.begin(), std::prev(Imms.end()), 4578 Imms.lower_bound(Immediate::get(Avg, Scalable))}; 4579 for (const auto &M : OtherImms) { 4580 if (M == J || M == JE) continue; 4581 if (!JImm.isCompatibleImmediate(M->first)) 4582 continue; 4583 4584 // Compute the difference between the two. 4585 Immediate Imm = JImm.subUnsigned(M->first); 4586 for (unsigned LUIdx : UsedByIndices.set_bits()) 4587 // Make a memo of this use, offset, and register tuple. 4588 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4589 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4590 } 4591 } 4592 } 4593 4594 Map.clear(); 4595 Sequence.clear(); 4596 UsedByIndicesMap.clear(); 4597 UniqueItems.clear(); 4598 4599 // Now iterate through the worklist and add new formulae. 4600 for (const WorkItem &WI : WorkItems) { 4601 size_t LUIdx = WI.LUIdx; 4602 LSRUse &LU = Uses[LUIdx]; 4603 Immediate Imm = WI.Imm; 4604 const SCEV *OrigReg = WI.OrigReg; 4605 4606 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4607 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy); 4608 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4609 4610 // TODO: Use a more targeted data structure. 4611 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4612 Formula F = LU.Formulae[L]; 4613 // FIXME: The code for the scaled and unscaled registers looks 4614 // very similar but slightly different. Investigate if they 4615 // could be merged. That way, we would not have to unscale the 4616 // Formula. 4617 F.unscale(); 4618 // Use the immediate in the scaled register. 4619 if (F.ScaledReg == OrigReg) { 4620 if (!F.BaseOffset.isCompatibleImmediate(Imm)) 4621 continue; 4622 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale)); 4623 // Don't create 50 + reg(-50). 4624 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy); 4625 if (F.referencesReg(S)) 4626 continue; 4627 Formula NewF = F; 4628 NewF.BaseOffset = Offset; 4629 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4630 NewF)) 4631 continue; 4632 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4633 4634 // If the new scale is a constant in a register, and adding the constant 4635 // value to the immediate would produce a value closer to zero than the 4636 // immediate itself, then the formula isn't worthwhile. 4637 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) { 4638 // FIXME: Do we need to do something for scalable immediates here? 4639 // A scalable SCEV won't be constant, but we might still have 4640 // something in the offset? Bail out for now to be safe. 4641 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4642 continue; 4643 if (C->getValue()->isNegative() != 4644 (NewF.BaseOffset.isLessThanZero()) && 4645 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4646 .ule(std::abs(NewF.BaseOffset.getFixedValue()))) 4647 continue; 4648 } 4649 4650 // OK, looks good. 4651 NewF.canonicalize(*this->L); 4652 (void)InsertFormula(LU, LUIdx, NewF); 4653 } else { 4654 // Use the immediate in a base register. 4655 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4656 const SCEV *BaseReg = F.BaseRegs[N]; 4657 if (BaseReg != OrigReg) 4658 continue; 4659 Formula NewF = F; 4660 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || 4661 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || 4662 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset)) 4663 continue; 4664 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm); 4665 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4666 LU.Kind, LU.AccessTy, NewF)) { 4667 if (AMK == TTI::AMK_PostIndexed && 4668 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4669 continue; 4670 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm); 4671 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset)) 4672 continue; 4673 NewF = F; 4674 NewF.UnfoldedOffset = NewUnfoldedOffset; 4675 } 4676 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4677 4678 // If the new formula has a constant in a register, and adding the 4679 // constant value to the immediate would produce a value closer to 4680 // zero than the immediate itself, then the formula isn't worthwhile. 4681 for (const SCEV *NewReg : NewF.BaseRegs) 4682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) { 4683 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4684 goto skip_formula; 4685 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4686 .abs() 4687 .slt(std::abs(NewF.BaseOffset.getFixedValue())) && 4688 (C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4689 .countr_zero() >= 4690 (unsigned)llvm::countr_zero<uint64_t>( 4691 NewF.BaseOffset.getFixedValue())) 4692 goto skip_formula; 4693 } 4694 4695 // Ok, looks good. 4696 NewF.canonicalize(*this->L); 4697 (void)InsertFormula(LU, LUIdx, NewF); 4698 break; 4699 skip_formula:; 4700 } 4701 } 4702 } 4703 } 4704 } 4705 4706 /// Generate formulae for each use. 4707 void 4708 LSRInstance::GenerateAllReuseFormulae() { 4709 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4710 // queries are more precise. 4711 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4712 LSRUse &LU = Uses[LUIdx]; 4713 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4714 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4715 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4716 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4717 } 4718 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4719 LSRUse &LU = Uses[LUIdx]; 4720 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4721 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4722 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4723 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4724 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4725 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4727 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4728 } 4729 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4730 LSRUse &LU = Uses[LUIdx]; 4731 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4732 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4733 } 4734 4735 GenerateCrossUseConstantOffsets(); 4736 4737 LLVM_DEBUG(dbgs() << "\n" 4738 "After generating reuse formulae:\n"; 4739 print_uses(dbgs())); 4740 } 4741 4742 /// If there are multiple formulae with the same set of registers used 4743 /// by other uses, pick the best one and delete the others. 4744 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4745 DenseSet<const SCEV *> VisitedRegs; 4746 SmallPtrSet<const SCEV *, 16> Regs; 4747 SmallPtrSet<const SCEV *, 16> LoserRegs; 4748 #ifndef NDEBUG 4749 bool ChangedFormulae = false; 4750 #endif 4751 4752 // Collect the best formula for each unique set of shared registers. This 4753 // is reset for each use. 4754 using BestFormulaeTy = 4755 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4756 4757 BestFormulaeTy BestFormulae; 4758 4759 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4760 LSRUse &LU = Uses[LUIdx]; 4761 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4762 dbgs() << '\n'); 4763 4764 bool Any = false; 4765 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4766 FIdx != NumForms; ++FIdx) { 4767 Formula &F = LU.Formulae[FIdx]; 4768 4769 // Some formulas are instant losers. For example, they may depend on 4770 // nonexistent AddRecs from other loops. These need to be filtered 4771 // immediately, otherwise heuristics could choose them over others leading 4772 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4773 // avoids the need to recompute this information across formulae using the 4774 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4775 // the corresponding bad register from the Regs set. 4776 Cost CostF(L, SE, TTI, AMK); 4777 Regs.clear(); 4778 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4779 if (CostF.isLoser()) { 4780 // During initial formula generation, undesirable formulae are generated 4781 // by uses within other loops that have some non-trivial address mode or 4782 // use the postinc form of the IV. LSR needs to provide these formulae 4783 // as the basis of rediscovering the desired formula that uses an AddRec 4784 // corresponding to the existing phi. Once all formulae have been 4785 // generated, these initial losers may be pruned. 4786 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4787 dbgs() << "\n"); 4788 } 4789 else { 4790 SmallVector<const SCEV *, 4> Key; 4791 for (const SCEV *Reg : F.BaseRegs) { 4792 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4793 Key.push_back(Reg); 4794 } 4795 if (F.ScaledReg && 4796 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4797 Key.push_back(F.ScaledReg); 4798 // Unstable sort by host order ok, because this is only used for 4799 // uniquifying. 4800 llvm::sort(Key); 4801 4802 std::pair<BestFormulaeTy::const_iterator, bool> P = 4803 BestFormulae.insert(std::make_pair(Key, FIdx)); 4804 if (P.second) 4805 continue; 4806 4807 Formula &Best = LU.Formulae[P.first->second]; 4808 4809 Cost CostBest(L, SE, TTI, AMK); 4810 Regs.clear(); 4811 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4812 if (CostF.isLess(CostBest)) 4813 std::swap(F, Best); 4814 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4815 dbgs() << "\n" 4816 " in favor of formula "; 4817 Best.print(dbgs()); dbgs() << '\n'); 4818 } 4819 #ifndef NDEBUG 4820 ChangedFormulae = true; 4821 #endif 4822 LU.DeleteFormula(F); 4823 --FIdx; 4824 --NumForms; 4825 Any = true; 4826 } 4827 4828 // Now that we've filtered out some formulae, recompute the Regs set. 4829 if (Any) 4830 LU.RecomputeRegs(LUIdx, RegUses); 4831 4832 // Reset this to prepare for the next use. 4833 BestFormulae.clear(); 4834 } 4835 4836 LLVM_DEBUG(if (ChangedFormulae) { 4837 dbgs() << "\n" 4838 "After filtering out undesirable candidates:\n"; 4839 print_uses(dbgs()); 4840 }); 4841 } 4842 4843 /// Estimate the worst-case number of solutions the solver might have to 4844 /// consider. It almost never considers this many solutions because it prune the 4845 /// search space, but the pruning isn't always sufficient. 4846 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4847 size_t Power = 1; 4848 for (const LSRUse &LU : Uses) { 4849 size_t FSize = LU.Formulae.size(); 4850 if (FSize >= ComplexityLimit) { 4851 Power = ComplexityLimit; 4852 break; 4853 } 4854 Power *= FSize; 4855 if (Power >= ComplexityLimit) 4856 break; 4857 } 4858 return Power; 4859 } 4860 4861 /// When one formula uses a superset of the registers of another formula, it 4862 /// won't help reduce register pressure (though it may not necessarily hurt 4863 /// register pressure); remove it to simplify the system. 4864 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4865 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4866 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4867 4868 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4869 "which use a superset of registers used by other " 4870 "formulae.\n"); 4871 4872 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4873 LSRUse &LU = Uses[LUIdx]; 4874 bool Any = false; 4875 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4876 Formula &F = LU.Formulae[i]; 4877 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) 4878 continue; 4879 // Look for a formula with a constant or GV in a register. If the use 4880 // also has a formula with that same value in an immediate field, 4881 // delete the one that uses a register. 4882 for (SmallVectorImpl<const SCEV *>::const_iterator 4883 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4884 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4885 Formula NewF = F; 4886 //FIXME: Formulas should store bitwidth to do wrapping properly. 4887 // See PR41034. 4888 NewF.BaseOffset = 4889 Immediate::getFixed(NewF.BaseOffset.getFixedValue() + 4890 (uint64_t)C->getValue()->getSExtValue()); 4891 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4892 (I - F.BaseRegs.begin())); 4893 if (LU.HasFormulaWithSameRegs(NewF)) { 4894 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4895 dbgs() << '\n'); 4896 LU.DeleteFormula(F); 4897 --i; 4898 --e; 4899 Any = true; 4900 break; 4901 } 4902 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4903 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4904 if (!F.BaseGV) { 4905 Formula NewF = F; 4906 NewF.BaseGV = GV; 4907 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4908 (I - F.BaseRegs.begin())); 4909 if (LU.HasFormulaWithSameRegs(NewF)) { 4910 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4911 dbgs() << '\n'); 4912 LU.DeleteFormula(F); 4913 --i; 4914 --e; 4915 Any = true; 4916 break; 4917 } 4918 } 4919 } 4920 } 4921 } 4922 if (Any) 4923 LU.RecomputeRegs(LUIdx, RegUses); 4924 } 4925 4926 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4927 } 4928 } 4929 4930 /// When there are many registers for expressions like A, A+1, A+2, etc., 4931 /// allocate a single register for them. 4932 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4933 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4934 return; 4935 4936 LLVM_DEBUG( 4937 dbgs() << "The search space is too complex.\n" 4938 "Narrowing the search space by assuming that uses separated " 4939 "by a constant offset will use the same registers.