1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/LoopUtils.h" 119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstddef> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <optional> 129 #include <utility> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "loop-reduce" 134 135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 136 /// bail out. This threshold is far beyond the number of users that LSR can 137 /// conceivably solve, so it should not affect generated code, but catches the 138 /// worst cases before LSR burns too much compile time and stack space. 139 static const unsigned MaxIVUsers = 200; 140 141 /// Limit the size of expression that SCEV-based salvaging will attempt to 142 /// translate into a DIExpression. 143 /// Choose a maximum size such that debuginfo is not excessively increased and 144 /// the salvaging is not too expensive for the compiler. 145 static const unsigned MaxSCEVSalvageExpressionSize = 64; 146 147 // Cleanup congruent phis after LSR phi expansion. 148 static cl::opt<bool> EnablePhiElim( 149 "enable-lsr-phielim", cl::Hidden, cl::init(true), 150 cl::desc("Enable LSR phi elimination")); 151 152 // The flag adds instruction count to solutions cost comparison. 153 static cl::opt<bool> InsnsCost( 154 "lsr-insns-cost", cl::Hidden, cl::init(true), 155 cl::desc("Add instruction count to a LSR cost model")); 156 157 // Flag to choose how to narrow complex lsr solution 158 static cl::opt<bool> LSRExpNarrow( 159 "lsr-exp-narrow", cl::Hidden, cl::init(false), 160 cl::desc("Narrow LSR complex solution using" 161 " expectation of registers number")); 162 163 // Flag to narrow search space by filtering non-optimal formulae with 164 // the same ScaledReg and Scale. 165 static cl::opt<bool> FilterSameScaledReg( 166 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 167 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 168 " with the same ScaledReg and Scale")); 169 170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 171 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 172 cl::desc("A flag that overrides the target's preferred addressing mode."), 173 cl::values(clEnumValN(TTI::AMK_None, 174 "none", 175 "Don't prefer any addressing mode"), 176 clEnumValN(TTI::AMK_PreIndexed, 177 "preindexed", 178 "Prefer pre-indexed addressing mode"), 179 clEnumValN(TTI::AMK_PostIndexed, 180 "postindexed", 181 "Prefer post-indexed addressing mode"))); 182 183 static cl::opt<unsigned> ComplexityLimit( 184 "lsr-complexity-limit", cl::Hidden, 185 cl::init(std::numeric_limits<uint16_t>::max()), 186 cl::desc("LSR search space complexity limit")); 187 188 static cl::opt<unsigned> SetupCostDepthLimit( 189 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 190 cl::desc("The limit on recursion depth for LSRs setup cost")); 191 192 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( 193 "lsr-drop-solution", cl::Hidden, 194 cl::desc("Attempt to drop solution if it is less profitable")); 195 196 static cl::opt<bool> EnableVScaleImmediates( 197 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true), 198 cl::desc("Enable analysis of vscale-relative immediates in LSR")); 199 200 static cl::opt<bool> DropScaledForVScale( 201 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true), 202 cl::desc("Avoid using scaled registers with vscale-relative addressing")); 203 204 #ifndef NDEBUG 205 // Stress test IV chain generation. 206 static cl::opt<bool> StressIVChain( 207 "stress-ivchain", cl::Hidden, cl::init(false), 208 cl::desc("Stress test LSR IV chains")); 209 #else 210 static bool StressIVChain = false; 211 #endif 212 213 namespace { 214 215 struct MemAccessTy { 216 /// Used in situations where the accessed memory type is unknown. 217 static const unsigned UnknownAddressSpace = 218 std::numeric_limits<unsigned>::max(); 219 220 Type *MemTy = nullptr; 221 unsigned AddrSpace = UnknownAddressSpace; 222 223 MemAccessTy() = default; 224 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 225 226 bool operator==(MemAccessTy Other) const { 227 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 228 } 229 230 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 231 232 static MemAccessTy getUnknown(LLVMContext &Ctx, 233 unsigned AS = UnknownAddressSpace) { 234 return MemAccessTy(Type::getVoidTy(Ctx), AS); 235 } 236 237 Type *getType() { return MemTy; } 238 }; 239 240 /// This class holds data which is used to order reuse candidates. 241 class RegSortData { 242 public: 243 /// This represents the set of LSRUse indices which reference 244 /// a particular register. 245 SmallBitVector UsedByIndices; 246 247 void print(raw_ostream &OS) const; 248 void dump() const; 249 }; 250 251 // An offset from an address that is either scalable or fixed. Used for 252 // per-target optimizations of addressing modes. 253 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { 254 constexpr Immediate(ScalarTy MinVal, bool Scalable) 255 : FixedOrScalableQuantity(MinVal, Scalable) {} 256 257 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) 258 : FixedOrScalableQuantity(V) {} 259 260 public: 261 constexpr Immediate() = delete; 262 263 static constexpr Immediate getFixed(ScalarTy MinVal) { 264 return {MinVal, false}; 265 } 266 static constexpr Immediate getScalable(ScalarTy MinVal) { 267 return {MinVal, true}; 268 } 269 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { 270 return {MinVal, Scalable}; 271 } 272 static constexpr Immediate getZero() { return {0, false}; } 273 static constexpr Immediate getFixedMin() { 274 return {std::numeric_limits<int64_t>::min(), false}; 275 } 276 static constexpr Immediate getFixedMax() { 277 return {std::numeric_limits<int64_t>::max(), false}; 278 } 279 static constexpr Immediate getScalableMin() { 280 return {std::numeric_limits<int64_t>::min(), true}; 281 } 282 static constexpr Immediate getScalableMax() { 283 return {std::numeric_limits<int64_t>::max(), true}; 284 } 285 286 constexpr bool isLessThanZero() const { return Quantity < 0; } 287 288 constexpr bool isGreaterThanZero() const { return Quantity > 0; } 289 290 constexpr bool isCompatibleImmediate(const Immediate &Imm) const { 291 return isZero() || Imm.isZero() || Imm.Scalable == Scalable; 292 } 293 294 constexpr bool isMin() const { 295 return Quantity == std::numeric_limits<ScalarTy>::min(); 296 } 297 298 constexpr bool isMax() const { 299 return Quantity == std::numeric_limits<ScalarTy>::max(); 300 } 301 302 // Arithmetic 'operators' that cast to unsigned types first. 303 constexpr Immediate addUnsigned(const Immediate &RHS) const { 304 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 305 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); 306 return {Value, Scalable || RHS.isScalable()}; 307 } 308 309 constexpr Immediate subUnsigned(const Immediate &RHS) const { 310 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 311 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); 312 return {Value, Scalable || RHS.isScalable()}; 313 } 314 315 // Scale the quantity by a constant without caring about runtime scalability. 316 constexpr Immediate mulUnsigned(const ScalarTy RHS) const { 317 ScalarTy Value = (uint64_t)Quantity * RHS; 318 return {Value, Scalable}; 319 } 320 321 // Helpers for generating SCEVs with vscale terms where needed. 322 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { 323 const SCEV *S = SE.getConstant(Ty, Quantity); 324 if (Scalable) 325 S = SE.getMulExpr(S, SE.getVScale(S->getType())); 326 return S; 327 } 328 329 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { 330 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity); 331 if (Scalable) 332 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType())); 333 return NegS; 334 } 335 336 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { 337 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity)); 338 if (Scalable) 339 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType())); 340 return SU; 341 } 342 }; 343 344 // This is needed for the Compare type of std::map when Immediate is used 345 // as a key. We don't need it to be fully correct against any value of vscale, 346 // just to make sure that vscale-related terms in the map are considered against 347 // each other rather than being mixed up and potentially missing opportunities. 348 struct KeyOrderTargetImmediate { 349 bool operator()(const Immediate &LHS, const Immediate &RHS) const { 350 if (LHS.isScalable() && !RHS.isScalable()) 351 return false; 352 if (!LHS.isScalable() && RHS.isScalable()) 353 return true; 354 return LHS.getKnownMinValue() < RHS.getKnownMinValue(); 355 } 356 }; 357 358 // This would be nicer if we could be generic instead of directly using size_t, 359 // but there doesn't seem to be a type trait for is_orderable or 360 // is_lessthan_comparable or similar. 361 struct KeyOrderSizeTAndImmediate { 362 bool operator()(const std::pair<size_t, Immediate> &LHS, 363 const std::pair<size_t, Immediate> &RHS) const { 364 size_t LSize = LHS.first; 365 size_t RSize = RHS.first; 366 if (LSize != RSize) 367 return LSize < RSize; 368 return KeyOrderTargetImmediate()(LHS.second, RHS.second); 369 } 370 }; 371 } // end anonymous namespace 372 373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 374 void RegSortData::print(raw_ostream &OS) const { 375 OS << "[NumUses=" << UsedByIndices.count() << ']'; 376 } 377 378 LLVM_DUMP_METHOD void RegSortData::dump() const { 379 print(errs()); errs() << '\n'; 380 } 381 #endif 382 383 namespace { 384 385 /// Map register candidates to information about how they are used. 386 class RegUseTracker { 387 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 388 389 RegUsesTy RegUsesMap; 390 SmallVector<const SCEV *, 16> RegSequence; 391 392 public: 393 void countRegister(const SCEV *Reg, size_t LUIdx); 394 void dropRegister(const SCEV *Reg, size_t LUIdx); 395 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 396 397 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 398 399 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 400 401 void clear(); 402 403 using iterator = SmallVectorImpl<const SCEV *>::iterator; 404 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 405 406 iterator begin() { return RegSequence.begin(); } 407 iterator end() { return RegSequence.end(); } 408 const_iterator begin() const { return RegSequence.begin(); } 409 const_iterator end() const { return RegSequence.end(); } 410 }; 411 412 } // end anonymous namespace 413 414 void 415 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 416 std::pair<RegUsesTy::iterator, bool> Pair = 417 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 418 RegSortData &RSD = Pair.first->second; 419 if (Pair.second) 420 RegSequence.push_back(Reg); 421 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 422 RSD.UsedByIndices.set(LUIdx); 423 } 424 425 void 426 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 427 RegUsesTy::iterator It = RegUsesMap.find(Reg); 428 assert(It != RegUsesMap.end()); 429 RegSortData &RSD = It->second; 430 assert(RSD.UsedByIndices.size() > LUIdx); 431 RSD.UsedByIndices.reset(LUIdx); 432 } 433 434 void 435 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 436 assert(LUIdx <= LastLUIdx); 437 438 // Update RegUses. The data structure is not optimized for this purpose; 439 // we must iterate through it and update each of the bit vectors. 440 for (auto &Pair : RegUsesMap) { 441 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 442 if (LUIdx < UsedByIndices.size()) 443 UsedByIndices[LUIdx] = 444 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 445 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 446 } 447 } 448 449 bool 450 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 451 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 452 if (I == RegUsesMap.end()) 453 return false; 454 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 455 int i = UsedByIndices.find_first(); 456 if (i == -1) return false; 457 if ((size_t)i != LUIdx) return true; 458 return UsedByIndices.find_next(i) != -1; 459 } 460 461 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 462 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 463 assert(I != RegUsesMap.end() && "Unknown register!"); 464 return I->second.UsedByIndices; 465 } 466 467 void RegUseTracker::clear() { 468 RegUsesMap.clear(); 469 RegSequence.clear(); 470 } 471 472 namespace { 473 474 /// This class holds information that describes a formula for computing 475 /// satisfying a use. It may include broken-out immediates and scaled registers. 476 struct Formula { 477 /// Global base address used for complex addressing. 478 GlobalValue *BaseGV = nullptr; 479 480 /// Base offset for complex addressing. 481 Immediate BaseOffset = Immediate::getZero(); 482 483 /// Whether any complex addressing has a base register. 484 bool HasBaseReg = false; 485 486 /// The scale of any complex addressing. 487 int64_t Scale = 0; 488 489 /// The list of "base" registers for this use. When this is non-empty. The 490 /// canonical representation of a formula is 491 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 492 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 493 /// 3. The reg containing recurrent expr related with currect loop in the 494 /// formula should be put in the ScaledReg. 495 /// #1 enforces that the scaled register is always used when at least two 496 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 497 /// #2 enforces that 1 * reg is reg. 498 /// #3 ensures invariant regs with respect to current loop can be combined 499 /// together in LSR codegen. 500 /// This invariant can be temporarily broken while building a formula. 501 /// However, every formula inserted into the LSRInstance must be in canonical 502 /// form. 503 SmallVector<const SCEV *, 4> BaseRegs; 504 505 /// The 'scaled' register for this use. This should be non-null when Scale is 506 /// not zero. 507 const SCEV *ScaledReg = nullptr; 508 509 /// An additional constant offset which added near the use. This requires a 510 /// temporary register, but the offset itself can live in an add immediate 511 /// field rather than a register. 512 Immediate UnfoldedOffset = Immediate::getZero(); 513 514 Formula() = default; 515 516 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 517 518 bool isCanonical(const Loop &L) const; 519 520 void canonicalize(const Loop &L); 521 522 bool unscale(); 523 524 bool hasZeroEnd() const; 525 526 size_t getNumRegs() const; 527 Type *getType() const; 528 529 void deleteBaseReg(const SCEV *&S); 530 531 bool referencesReg(const SCEV *S) const; 532 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 533 const RegUseTracker &RegUses) const; 534 535 void print(raw_ostream &OS) const; 536 void dump() const; 537 }; 538 539 } // end anonymous namespace 540 541 /// Recursion helper for initialMatch. 542 static void DoInitialMatch(const SCEV *S, Loop *L, 543 SmallVectorImpl<const SCEV *> &Good, 544 SmallVectorImpl<const SCEV *> &Bad, 545 ScalarEvolution &SE) { 546 // Collect expressions which properly dominate the loop header. 547 if (SE.properlyDominates(S, L->getHeader())) { 548 Good.push_back(S); 549 return; 550 } 551 552 // Look at add operands. 553 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 554 for (const SCEV *S : Add->operands()) 555 DoInitialMatch(S, L, Good, Bad, SE); 556 return; 557 } 558 559 // Look at addrec operands. 560 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 561 if (!AR->getStart()->isZero() && AR->isAffine()) { 562 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 563 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 564 AR->getStepRecurrence(SE), 565 // FIXME: AR->getNoWrapFlags() 566 AR->getLoop(), SCEV::FlagAnyWrap), 567 L, Good, Bad, SE); 568 return; 569 } 570 571 // Handle a multiplication by -1 (negation) if it didn't fold. 572 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 573 if (Mul->getOperand(0)->isAllOnesValue()) { 574 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 575 const SCEV *NewMul = SE.getMulExpr(Ops); 576 577 SmallVector<const SCEV *, 4> MyGood; 578 SmallVector<const SCEV *, 4> MyBad; 579 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 580 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 581 SE.getEffectiveSCEVType(NewMul->getType()))); 582 for (const SCEV *S : MyGood) 583 Good.push_back(SE.getMulExpr(NegOne, S)); 584 for (const SCEV *S : MyBad) 585 Bad.push_back(SE.getMulExpr(NegOne, S)); 586 return; 587 } 588 589 // Ok, we can't do anything interesting. Just stuff the whole thing into a 590 // register and hope for the best. 591 Bad.push_back(S); 592 } 593 594 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 595 /// all loop-invariant and loop-computable values in a single base register. 596 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 597 SmallVector<const SCEV *, 4> Good; 598 SmallVector<const SCEV *, 4> Bad; 599 DoInitialMatch(S, L, Good, Bad, SE); 600 if (!Good.empty()) { 601 const SCEV *Sum = SE.getAddExpr(Good); 602 if (!Sum->isZero()) 603 BaseRegs.push_back(Sum); 604 HasBaseReg = true; 605 } 606 if (!Bad.empty()) { 607 const SCEV *Sum = SE.getAddExpr(Bad); 608 if (!Sum->isZero()) 609 BaseRegs.push_back(Sum); 610 HasBaseReg = true; 611 } 612 canonicalize(*L); 613 } 614 615 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 616 return SCEVExprContains(S, [&L](const SCEV *S) { 617 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 618 }); 619 } 620 621 /// Check whether or not this formula satisfies the canonical 622 /// representation. 623 /// \see Formula::BaseRegs. 624 bool Formula::isCanonical(const Loop &L) const { 625 if (!ScaledReg) 626 return BaseRegs.size() <= 1; 627 628 if (Scale != 1) 629 return true; 630 631 if (Scale == 1 && BaseRegs.empty()) 632 return false; 633 634 if (containsAddRecDependentOnLoop(ScaledReg, L)) 635 return true; 636 637 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 638 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 639 // loop, we want to swap the reg in BaseRegs with ScaledReg. 640 return none_of(BaseRegs, [&L](const SCEV *S) { 641 return containsAddRecDependentOnLoop(S, L); 642 }); 643 } 644 645 /// Helper method to morph a formula into its canonical representation. 646 /// \see Formula::BaseRegs. 647 /// Every formula having more than one base register, must use the ScaledReg 648 /// field. Otherwise, we would have to do special cases everywhere in LSR 649 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 650 /// On the other hand, 1*reg should be canonicalized into reg. 651 void Formula::canonicalize(const Loop &L) { 652 if (isCanonical(L)) 653 return; 654 655 if (BaseRegs.empty()) { 656 // No base reg? Use scale reg with scale = 1 as such. 657 assert(ScaledReg && "Expected 1*reg => reg"); 658 assert(Scale == 1 && "Expected 1*reg => reg"); 659 BaseRegs.push_back(ScaledReg); 660 Scale = 0; 661 ScaledReg = nullptr; 662 return; 663 } 664 665 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 666 if (!ScaledReg) { 667 ScaledReg = BaseRegs.pop_back_val(); 668 Scale = 1; 669 } 670 671 // If ScaledReg is an invariant with respect to L, find the reg from 672 // BaseRegs containing the recurrent expr related with Loop L. Swap the 673 // reg with ScaledReg. 674 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 675 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 676 return containsAddRecDependentOnLoop(S, L); 677 }); 678 if (I != BaseRegs.end()) 679 std::swap(ScaledReg, *I); 680 } 681 assert(isCanonical(L) && "Failed to canonicalize?"); 682 } 683 684 /// Get rid of the scale in the formula. 685 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 686 /// \return true if it was possible to get rid of the scale, false otherwise. 687 /// \note After this operation the formula may not be in the canonical form. 688 bool Formula::unscale() { 689 if (Scale != 1) 690 return false; 691 Scale = 0; 692 BaseRegs.push_back(ScaledReg); 693 ScaledReg = nullptr; 694 return true; 695 } 696 697 bool Formula::hasZeroEnd() const { 698 if (UnfoldedOffset || BaseOffset) 699 return false; 700 if (BaseRegs.size() != 1 || ScaledReg) 701 return false; 702 return true; 703 } 704 705 /// Return the total number of register operands used by this formula. This does 706 /// not include register uses implied by non-constant addrec strides. 707 size_t Formula::getNumRegs() const { 708 return !!ScaledReg + BaseRegs.size(); 709 } 710 711 /// Return the type of this formula, if it has one, or null otherwise. This type 712 /// is meaningless except for the bit size. 713 Type *Formula::getType() const { 714 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 715 ScaledReg ? ScaledReg->getType() : 716 BaseGV ? BaseGV->getType() : 717 nullptr; 718 } 719 720 /// Delete the given base reg from the BaseRegs list. 721 void Formula::deleteBaseReg(const SCEV *&S) { 722 if (&S != &BaseRegs.back()) 723 std::swap(S, BaseRegs.back()); 724 BaseRegs.pop_back(); 725 } 726 727 /// Test if this formula references the given register. 728 bool Formula::referencesReg(const SCEV *S) const { 729 return S == ScaledReg || is_contained(BaseRegs, S); 730 } 731 732 /// Test whether this formula uses registers which are used by uses other than 733 /// the use with the given index. 734 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 735 const RegUseTracker &RegUses) const { 736 if (ScaledReg) 737 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 738 return true; 739 for (const SCEV *BaseReg : BaseRegs) 740 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 741 return true; 742 return false; 743 } 744 745 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 746 void Formula::print(raw_ostream &OS) const { 747 bool First = true; 748 if (BaseGV) { 749 if (!First) OS << " + "; else First = false; 750 BaseGV->printAsOperand(OS, /*PrintType=*/false); 751 } 752 if (BaseOffset.isNonZero()) { 753 if (!First) OS << " + "; else First = false; 754 OS << BaseOffset; 755 } 756 for (const SCEV *BaseReg : BaseRegs) { 757 if (!First) OS << " + "; else First = false; 758 OS << "reg(" << *BaseReg << ')'; 759 } 760 if (HasBaseReg && BaseRegs.empty()) { 761 if (!First) OS << " + "; else First = false; 762 OS << "**error: HasBaseReg**"; 763 } else if (!HasBaseReg && !BaseRegs.empty()) { 764 if (!First) OS << " + "; else First = false; 765 OS << "**error: !HasBaseReg**"; 766 } 767 if (Scale != 0) { 768 if (!First) OS << " + "; else First = false; 769 OS << Scale << "*reg("; 770 if (ScaledReg) 771 OS << *ScaledReg; 772 else 773 OS << "<unknown>"; 774 OS << ')'; 775 } 776 if (UnfoldedOffset.isNonZero()) { 777 if (!First) OS << " + "; 778 OS << "imm(" << UnfoldedOffset << ')'; 779 } 780 } 781 782 LLVM_DUMP_METHOD void Formula::dump() const { 783 print(errs()); errs() << '\n'; 784 } 785 #endif 786 787 /// Return true if the given addrec can be sign-extended without changing its 788 /// value. 789 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 790 Type *WideTy = 791 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 792 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 793 } 794 795 /// Return true if the given add can be sign-extended without changing its 796 /// value. 797 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 798 Type *WideTy = 799 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 800 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 801 } 802 803 /// Return true if the given mul can be sign-extended without changing its 804 /// value. 805 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 806 Type *WideTy = 807 IntegerType::get(SE.getContext(), 808 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 809 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 810 } 811 812 /// Return an expression for LHS /s RHS, if it can be determined and if the 813 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 814 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 815 /// the multiplication may overflow, which is useful when the result will be 816 /// used in a context where the most significant bits are ignored. 817 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 818 ScalarEvolution &SE, 819 bool IgnoreSignificantBits = false) { 820 // Handle the trivial case, which works for any SCEV type. 821 if (LHS == RHS) 822 return SE.getConstant(LHS->getType(), 1); 823 824 // Handle a few RHS special cases. 