\n"); 4940 4941 // This is especially useful for unrolled loops. 4942 4943 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4944 LSRUse &LU = Uses[LUIdx]; 4945 for (const Formula &F : LU.Formulae) { 4946 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) 4947 continue; 4948 4949 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4950 if (!LUThatHas) 4951 continue; 4952 4953 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4954 LU.Kind, LU.AccessTy)) 4955 continue; 4956 4957 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4958 4959 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4960 4961 // Transfer the fixups of LU to LUThatHas. 4962 for (LSRFixup &Fixup : LU.Fixups) { 4963 Fixup.Offset += F.BaseOffset; 4964 LUThatHas->pushFixup(Fixup); 4965 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4966 } 4967 4968 // Delete formulae from the new use which are no longer legal. 4969 bool Any = false; 4970 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4971 Formula &F = LUThatHas->Formulae[i]; 4972 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4973 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4974 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4975 LUThatHas->DeleteFormula(F); 4976 --i; 4977 --e; 4978 Any = true; 4979 } 4980 } 4981 4982 if (Any) 4983 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4984 4985 // Delete the old use. 4986 DeleteUse(LU, LUIdx); 4987 --LUIdx; 4988 --NumUses; 4989 break; 4990 } 4991 } 4992 4993 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4994 } 4995 4996 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4997 /// we've done more filtering, as it may be able to find more formulae to 4998 /// eliminate. 4999 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 5000 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5001 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5002 5003 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 5004 "undesirable dedicated registers.\n"); 5005 5006 FilterOutUndesirableDedicatedRegisters(); 5007 5008 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5009 } 5010 } 5011 5012 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 5013 /// Pick the best one and delete the others. 5014 /// This narrowing heuristic is to keep as many formulae with different 5015 /// Scale and ScaledReg pair as possible while narrowing the search space. 5016 /// The benefit is that it is more likely to find out a better solution 5017 /// from a formulae set with more Scale and ScaledReg variations than 5018 /// a formulae set with the same Scale and ScaledReg. The picking winner 5019 /// reg heuristic will often keep the formulae with the same Scale and 5020 /// ScaledReg and filter others, and we want to avoid that if possible. 5021 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 5022 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5023 return; 5024 5025 LLVM_DEBUG( 5026 dbgs() << "The search space is too complex.\n" 5027 "Narrowing the search space by choosing the best Formula " 5028 "from the Formulae with the same Scale and ScaledReg.\n"); 5029 5030 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 5031 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 5032 5033 BestFormulaeTy BestFormulae; 5034 #ifndef NDEBUG 5035 bool ChangedFormulae = false; 5036 #endif 5037 DenseSet<const SCEV *> VisitedRegs; 5038 SmallPtrSet<const SCEV *, 16> Regs; 5039 5040 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5041 LSRUse &LU = Uses[LUIdx]; 5042 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 5043 dbgs() << '\n'); 5044 5045 // Return true if Formula FA is better than Formula FB. 5046 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 5047 // First we will try to choose the Formula with fewer new registers. 5048 // For a register used by current Formula, the more the register is 5049 // shared among LSRUses, the less we increase the register number 5050 // counter of the formula. 5051 size_t FARegNum = 0; 5052 for (const SCEV *Reg : FA.BaseRegs) { 5053 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5054 FARegNum += (NumUses - UsedByIndices.count() + 1); 5055 } 5056 size_t FBRegNum = 0; 5057 for (const SCEV *Reg : FB.BaseRegs) { 5058 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5059 FBRegNum += (NumUses - UsedByIndices.count() + 1); 5060 } 5061 if (FARegNum != FBRegNum) 5062 return FARegNum < FBRegNum; 5063 5064 // If the new register numbers are the same, choose the Formula with 5065 // less Cost. 5066 Cost CostFA(L, SE, TTI, AMK); 5067 Cost CostFB(L, SE, TTI, AMK); 5068 Regs.clear(); 5069 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 5070 Regs.clear(); 5071 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 5072 return CostFA.isLess(CostFB); 5073 }; 5074 5075 bool Any = false; 5076 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5077 ++FIdx) { 5078 Formula &F = LU.Formulae[FIdx]; 5079 if (!F.ScaledReg) 5080 continue; 5081 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 5082 if (P.second) 5083 continue; 5084 5085 Formula &Best = LU.Formulae[P.first->second]; 5086 if (IsBetterThan(F, Best)) 5087 std::swap(F, Best); 5088 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5089 dbgs() << "\n" 5090 " in favor of formula "; 5091 Best.print(dbgs()); dbgs() << '\n'); 5092 #ifndef NDEBUG 5093 ChangedFormulae = true; 5094 #endif 5095 LU.DeleteFormula(F); 5096 --FIdx; 5097 --NumForms; 5098 Any = true; 5099 } 5100 if (Any) 5101 LU.RecomputeRegs(LUIdx, RegUses); 5102 5103 // Reset this to prepare for the next use. 5104 BestFormulae.clear(); 5105 } 5106 5107 LLVM_DEBUG(if (ChangedFormulae) { 5108 dbgs() << "\n" 5109 "After filtering out undesirable candidates:\n"; 5110 print_uses(dbgs()); 5111 }); 5112 } 5113 5114 /// If we are over the complexity limit, filter out any post-inc prefering 5115 /// variables to only post-inc values. 5116 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 5117 if (AMK != TTI::AMK_PostIndexed) 5118 return; 5119 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5120 return; 5121 5122 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 5123 "Narrowing the search space by choosing the lowest " 5124 "register Formula for PostInc Uses.\n"); 5125 5126 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5127 LSRUse &LU = Uses[LUIdx]; 5128 5129 if (LU.Kind != LSRUse::Address) 5130 continue; 5131 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 5132 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 5133 continue; 5134 5135 size_t MinRegs = std::numeric_limits<size_t>::max(); 5136 for (const Formula &F : LU.Formulae) 5137 MinRegs = std::min(F.getNumRegs(), MinRegs); 5138 5139 bool Any = false; 5140 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5141 ++FIdx) { 5142 Formula &F = LU.Formulae[FIdx]; 5143 if (F.getNumRegs() > MinRegs) { 5144 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5145 dbgs() << "\n"); 5146 LU.DeleteFormula(F); 5147 --FIdx; 5148 --NumForms; 5149 Any = true; 5150 } 5151 } 5152 if (Any) 5153 LU.RecomputeRegs(LUIdx, RegUses); 5154 5155 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5156 break; 5157 } 5158 5159 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5160 } 5161 5162 /// The function delete formulas with high registers number expectation. 5163 /// Assuming we don't know the value of each formula (already delete 5164 /// all inefficient), generate probability of not selecting for each 5165 /// register. 5166 /// For example, 5167 /// Use1: 5168 /// reg(a) + reg({0,+,1}) 5169 /// reg(a) + reg({-1,+,1}) + 1 5170 /// reg({a,+,1}) 5171 /// Use2: 5172 /// reg(b) + reg({0,+,1}) 5173 /// reg(b) + reg({-1,+,1}) + 1 5174 /// reg({b,+,1}) 5175 /// Use3: 5176 /// reg(c) + reg(b) + reg({0,+,1}) 5177 /// reg(c) + reg({b,+,1}) 5178 /// 5179 /// Probability of not selecting 5180 /// Use1 Use2 Use3 5181 /// reg(a) (1/3) * 1 * 1 5182 /// reg(b) 1 * (1/3) * (1/2) 5183 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 5184 /// reg({-1,+,1}) (2/3) * (2/3) * 1 5185 /// reg({a,+,1}) (2/3) * 1 * 1 5186 /// reg({b,+,1}) 1 * (2/3) * (2/3) 5187 /// reg(c) 1 * 1 * 0 5188 /// 5189 /// Now count registers number mathematical expectation for each formula: 5190 /// Note that for each use we exclude probability if not selecting for the use. 5191 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 5192 /// probabilty 1/3 of not selecting for Use1). 5193 /// Use1: 5194 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 5195 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 5196 /// reg({a,+,1}) 1 5197 /// Use2: 5198 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 5199 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 5200 /// reg({b,+,1}) 2/3 5201 /// Use3: 5202 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 5203 /// reg(c) + reg({b,+,1}) 1 + 2/3 5204 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 5205 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5206 return; 5207 // Ok, we have too many of formulae on our hands to conveniently handle. 5208 // Use a rough heuristic to thin out the list. 5209 5210 // Set of Regs wich will be 100% used in final solution. 5211 // Used in each formula of a solution (in example above this is reg(c)). 5212 // We can skip them in calculations. 5213 SmallPtrSet<const SCEV *, 4> UniqRegs; 5214 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5215 5216 // Map each register to probability of not selecting 5217 DenseMap <const SCEV *, float> RegNumMap; 5218 for (const SCEV *Reg : RegUses) { 5219 if (UniqRegs.count(Reg)) 5220 continue; 5221 float PNotSel = 1; 5222 for (const LSRUse &LU : Uses) { 5223 if (!LU.Regs.count(Reg)) 5224 continue; 5225 float P = LU.getNotSelectedProbability(Reg); 5226 if (P != 0.0) 5227 PNotSel *= P; 5228 else 5229 UniqRegs.insert(Reg); 5230 } 5231 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 5232 } 5233 5234 LLVM_DEBUG( 5235 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 5236 5237 // Delete formulas where registers number expectation is high. 5238 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5239 LSRUse &LU = Uses[LUIdx]; 5240 // If nothing to delete - continue. 5241 if (LU.Formulae.size() < 2) 5242 continue; 5243 // This is temporary solution to test performance. Float should be 5244 // replaced with round independent type (based on integers) to avoid 5245 // different results for different target builds. 5246 float FMinRegNum = LU.Formulae[0].getNumRegs(); 5247 float FMinARegNum = LU.Formulae[0].getNumRegs(); 5248 size_t MinIdx = 0; 5249 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5250 Formula &F = LU.Formulae[i]; 5251 float FRegNum = 0; 5252 float FARegNum = 0; 5253 for (const SCEV *BaseReg : F.BaseRegs) { 5254 if (UniqRegs.count(BaseReg)) 5255 continue; 5256 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5257 if (isa<SCEVAddRecExpr>(BaseReg)) 5258 FARegNum += 5259 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5260 } 5261 if (const SCEV *ScaledReg = F.ScaledReg) { 5262 if (!UniqRegs.count(ScaledReg)) { 5263 FRegNum += 5264 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5265 if (isa<SCEVAddRecExpr>(ScaledReg)) 5266 FARegNum += 5267 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5268 } 5269 } 5270 if (FMinRegNum > FRegNum || 5271 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 5272 FMinRegNum = FRegNum; 5273 FMinARegNum = FARegNum; 5274 MinIdx = i; 5275 } 5276 } 5277 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 5278 dbgs() << " with min reg num " << FMinRegNum << '\n'); 5279 if (MinIdx != 0) 5280 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 5281 while (LU.Formulae.size() != 1) { 5282 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5283 dbgs() << '\n'); 5284 LU.Formulae.pop_back(); 5285 } 5286 LU.RecomputeRegs(LUIdx, RegUses); 5287 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5288 Formula &F = LU.Formulae[0]; 5289 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5290 // When we choose the formula, the regs become unique. 5291 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5292 if (F.ScaledReg) 5293 UniqRegs.insert(F.ScaledReg); 5294 } 5295 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5296 } 5297 5298 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5299 // would the addressing offset +C would be legal where the negative offset -C is 5300 // not. 5301 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5302 ScalarEvolution &SE, const SCEV *Best, 5303 const SCEV *Reg, 5304 MemAccessTy AccessType) { 5305 if (Best->getType() != Reg->getType() || 5306 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5307 cast<SCEVAddRecExpr>(Best)->getLoop() != 5308 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5309 return false; 5310 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg)); 5311 if (!Diff) 5312 return false; 5313 5314 return TTI.isLegalAddressingMode( 5315 AccessType.MemTy, /*BaseGV=*/nullptr, 5316 /*BaseOffset=*/Diff->getAPInt().getSExtValue(), 5317 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5318 !TTI.isLegalAddressingMode( 5319 AccessType.MemTy, /*BaseGV=*/nullptr, 5320 /*BaseOffset=*/-Diff->getAPInt().getSExtValue(), 5321 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5322 } 5323 5324 /// Pick a register which seems likely to be profitable, and then in any use 5325 /// which has any reference to that register, delete all formulae which do not 5326 /// reference that register. 