825 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 826 if (RC) { 827 const APInt &RA = RC->getAPInt(); 828 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 829 // some folding. 830 if (RA.isAllOnes()) { 831 if (LHS->getType()->isPointerTy()) 832 return nullptr; 833 return SE.getMulExpr(LHS, RC); 834 } 835 // Handle x /s 1 as x. 836 if (RA == 1) 837 return LHS; 838 } 839 840 // Check for a division of a constant by a constant. 841 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 842 if (!RC) 843 return nullptr; 844 const APInt &LA = C->getAPInt(); 845 const APInt &RA = RC->getAPInt(); 846 if (LA.srem(RA) != 0) 847 return nullptr; 848 return SE.getConstant(LA.sdiv(RA)); 849 } 850 851 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 852 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 853 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 854 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 855 IgnoreSignificantBits); 856 if (!Step) return nullptr; 857 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 858 IgnoreSignificantBits); 859 if (!Start) return nullptr; 860 // FlagNW is independent of the start value, step direction, and is 861 // preserved with smaller magnitude steps. 862 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 863 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 864 } 865 return nullptr; 866 } 867 868 // Distribute the sdiv over add operands, if the add doesn't overflow. 869 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 870 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 871 SmallVector<const SCEV *, 8> Ops; 872 for (const SCEV *S : Add->operands()) { 873 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 874 if (!Op) return nullptr; 875 Ops.push_back(Op); 876 } 877 return SE.getAddExpr(Ops); 878 } 879 return nullptr; 880 } 881 882 // Check for a multiply operand that we can pull RHS out of. 883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 884 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 885 // Handle special case C1*X*Y /s C2*X*Y. 886 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 887 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 888 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 889 const SCEVConstant *RC = 890 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 891 if (LC && RC) { 892 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 893 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 894 if (LOps == ROps) 895 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 896 } 897 } 898 } 899 900 SmallVector<const SCEV *, 4> Ops; 901 bool Found = false; 902 for (const SCEV *S : Mul->operands()) { 903 if (!Found) 904 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 905 IgnoreSignificantBits)) { 906 S = Q; 907 Found = true; 908 } 909 Ops.push_back(S); 910 } 911 return Found ? SE.getMulExpr(Ops) : nullptr; 912 } 913 return nullptr; 914 } 915 916 // Otherwise we don't know. 917 return nullptr; 918 } 919 920 /// If S involves the addition of a constant integer value, return that integer 921 /// value, and mutate S to point to a new SCEV with that value excluded. 922 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 923 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 924 if (C->getAPInt().getSignificantBits() <= 64) { 925 S = SE.getConstant(C->getType(), 0); 926 return Immediate::getFixed(C->getValue()->getSExtValue()); 927 } 928 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 929 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 930 Immediate Result = ExtractImmediate(NewOps.front(), SE); 931 if (Result.isNonZero()) 932 S = SE.getAddExpr(NewOps); 933 return Result; 934 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 935 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 936 Immediate Result = ExtractImmediate(NewOps.front(), SE); 937 if (Result.isNonZero()) 938 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 939 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 940 SCEV::FlagAnyWrap); 941 return Result; 942 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 943 if (EnableVScaleImmediates && M->getNumOperands() == 2) { 944 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 945 if (isa<SCEVVScale>(M->getOperand(1))) { 946 S = SE.getConstant(M->getType(), 0); 947 return Immediate::getScalable(C->getValue()->getSExtValue()); 948 } 949 } 950 } 951 return Immediate::getZero(); 952 } 953 954 /// If S involves the addition of a GlobalValue address, return that symbol, and 955 /// mutate S to point to a new SCEV with that value excluded. 956 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 957 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 958 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 959 S = SE.getConstant(GV->getType(), 0); 960 return GV; 961 } 962 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 963 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 964 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 965 if (Result) 966 S = SE.getAddExpr(NewOps); 967 return Result; 968 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 969 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 970 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 971 if (Result) 972 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 973 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 974 SCEV::FlagAnyWrap); 975 return Result; 976 } 977 return nullptr; 978 } 979 980 /// Returns true if the specified instruction is using the specified value as an 981 /// address. 982 static bool isAddressUse(const TargetTransformInfo &TTI, 983 Instruction *Inst, Value *OperandVal) { 984 bool isAddress = isa<LoadInst>(Inst); 985 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 986 if (SI->getPointerOperand() == OperandVal) 987 isAddress = true; 988 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 989 // Addressing modes can also be folded into prefetches and a variety 990 // of intrinsics. 991 switch (II->getIntrinsicID()) { 992 case Intrinsic::memset: 993 case Intrinsic::prefetch: 994 case Intrinsic::masked_load: 995 if (II->getArgOperand(0) == OperandVal) 996 isAddress = true; 997 break; 998 case Intrinsic::masked_store: 999 if (II->getArgOperand(1) == OperandVal) 1000 isAddress = true; 1001 break; 1002 case Intrinsic::memmove: 1003 case Intrinsic::memcpy: 1004 if (II->getArgOperand(0) == OperandVal || 1005 II->getArgOperand(1) == OperandVal) 1006 isAddress = true; 1007 break; 1008 default: { 1009 MemIntrinsicInfo IntrInfo; 1010 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 1011 if (IntrInfo.PtrVal == OperandVal) 1012 isAddress = true; 1013 } 1014 } 1015 } 1016 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1017 if (RMW->getPointerOperand() == OperandVal) 1018 isAddress = true; 1019 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1020 if (CmpX->getPointerOperand() == OperandVal) 1021 isAddress = true; 1022 } 1023 return isAddress; 1024 } 1025 1026 /// Return the type of the memory being accessed. 1027 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 1028 Instruction *Inst, Value *OperandVal) { 1029 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 1030 1031 // First get the type of memory being accessed. 1032 if (Type *Ty = Inst->getAccessType()) 1033 AccessTy.MemTy = Ty; 1034 1035 // Then get the pointer address space. 1036 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1037 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 1038 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 1039 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 1040 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1041 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 1042 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1043 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 1044 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1045 switch (II->getIntrinsicID()) { 1046 case Intrinsic::prefetch: 1047 case Intrinsic::memset: 1048 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1049 AccessTy.MemTy = OperandVal->getType(); 1050 break; 1051 case Intrinsic::memmove: 1052 case Intrinsic::memcpy: 1053 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 1054 AccessTy.MemTy = OperandVal->getType(); 1055 break; 1056 case Intrinsic::masked_load: 1057 AccessTy.AddrSpace = 1058 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1059 break; 1060 case Intrinsic::masked_store: 1061 AccessTy.AddrSpace = 1062 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 1063 break; 1064 default: { 1065 MemIntrinsicInfo IntrInfo; 1066 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 1067 AccessTy.AddrSpace 1068 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 1069 } 1070 1071 break; 1072 } 1073 } 1074 } 1075 1076 return AccessTy; 1077 } 1078 1079 /// Return true if this AddRec is already a phi in its loop. 1080 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 1081 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 1082 if (SE.isSCEVable(PN.getType()) && 1083 (SE.getEffectiveSCEVType(PN.getType()) == 1084 SE.getEffectiveSCEVType(AR->getType())) && 1085 SE.getSCEV(&PN) == AR) 1086 return true; 1087 } 1088 return false; 1089 } 1090 1091 /// Check if expanding this expression is likely to incur significant cost. This 1092 /// is tricky because SCEV doesn't track which expressions are actually computed 1093 /// by the current IR. 1094 /// 1095 /// We currently allow expansion of IV increments that involve adds, 1096 /// multiplication by constants, and AddRecs from existing phis. 1097 /// 1098 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 1099 /// obvious multiple of the UDivExpr. 1100 static bool isHighCostExpansion(const SCEV *S, 1101 SmallPtrSetImpl<const SCEV*> &Processed, 1102 ScalarEvolution &SE) { 1103 // Zero/One operand expressions 1104 switch (S->getSCEVType()) { 1105 case scUnknown: 1106 case scConstant: 1107 case scVScale: 1108 return false; 1109 case scTruncate: 1110 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 1111 Processed, SE); 1112 case scZeroExtend: 1113 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1114 Processed, SE); 1115 case scSignExtend: 1116 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 1117 Processed, SE); 1118 default: 1119 break; 1120 } 1121 1122 if (!Processed.insert(S).second) 1123 return false; 1124 1125 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1126 for (const SCEV *S : Add->operands()) { 1127 if (isHighCostExpansion(S, Processed, SE)) 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1134 if (Mul->getNumOperands() == 2) { 1135 // Multiplication by a constant is ok 1136 if (isa<SCEVConstant>(Mul->getOperand(0))) 1137 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1138 1139 // If we have the value of one operand, check if an existing 1140 // multiplication already generates this expression. 1141 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1142 Value *UVal = U->getValue(); 1143 for (User *UR : UVal->users()) { 1144 // If U is a constant, it may be used by a ConstantExpr. 1145 Instruction *UI = dyn_cast<Instruction>(UR); 1146 if (UI && UI->getOpcode() == Instruction::Mul && 1147 SE.isSCEVable(UI->getType())) { 1148 return SE.getSCEV(UI) == Mul; 1149 } 1150 } 1151 } 1152 } 1153 } 1154 1155 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1156 if (isExistingPhi(AR, SE)) 1157 return false; 1158 } 1159 1160 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1161 return true; 1162 } 1163 1164 namespace { 1165 1166 class LSRUse; 1167 1168 } // end anonymous namespace 1169 1170 /// Check if the addressing mode defined by \p F is completely 1171 /// folded in \p LU at isel time. 1172 /// This includes address-mode folding and special icmp tricks. 1173 /// This function returns true if \p LU can accommodate what \p F 1174 /// defines and up to 1 base + 1 scaled + offset. 1175 /// In other words, if \p F has several base registers, this function may 1176 /// still return true. Therefore, users still need to account for 1177 /// additional base registers and/or unfolded offsets to derive an 1178 /// accurate cost model. 