5327 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5328 // With all other options exhausted, loop until the system is simple 5329 // enough to handle. 5330 SmallPtrSet<const SCEV *, 4> Taken; 5331 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5332 // Ok, we have too many of formulae on our hands to conveniently handle. 5333 // Use a rough heuristic to thin out the list. 5334 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5335 5336 // Pick the register which is used by the most LSRUses, which is likely 5337 // to be a good reuse register candidate. 5338 const SCEV *Best = nullptr; 5339 unsigned BestNum = 0; 5340 for (const SCEV *Reg : RegUses) { 5341 if (Taken.count(Reg)) 5342 continue; 5343 if (!Best) { 5344 Best = Reg; 5345 BestNum = RegUses.getUsedByIndices(Reg).count(); 5346 } else { 5347 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5348 if (Count > BestNum) { 5349 Best = Reg; 5350 BestNum = Count; 5351 } 5352 5353 // If the scores are the same, but the Reg is simpler for the target 5354 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5355 // handle +C but not -C), opt for the simpler formula. 5356 if (Count == BestNum) { 5357 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5358 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5359 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5360 Uses[LUIdx].AccessTy)) { 5361 Best = Reg; 5362 BestNum = Count; 5363 } 5364 } 5365 } 5366 } 5367 assert(Best && "Failed to find best LSRUse candidate"); 5368 5369 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5370 << " will yield profitable reuse.\n"); 5371 Taken.insert(Best); 5372 5373 // In any use with formulae which references this register, delete formulae 5374 // which don't reference it. 5375 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5376 LSRUse &LU = Uses[LUIdx]; 5377 if (!LU.Regs.count(Best)) continue; 5378 5379 bool Any = false; 5380 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5381 Formula &F = LU.Formulae[i]; 5382 if (!F.referencesReg(Best)) { 5383 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5384 LU.DeleteFormula(F); 5385 --e; 5386 --i; 5387 Any = true; 5388 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5389 continue; 5390 } 5391 } 5392 5393 if (Any) 5394 LU.RecomputeRegs(LUIdx, RegUses); 5395 } 5396 5397 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5398 } 5399 } 5400 5401 /// If there are an extraordinary number of formulae to choose from, use some 5402 /// rough heuristics to prune down the number of formulae. This keeps the main 5403 /// solver from taking an extraordinary amount of time in some worst-case 5404 /// scenarios. 5405 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5406 NarrowSearchSpaceByDetectingSupersets(); 5407 NarrowSearchSpaceByCollapsingUnrolledCode(); 5408 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5409 if (FilterSameScaledReg) 5410 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5411 NarrowSearchSpaceByFilterPostInc(); 5412 if (LSRExpNarrow) 5413 NarrowSearchSpaceByDeletingCostlyFormulas(); 5414 else 5415 NarrowSearchSpaceByPickingWinnerRegs(); 5416 } 5417 5418 /// This is the recursive solver. 5419 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5420 Cost &SolutionCost, 5421 SmallVectorImpl<const Formula *> &Workspace, 5422 const Cost &CurCost, 5423 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5424 DenseSet<const SCEV *> &VisitedRegs) const { 5425 // Some ideas: 5426 // - prune more: 5427 // - use more aggressive filtering 5428 // - sort the formula so that the most profitable solutions are found first 5429 // - sort the uses too 5430 // - search faster: 5431 // - don't compute a cost, and then compare. compare while computing a cost 5432 // and bail early. 5433 // - track register sets with SmallBitVector 5434 5435 const LSRUse &LU = Uses[Workspace.size()]; 5436 5437 // If this use references any register that's already a part of the 5438 // in-progress solution, consider it a requirement that a formula must 5439 // reference that register in order to be considered. This prunes out 5440 // unprofitable searching. 5441 SmallSetVector<const SCEV *, 4> ReqRegs; 5442 for (const SCEV *S : CurRegs) 5443 if (LU.Regs.count(S)) 5444 ReqRegs.insert(S); 5445 5446 SmallPtrSet<const SCEV *, 16> NewRegs; 5447 Cost NewCost(L, SE, TTI, AMK); 5448 for (const Formula &F : LU.Formulae) { 5449 // Ignore formulae which may not be ideal in terms of register reuse of 5450 // ReqRegs. The formula should use all required registers before 5451 // introducing new ones. 5452 // This can sometimes (notably when trying to favour postinc) lead to 5453 // sub-optimial decisions. There it is best left to the cost modelling to 5454 // get correct. 5455 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5456 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5457 for (const SCEV *Reg : ReqRegs) { 5458 if ((F.ScaledReg && F.ScaledReg == Reg) || 5459 is_contained(F.BaseRegs, Reg)) { 5460 --NumReqRegsToFind; 5461 if (NumReqRegsToFind == 0) 5462 break; 5463 } 5464 } 5465 if (NumReqRegsToFind != 0) { 5466 // If none of the formulae satisfied the required registers, then we could 5467 // clear ReqRegs and try again. Currently, we simply give up in this case. 5468 continue; 5469 } 5470 } 5471 5472 // Evaluate the cost of the current formula. If it's already worse than 5473 // the current best, prune the search at that point. 5474 NewCost = CurCost; 5475 NewRegs = CurRegs; 5476 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5477 if (NewCost.isLess(SolutionCost)) { 5478 Workspace.push_back(&F); 5479 if (Workspace.size() != Uses.size()) { 5480 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5481 NewRegs, VisitedRegs); 5482 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5483 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5484 } else { 5485 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5486 dbgs() << ".\nRegs:\n"; 5487 for (const SCEV *S : NewRegs) dbgs() 5488 << "- " << *S << "\n"; 5489 dbgs() << '\n'); 5490 5491 SolutionCost = NewCost; 5492 Solution = Workspace; 5493 } 5494 Workspace.pop_back(); 5495 } 5496 } 5497 } 5498 5499 /// Choose one formula from each use. Return the results in the given Solution 5500 /// vector. 5501 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5502 SmallVector<const Formula *, 8> Workspace; 5503 Cost SolutionCost(L, SE, TTI, AMK); 5504 SolutionCost.Lose(); 5505 Cost CurCost(L, SE, TTI, AMK); 5506 SmallPtrSet<const SCEV *, 16> CurRegs; 5507 DenseSet<const SCEV *> VisitedRegs; 5508 Workspace.reserve(Uses.size()); 5509 5510 // SolveRecurse does all the work. 5511 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5512 CurRegs, VisitedRegs); 5513 if (Solution.empty()) { 5514 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5515 return; 5516 } 5517 5518 // Ok, we've now made all our decisions. 5519 LLVM_DEBUG(dbgs() << "\n" 5520 "The chosen solution requires "; 5521 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5522 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5523 dbgs() << " "; 5524 Uses[i].print(dbgs()); 5525 dbgs() << "\n" 5526 " "; 5527 Solution[i]->print(dbgs()); 5528 dbgs() << '\n'; 5529 }); 5530 5531 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5532 5533 const bool EnableDropUnprofitableSolution = [&] { 5534 switch (AllowDropSolutionIfLessProfitable) { 5535 case cl::BOU_TRUE: 5536 return true; 5537 case cl::BOU_FALSE: 5538 return false; 5539 case cl::BOU_UNSET: 5540 return TTI.shouldDropLSRSolutionIfLessProfitable(); 5541 } 5542 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 5543 }(); 5544 5545 if (BaselineCost.isLess(SolutionCost)) { 5546 if (!EnableDropUnprofitableSolution) 5547 LLVM_DEBUG( 5548 dbgs() << "Baseline is more profitable than chosen solution, " 5549 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5550 else { 5551 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5552 "solution, dropping LSR solution.\n";); 5553 Solution.clear(); 5554 } 5555 } 5556 } 5557 5558 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5559 /// we can go while still being dominated by the input positions. This helps 5560 /// canonicalize the insert position, which encourages sharing. 5561 BasicBlock::iterator 5562 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5563 const SmallVectorImpl<Instruction *> &Inputs) 5564 const { 5565 Instruction *Tentative = &*IP; 5566 while (true) { 5567 bool AllDominate = true; 5568 Instruction *BetterPos = nullptr; 5569 // Don't bother attempting to insert before a catchswitch, their basic block 5570 // cannot have other non-PHI instructions. 5571 if (isa<CatchSwitchInst>(Tentative)) 5572 return IP; 5573 5574 for (Instruction *Inst : Inputs) { 5575 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5576 AllDominate = false; 5577 break; 5578 } 5579 // Attempt to find an insert position in the middle of the block, 5580 // instead of at the end, so that it can be used for other expansions. 5581 if (Tentative->getParent() == Inst->getParent() && 5582 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5583 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5584 } 5585 if (!AllDominate) 5586 break; 5587 if (BetterPos) 5588 IP = BetterPos->getIterator(); 5589 else 5590 IP = Tentative->getIterator(); 5591 5592 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5593 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5594 5595 BasicBlock *IDom; 5596 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5597 if (!Rung) return IP; 5598 Rung = Rung->getIDom(); 5599 if (!Rung) return IP; 5600 IDom = Rung->getBlock(); 5601 5602 // Don't climb into a loop though. 5603 const Loop *IDomLoop = LI.getLoopFor(IDom); 5604 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5605 if (IDomDepth <= IPLoopDepth && 5606 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5607 break; 5608 } 5609 5610 Tentative = IDom->getTerminator(); 5611 } 5612 5613 return IP; 5614 } 5615 5616 /// Determine an input position which will be dominated by the operands and 5617 /// which will dominate the result. 5618 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5619 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5620 // Collect some instructions which must be dominated by the 5621 // expanding replacement. These must be dominated by any operands that 5622 // will be required in the expansion. 5623 SmallVector<Instruction *, 4> Inputs; 5624 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5625 Inputs.push_back(I); 5626 if (LU.Kind == LSRUse::ICmpZero) 5627 if (Instruction *I = 5628 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5629 Inputs.push_back(I); 5630 if (LF.PostIncLoops.count(L)) { 5631 if (LF.isUseFullyOutsideLoop(L)) 5632 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5633 else 5634 Inputs.push_back(IVIncInsertPos); 5635 } 5636 // The expansion must also be dominated by the increment positions of any 5637 // loops it for which it is using post-inc mode. 5638 for (const Loop *PIL : LF.PostIncLoops) { 5639 if (PIL == L) continue; 5640 5641 // Be dominated by the loop exit. 5642 SmallVector<BasicBlock *, 4> ExitingBlocks; 5643 PIL->getExitingBlocks(ExitingBlocks); 5644 if (!ExitingBlocks.empty()) { 5645 BasicBlock *BB = ExitingBlocks[0]; 5646 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5647 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5648 Inputs.push_back(BB->getTerminator()); 5649 } 5650 } 5651 5652 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5653 && !isa<DbgInfoIntrinsic>(LowestIP) && 5654 "Insertion point must be a normal instruction"); 5655 5656 // Then, climb up the immediate dominator tree as far as we can go while 5657 // still being dominated by the input positions. 5658 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5659 5660 // Don't insert instructions before PHI nodes. 5661 while (isa<PHINode>(IP)) ++IP; 5662 5663 // Ignore landingpad instructions. 5664 while (IP->isEHPad()) ++IP; 5665 5666 // Ignore debug intrinsics. 5667 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5668 5669 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5670 // IP consistent across expansions and allows the previously inserted 5671 // instructions to be reused by subsequent expansion. 5672 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5673 ++IP; 5674 5675 return IP; 5676 } 5677 5678 /// Emit instructions for the leading candidate expression for this LSRUse (this 5679 /// is called "expanding"). 5680 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5681 const Formula &F, BasicBlock::iterator IP, 5682 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5683 if (LU.RigidFormula) 5684 return LF.OperandValToReplace; 5685 5686 // Determine an input position which will be dominated by the operands and 5687 // which will dominate the result. 5688 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5689 Rewriter.setInsertPoint(&*IP); 5690 5691 // Inform the Rewriter if we have a post-increment use, so that it can 5692 // perform an advantageous expansion. 5693 Rewriter.setPostInc(LF.PostIncLoops); 5694 5695 // This is the type that the user actually needs. 5696 Type *OpTy = LF.OperandValToReplace->getType(); 5697 // This will be the type that we'll initially expand to. 5698 Type *Ty = F.getType(); 5699 if (!Ty) 5700 // No type known; just expand directly to the ultimate type. 5701 Ty = OpTy; 5702 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5703 // Expand directly to the ultimate type if it's the right size. 5704 Ty = OpTy; 5705 // This is the type to do integer arithmetic in. 5706 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5707 5708 // Build up a list of operands to add together to form the full base. 5709 SmallVector<const SCEV *, 8> Ops; 5710 5711 // Expand the BaseRegs portion. 5712 for (const SCEV *Reg : F.BaseRegs) { 5713 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5714 5715 // If we're expanding for a post-inc user, make the post-inc adjustment. 5716 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5717 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5718 } 5719 5720 // Expand the ScaledReg portion. 5721 Value *ICmpScaledV = nullptr; 5722 if (F.Scale != 0) { 5723 const SCEV *ScaledS = F.ScaledReg; 5724 5725 // If we're expanding for a post-inc user, make the post-inc adjustment. 5726 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5727 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5728 5729 if (LU.Kind == LSRUse::ICmpZero) { 5730 // Expand ScaleReg as if it was part of the base regs. 5731 if (F.Scale == 1) 5732 Ops.push_back( 5733 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5734 else { 5735 // An interesting way of "folding" with an icmp is to use a negated 5736 // scale, which we'll implement by inserting it into the other operand 5737 // of the icmp. 5738 assert(F.Scale == -1 && 5739 "The only scale supported by ICmpZero uses is -1!"); 5740 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5741 } 5742 } else { 5743 // Otherwise just expand the scaled register and an explicit scale, 5744 // which is expected to be matched as part of the address. 5745 5746 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5747 // Unless the addressing mode will not be folded. 5748 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5749 isAMCompletelyFolded(TTI, LU, F)) { 5750 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5751 Ops.clear(); 5752 Ops.push_back(SE.getUnknown(FullV)); 5753 } 5754 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5755 if (F.Scale != 1) 5756 ScaledS = 5757 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5758 Ops.push_back(ScaledS); 5759 } 5760 } 5761 5762 // Expand the GV portion. 5763 if (F.BaseGV) { 5764 // Flush the operand list to suppress SCEVExpander hoisting. 5765 if (!Ops.empty()) { 5766 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5767 Ops.clear(); 5768 Ops.push_back(SE.getUnknown(FullV)); 5769 } 5770 Ops.push_back(SE.getUnknown(F.BaseGV)); 5771 } 5772 5773 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5774 // unfolded offsets. LSR assumes they both live next to their uses. 5775 if (!Ops.empty()) { 5776 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5777 Ops.clear(); 5778 Ops.push_back(SE.getUnknown(FullV)); 5779 } 5780 5781 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail 5782 // out at this point, or should we generate a SCEV adding together mixed 5783 // offsets? 5784 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && 5785 "Expanding mismatched offsets\n"); 5786 // Expand the immediate portion. 5787 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset); 5788 if (Offset.isNonZero()) { 5789 if (LU.Kind == LSRUse::ICmpZero) { 5790 // The other interesting way of "folding" with an ICmpZero is to use a 5791 // negated immediate. 5792 if (!ICmpScaledV) 5793 ICmpScaledV = 5794 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue()); 5795 else { 5796 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5797 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue()); 5798 } 5799 } else { 5800 // Just add the immediate values. These again are expected to be matched 5801 // as part of the address. 5802 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy)); 5803 } 5804 } 5805 5806 // Expand the unfolded offset portion. 5807 Immediate UnfoldedOffset = F.UnfoldedOffset; 5808 if (UnfoldedOffset.isNonZero()) { 5809 // Just add the immediate values. 5810 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy)); 5811 } 5812 5813 // Emit instructions summing all the operands. 5814 const SCEV *FullS = Ops.empty() ? 5815 SE.getConstant(IntTy, 0) : 5816 SE.getAddExpr(Ops); 5817 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5818 5819 // We're done expanding now, so reset the rewriter. 5820 Rewriter.clearPostInc(); 5821 5822 // An ICmpZero Formula represents an ICmp which we're handling as a 5823 // comparison against zero. Now that we've expanded an expression for that 5824 // form, update the ICmp's other operand. 5825 if (LU.Kind == LSRUse::ICmpZero) { 5826 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5827 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5828 DeadInsts.emplace_back(OperandIsInstr); 5829 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5830 "a scale at the same time!"); 5831 if (F.Scale == -1) { 5832 if (ICmpScaledV->getType() != OpTy) { 5833 Instruction *Cast = CastInst::Create( 5834 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false), 5835 ICmpScaledV, OpTy, "tmp", CI->getIterator()); 5836 ICmpScaledV = Cast; 5837 } 5838 CI->setOperand(1, ICmpScaledV); 5839 } else { 5840 // A scale of 1 means that the scale has been expanded as part of the 5841 // base regs. 5842 assert((F.Scale == 0 || F.Scale == 1) && 5843 "ICmp does not support folding a global value and " 5844 "a scale at the same time!"); 5845 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5846 -(uint64_t)Offset.getFixedValue()); 5847 if (C->getType() != OpTy) { 5848 C = ConstantFoldCastOperand( 5849 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5850 CI->getDataLayout()); 5851 assert(C && "Cast of ConstantInt should have folded"); 5852 } 5853 5854 CI->setOperand(1, C); 5855 } 5856 } 5857 5858 return FullV; 5859 } 5860 5861 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5862 /// effectively happens in their predecessor blocks, so the expression may need 5863 /// to be expanded in multiple places. 5864 void LSRInstance::RewriteForPHI( 5865 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5866 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5867 DenseMap<BasicBlock *, Value *> Inserted; 5868 5869 // Inserting instructions in the loop and using them as PHI's input could 5870 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 5871 // corresponding incoming block is not loop exiting). So collect all such 5872 // instructions to form LCSSA for them later. 5873 SmallVector<Instruction *, 4> InsertedNonLCSSAInsts; 5874 5875 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5876 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5877 bool needUpdateFixups = false; 5878 BasicBlock *BB = PN->getIncomingBlock(i); 5879 5880 // If this is a critical edge, split the edge so that we do not insert 5881 // the code on all predecessor/successor paths. We do this unless this 5882 // is the canonical backedge for this loop, which complicates post-inc 5883 // users. 5884 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5885 !isa<IndirectBrInst>(BB->getTerminator()) && 5886 !isa<CatchSwitchInst>(BB->getTerminator())) { 5887 BasicBlock *Parent = PN->getParent(); 5888 Loop *PNLoop = LI.getLoopFor(Parent); 5889 if (!PNLoop || Parent != PNLoop->getHeader()) { 5890 // Split the critical edge. 5891 BasicBlock *NewBB = nullptr; 5892 if (!Parent->isLandingPad()) { 5893 NewBB = 5894 SplitCriticalEdge(BB, Parent, 5895 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5896 .setMergeIdenticalEdges() 5897 .setKeepOneInputPHIs()); 5898 } else { 5899 SmallVector<BasicBlock*, 2> NewBBs; 5900 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5901 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5902 NewBB = NewBBs[0]; 5903 } 5904 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5905 // phi predecessors are identical. The simple thing to do is skip 5906 // splitting in this case rather than complicate the API. 5907 if (NewBB) { 5908 // If PN is outside of the loop and BB is in the loop, we want to 5909 // move the block to be immediately before the PHI block, not 5910 // immediately after BB. 5911 if (L->contains(BB) && !L->contains(PN)) 5912 NewBB->moveBefore(PN->getParent()); 5913 5914 // Splitting the edge can reduce the number of PHI entries we have. 5915 e = PN->getNumIncomingValues(); 5916 BB = NewBB; 5917 i = PN->getBasicBlockIndex(BB); 5918 5919 needUpdateFixups = true; 5920 } 5921 } 5922 } 5923 5924 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5925 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5926 if (!Pair.second) 5927 PN->setIncomingValue(i, Pair.first->second); 5928 else { 5929 Value *FullV = 5930 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5931 5932 // If this is reuse-by-noop-cast, insert the noop cast. 5933 Type *OpTy = LF.OperandValToReplace->getType(); 5934 if (FullV->getType() != OpTy) 5935 FullV = CastInst::Create( 5936 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV, 5937 LF.OperandValToReplace->getType(), "tmp", 5938 BB->getTerminator()->getIterator()); 5939 5940 // If the incoming block for this value is not in the loop, it means the 5941 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5942 // the inserted value. 5943 if (auto *I = dyn_cast<Instruction>(FullV)) 5944 if (L->contains(I) && !L->contains(BB)) 5945 InsertedNonLCSSAInsts.push_back(I); 5946 5947 PN->setIncomingValue(i, FullV); 5948 Pair.first->second = FullV; 5949 } 5950 5951 // If LSR splits critical edge and phi node has other pending 5952 // fixup operands, we need to update those pending fixups. Otherwise 5953 // formulae will not be implemented completely and some instructions 5954 // will not be eliminated. 5955 if (needUpdateFixups) { 5956 for (LSRUse &LU : Uses) 5957 for (LSRFixup &Fixup : LU.Fixups) 5958 // If fixup is supposed to rewrite some operand in the phi 5959 // that was just updated, it may be already moved to 5960 // another phi node. Such fixup requires update. 5961 if (Fixup.UserInst == PN) { 5962 // Check if the operand we try to replace still exists in the 5963 // original phi. 5964 bool foundInOriginalPHI = false; 5965 for (const auto &val : PN->incoming_values()) 5966 if (val == Fixup.OperandValToReplace) { 5967 foundInOriginalPHI = true; 5968 break; 5969 } 5970 5971 // If fixup operand found in original PHI - nothing to do. 5972 if (foundInOriginalPHI) 5973 continue; 5974 5975 // Otherwise it might be moved to another PHI and requires update. 5976 // If fixup operand not found in any of the incoming blocks that 5977 // means we have already rewritten it - nothing to do. 5978 for (const auto &Block : PN->blocks()) 5979 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5980 ++I) { 5981 PHINode *NewPN = cast<PHINode>(I); 5982 for (const auto &val : NewPN->incoming_values()) 5983 if (val == Fixup.OperandValToReplace) 5984 Fixup.UserInst = NewPN; 5985 } 5986 } 5987 } 5988 } 5989 5990 formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE); 5991 } 5992 5993 /// Emit instructions for the leading candidate expression for this LSRUse (this 5994 /// is called "expanding"), and update the UserInst to reference the newly 5995 /// expanded value. 5996 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5997 const Formula &F, 5998 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5999 // First, find an insertion point that dominates UserInst. For PHI nodes, 6000 // find the nearest block which dominates all the relevant uses. 6001 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 6002 RewriteForPHI(PN, LU, LF, F, DeadInsts); 6003 } else { 6004 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 6005 6006 // If this is reuse-by-noop-cast, insert the noop cast. 6007 Type *OpTy = LF.OperandValToReplace->getType(); 6008 if (FullV->getType() != OpTy) { 6009 Instruction *Cast = 6010 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 6011 FullV, OpTy, "tmp", LF.UserInst->getIterator()); 6012 FullV = Cast; 6013 } 6014 6015 // Update the user. ICmpZero is handled specially here (for now) because 6016 // Expand may have updated one of the operands of the icmp already, and 6017 // its new value may happen to be equal to LF.OperandValToReplace, in 6018 // which case doing replaceUsesOfWith leads to replacing both operands 6019 // with the same value. TODO: Reorganize this. 6020 if (LU.Kind == LSRUse::ICmpZero) 6021 LF.UserInst->setOperand(0, FullV); 6022 else 6023 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 6024 } 6025 6026 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 6027 DeadInsts.emplace_back(OperandIsInstr); 6028 } 6029 6030 // Trying to hoist the IVInc to loop header if all IVInc users are in 6031 // the loop header. It will help backend to generate post index load/store 6032 // when the latch block is different from loop header block. 