1179 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1180 const LSRUse &LU, const Formula &F); 1181 1182 // Get the cost of the scaling factor used in F for LU. 1183 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1184 const LSRUse &LU, const Formula &F, 1185 const Loop &L); 1186 1187 namespace { 1188 1189 /// This class is used to measure and compare candidate formulae. 1190 class Cost { 1191 const Loop *L = nullptr; 1192 ScalarEvolution *SE = nullptr; 1193 const TargetTransformInfo *TTI = nullptr; 1194 TargetTransformInfo::LSRCost C; 1195 TTI::AddressingModeKind AMK = TTI::AMK_None; 1196 1197 public: 1198 Cost() = delete; 1199 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1200 TTI::AddressingModeKind AMK) : 1201 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1202 C.Insns = 0; 1203 C.NumRegs = 0; 1204 C.AddRecCost = 0; 1205 C.NumIVMuls = 0; 1206 C.NumBaseAdds = 0; 1207 C.ImmCost = 0; 1208 C.SetupCost = 0; 1209 C.ScaleCost = 0; 1210 } 1211 1212 bool isLess(const Cost &Other) const; 1213 1214 void Lose(); 1215 1216 #ifndef NDEBUG 1217 // Once any of the metrics loses, they must all remain losers. 1218 bool isValid() { 1219 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1220 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1221 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1222 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1223 } 1224 #endif 1225 1226 bool isLoser() { 1227 assert(isValid() && "invalid cost"); 1228 return C.NumRegs == ~0u; 1229 } 1230 1231 void RateFormula(const Formula &F, 1232 SmallPtrSetImpl<const SCEV *> &Regs, 1233 const DenseSet<const SCEV *> &VisitedRegs, 1234 const LSRUse &LU, 1235 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1236 1237 void print(raw_ostream &OS) const; 1238 void dump() const; 1239 1240 private: 1241 void RateRegister(const Formula &F, const SCEV *Reg, 1242 SmallPtrSetImpl<const SCEV *> &Regs); 1243 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1244 SmallPtrSetImpl<const SCEV *> &Regs, 1245 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1246 }; 1247 1248 /// An operand value in an instruction which is to be replaced with some 1249 /// equivalent, possibly strength-reduced, replacement. 1250 struct LSRFixup { 1251 /// The instruction which will be updated. 1252 Instruction *UserInst = nullptr; 1253 1254 /// The operand of the instruction which will be replaced. The operand may be 1255 /// used more than once; every instance will be replaced. 1256 Value *OperandValToReplace = nullptr; 1257 1258 /// If this user is to use the post-incremented value of an induction 1259 /// variable, this set is non-empty and holds the loops associated with the 1260 /// induction variable. 1261 PostIncLoopSet PostIncLoops; 1262 1263 /// A constant offset to be added to the LSRUse expression. This allows 1264 /// multiple fixups to share the same LSRUse with different offsets, for 1265 /// example in an unrolled loop. 1266 Immediate Offset = Immediate::getZero(); 1267 1268 LSRFixup() = default; 1269 1270 bool isUseFullyOutsideLoop(const Loop *L) const; 1271 1272 void print(raw_ostream &OS) const; 1273 void dump() const; 1274 }; 1275 1276 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1277 /// SmallVectors of const SCEV*. 1278 struct UniquifierDenseMapInfo { 1279 static SmallVector<const SCEV *, 4> getEmptyKey() { 1280 SmallVector<const SCEV *, 4> V; 1281 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1282 return V; 1283 } 1284 1285 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1286 SmallVector<const SCEV *, 4> V; 1287 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1288 return V; 1289 } 1290 1291 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1292 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1293 } 1294 1295 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1296 const SmallVector<const SCEV *, 4> &RHS) { 1297 return LHS == RHS; 1298 } 1299 }; 1300 1301 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1302 /// as uses invented by LSR itself. It includes information about what kinds of 1303 /// things can be folded into the user, information about the user itself, and 1304 /// information about how the use may be satisfied. TODO: Represent multiple 1305 /// users of the same expression in common? 1306 class LSRUse { 1307 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1308 1309 public: 1310 /// An enum for a kind of use, indicating what types of scaled and immediate 1311 /// operands it might support. 1312 enum KindType { 1313 Basic, ///< A normal use, with no folding. 1314 Special, ///< A special case of basic, allowing -1 scales. 1315 Address, ///< An address use; folding according to TargetLowering 1316 ICmpZero ///< An equality icmp with both operands folded into one. 1317 // TODO: Add a generic icmp too? 1318 }; 1319 1320 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1321 1322 KindType Kind; 1323 MemAccessTy AccessTy; 1324 1325 /// The list of operands which are to be replaced. 1326 SmallVector<LSRFixup, 8> Fixups; 1327 1328 /// Keep track of the min and max offsets of the fixups. 1329 Immediate MinOffset = Immediate::getFixedMax(); 1330 Immediate MaxOffset = Immediate::getFixedMin(); 1331 1332 /// This records whether all of the fixups using this LSRUse are outside of 1333 /// the loop, in which case some special-case heuristics may be used. 1334 bool AllFixupsOutsideLoop = true; 1335 1336 /// RigidFormula is set to true to guarantee that this use will be associated 1337 /// with a single formula--the one that initially matched. Some SCEV 1338 /// expressions cannot be expanded. This allows LSR to consider the registers 1339 /// used by those expressions without the need to expand them later after 1340 /// changing the formula. 1341 bool RigidFormula = false; 1342 1343 /// This records the widest use type for any fixup using this 1344 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1345 /// fixup widths to be equivalent, because the narrower one may be relying on 1346 /// the implicit truncation to truncate away bogus bits. 1347 Type *WidestFixupType = nullptr; 1348 1349 /// A list of ways to build a value that can satisfy this user. After the 1350 /// list is populated, one of these is selected heuristically and used to 1351 /// formulate a replacement for OperandValToReplace in UserInst. 1352 SmallVector<Formula, 12> Formulae; 1353 1354 /// The set of register candidates used by all formulae in this LSRUse. 1355 SmallPtrSet<const SCEV *, 4> Regs; 1356 1357 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1358 1359 LSRFixup &getNewFixup() { 1360 Fixups.push_back(LSRFixup()); 1361 return Fixups.back(); 1362 } 1363 1364 void pushFixup(LSRFixup &f) { 1365 Fixups.push_back(f); 1366 if (Immediate::isKnownGT(f.Offset, MaxOffset)) 1367 MaxOffset = f.Offset; 1368 if (Immediate::isKnownLT(f.Offset, MinOffset)) 1369 MinOffset = f.Offset; 1370 } 1371 1372 bool HasFormulaWithSameRegs(const Formula &F) const; 1373 float getNotSelectedProbability(const SCEV *Reg) const; 1374 bool InsertFormula(const Formula &F, const Loop &L); 1375 void DeleteFormula(Formula &F); 1376 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1377 1378 void print(raw_ostream &OS) const; 1379 void dump() const; 1380 }; 1381 1382 } // end anonymous namespace 1383 1384 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1385 LSRUse::KindType Kind, MemAccessTy AccessTy, 1386 GlobalValue *BaseGV, Immediate BaseOffset, 1387 bool HasBaseReg, int64_t Scale, 1388 Instruction *Fixup = nullptr); 1389 1390 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1391 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1392 return 1; 1393 if (Depth == 0) 1394 return 0; 1395 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1396 return getSetupCost(S->getStart(), Depth - 1); 1397 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1398 return getSetupCost(S->getOperand(), Depth - 1); 1399 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1400 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1401 [&](unsigned i, const SCEV *Reg) { 1402 return i + getSetupCost(Reg, Depth - 1); 1403 }); 1404 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1405 return getSetupCost(S->getLHS(), Depth - 1) + 1406 getSetupCost(S->getRHS(), Depth - 1); 1407 return 0; 1408 } 1409 1410 /// Tally up interesting quantities from the given register. 1411 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1412 SmallPtrSetImpl<const SCEV *> &Regs) { 1413 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1414 // If this is an addrec for another loop, it should be an invariant 1415 // with respect to L since L is the innermost loop (at least 1416 // for now LSR only handles innermost loops). 1417 if (AR->getLoop() != L) { 1418 // If the AddRec exists, consider it's register free and leave it alone. 1419 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1420 return; 1421 1422 // It is bad to allow LSR for current loop to add induction variables 1423 // for its sibling loops. 1424 if (!AR->getLoop()->contains(L)) { 1425 Lose(); 1426 return; 1427 } 1428 1429 // Otherwise, it will be an invariant with respect to Loop L. 1430 ++C.NumRegs; 1431 return; 1432 } 1433 1434 unsigned LoopCost = 1; 1435 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1436 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1437 1438 // If the step size matches the base offset, we could use pre-indexed 1439 // addressing. 1440 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) { 1441 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1442 if (Step->getAPInt() == F.BaseOffset.getFixedValue()) 1443 LoopCost = 0; 1444 } else if (AMK == TTI::AMK_PostIndexed) { 1445 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1446 if (isa<SCEVConstant>(LoopStep)) { 1447 const SCEV *LoopStart = AR->getStart(); 1448 if (!isa<SCEVConstant>(LoopStart) && 1449 SE->isLoopInvariant(LoopStart, L)) 1450 LoopCost = 0; 1451 } 1452 } 1453 } 1454 C.AddRecCost += LoopCost; 1455 1456 // Add the step value register, if it needs one. 1457 // TODO: The non-affine case isn't precisely modeled here. 1458 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1459 if (!Regs.count(AR->getOperand(1))) { 1460 RateRegister(F, AR->getOperand(1), Regs); 1461 if (isLoser()) 1462 return; 1463 } 1464 } 1465 } 1466 ++C.NumRegs; 1467 1468 // Rough heuristic; favor registers which don't require extra setup 1469 // instructions in the preheader. 1470 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1471 // Ensure we don't, even with the recusion limit, produce invalid costs. 1472 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1473 1474 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1475 SE->hasComputableLoopEvolution(Reg, L); 1476 } 1477 1478 /// Record this register in the set. If we haven't seen it before, rate 1479 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1480 /// one of those regs an instant loser. 1481 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1482 SmallPtrSetImpl<const SCEV *> &Regs, 1483 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1484 if (LoserRegs && LoserRegs->count(Reg)) { 1485 Lose(); 1486 return; 1487 } 1488 if (Regs.insert(Reg).second) { 1489 RateRegister(F, Reg, Regs); 1490 if (LoserRegs && isLoser()) 1491 LoserRegs->insert(Reg); 1492 } 1493 } 1494 1495 void Cost::RateFormula(const Formula &F, 1496 SmallPtrSetImpl<const SCEV *> &Regs, 1497 const DenseSet<const SCEV *> &VisitedRegs, 1498 const LSRUse &LU, 1499 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1500 if (isLoser()) 1501 return; 1502 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1503 // Tally up the registers. 