6033 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 6034 const LSRUse &LU, Instruction *IVIncInsertPos, 6035 Loop *L) { 6036 if (LU.Kind != LSRUse::Address) 6037 return false; 6038 6039 // For now this code do the conservative optimization, only work for 6040 // the header block. Later we can hoist the IVInc to the block post 6041 // dominate all users. 6042 BasicBlock *LHeader = L->getHeader(); 6043 if (IVIncInsertPos->getParent() == LHeader) 6044 return false; 6045 6046 if (!Fixup.OperandValToReplace || 6047 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 6048 Instruction *UI = cast<Instruction>(U); 6049 return UI->getParent() != LHeader; 6050 })) 6051 return false; 6052 6053 Instruction *I = Fixup.UserInst; 6054 Type *Ty = I->getType(); 6055 return Ty->isIntegerTy() && 6056 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 6057 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 6058 } 6059 6060 /// Rewrite all the fixup locations with new values, following the chosen 6061 /// solution. 6062 void LSRInstance::ImplementSolution( 6063 const SmallVectorImpl<const Formula *> &Solution) { 6064 // Keep track of instructions we may have made dead, so that 6065 // we can remove them after we are done working. 6066 SmallVector<WeakTrackingVH, 16> DeadInsts; 6067 6068 // Mark phi nodes that terminate chains so the expander tries to reuse them. 6069 for (const IVChain &Chain : IVChainVec) { 6070 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 6071 Rewriter.setChainedPhi(PN); 6072 } 6073 6074 // Expand the new value definitions and update the users. 6075 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 6076 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 6077 Instruction *InsertPos = 6078 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 6079 ? L->getHeader()->getTerminator() 6080 : IVIncInsertPos; 6081 Rewriter.setIVIncInsertPos(L, InsertPos); 6082 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 6083 Changed = true; 6084 } 6085 6086 for (const IVChain &Chain : IVChainVec) { 6087 GenerateIVChain(Chain, DeadInsts); 6088 Changed = true; 6089 } 6090 6091 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 6092 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 6093 ScalarEvolutionIVs.push_back(IV); 6094 6095 // Clean up after ourselves. This must be done before deleting any 6096 // instructions. 6097 Rewriter.clear(); 6098 6099 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 6100 &TLI, MSSAU); 6101 6102 // In our cost analysis above, we assume that each addrec consumes exactly 6103 // one register, and arrange to have increments inserted just before the 6104 // latch to maximimize the chance this is true. However, if we reused 6105 // existing IVs, we now need to move the increments to match our 6106 // expectations. Otherwise, our cost modeling results in us having a 6107 // chosen a non-optimal result for the actual schedule. (And yes, this 6108 // scheduling decision does impact later codegen.) 6109 for (PHINode &PN : L->getHeader()->phis()) { 6110 BinaryOperator *BO = nullptr; 6111 Value *Start = nullptr, *Step = nullptr; 6112 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 6113 continue; 6114 6115 switch (BO->getOpcode()) { 6116 case Instruction::Sub: 6117 if (BO->getOperand(0) != &PN) 6118 // sub is non-commutative - match handling elsewhere in LSR 6119 continue; 6120 break; 6121 case Instruction::Add: 6122 break; 6123 default: 6124 continue; 6125 }; 6126 6127 if (!isa<Constant>(Step)) 6128 // If not a constant step, might increase register pressure 6129 // (We assume constants have been canonicalized to RHS) 6130 continue; 6131 6132 if (BO->getParent() == IVIncInsertPos->getParent()) 6133 // Only bother moving across blocks. Isel can handle block local case. 6134 continue; 6135 6136 // Can we legally schedule inc at the desired point? 6137 if (!llvm::all_of(BO->uses(), 6138 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 6139 continue; 6140 BO->moveBefore(IVIncInsertPos); 6141 Changed = true; 6142 } 6143 6144 6145 } 6146 6147 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6148 DominatorTree &DT, LoopInfo &LI, 6149 const TargetTransformInfo &TTI, AssumptionCache &AC, 6150 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 6151 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 6152 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 6153 ? PreferredAddresingMode 6154 : TTI.getPreferredAddressingMode(L, &SE)), 6155 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false), 6156 BaselineCost(L, SE, TTI, AMK) { 6157 // If LoopSimplify form is not available, stay out of trouble. 6158 if (!L->isLoopSimplifyForm()) 6159 return; 6160 6161 // If there's no interesting work to be done, bail early. 6162 if (IU.empty()) return; 6163 6164 // If there's too much analysis to be done, bail early. We won't be able to 6165 // model the problem anyway. 6166 unsigned NumUsers = 0; 6167 for (const IVStrideUse &U : IU) { 6168 if (++NumUsers > MaxIVUsers) { 6169 (void)U; 6170 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 6171 << "\n"); 6172 return; 6173 } 6174 // Bail out if we have a PHI on an EHPad that gets a value from a 6175 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 6176 // no good place to stick any instructions. 6177 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 6178 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 6179 if (isa<FuncletPadInst>(FirstNonPHI) || 6180 isa<CatchSwitchInst>(FirstNonPHI)) 6181 for (BasicBlock *PredBB : PN->blocks()) 6182 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 6183 return; 6184 } 6185 } 6186 6187 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 6188 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 6189 dbgs() << ":\n"); 6190 6191 // Configure SCEVExpander already now, so the correct mode is used for 6192 // isSafeToExpand() checks. 6193 #ifndef NDEBUG 6194 Rewriter.setDebugType(DEBUG_TYPE); 6195 #endif 6196 Rewriter.disableCanonicalMode(); 6197 Rewriter.enableLSRMode(); 6198 6199 // First, perform some low-level loop optimizations. 6200 OptimizeShadowIV(); 6201 OptimizeLoopTermCond(); 6202 6203 // If loop preparation eliminates all interesting IV users, bail. 6204 if (IU.empty()) return; 6205 6206 // Skip nested loops until we can model them better with formulae. 6207 if (!L->isInnermost()) { 6208 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 6209 return; 6210 } 6211 6212 // Start collecting data and preparing for the solver. 6213 // If number of registers is not the major cost, we cannot benefit from the 6214 // current profitable chain optimization which is based on number of 6215 // registers. 6216 // FIXME: add profitable chain optimization for other kinds major cost, for 6217 // example number of instructions. 6218 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 6219 CollectChains(); 6220 CollectInterestingTypesAndFactors(); 6221 CollectFixupsAndInitialFormulae(); 6222 CollectLoopInvariantFixupsAndFormulae(); 6223 6224 if (Uses.empty()) 6225 return; 6226 6227 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 6228 print_uses(dbgs())); 6229 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 6230 BaselineCost.print(dbgs()); dbgs() << "\n"); 6231 6232 // Now use the reuse data to generate a bunch of interesting ways 6233 // to formulate the values needed for the uses. 6234 GenerateAllReuseFormulae(); 6235 6236 FilterOutUndesirableDedicatedRegisters(); 6237 NarrowSearchSpaceUsingHeuristics(); 6238 6239 SmallVector<const Formula *, 8> Solution; 6240 Solve(Solution); 6241 6242 // Release memory that is no longer needed. 6243 Factors.clear(); 6244 Types.clear(); 6245 RegUses.clear(); 6246 6247 if (Solution.empty()) 6248 return; 6249 6250 #ifndef NDEBUG 6251 // Formulae should be legal. 6252 for (const LSRUse &LU : Uses) { 6253 for (const Formula &F : LU.Formulae) 6254 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 6255 F) && "Illegal formula generated!"); 6256 }; 6257 #endif 6258 6259 // Now that we've decided what we want, make it so. 6260 ImplementSolution(Solution); 6261 } 6262 6263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 6264 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 6265 if (Factors.empty() && Types.empty()) return; 6266 6267 OS << "LSR has identified the following interesting factors and types: "; 6268 bool First = true; 6269 6270 for (int64_t Factor : Factors) { 6271 if (!First) OS << ", "; 6272 First = false; 6273 OS << '*' << Factor; 6274 } 6275 6276 for (Type *Ty : Types) { 6277 if (!First) OS << ", "; 6278 First = false; 6279 OS << '(' << *Ty << ')'; 6280 } 6281 OS << '\n'; 6282 } 6283 6284 void LSRInstance::print_fixups(raw_ostream &OS) const { 6285 OS << "LSR is examining the following fixup sites:\n"; 6286 for (const LSRUse &LU : Uses) 6287 for (const LSRFixup &LF : LU.Fixups) { 6288 dbgs() << " "; 6289 LF.print(OS); 6290 OS << '\n'; 6291 } 6292 } 6293 6294 void LSRInstance::print_uses(raw_ostream &OS) const { 6295 OS << "LSR is examining the following uses:\n"; 6296 for (const LSRUse &LU : Uses) { 6297 dbgs() << " "; 6298 LU.print(OS); 6299 OS << '\n'; 6300 for (const Formula &F : LU.Formulae) { 6301 OS << " "; 6302 F.print(OS); 6303 OS << '\n'; 6304 } 6305 } 6306 } 6307 6308 void LSRInstance::print(raw_ostream &OS) const { 6309 print_factors_and_types(OS); 6310 print_fixups(OS); 6311 print_uses(OS); 6312 } 6313 6314 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6315 print(errs()); errs() << '\n'; 6316 } 6317 #endif 6318 6319 namespace { 6320 6321 class LoopStrengthReduce : public LoopPass { 6322 public: 6323 static char ID; // Pass ID, replacement for typeid 6324 6325 LoopStrengthReduce(); 6326 6327 private: 6328 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6329 void getAnalysisUsage(AnalysisUsage &AU) const override; 6330 }; 6331 6332 } // end anonymous namespace 6333 6334 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6335 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6336 } 6337 6338 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6339 // We split critical edges, so we change the CFG. However, we do update 6340 // many analyses if they are around. 6341 AU.addPreservedID(LoopSimplifyID); 6342 6343 AU.addRequired<LoopInfoWrapperPass>(); 6344 AU.addPreserved<LoopInfoWrapperPass>(); 6345 AU.addRequiredID(LoopSimplifyID); 6346 AU.addRequired<DominatorTreeWrapperPass>(); 6347 AU.addPreserved<DominatorTreeWrapperPass>(); 6348 AU.addRequired<ScalarEvolutionWrapperPass>(); 6349 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6350 AU.addRequired<AssumptionCacheTracker>(); 6351 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6352 // Requiring LoopSimplify a second time here prevents IVUsers from running 6353 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6354 AU.addRequiredID(LoopSimplifyID); 6355 AU.addRequired<IVUsersWrapperPass>(); 6356 AU.addPreserved<IVUsersWrapperPass>(); 6357 AU.addRequired<TargetTransformInfoWrapperPass>(); 6358 AU.addPreserved<MemorySSAWrapperPass>(); 6359 } 6360 6361 namespace { 6362 6363 /// Enables more convenient iteration over a DWARF expression vector. 6364 static iterator_range<llvm::DIExpression::expr_op_iterator> 6365 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6366 llvm::DIExpression::expr_op_iterator Begin = 6367 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6368 llvm::DIExpression::expr_op_iterator End = 6369 llvm::DIExpression::expr_op_iterator(Expr.end()); 6370 return {Begin, End}; 6371 } 6372 6373 struct SCEVDbgValueBuilder { 6374 SCEVDbgValueBuilder() = default; 6375 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6376 6377 void clone(const SCEVDbgValueBuilder &Base) { 6378 LocationOps = Base.LocationOps; 6379 Expr = Base.Expr; 6380 } 6381 6382 void clear() { 6383 LocationOps.clear(); 6384 Expr.clear(); 6385 } 6386 6387 /// The DIExpression as we translate the SCEV. 6388 SmallVector<uint64_t, 6> Expr; 6389 /// The location ops of the DIExpression. 6390 SmallVector<Value *, 2> LocationOps; 6391 6392 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6393 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6394 6395 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6396 /// in the set of values referenced by the expression. 