1504 unsigned PrevAddRecCost = C.AddRecCost; 1505 unsigned PrevNumRegs = C.NumRegs; 1506 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1507 if (const SCEV *ScaledReg = F.ScaledReg) { 1508 if (VisitedRegs.count(ScaledReg)) { 1509 Lose(); 1510 return; 1511 } 1512 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1513 if (isLoser()) 1514 return; 1515 } 1516 for (const SCEV *BaseReg : F.BaseRegs) { 1517 if (VisitedRegs.count(BaseReg)) { 1518 Lose(); 1519 return; 1520 } 1521 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1522 if (isLoser()) 1523 return; 1524 } 1525 1526 // Determine how many (unfolded) adds we'll need inside the loop. 1527 size_t NumBaseParts = F.getNumRegs(); 1528 if (NumBaseParts > 1) 1529 // Do not count the base and a possible second register if the target 1530 // allows to fold 2 registers. 1531 C.NumBaseAdds += 1532 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1533 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); 1534 1535 // Accumulate non-free scaling amounts. 1536 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1537 1538 // Tally up the non-zero immediates. 1539 for (const LSRFixup &Fixup : LU.Fixups) { 1540 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) { 1541 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset); 1542 if (F.BaseGV) 1543 C.ImmCost += 64; // Handle symbolic values conservatively. 1544 // TODO: This should probably be the pointer size. 1545 else if (Offset.isNonZero()) 1546 C.ImmCost += 1547 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); 1548 1549 // Check with target if this offset with this instruction is 1550 // specifically not supported. 1551 if (LU.Kind == LSRUse::Address && Offset.isNonZero() && 1552 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1553 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1554 C.NumBaseAdds++; 1555 } else { 1556 // Incompatible immediate type, increase cost to avoid using 1557 C.ImmCost += 2048; 1558 } 1559 } 1560 1561 // If we don't count instruction cost exit here. 1562 if (!InsnsCost) { 1563 assert(isValid() && "invalid cost"); 1564 return; 1565 } 1566 1567 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1568 // additional instruction (at least fill). 1569 // TODO: Need distinguish register class? 1570 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1571 TTI->getRegisterClassForType(false, F.getType())) - 1; 1572 if (C.NumRegs > TTIRegNum) { 1573 // Cost already exceeded TTIRegNum, then only newly added register can add 1574 // new instructions. 1575 if (PrevNumRegs > TTIRegNum) 1576 C.Insns += (C.NumRegs - PrevNumRegs); 1577 else 1578 C.Insns += (C.NumRegs - TTIRegNum); 1579 } 1580 1581 // If ICmpZero formula ends with not 0, it could not be replaced by 1582 // just add or sub. We'll need to compare final result of AddRec. 1583 // That means we'll need an additional instruction. But if the target can 1584 // macro-fuse a compare with a branch, don't count this extra instruction. 1585 // For -10 + {0, +, 1}: 1586 // i = i + 1; 1587 // cmp i, 10 1588 // 1589 // For {-10, +, 1}: 1590 // i = i + 1; 1591 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1592 !TTI->canMacroFuseCmp()) 1593 C.Insns++; 1594 // Each new AddRec adds 1 instruction to calculation. 1595 C.Insns += (C.AddRecCost - PrevAddRecCost); 1596 1597 // BaseAdds adds instructions for unfolded registers. 1598 if (LU.Kind != LSRUse::ICmpZero) 1599 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1600 assert(isValid() && "invalid cost"); 1601 } 1602 1603 /// Set this cost to a losing value. 1604 void Cost::Lose() { 1605 C.Insns = std::numeric_limits<unsigned>::max(); 1606 C.NumRegs = std::numeric_limits<unsigned>::max(); 1607 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1608 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1609 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1610 C.ImmCost = std::numeric_limits<unsigned>::max(); 1611 C.SetupCost = std::numeric_limits<unsigned>::max(); 1612 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1613 } 1614 1615 /// Choose the lower cost. 1616 bool Cost::isLess(const Cost &Other) const { 1617 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1618 C.Insns != Other.C.Insns) 1619 return C.Insns < Other.C.Insns; 1620 return TTI->isLSRCostLess(C, Other.C); 1621 } 1622 1623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1624 void Cost::print(raw_ostream &OS) const { 1625 if (InsnsCost) 1626 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1627 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1628 if (C.AddRecCost != 0) 1629 OS << ", with addrec cost " << C.AddRecCost; 1630 if (C.NumIVMuls != 0) 1631 OS << ", plus " << C.NumIVMuls << " IV mul" 1632 << (C.NumIVMuls == 1 ? "" : "s"); 1633 if (C.NumBaseAdds != 0) 1634 OS << ", plus " << C.NumBaseAdds << " base add" 1635 << (C.NumBaseAdds == 1 ? "" : "s"); 1636 if (C.ScaleCost != 0) 1637 OS << ", plus " << C.ScaleCost << " scale cost"; 1638 if (C.ImmCost != 0) 1639 OS << ", plus " << C.ImmCost << " imm cost"; 1640 if (C.SetupCost != 0) 1641 OS << ", plus " << C.SetupCost << " setup cost"; 1642 } 1643 1644 LLVM_DUMP_METHOD void Cost::dump() const { 1645 print(errs()); errs() << '\n'; 1646 } 1647 #endif 1648 1649 /// Test whether this fixup always uses its value outside of the given loop. 1650 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1651 // PHI nodes use their value in their incoming blocks. 1652 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1653 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1654 if (PN->getIncomingValue(i) == OperandValToReplace && 1655 L->contains(PN->getIncomingBlock(i))) 1656 return false; 1657 return true; 1658 } 1659 1660 return !L->contains(UserInst); 1661 } 1662 1663 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1664 void LSRFixup::print(raw_ostream &OS) const { 1665 OS << "UserInst="; 1666 // Store is common and interesting enough to be worth special-casing. 1667 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1668 OS << "store "; 1669 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1670 } else if (UserInst->getType()->isVoidTy()) 1671 OS << UserInst->getOpcodeName(); 1672 else 1673 UserInst->printAsOperand(OS, /*PrintType=*/false); 1674 1675 OS << ", OperandValToReplace="; 1676 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1677 1678 for (const Loop *PIL : PostIncLoops) { 1679 OS << ", PostIncLoop="; 1680 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1681 } 1682 1683 if (Offset.isNonZero()) 1684 OS << ", Offset=" << Offset; 1685 } 1686 1687 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1688 print(errs()); errs() << '\n'; 1689 } 1690 #endif 1691 1692 /// Test whether this use as a formula which has the same registers as the given 1693 /// formula. 1694 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1695 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1696 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1697 // Unstable sort by host order ok, because this is only used for uniquifying. 1698 llvm::sort(Key); 1699 return Uniquifier.count(Key); 1700 } 1701 1702 /// The function returns a probability of selecting formula without Reg. 1703 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1704 unsigned FNum = 0; 1705 for (const Formula &F : Formulae) 1706 if (F.referencesReg(Reg)) 1707 FNum++; 1708 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1709 } 1710 1711 /// If the given formula has not yet been inserted, add it to the list, and 1712 /// return true. Return false otherwise. The formula must be in canonical form. 1713 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1714 assert(F.isCanonical(L) && "Invalid canonical representation"); 1715 1716 if (!Formulae.empty() && RigidFormula) 1717 return false; 1718 1719 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1720 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1721 // Unstable sort by host order ok, because this is only used for uniquifying. 1722 llvm::sort(Key); 1723 1724 if (!Uniquifier.insert(Key).second) 1725 return false; 1726 1727 // Using a register to hold the value of 0 is not profitable. 1728 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1729 "Zero allocated in a scaled register!"); 1730 #ifndef NDEBUG 1731 for (const SCEV *BaseReg : F.BaseRegs) 1732 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1733 #endif 1734 1735 // Add the formula to the list. 1736 Formulae.push_back(F); 1737 1738 // Record registers now being used by this use. 1739 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1740 if (F.ScaledReg) 1741 Regs.insert(F.ScaledReg); 1742 1743 return true; 1744 } 1745 1746 /// Remove the given formula from this use's list. 1747 void LSRUse::DeleteFormula(Formula &F) { 1748 if (&F != &Formulae.back()) 1749 std::swap(F, Formulae.back()); 1750 Formulae.pop_back(); 1751 } 1752 1753 /// Recompute the Regs field, and update RegUses. 1754 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1755 // Now that we've filtered out some formulae, recompute the Regs set. 1756 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1757 Regs.clear(); 1758 for (const Formula &F : Formulae) { 1759 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1760 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1761 } 1762 1763 // Update the RegTracker. 1764 for (const SCEV *S : OldRegs) 1765 if (!Regs.count(S)) 1766 RegUses.dropRegister(S, LUIdx); 1767 } 1768 1769 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1770 void LSRUse::print(raw_ostream &OS) const { 1771 OS << "LSR Use: Kind="; 1772 switch (Kind) { 1773 case Basic: OS << "Basic"; break; 1774 case Special: OS << "Special"; break; 1775 case ICmpZero: OS << "ICmpZero"; break; 1776 case Address: 1777 OS << "Address of "; 1778 if (AccessTy.MemTy->isPointerTy()) 1779 OS << "pointer"; // the full pointer type could be really verbose 1780 else { 1781 OS << *AccessTy.MemTy; 1782 } 1783 1784 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1785 } 1786 1787 OS << ", Offsets={"; 1788 bool NeedComma = false; 1789 for (const LSRFixup &Fixup : Fixups) { 1790 if (NeedComma) OS << ','; 1791 OS << Fixup.Offset; 1792 NeedComma = true; 1793 } 1794 OS << '}'; 1795 1796 if (AllFixupsOutsideLoop) 1797 OS << ", all-fixups-outside-loop"; 1798 1799 if (WidestFixupType) 1800 OS << ", widest fixup type: " << *WidestFixupType; 1801 } 1802 1803 LLVM_DUMP_METHOD void LSRUse::dump() const { 1804 print(errs()); errs() << '\n'; 1805 } 1806 #endif 1807 1808 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1809 LSRUse::KindType Kind, MemAccessTy AccessTy, 1810 GlobalValue *BaseGV, Immediate BaseOffset, 1811 bool HasBaseReg, int64_t Scale, 1812 Instruction *Fixup /* = nullptr */) { 1813 switch (Kind) { 1814 case LSRUse::Address: { 1815 int64_t FixedOffset = 1816 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); 1817 int64_t ScalableOffset = 1818 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; 1819 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset, 1820 HasBaseReg, Scale, AccessTy.AddrSpace, 1821 Fixup, ScalableOffset); 1822 } 1823 case LSRUse::ICmpZero: 1824 // There's not even a target hook for querying whether it would be legal to 1825 // fold a GV into an ICmp. 1826 if (BaseGV) 1827 return false; 1828 1829 // ICmp only has two operands; don't allow more than two non-trivial parts. 1830 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) 1831 return false; 1832 1833 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1834 // putting the scaled register in the other operand of the icmp. 1835 if (Scale != 0 && Scale != -1) 1836 return false; 1837 1838 // If we have low-level target information, ask the target if it can fold an 1839 // integer immediate on an icmp. 1840 if (BaseOffset.isNonZero()) { 1841 // We don't have an interface to query whether the target supports 1842 // icmpzero against scalable quantities yet. 1843 if (BaseOffset.isScalable()) 1844 return false; 1845 1846 // We have one of: 1847 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1848 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1849 // Offs is the ICmp immediate. 1850 if (Scale == 0) 1851 // The cast does the right thing with 1852 // std::numeric_limits<int64_t>::min(). 1853 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue()); 1854 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue()); 1855 } 1856 1857 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1858 return true; 1859 1860 case LSRUse::Basic: 1861 // Only handle single-register values. 