6397 void pushLocation(llvm::Value *V) { 6398 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6399 auto *It = llvm::find(LocationOps, V); 6400 unsigned ArgIndex = 0; 6401 if (It != LocationOps.end()) { 6402 ArgIndex = std::distance(LocationOps.begin(), It); 6403 } else { 6404 ArgIndex = LocationOps.size(); 6405 LocationOps.push_back(V); 6406 } 6407 Expr.push_back(ArgIndex); 6408 } 6409 6410 void pushValue(const SCEVUnknown *U) { 6411 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6412 pushLocation(V); 6413 } 6414 6415 bool pushConst(const SCEVConstant *C) { 6416 if (C->getAPInt().getSignificantBits() > 64) 6417 return false; 6418 Expr.push_back(llvm::dwarf::DW_OP_consts); 6419 Expr.push_back(C->getAPInt().getSExtValue()); 6420 return true; 6421 } 6422 6423 // Iterating the expression as DWARF ops is convenient when updating 6424 // DWARF_OP_LLVM_args. 6425 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6426 return ToDwarfOpIter(Expr); 6427 } 6428 6429 /// Several SCEV types are sequences of the same arithmetic operator applied 6430 /// to constants and values that may be extended or truncated. 6431 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6432 uint64_t DwarfOp) { 6433 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6434 "Expected arithmetic SCEV type"); 6435 bool Success = true; 6436 unsigned EmitOperator = 0; 6437 for (const auto &Op : CommExpr->operands()) { 6438 Success &= pushSCEV(Op); 6439 6440 if (EmitOperator >= 1) 6441 pushOperator(DwarfOp); 6442 ++EmitOperator; 6443 } 6444 return Success; 6445 } 6446 6447 // TODO: Identify and omit noop casts. 6448 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6449 const llvm::SCEV *Inner = C->getOperand(0); 6450 const llvm::Type *Type = C->getType(); 6451 uint64_t ToWidth = Type->getIntegerBitWidth(); 6452 bool Success = pushSCEV(Inner); 6453 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6454 IsSigned ? llvm::dwarf::DW_ATE_signed 6455 : llvm::dwarf::DW_ATE_unsigned}; 6456 for (const auto &Op : CastOps) 6457 pushOperator(Op); 6458 return Success; 6459 } 6460 6461 // TODO: MinMax - although these haven't been encountered in the test suite. 6462 bool pushSCEV(const llvm::SCEV *S) { 6463 bool Success = true; 6464 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6465 Success &= pushConst(StartInt); 6466 6467 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6468 if (!U->getValue()) 6469 return false; 6470 pushLocation(U->getValue()); 6471 6472 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6473 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6474 6475 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6476 Success &= pushSCEV(UDiv->getLHS()); 6477 Success &= pushSCEV(UDiv->getRHS()); 6478 pushOperator(llvm::dwarf::DW_OP_div); 6479 6480 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6481 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6482 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6483 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6484 "Unexpected cast type in SCEV."); 6485 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6486 6487 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6488 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6489 6490 } else if (isa<SCEVAddRecExpr>(S)) { 6491 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6492 // unsupported. 6493 return false; 6494 6495 } else { 6496 return false; 6497 } 6498 return Success; 6499 } 6500 6501 /// Return true if the combination of arithmetic operator and underlying 6502 /// SCEV constant value is an identity function. 6503 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6504 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6505 if (C->getAPInt().getSignificantBits() > 64) 6506 return false; 6507 int64_t I = C->getAPInt().getSExtValue(); 6508 switch (Op) { 6509 case llvm::dwarf::DW_OP_plus: 6510 case llvm::dwarf::DW_OP_minus: 6511 return I == 0; 6512 case llvm::dwarf::DW_OP_mul: 6513 case llvm::dwarf::DW_OP_div: 6514 return I == 1; 6515 } 6516 } 6517 return false; 6518 } 6519 6520 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6521 /// builder's expression stack. The stack should already contain an 6522 /// expression for the iteration count, so that it can be multiplied by 6523 /// the stride and added to the start. 6524 /// Components of the expression are omitted if they are an identity function. 6525 /// Chain (non-affine) SCEVs are not supported. 6526 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6527 assert(SAR.isAffine() && "Expected affine SCEV"); 6528 // TODO: Is this check needed? 6529 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6530 return false; 6531 6532 const SCEV *Start = SAR.getStart(); 6533 const SCEV *Stride = SAR.getStepRecurrence(SE); 6534 6535 // Skip pushing arithmetic noops. 6536 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6537 if (!pushSCEV(Stride)) 6538 return false; 6539 pushOperator(llvm::dwarf::DW_OP_mul); 6540 } 6541 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6542 if (!pushSCEV(Start)) 6543 return false; 6544 pushOperator(llvm::dwarf::DW_OP_plus); 6545 } 6546 return true; 6547 } 6548 6549 /// Create an expression that is an offset from a value (usually the IV). 6550 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6551 pushLocation(OffsetValue); 6552 DIExpression::appendOffset(Expr, Offset); 6553 LLVM_DEBUG( 6554 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6555 << std::to_string(Offset) << "\n"); 6556 } 6557 6558 /// Combine a translation of the SCEV and the IV to create an expression that 6559 /// recovers a location's value. 6560 /// returns true if an expression was created. 6561 bool createIterCountExpr(const SCEV *S, 6562 const SCEVDbgValueBuilder &IterationCount, 6563 ScalarEvolution &SE) { 6564 // SCEVs for SSA values are most frquently of the form 6565 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6566 // This is because %a is a PHI node that is not the IV. However, these 6567 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6568 // so its not expected this point will be reached. 6569 if (!isa<SCEVAddRecExpr>(S)) 6570 return false; 6571 6572 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6573 << '\n'); 6574 6575 const auto *Rec = cast<SCEVAddRecExpr>(S); 6576 if (!Rec->isAffine()) 6577 return false; 6578 6579 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6580 return false; 6581 6582 // Initialise a new builder with the iteration count expression. In 6583 // combination with the value's SCEV this enables recovery. 6584 clone(IterationCount); 6585 if (!SCEVToValueExpr(*Rec, SE)) 6586 return false; 6587 6588 return true; 6589 } 6590 6591 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6592 /// builder's expression stack. The stack should already contain an 6593 /// expression for the iteration count, so that it can be multiplied by 6594 /// the stride and added to the start. 6595 /// Components of the expression are omitted if they are an identity function. 6596 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6597 ScalarEvolution &SE) { 6598 assert(SAR.isAffine() && "Expected affine SCEV"); 6599 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6600 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6601 << SAR << '\n'); 6602 return false; 6603 } 6604 const SCEV *Start = SAR.getStart(); 6605 const SCEV *Stride = SAR.getStepRecurrence(SE); 6606 6607 // Skip pushing arithmetic noops. 6608 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6609 if (!pushSCEV(Start)) 6610 return false; 6611 pushOperator(llvm::dwarf::DW_OP_minus); 6612 } 6613 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6614 if (!pushSCEV(Stride)) 6615 return false; 6616 pushOperator(llvm::dwarf::DW_OP_div); 6617 } 6618 return true; 6619 } 6620 6621 // Append the current expression and locations to a location list and an 6622 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6623 // the locations already present in the destination list. 6624 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6625 SmallVectorImpl<Value *> &DestLocations) { 6626 assert(!DestLocations.empty() && 6627 "Expected the locations vector to contain the IV"); 6628 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6629 // modified to account for the locations already in the destination vector. 6630 // All builders contain the IV as the first location op. 6631 assert(!LocationOps.empty() && 6632 "Expected the location ops to contain the IV."); 6633 // DestIndexMap[n] contains the index in DestLocations for the nth 6634 // location in this SCEVDbgValueBuilder. 6635 SmallVector<uint64_t, 2> DestIndexMap; 6636 for (const auto &Op : LocationOps) { 6637 auto It = find(DestLocations, Op); 6638 if (It != DestLocations.end()) { 6639 // Location already exists in DestLocations, reuse existing ArgIndex. 6640 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6641 continue; 6642 } 6643 // Location is not in DestLocations, add it. 6644 DestIndexMap.push_back(DestLocations.size()); 6645 DestLocations.push_back(Op); 6646 } 6647 6648 for (const auto &Op : expr_ops()) { 6649 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6650 Op.appendToVector(DestExpr); 6651 continue; 6652 } 6653 6654 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6655 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6656 // DestIndexMap[n] contains its new index in DestLocations. 6657 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6658 DestExpr.push_back(NewIndex); 6659 } 6660 } 6661 }; 6662 6663 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6664 /// and DIExpression. 6665 struct DVIRecoveryRec { 6666 DVIRecoveryRec(DbgValueInst *DbgValue) 6667 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6668 HadLocationArgList(false) {} 6669 DVIRecoveryRec(DbgVariableRecord *DVR) 6670 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} 6671 6672 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; 6673 DIExpression *Expr; 6674 bool HadLocationArgList; 6675 SmallVector<WeakVH, 2> LocationOps; 6676 SmallVector<const llvm::SCEV *, 2> SCEVs; 6677 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6678 6679 void clear() { 6680 for (auto &RE : RecoveryExprs) 6681 RE.reset(); 6682 RecoveryExprs.clear(); 6683 } 6684 6685 ~DVIRecoveryRec() { clear(); } 6686 }; 6687 } // namespace 6688 6689 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6690 /// This helps in determining if a DIArglist is necessary or can be omitted from 6691 /// the dbg.value. 6692 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6693 auto expr_ops = ToDwarfOpIter(Expr); 6694 unsigned Count = 0; 6695 for (auto Op : expr_ops) 6696 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6697 Count++; 6698 return Count; 6699 } 6700 6701 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6702 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6703 /// because a DIArglist is not created for the first argument of the dbg.value. 6704 template <typename T> 6705 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6706 SmallVectorImpl<uint64_t> &Ops) { 6707 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6708 "contain any DW_OP_llvm_arg operands."); 6709 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6710 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6711 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6712 } 6713 6714 /// Overwrite DVI with locations placed into a DIArglist. 6715 template <typename T> 6716 static void updateDVIWithLocations(T &DbgVal, 6717 SmallVectorImpl<Value *> &Locations, 6718 SmallVectorImpl<uint64_t> &Ops) { 6719 assert(numLLVMArgOps(Ops) != 0 && 6720 "Expected expression that references DIArglist locations using " 6721 "DW_OP_llvm_arg operands."); 6722 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6723 for (Value *V : Locations) 6724 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6725 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6726 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6727 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6728 } 6729 6730 /// Write the new expression and new location ops for the dbg.value. If possible 6731 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6732 /// can be omitted if: 6733 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6734 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6735 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6736 SmallVectorImpl<Value *> &NewLocationOps, 6737 SmallVectorImpl<uint64_t> &NewExpr) { 6738 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6739 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6740 if (NumLLVMArgs == 0) { 6741 // Location assumed to be on the stack. 6742 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6743 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6744 // There is only a single DW_OP_llvm_arg at the start of the expression, 6745 // so it can be omitted along with DIArglist. 6746 assert(NewExpr[1] == 0 && 6747 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6748 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6749 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6750 } else { 6751 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6752 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6753 } 6754 6755 // If the DIExpression was previously empty then add the stack terminator. 6756 // Non-empty expressions have only had elements inserted into them and so 6757 // the terminator should already be present e.g. stack_value or fragment. 