1862 return !BaseGV && Scale == 0 && BaseOffset.isZero(); 1863 1864 case LSRUse::Special: 1865 // Special case Basic to handle -1 scales. 1866 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); 1867 } 1868 1869 llvm_unreachable("Invalid LSRUse Kind!"); 1870 } 1871 1872 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1873 Immediate MinOffset, Immediate MaxOffset, 1874 LSRUse::KindType Kind, MemAccessTy AccessTy, 1875 GlobalValue *BaseGV, Immediate BaseOffset, 1876 bool HasBaseReg, int64_t Scale) { 1877 if (BaseOffset.isNonZero() && 1878 (BaseOffset.isScalable() != MinOffset.isScalable() || 1879 BaseOffset.isScalable() != MaxOffset.isScalable())) 1880 return false; 1881 // Check for overflow. 1882 int64_t Base = BaseOffset.getKnownMinValue(); 1883 int64_t Min = MinOffset.getKnownMinValue(); 1884 int64_t Max = MaxOffset.getKnownMinValue(); 1885 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) 1886 return false; 1887 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable()); 1888 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) 1889 return false; 1890 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable()); 1891 1892 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1893 HasBaseReg, Scale) && 1894 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1895 HasBaseReg, Scale); 1896 } 1897 1898 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1899 Immediate MinOffset, Immediate MaxOffset, 1900 LSRUse::KindType Kind, MemAccessTy AccessTy, 1901 const Formula &F, const Loop &L) { 1902 // For the purpose of isAMCompletelyFolded either having a canonical formula 1903 // or a scale not equal to zero is correct. 1904 // Problems may arise from non canonical formulae having a scale == 0. 1905 // Strictly speaking it would best to just rely on canonical formulae. 1906 // However, when we generate the scaled formulae, we first check that the 1907 // scaling factor is profitable before computing the actual ScaledReg for 1908 // compile time sake. 1909 assert((F.isCanonical(L) || F.Scale != 0)); 1910 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1911 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1912 } 1913 1914 /// Test whether we know how to expand the current formula. 1915 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1916 Immediate MaxOffset, LSRUse::KindType Kind, 1917 MemAccessTy AccessTy, GlobalValue *BaseGV, 1918 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { 1919 // We know how to expand completely foldable formulae. 1920 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1921 BaseOffset, HasBaseReg, Scale) || 1922 // Or formulae that use a base register produced by a sum of base 1923 // registers. 1924 (Scale == 1 && 1925 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1926 BaseGV, BaseOffset, true, 0)); 1927 } 1928 1929 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1930 Immediate MaxOffset, LSRUse::KindType Kind, 1931 MemAccessTy AccessTy, const Formula &F) { 1932 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1933 F.BaseOffset, F.HasBaseReg, F.Scale); 1934 } 1935 1936 static bool isLegalAddImmediate(const TargetTransformInfo &TTI, 1937 Immediate Offset) { 1938 if (Offset.isScalable()) 1939 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue()); 1940 1941 return TTI.isLegalAddImmediate(Offset.getFixedValue()); 1942 } 1943 1944 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1945 const LSRUse &LU, const Formula &F) { 1946 // Target may want to look at the user instructions. 1947 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1948 for (const LSRFixup &Fixup : LU.Fixups) 1949 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1950 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1951 F.Scale, Fixup.UserInst)) 1952 return false; 1953 return true; 1954 } 1955 1956 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1957 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1958 F.Scale); 1959 } 1960 1961 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1962 const LSRUse &LU, const Formula &F, 1963 const Loop &L) { 1964 if (!F.Scale) 1965 return 0; 1966 1967 // If the use is not completely folded in that instruction, we will have to 1968 // pay an extra cost only for scale != 1. 1969 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1970 LU.AccessTy, F, L)) 1971 return F.Scale != 1; 1972 1973 switch (LU.Kind) { 1974 case LSRUse::Address: { 1975 // Check the scaling factor cost with both the min and max offsets. 1976 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; 1977 if (F.BaseOffset.isScalable()) { 1978 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); 1979 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); 1980 } else { 1981 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); 1982 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); 1983 } 1984 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1985 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin), 1986 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1987 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1988 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax), 1989 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1990 1991 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1992 "Legal addressing mode has an illegal cost!"); 1993 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1994 } 1995 case LSRUse::ICmpZero: 1996 case LSRUse::Basic: 1997 case LSRUse::Special: 1998 // The use is completely folded, i.e., everything is folded into the 1999 // instruction. 2000 return 0; 2001 } 2002 2003 llvm_unreachable("Invalid LSRUse Kind!"); 2004 } 2005 2006 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2007 LSRUse::KindType Kind, MemAccessTy AccessTy, 2008 GlobalValue *BaseGV, Immediate BaseOffset, 2009 bool HasBaseReg) { 2010 // Fast-path: zero is always foldable. 2011 if (BaseOffset.isZero() && !BaseGV) 2012 return true; 2013 2014 // Conservatively, create an address with an immediate and a 2015 // base and a scale. 2016 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2017 2018 // Canonicalize a scale of 1 to a base register if the formula doesn't 2019 // already have a base register. 2020 if (!HasBaseReg && Scale == 1) { 2021 Scale = 0; 2022 HasBaseReg = true; 2023 } 2024 2025 // FIXME: Try with + without a scale? Maybe based on TTI? 2026 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' 2027 // default for many architectures, not just AArch64 SVE. More investigation 2028 // needed later to determine if this should be used more widely than just 2029 // on scalable types. 2030 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && 2031 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) 2032 Scale = 0; 2033 2034 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 2035 HasBaseReg, Scale); 2036 } 2037 2038 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2039 ScalarEvolution &SE, Immediate MinOffset, 2040 Immediate MaxOffset, LSRUse::KindType Kind, 2041 MemAccessTy AccessTy, const SCEV *S, 2042 bool HasBaseReg) { 2043 // Fast-path: zero is always foldable. 2044 if (S->isZero()) return true; 2045 2046 // Conservatively, create an address with an immediate and a 2047 // base and a scale. 2048 Immediate BaseOffset = ExtractImmediate(S, SE); 2049 GlobalValue *BaseGV = ExtractSymbol(S, SE); 2050 2051 // If there's anything else involved, it's not foldable. 2052 if (!S->isZero()) return false; 2053 2054 // Fast-path: zero is always foldable. 2055 if (BaseOffset.isZero() && !BaseGV) 2056 return true; 2057 2058 if (BaseOffset.isScalable()) 2059 return false; 2060 2061 // Conservatively, create an address with an immediate and a 2062 // base and a scale. 2063 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2064 2065 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 2066 BaseOffset, HasBaseReg, Scale); 2067 } 2068 2069 namespace { 2070 2071 /// An individual increment in a Chain of IV increments. Relate an IV user to 2072 /// an expression that computes the IV it uses from the IV used by the previous 2073 /// link in the Chain. 2074 /// 2075 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 2076 /// original IVOperand. The head of the chain's IVOperand is only valid during 2077 /// chain collection, before LSR replaces IV users. During chain generation, 2078 /// IncExpr can be used to find the new IVOperand that computes the same 2079 /// expression. 2080 struct IVInc { 2081 Instruction *UserInst; 2082 Value* IVOperand; 2083 const SCEV *IncExpr; 2084 2085 IVInc(Instruction *U, Value *O, const SCEV *E) 2086 : UserInst(U), IVOperand(O), IncExpr(E) {} 2087 }; 2088 2089 // The list of IV increments in program order. We typically add the head of a 2090 // chain without finding subsequent links. 2091 struct IVChain { 2092 SmallVector<IVInc, 1> Incs; 2093 const SCEV *ExprBase = nullptr; 2094 2095 IVChain() = default; 2096 IVChain(const IVInc &Head, const SCEV *Base) 2097 : Incs(1, Head), ExprBase(Base) {} 2098 2099 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 2100 2101 // Return the first increment in the chain. 2102 const_iterator begin() const { 2103 assert(!Incs.empty()); 2104 return std::next(Incs.begin()); 2105 } 2106 const_iterator end() const { 2107 return Incs.end(); 2108 } 2109 2110 // Returns true if this chain contains any increments. 2111 bool hasIncs() const { return Incs.size() >= 2; } 2112 2113 // Add an IVInc to the end of this chain. 2114 void add(const IVInc &X) { Incs.push_back(X); } 2115 2116 // Returns the last UserInst in the chain. 2117 Instruction *tailUserInst() const { return Incs.back().UserInst; } 2118 2119 // Returns true if IncExpr can be profitably added to this chain. 2120 bool isProfitableIncrement(const SCEV *OperExpr, 2121 const SCEV *IncExpr, 2122 ScalarEvolution&); 2123 }; 2124 2125 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 2126 /// between FarUsers that definitely cross IV increments and NearUsers that may 2127 /// be used between IV increments. 2128 struct ChainUsers { 2129 SmallPtrSet<Instruction*, 4> FarUsers; 2130 SmallPtrSet<Instruction*, 4> NearUsers; 2131 }; 2132 2133 /// This class holds state for the main loop strength reduction logic. 2134 class LSRInstance { 2135 IVUsers &IU; 2136 ScalarEvolution &SE; 2137 DominatorTree &DT; 2138 LoopInfo &LI; 2139 AssumptionCache &AC; 2140 TargetLibraryInfo &TLI; 2141 const TargetTransformInfo &TTI; 2142 Loop *const L; 2143 MemorySSAUpdater *MSSAU; 2144 TTI::AddressingModeKind AMK; 2145 mutable SCEVExpander Rewriter; 2146 bool Changed = false; 2147 2148 /// This is the insert position that the current loop's induction variable 2149 /// increment should be placed. In simple loops, this is the latch block's 2150 /// terminator. But in more complicated cases, this is a position which will 2151 /// dominate all the in-loop post-increment users. 2152 Instruction *IVIncInsertPos = nullptr; 2153 2154 /// Interesting factors between use strides. 2155 /// 2156 /// We explicitly use a SetVector which contains a SmallSet, instead of the 2157 /// default, a SmallDenseSet, because we need to use the full range of 2158 /// int64_ts, and there's currently no good way of doing that with 2159 /// SmallDenseSet. 2160 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 2161 2162 /// The cost of the current SCEV, the best solution by LSR will be dropped if 2163 /// the solution is not profitable. 2164 Cost BaselineCost; 2165 2166 /// Interesting use types, to facilitate truncation reuse. 2167 SmallSetVector<Type *, 4> Types; 2168 2169 /// The list of interesting uses. 2170 mutable SmallVector<LSRUse, 16> Uses; 2171 2172 /// Track which uses use which register candidates. 2173 RegUseTracker RegUses; 2174 2175 // Limit the number of chains to avoid quadratic behavior. We don't expect to 2176 // have more than a few IV increment chains in a loop. Missing a Chain falls 2177 // back to normal LSR behavior for those uses. 2178 static const unsigned MaxChains = 8; 2179 2180 /// IV users can form a chain of IV increments. 