6758 DIExpression *SalvageExpr = DbgVal->getExpression(); 6759 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6760 SalvageExpr = 6761 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6762 DbgVal->setExpression(SalvageExpr); 6763 } 6764 }; 6765 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6766 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6767 else 6768 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6769 } 6770 6771 /// Cached location ops may be erased during LSR, in which case a poison is 6772 /// required when restoring from the cache. The type of that location is no 6773 /// longer available, so just use int8. The poison will be replaced by one or 6774 /// more locations later when a SCEVDbgValueBuilder selects alternative 6775 /// locations to use for the salvage. 6776 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6777 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6778 } 6779 6780 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6781 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6782 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6783 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6784 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6785 assert(DVIRec.Expr && "Expected an expression"); 6786 DbgVal->setExpression(DVIRec.Expr); 6787 6788 // Even a single location-op may be inside a DIArgList and referenced with 6789 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6790 if (!DVIRec.HadLocationArgList) { 6791 assert(DVIRec.LocationOps.size() == 1 && 6792 "Unexpected number of location ops."); 6793 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6794 // this case was not present before, so force the location back to a 6795 // single uncontained Value. 6796 Value *CachedValue = 6797 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6798 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6799 } else { 6800 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6801 for (WeakVH VH : DVIRec.LocationOps) { 6802 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6803 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6804 } 6805 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6806 DbgVal->setRawLocation( 6807 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6808 } 6809 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6810 }; 6811 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6812 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6813 else 6814 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6815 } 6816 6817 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6818 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6819 const SCEV *SCEVInductionVar, 6820 SCEVDbgValueBuilder IterCountExpr) { 6821 6822 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6823 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6824 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation()) 6825 return false; 6826 6827 // LSR may have caused several changes to the dbg.value in the failed salvage 6828 // attempt. So restore the DIExpression, the location ops and also the 6829 // location ops format, which is always DIArglist for multiple ops, but only 6830 // sometimes for a single op. 6831 restorePreTransformState(DVIRec); 6832 6833 // LocationOpIndexMap[i] will store the post-LSR location index of 6834 // the non-optimised out location at pre-LSR index i. 6835 SmallVector<int64_t, 2> LocationOpIndexMap; 6836 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6837 SmallVector<Value *, 2> NewLocationOps; 6838 NewLocationOps.push_back(LSRInductionVar); 6839 6840 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6841 WeakVH VH = DVIRec.LocationOps[i]; 6842 // Place the locations not optimised out in the list first, avoiding 6843 // inserts later. The map is used to update the DIExpression's 6844 // DW_OP_LLVM_arg arguments as the expression is updated. 6845 if (VH && !isa<UndefValue>(VH)) { 6846 NewLocationOps.push_back(VH); 6847 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6848 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6849 << " now at index " << LocationOpIndexMap[i] << "\n"); 6850 continue; 6851 } 6852 6853 // It's possible that a value referred to in the SCEV may have been 6854 // optimised out by LSR. 6855 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6856 SE.containsUndefs(DVIRec.SCEVs[i])) { 6857 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6858 << " refers to a location that is now undef or erased. " 6859 "Salvage abandoned.\n"); 6860 return false; 6861 } 6862 6863 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6864 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6865 6866 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6867 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6868 6869 // Create an offset-based salvage expression if possible, as it requires 6870 // less DWARF ops than an iteration count-based expression. 6871 if (std::optional<APInt> Offset = 6872 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6873 if (Offset->getSignificantBits() <= 64) 6874 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6875 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6876 SE)) 6877 return false; 6878 } 6879 6880 // Merge the DbgValueBuilder generated expressions and the original 6881 // DIExpression, place the result into an new vector. 6882 SmallVector<uint64_t, 3> NewExpr; 6883 if (DVIRec.Expr->getNumElements() == 0) { 6884 assert(DVIRec.RecoveryExprs.size() == 1 && 6885 "Expected only a single recovery expression for an empty " 6886 "DIExpression."); 6887 assert(DVIRec.RecoveryExprs[0] && 6888 "Expected a SCEVDbgSalvageBuilder for location 0"); 6889 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6890 B->appendToVectors(NewExpr, NewLocationOps); 6891 } 6892 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6893 // Most Ops needn't be updated. 6894 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6895 Op.appendToVector(NewExpr); 6896 continue; 6897 } 6898 6899 uint64_t LocationArgIndex = Op.getArg(0); 6900 SCEVDbgValueBuilder *DbgBuilder = 6901 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6902 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6903 // optimise it away. So just translate the argument to the updated 6904 // location index. 6905 if (!DbgBuilder) { 6906 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6907 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6908 "Expected a positive index for the location-op position."); 6909 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6910 continue; 6911 } 6912 // The location has a recovery expression. 6913 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6914 } 6915 6916 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6917 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6918 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6919 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6920 else 6921 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6922 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n"); 6923 return true; 6924 } 6925 6926 /// Obtain an expression for the iteration count, then attempt to salvage the 6927 /// dbg.value intrinsics. 6928 static void DbgRewriteSalvageableDVIs( 6929 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6930 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6931 if (DVIToUpdate.empty()) 6932 return; 6933 6934 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6935 assert(SCEVInductionVar && 6936 "Anticipated a SCEV for the post-LSR induction variable"); 6937 6938 if (const SCEVAddRecExpr *IVAddRec = 6939 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6940 if (!IVAddRec->isAffine()) 6941 return; 6942 6943 // Prevent translation using excessive resources. 6944 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6945 return; 6946 6947 // The iteration count is required to recover location values. 6948 SCEVDbgValueBuilder IterCountExpr; 6949 IterCountExpr.pushLocation(LSRInductionVar); 6950 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6951 return; 6952 6953 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6954 << '\n'); 6955 6956 for (auto &DVIRec : DVIToUpdate) { 6957 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6958 IterCountExpr); 6959 } 6960 } 6961 } 6962 6963 /// Identify and cache salvageable DVI locations and expressions along with the 6964 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6965 /// cacheing and salvaging. 6966 static void DbgGatherSalvagableDVI( 6967 Loop *L, ScalarEvolution &SE, 6968 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6969 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6970 for (const auto &B : L->getBlocks()) { 6971 for (auto &I : *B) { 6972 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6973 // Ensure that if any location op is undef that the dbg.vlue is not 6974 // cached. 6975 if (DbgVal->isKillLocation()) 6976 return false; 6977 6978 // Check that the location op SCEVs are suitable for translation to 6979 // DIExpression. 6980 const auto &HasTranslatableLocationOps = 6981 [&](const auto *DbgValToTranslate) -> bool { 6982 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6983 if (!LocOp) 6984 return false; 6985 6986 if (!SE.isSCEVable(LocOp->getType())) 6987 return false; 6988 6989 const SCEV *S = SE.getSCEV(LocOp); 6990 if (SE.containsUndefs(S)) 6991 return false; 6992 } 6993 return true; 6994 }; 6995 6996 if (!HasTranslatableLocationOps(DbgVal)) 6997 return false; 6998 6999 std::unique_ptr<DVIRecoveryRec> NewRec = 7000 std::make_unique<DVIRecoveryRec>(DbgVal); 7001 // Each location Op may need a SCEVDbgValueBuilder in order to recover 7002 // it. Pre-allocating a vector will enable quick lookups of the builder 7003 // later during the salvage. 7004 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 7005 for (const auto LocOp : DbgVal->location_ops()) { 7006 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 7007 NewRec->LocationOps.push_back(LocOp); 7008 NewRec->HadLocationArgList = DbgVal->hasArgList(); 7009 } 7010 SalvageableDVISCEVs.push_back(std::move(NewRec)); 7011 return true; 7012 }; 7013 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 7014 if (DVR.isDbgValue() || DVR.isDbgAssign()) 7015 ProcessDbgValue(&DVR); 7016 } 7017 auto DVI = dyn_cast<DbgValueInst>(&I); 7018 if (!DVI) 7019 continue; 7020 if (ProcessDbgValue(DVI)) 7021 DVIHandles.insert(DVI); 7022 } 7023 } 7024 } 7025 7026 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 7027 /// any PHi from the loop header is usable, but may have less chance of 7028 /// surviving subsequent transforms. 7029 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 7030 const LSRInstance &LSR) { 7031 7032 auto IsSuitableIV = [&](PHINode *P) { 7033 if (!SE.isSCEVable(P->getType())) 7034 return false; 7035 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 7036 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 7037 return false; 7038 }; 7039 7040 // For now, just pick the first IV that was generated and inserted by 7041 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 7042 // by subsequent transforms. 7043 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 7044 if (!IV) 7045 continue; 7046 7047 // There should only be PHI node IVs. 7048 PHINode *P = cast<PHINode>(&*IV); 7049 7050 if (IsSuitableIV(P)) 7051 return P; 7052 } 7053 7054 for (PHINode &P : L.getHeader()->phis()) { 7055 if (IsSuitableIV(&P)) 7056 return &P; 7057 } 7058 return nullptr; 7059 } 7060 7061 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>> 7062 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT, 7063 const LoopInfo &LI, const TargetTransformInfo &TTI) { 7064 if (!L->isInnermost()) { 7065 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n"); 7066 return std::nullopt; 7067 } 7068 // Only inspect on simple loop structure 7069 if (!L->isLoopSimplifyForm()) { 7070 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n"); 7071 return std::nullopt; 7072 } 7073 7074 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 7075 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n"); 7076 return std::nullopt; 7077 } 7078 7079 BasicBlock *LoopLatch = L->getLoopLatch(); 7080 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 7081 if (!BI || BI->isUnconditional()) 7082 return std::nullopt; 7083 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition()); 7084 if (!TermCond) { 7085 LLVM_DEBUG( 7086 dbgs() << "Cannot fold on branching condition that is not an ICmpInst"); 7087 return std::nullopt; 7088 } 7089 if (!TermCond->hasOneUse()) { 7090 LLVM_DEBUG( 7091 dbgs() 7092 << "Cannot replace terminating condition with more than one use\n"); 7093 return std::nullopt; 7094 } 7095 7096 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0)); 7097 Value *RHS = TermCond->getOperand(1); 7098 if (!LHS || !L->isLoopInvariant(RHS)) 7099 // We could pattern match the inverse form of the icmp, but that is 7100 // non-canonical, and this pass is running *very* late in the pipeline. 7101 return std::nullopt; 7102 7103 // Find the IV used by the current exit condition. 7104 PHINode *ToFold; 7105 Value *ToFoldStart, *ToFoldStep; 7106 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep)) 7107 return std::nullopt; 7108 7109 // Ensure the simple recurrence is a part of the current loop. 7110 if (ToFold->getParent() != L->getHeader()) 7111 return std::nullopt; 7112 7113 // If that IV isn't dead after we rewrite the exit condition in terms of 7114 // another IV, there's no point in doing the transform. 7115 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond)) 7116 return std::nullopt; 7117 7118 // Inserting instructions in the preheader has a runtime cost, scale 7119 // the allowed cost with the loops trip count as best we can. 7120 const unsigned ExpansionBudget = [&]() { 7121 unsigned Budget = 2 * SCEVCheapExpansionBudget; 7122 if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L)) 7123 return std::min(Budget, SmallTC); 7124 if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L)) 7125 return std::min(Budget, *SmallTC); 7126 // Unknown trip count, assume long running by default. 7127 return Budget; 7128 }(); 7129 7130 const SCEV *BECount = SE.getBackedgeTakenCount(L); 7131 const DataLayout &DL = L->getHeader()->getDataLayout(); 7132 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7133 7134 PHINode *ToHelpFold = nullptr; 7135 const SCEV *TermValueS = nullptr; 7136 bool MustDropPoison = false; 7137 auto InsertPt = L->getLoopPreheader()->getTerminator(); 7138 for (PHINode &PN : L->getHeader()->phis()) { 7139 if (ToFold == &PN) 7140 continue; 7141 7142 if (!SE.isSCEVable(PN.getType())) { 7143 LLVM_DEBUG(dbgs() << "IV of phi '" << PN 7144 << "' is not SCEV-able, not qualified for the " 7145 "terminating condition folding.\n"); 7146 continue; 7147 } 7148 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 7149 // Only speculate on affine AddRec 7150 if (!AddRec || !AddRec->isAffine()) { 7151 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN 7152 << "' is not an affine add recursion, not qualified " 7153 "for the terminating condition folding.\n"); 7154 continue; 7155 } 7156 7157 // Check that we can compute the value of AddRec on the exiting iteration 7158 // without soundness problems. evaluateAtIteration internally needs 7159 // to multiply the stride of the iteration number - which may wrap around. 7160 // The issue here is subtle because computing the result accounting for 7161 // wrap is insufficient. In order to use the result in an exit test, we 7162 // must also know that AddRec doesn't take the same value on any previous 7163 // iteration. The simplest case to consider is a candidate IV which is 7164 // narrower than the trip count (and thus original IV), but this can 7165 // also happen due to non-unit strides on the candidate IVs. 7166 if (!AddRec->hasNoSelfWrap() || 7167 !SE.isKnownNonZero(AddRec->getStepRecurrence(SE))) 7168 continue; 7169 7170 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE); 7171 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE); 7172 if (!Expander.isSafeToExpand(TermValueSLocal)) { 7173 LLVM_DEBUG( 7174 dbgs() << "Is not safe to expand terminating value for phi node" << PN 7175 << "\n"); 7176 continue; 7177 } 7178 7179 if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget, 7180 &TTI, InsertPt)) { 7181 LLVM_DEBUG( 7182 dbgs() << "Is too expensive to expand terminating value for phi node" 7183 << PN << "\n"); 7184 continue; 7185 } 7186 7187 // The candidate IV may have been otherwise dead and poison from the 7188 // very first iteration. If we can't disprove that, we can't use the IV. 7189 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) { 7190 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV " 7191 << PN << "\n"); 7192 continue; 7193 } 7194 7195 // The candidate IV may become poison on the last iteration. If this 7196 // value is not branched on, this is a well defined program. We're 7197 // about to add a new use to this IV, and we have to ensure we don't 7198 // insert UB which didn't previously exist. 7199 bool MustDropPoisonLocal = false; 7200 Instruction *PostIncV = 7201 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch)); 7202 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(), 7203 &DT)) { 7204 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use" 7205 << PN << "\n"); 7206 7207 // If this is a complex recurrance with multiple instructions computing 7208 // the backedge value, we might need to strip poison flags from all of 7209 // them. 7210 if (PostIncV->getOperand(0) != &PN) 7211 continue; 7212 7213 // In order to perform the transform, we need to drop the poison generating 7214 // flags on this instruction (if any). 7215 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags(); 7216 } 7217 7218 // We pick the last legal alternate IV. We could expore choosing an optimal 7219 // alternate IV if we had a decent heuristic to do so. 7220 ToHelpFold = &PN; 7221 TermValueS = TermValueSLocal; 7222 MustDropPoison = MustDropPoisonLocal; 7223 } 7224 7225 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs() 7226 << "Cannot find other AddRec IV to help folding\n";); 7227 7228 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs() 7229 << "\nFound loop that can fold terminating condition\n" 7230 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n" 7231 << " TermCond: " << *TermCond << "\n" 7232 << " BrandInst: " << *BI << "\n" 7233 << " ToFold: " << *ToFold << "\n" 7234 << " ToHelpFold: " << *ToHelpFold << "\n"); 7235 7236 if (!ToFold || !ToHelpFold) 7237 return std::nullopt; 7238 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison); 7239 } 7240 7241 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 7242 DominatorTree &DT, LoopInfo &LI, 7243 const TargetTransformInfo &TTI, 7244 AssumptionCache &AC, TargetLibraryInfo &TLI, 7245 MemorySSA *MSSA) { 7246 7247 // Debug preservation - before we start removing anything identify which DVI 7248 // meet the salvageable criteria and store their DIExpression and SCEVs. 7249 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 7250 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 7251 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 7252 7253 bool Changed = false; 7254 std::unique_ptr<MemorySSAUpdater> MSSAU; 7255 if (MSSA) 7256 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 7257 7258 // Run the main LSR transformation. 7259 const LSRInstance &Reducer = 7260 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 7261 Changed |= Reducer.getChanged(); 7262 7263 // Remove any extra phis created by processing inner loops. 7264 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7265 if (EnablePhiElim && L->isLoopSimplifyForm()) { 7266 SmallVector<WeakTrackingVH, 16> DeadInsts; 7267 const DataLayout &DL = L->getHeader()->getDataLayout(); 7268 SCEVExpander Rewriter(SE, DL, "lsr", false); 7269 #ifndef NDEBUG 7270 Rewriter.setDebugType(DEBUG_TYPE); 7271 #endif 7272 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 7273 Rewriter.clear(); 7274 if (numFolded) { 7275 Changed = true; 7276 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7277 MSSAU.get()); 7278 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7279 } 7280 } 7281 // LSR may at times remove all uses of an induction variable from a loop. 7282 // The only remaining use is the PHI in the exit block. 7283 // When this is the case, if the exit value of the IV can be calculated using 7284 // SCEV, we can replace the exit block PHI with the final value of the IV and 7285 // skip the updates in each loop iteration. 7286 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 7287 SmallVector<WeakTrackingVH, 16> DeadInsts; 7288 const DataLayout &DL = L->getHeader()->getDataLayout(); 7289 SCEVExpander Rewriter(SE, DL, "lsr", true); 7290 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 7291 UnusedIndVarInLoop, DeadInsts); 7292 Rewriter.clear(); 7293 if (Rewrites) { 7294 Changed = true; 7295 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7296 MSSAU.get()); 7297 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7298 } 7299 } 7300 7301 const bool EnableFormTerm = [&] { 7302 switch (AllowTerminatingConditionFoldingAfterLSR) { 7303 case cl::BOU_TRUE: 7304 return true; 7305 case cl::BOU_FALSE: 7306 return false; 7307 case cl::BOU_UNSET: 7308 return TTI.shouldFoldTerminatingConditionAfterLSR(); 7309 } 7310 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 7311 }(); 7312 7313 if (EnableFormTerm) { 7314 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI)) { 7315 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt; 7316 7317 Changed = true; 7318 NumTermFold++; 7319 7320 BasicBlock *LoopPreheader = L->getLoopPreheader(); 7321 BasicBlock *LoopLatch = L->getLoopLatch(); 7322 7323 (void)ToFold; 7324 LLVM_DEBUG(dbgs() << "To fold phi-node:\n" 7325 << *ToFold << "\n" 7326 << "New term-cond phi-node:\n" 7327 << *ToHelpFold << "\n"); 7328 7329 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader); 7330 (void)StartValue; 7331 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch); 7332 7333 // See comment in canFoldTermCondOfLoop on why this is sufficient. 7334 if (MustDrop) 7335 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags(); 7336 7337 // SCEVExpander for both use in preheader and latch 7338 const DataLayout &DL = L->getHeader()->getDataLayout(); 7339 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7340 7341 assert(Expander.isSafeToExpand(TermValueS) && 7342 "Terminating value was checked safe in canFoldTerminatingCondition"); 7343 7344 // Create new terminating value at loop preheader 7345 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(), 7346 LoopPreheader->getTerminator()); 7347 7348 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n" 7349 << *StartValue << "\n" 7350 << "Terminating value of new term-cond phi-node:\n" 7351 << *TermValue << "\n"); 7352 7353 // Create new terminating condition at loop latch 7354 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator()); 7355 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition()); 7356 IRBuilder<> LatchBuilder(LoopLatch->getTerminator()); 7357 Value *NewTermCond = 7358 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue, 7359 "lsr_fold_term_cond.replaced_term_cond"); 7360 // Swap successors to exit loop body if IV equals to new TermValue 7361 if (BI->getSuccessor(0) == L->getHeader()) 7362 BI->swapSuccessors(); 7363 7364 LLVM_DEBUG(dbgs() << "Old term-cond:\n" 7365 << *OldTermCond << "\n" 7366 << "New term-cond:\n" << *NewTermCond << "\n"); 7367 7368 BI->setCondition(NewTermCond); 7369 7370 Expander.clear(); 7371 OldTermCond->eraseFromParent(); 7372 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7373 } 7374 } 7375 7376 if (SalvageableDVIRecords.empty()) 7377 return Changed; 7378 7379 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7380 // expressions composed using the derived iteration count. 7381 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7382 for (const auto &L : LI) { 7383 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7384 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7385 else { 7386 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7387 "could not be identified.\n"); 7388 } 7389 } 7390 7391 for (auto &Rec : SalvageableDVIRecords) 7392 Rec->clear(); 7393 SalvageableDVIRecords.clear(); 7394 DVIHandles.clear(); 7395 return Changed; 7396 } 7397 7398 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7399 if (skipLoop(L)) 7400 return false; 7401 7402 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7403 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7404 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7405 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7406 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7407 *L->getHeader()->getParent()); 7408 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7409 *L->getHeader()->getParent()); 7410 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7411 *L->getHeader()->getParent()); 7412 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7413 MemorySSA *MSSA = nullptr; 7414 if (MSSAAnalysis) 7415 MSSA = &MSSAAnalysis->getMSSA(); 7416 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7417 } 7418 7419 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7420 LoopStandardAnalysisResults &AR, 7421 LPMUpdater &) { 7422 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7423 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7424 return PreservedAnalyses::all(); 7425 7426 auto PA = getLoopPassPreservedAnalyses(); 7427 if (AR.MSSA) 7428 PA.preserve<MemorySSAAnalysis>(); 7429 return PA; 7430 } 7431 7432 char LoopStrengthReduce::ID = 0; 7433 7434 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7435 "Loop Strength Reduction", false, false) 7436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7437 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7438 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7439 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7440 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7442 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7443 "Loop Strength Reduction", false, false) 7444 7445 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7446