2181 SmallVector<IVChain, MaxChains> IVChainVec; 2182 2183 /// IV users that belong to profitable IVChains. 2184 SmallPtrSet<Use*, MaxChains> IVIncSet; 2185 2186 /// Induction variables that were generated and inserted by the SCEV Expander. 2187 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2188 2189 // Inserting instructions in the loop and using them as PHI's input could 2190 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 2191 // corresponding incoming block is not loop exiting). So collect all such 2192 // instructions to form LCSSA for them later. 2193 SmallSetVector<Instruction *, 4> InsertedNonLCSSAInsts; 2194 2195 void OptimizeShadowIV(); 2196 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2197 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2198 void OptimizeLoopTermCond(); 2199 2200 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2201 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2202 void FinalizeChain(IVChain &Chain); 2203 void CollectChains(); 2204 void GenerateIVChain(const IVChain &Chain, 2205 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2206 2207 void CollectInterestingTypesAndFactors(); 2208 void CollectFixupsAndInitialFormulae(); 2209 2210 // Support for sharing of LSRUses between LSRFixups. 2211 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2212 UseMapTy UseMap; 2213 2214 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, 2215 LSRUse::KindType Kind, MemAccessTy AccessTy); 2216 2217 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2218 MemAccessTy AccessTy); 2219 2220 void DeleteUse(LSRUse &LU, size_t LUIdx); 2221 2222 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2223 2224 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2225 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2226 void CountRegisters(const Formula &F, size_t LUIdx); 2227 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2228 2229 void CollectLoopInvariantFixupsAndFormulae(); 2230 2231 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2232 unsigned Depth = 0); 2233 2234 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2235 const Formula &Base, unsigned Depth, 2236 size_t Idx, bool IsScaledReg = false); 2237 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2238 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2239 const Formula &Base, size_t Idx, 2240 bool IsScaledReg = false); 2241 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2242 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2243 const Formula &Base, 2244 const SmallVectorImpl<Immediate> &Worklist, 2245 size_t Idx, bool IsScaledReg = false); 2246 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2247 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2248 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2249 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2250 void GenerateCrossUseConstantOffsets(); 2251 void GenerateAllReuseFormulae(); 2252 2253 void FilterOutUndesirableDedicatedRegisters(); 2254 2255 size_t EstimateSearchSpaceComplexity() const; 2256 void NarrowSearchSpaceByDetectingSupersets(); 2257 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2258 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2259 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2260 void NarrowSearchSpaceByFilterPostInc(); 2261 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2262 void NarrowSearchSpaceByPickingWinnerRegs(); 2263 void NarrowSearchSpaceUsingHeuristics(); 2264 2265 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2266 Cost &SolutionCost, 2267 SmallVectorImpl<const Formula *> &Workspace, 2268 const Cost &CurCost, 2269 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2270 DenseSet<const SCEV *> &VisitedRegs) const; 2271 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2272 2273 BasicBlock::iterator 2274 HoistInsertPosition(BasicBlock::iterator IP, 2275 const SmallVectorImpl<Instruction *> &Inputs) const; 2276 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2277 const LSRFixup &LF, 2278 const LSRUse &LU) const; 2279 2280 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2281 BasicBlock::iterator IP, 2282 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2283 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2284 const Formula &F, 2285 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2286 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2287 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2288 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2289 2290 public: 2291 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2292 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2293 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2294 2295 bool getChanged() const { return Changed; } 2296 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2297 return ScalarEvolutionIVs; 2298 } 2299 2300 void print_factors_and_types(raw_ostream &OS) const; 2301 void print_fixups(raw_ostream &OS) const; 2302 void print_uses(raw_ostream &OS) const; 2303 void print(raw_ostream &OS) const; 2304 void dump() const; 2305 }; 2306 2307 } // end anonymous namespace 2308 2309 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2310 /// the cast operation. 2311 void LSRInstance::OptimizeShadowIV() { 2312 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2313 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2314 return; 2315 2316 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2317 UI != E; /* empty */) { 2318 IVUsers::const_iterator CandidateUI = UI; 2319 ++UI; 2320 Instruction *ShadowUse = CandidateUI->getUser(); 2321 Type *DestTy = nullptr; 2322 bool IsSigned = false; 2323 2324 /* If shadow use is a int->float cast then insert a second IV 2325 to eliminate this cast. 2326 2327 for (unsigned i = 0; i < n; ++i) 2328 foo((double)i); 2329 2330 is transformed into 2331 2332 double d = 0.0; 2333 for (unsigned i = 0; i < n; ++i, ++d) 2334 foo(d); 2335 */ 2336 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2337 IsSigned = false; 2338 DestTy = UCast->getDestTy(); 2339 } 2340 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2341 IsSigned = true; 2342 DestTy = SCast->getDestTy(); 2343 } 2344 if (!DestTy) continue; 2345 2346 // If target does not support DestTy natively then do not apply 2347 // this transformation. 2348 if (!TTI.isTypeLegal(DestTy)) continue; 2349 2350 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2351 if (!PH) continue; 2352 if (PH->getNumIncomingValues() != 2) continue; 2353 2354 // If the calculation in integers overflows, the result in FP type will 2355 // differ. So we only can do this transformation if we are guaranteed to not 2356 // deal with overflowing values 2357 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2358 if (!AR) continue; 2359 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2360 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2361 2362 Type *SrcTy = PH->getType(); 2363 int Mantissa = DestTy->getFPMantissaWidth(); 2364 if (Mantissa == -1) continue; 2365 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2366 continue; 2367 2368 unsigned Entry, Latch; 2369 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2370 Entry = 0; 2371 Latch = 1; 2372 } else { 2373 Entry = 1; 2374 Latch = 0; 2375 } 2376 2377 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2378 if (!Init) continue; 2379 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2380 (double)Init->getSExtValue() : 2381 (double)Init->getZExtValue()); 2382 2383 BinaryOperator *Incr = 2384 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2385 if (!Incr) continue; 2386 if (Incr->getOpcode() != Instruction::Add 2387 && Incr->getOpcode() != Instruction::Sub) 2388 continue; 2389 2390 /* Initialize new IV, double d = 0.0 in above example. */ 2391 ConstantInt *C = nullptr; 2392 if (Incr->getOperand(0) == PH) 2393 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2394 else if (Incr->getOperand(1) == PH) 2395 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2396 else 2397 continue; 2398 2399 if (!C) continue; 2400 2401 // Ignore negative constants, as the code below doesn't handle them 2402 // correctly. TODO: Remove this restriction. 2403 if (!C->getValue().isStrictlyPositive()) 2404 continue; 2405 2406 /* Add new PHINode. */ 2407 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator()); 2408 NewPH->setDebugLoc(PH->getDebugLoc()); 2409 2410 /* create new increment. '++d' in above example. */ 2411 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2412 BinaryOperator *NewIncr = BinaryOperator::Create( 2413 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd 2414 : Instruction::FSub, 2415 NewPH, CFP, "IV.S.next.", Incr->getIterator()); 2416 NewIncr->setDebugLoc(Incr->getDebugLoc()); 2417 2418 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2419 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2420 2421 /* Remove cast operation */ 2422 ShadowUse->replaceAllUsesWith(NewPH); 2423 ShadowUse->eraseFromParent(); 2424 Changed = true; 2425 break; 2426 } 2427 } 2428 2429 /// If Cond has an operand that is an expression of an IV, set the IV user and 2430 /// stride information and return true, otherwise return false. 2431 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2432 for (IVStrideUse &U : IU) 2433 if (U.getUser() == Cond) { 2434 // NOTE: we could handle setcc instructions with multiple uses here, but 2435 // InstCombine does it as well for simple uses, it's not clear that it 2436 // occurs enough in real life to handle. 2437 CondUse = &U; 2438 return true; 2439 } 2440 return false; 2441 } 2442 2443 /// Rewrite the loop's terminating condition if it uses a max computation. 2444 /// 2445 /// This is a narrow solution to a specific, but acute, problem. For loops 2446 /// like this: 2447 /// 2448 /// i = 0; 2449 /// do { 2450 /// p[i] = 0.0; 2451 /// } while (++i < n); 2452 /// 2453 /// the trip count isn't just 'n', because 'n' might not be positive. And 2454 /// unfortunately this can come up even for loops where the user didn't use 2455 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2456 /// will commonly be lowered like this: 2457 /// 2458 /// if (n > 0) { 2459 /// i = 0; 2460 /// do { 2461 /// p[i] = 0.0; 2462 /// } while (++i < n); 2463 /// } 2464 /// 2465 /// and then it's possible for subsequent optimization to obscure the if 2466 /// test in such a way that indvars can't find it. 2467 /// 2468 /// When indvars can't find the if test in loops like this, it creates a 2469 /// max expression, which allows it to give the loop a canonical 2470 /// induction variable: 2471 /// 2472 /// i = 0; 2473 /// max = n < 1 ? 1 : n; 2474 /// do { 2475 /// p[i] = 0.0; 2476 /// } while (++i != max); 2477 /// 2478 /// Canonical induction variables are necessary because the loop passes 2479 /// are designed around them. The most obvious example of this is the 2480 /// LoopInfo analysis, which doesn't remember trip count values. It 2481 /// expects to be able to rediscover the trip count each time it is 2482 /// needed, and it does this using a simple analysis that only succeeds if 2483 /// the loop has a canonical induction variable. 2484 /// 2485 /// However, when it comes time to generate code, the maximum operation 2486 /// can be quite costly, especially if it's inside of an outer loop. 2487 /// 2488 /// This function solves this problem by detecting this type of loop and 2489 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2490 /// the instructions for the maximum computation. 2491 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2492 // Check that the loop matches the pattern we're looking for. 2493 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2494 Cond->getPredicate() != CmpInst::ICMP_NE) 2495 return Cond; 2496 2497 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2498 if (!Sel || !Sel->hasOneUse()) return Cond; 2499 2500 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2501 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2502 return Cond; 2503 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2504 2505 // Add one to the backedge-taken count to get the trip count. 2506 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2507 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2508 2509 // Check for a max calculation that matches the pattern. There's no check 2510 // for ICMP_ULE here because the comparison would be with zero, which 2511 // isn't interesting. 2512 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2513 const SCEVNAryExpr *Max = nullptr; 2514 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2515 Pred = ICmpInst::ICMP_SLE; 2516 Max = S; 2517 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2518 Pred = ICmpInst::ICMP_SLT; 2519 Max = S; 2520 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2521 Pred = ICmpInst::ICMP_ULT; 2522 Max = U; 2523 } else { 2524 // No match; bail. 2525 return Cond; 2526 } 2527 2528 // To handle a max with more than two operands, this optimization would 2529 // require additional checking and setup. 2530 if (Max->getNumOperands() != 2) 2531 return Cond; 2532 2533 const SCEV *MaxLHS = Max->getOperand(0); 2534 const SCEV *MaxRHS = Max->getOperand(1); 2535 2536 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2537 // for a comparison with 1. For <= and >=, a comparison with zero. 2538 if (!MaxLHS || 2539 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2540 return Cond; 2541 2542 // Check the relevant induction variable for conformance to 2543 // the pattern. 2544 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2545 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2546 if (!AR || !AR->isAffine() || 2547 AR->getStart() != One || 2548 AR->getStepRecurrence(SE) != One) 2549 return Cond; 2550 2551 assert(AR->getLoop() == L && 2552 "Loop condition operand is an addrec in a different loop!"); 2553 2554 // Check the right operand of the select, and remember it, as it will 2555 // be used in the new comparison instruction. 2556 Value *NewRHS = nullptr; 2557 if (ICmpInst::isTrueWhenEqual(Pred)) { 2558 // Look for n+1, and grab n. 2559 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2560 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2561 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2562 NewRHS = BO->getOperand(0); 2563 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2564 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2565 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2566 NewRHS = BO->getOperand(0); 2567 if (!NewRHS) 2568 return Cond; 2569 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2570 NewRHS = Sel->getOperand(1); 2571 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2572 NewRHS = Sel->getOperand(2); 2573 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2574 NewRHS = SU->getValue(); 2575 else 2576 // Max doesn't match expected pattern. 2577 return Cond; 2578 2579 // Determine the new comparison opcode. It may be signed or unsigned, 2580 // and the original comparison may be either equality or inequality. 2581 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2582 Pred = CmpInst::getInversePredicate(Pred); 2583 2584 // Ok, everything looks ok to change the condition into an SLT or SGE and 2585 // delete the max calculation. 2586 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, 2587 Cond->getOperand(0), NewRHS, "scmp"); 2588 2589 // Delete the max calculation instructions. 2590 NewCond->setDebugLoc(Cond->getDebugLoc()); 2591 Cond->replaceAllUsesWith(NewCond); 2592 CondUse->setUser(NewCond); 2593 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2594 Cond->eraseFromParent(); 2595 Sel->eraseFromParent(); 2596 if (Cmp->use_empty()) 2597 Cmp->eraseFromParent(); 2598 return NewCond; 2599 } 2600 2601 /// Change loop terminating condition to use the postinc iv when possible. 2602 void 2603 LSRInstance::OptimizeLoopTermCond() { 2604 SmallPtrSet<Instruction *, 4> PostIncs; 2605 2606 // We need a different set of heuristics for rotated and non-rotated loops. 2607 // If a loop is rotated then the latch is also the backedge, so inserting 2608 // post-inc expressions just before the latch is ideal. To reduce live ranges 2609 // it also makes sense to rewrite terminating conditions to use post-inc 2610 // expressions. 2611 // 2612 // If the loop is not rotated then the latch is not a backedge; the latch 2613 // check is done in the loop head. Adding post-inc expressions before the 2614 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2615 // in the loop body. In this case we do *not* want to use post-inc expressions 2616 // in the latch check, and we want to insert post-inc expressions before 2617 // the backedge. 2618 BasicBlock *LatchBlock = L->getLoopLatch(); 2619 SmallVector<BasicBlock*, 8> ExitingBlocks; 2620 L->getExitingBlocks(ExitingBlocks); 2621 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2622 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2623 IVIncInsertPos = LatchBlock->getTerminator(); 2624 return; 2625 } 2626 2627 // Otherwise treat this as a rotated loop. 2628 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2629 // Get the terminating condition for the loop if possible. If we 2630 // can, we want to change it to use a post-incremented version of its 2631 // induction variable, to allow coalescing the live ranges for the IV into 2632 // one register value. 2633 2634 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2635 if (!TermBr) 2636 continue; 2637 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2638 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2639 continue; 2640 2641 // Search IVUsesByStride to find Cond's IVUse if there is one. 2642 IVStrideUse *CondUse = nullptr; 2643 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2644 if (!FindIVUserForCond(Cond, CondUse)) 2645 continue; 2646 2647 // If the trip count is computed in terms of a max (due to ScalarEvolution 2648 // being unable to find a sufficient guard, for example), change the loop 2649 // comparison to use SLT or ULT instead of NE. 2650 // One consequence of doing this now is that it disrupts the count-down 2651 // optimization. That's not always a bad thing though, because in such 2652 // cases it may still be worthwhile to avoid a max. 2653 Cond = OptimizeMax(Cond, CondUse); 2654 2655 // If this exiting block dominates the latch block, it may also use 2656 // the post-inc value if it won't be shared with other uses. 2657 // Check for dominance. 2658 if (!DT.dominates(ExitingBlock, LatchBlock)) 2659 continue; 2660 2661 // Conservatively avoid trying to use the post-inc value in non-latch 2662 // exits if there may be pre-inc users in intervening blocks. 2663 if (LatchBlock != ExitingBlock) 2664 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2665 // Test if the use is reachable from the exiting block. This dominator 2666 // query is a conservative approximation of reachability. 2667 if (&*UI != CondUse && 2668 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2669 // Conservatively assume there may be reuse if the quotient of their 2670 // strides could be a legal scale. 2671 const SCEV *A = IU.getStride(*CondUse, L); 2672 const SCEV *B = IU.getStride(*UI, L); 2673 if (!A || !B) continue; 2674 if (SE.getTypeSizeInBits(A->getType()) != 2675 SE.getTypeSizeInBits(B->getType())) { 2676 if (SE.getTypeSizeInBits(A->getType()) > 2677 SE.getTypeSizeInBits(B->getType())) 2678 B = SE.getSignExtendExpr(B, A->getType()); 2679 else 2680 A = SE.getSignExtendExpr(A, B->getType()); 2681 } 2682 if (const SCEVConstant *D = 2683 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2684 const ConstantInt *C = D->getValue(); 2685 // Stride of one or negative one can have reuse with non-addresses. 2686 if (C->isOne() || C->isMinusOne()) 2687 goto decline_post_inc; 2688 // Avoid weird situations. 2689 if (C->getValue().getSignificantBits() >= 64 || 2690 C->getValue().isMinSignedValue()) 2691 goto decline_post_inc; 2692 // Check for possible scaled-address reuse. 2693 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2694 MemAccessTy AccessTy = getAccessType( 2695 TTI, UI->getUser(), UI->getOperandValToReplace()); 2696 int64_t Scale = C->getSExtValue(); 2697 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2698 /*BaseOffset=*/0, 2699 /*HasBaseReg=*/true, Scale, 2700 AccessTy.AddrSpace)) 2701 goto decline_post_inc; 2702 Scale = -Scale; 2703 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2704 /*BaseOffset=*/0, 2705 /*HasBaseReg=*/true, Scale, 2706 AccessTy.AddrSpace)) 2707 goto decline_post_inc; 2708 } 2709 } 2710 } 2711 2712 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2713 << *Cond << '\n'); 2714 2715 // It's possible for the setcc instruction to be anywhere in the loop, and 2716 // possible for it to have multiple users. If it is not immediately before 2717 // the exiting block branch, move it. 2718 if (Cond->getNextNonDebugInstruction() != TermBr) { 2719 if (Cond->hasOneUse()) { 2720 Cond->moveBefore(TermBr); 2721 } else { 2722 // Clone the terminating condition and insert into the loopend. 2723 ICmpInst *OldCond = Cond; 2724 Cond = cast<ICmpInst>(Cond->clone()); 2725 Cond->setName(L->getHeader()->getName() + ".termcond"); 2726 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2727 2728 // Clone the IVUse, as the old use still exists! 2729 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2730 TermBr->replaceUsesOfWith(OldCond, Cond); 2731 } 2732 } 2733 2734 // If we get to here, we know that we can transform the setcc instruction to 2735 // use the post-incremented version of the IV, allowing us to coalesce the 2736 // live ranges for the IV correctly. 2737 CondUse->transformToPostInc(L); 2738 Changed = true; 2739 2740 PostIncs.insert(Cond); 2741 decline_post_inc:; 2742 } 2743 2744 // Determine an insertion point for the loop induction variable increment. It 2745 // must dominate all the post-inc comparisons we just set up, and it must 2746 // dominate the loop latch edge. 2747 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2748 for (Instruction *Inst : PostIncs) 2749 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2750 } 2751 2752 /// Determine if the given use can accommodate a fixup at the given offset and 2753 /// other details. If so, update the use and return true. 2754 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, 2755 bool HasBaseReg, LSRUse::KindType Kind, 2756 MemAccessTy AccessTy) { 2757 Immediate NewMinOffset = LU.MinOffset; 2758 Immediate NewMaxOffset = LU.MaxOffset; 2759 MemAccessTy NewAccessTy = AccessTy; 2760 2761 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2762 // something conservative, however this can pessimize in the case that one of 2763 // the uses will have all its uses outside the loop, for example. 2764 if (LU.Kind != Kind) 2765 return false; 2766 2767 // Check for a mismatched access type, and fall back conservatively as needed. 2768 // TODO: Be less conservative when the type is similar and can use the same 2769 // addressing modes. 2770 if (Kind == LSRUse::Address) { 2771 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2772 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2773 AccessTy.AddrSpace); 2774 } 2775 } 2776 2777 // Conservatively assume HasBaseReg is true for now. 2778 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) { 2779 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2780 LU.MaxOffset - NewOffset, HasBaseReg)) 2781 return false; 2782 NewMinOffset = NewOffset; 2783 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) { 2784 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2785 NewOffset - LU.MinOffset, HasBaseReg)) 2786 return false; 2787 NewMaxOffset = NewOffset; 2788 } 2789 2790 // FIXME: We should be able to handle some level of scalable offset support 2791 // for 'void', but in order to get basic support up and running this is 2792 // being left out. 2793 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && 2794 (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) 2795 return false; 2796 2797 // Update the use. 2798 LU.MinOffset = NewMinOffset; 2799 LU.MaxOffset = NewMaxOffset; 2800 LU.AccessTy = NewAccessTy; 2801 return true; 2802 } 2803 2804 /// Return an LSRUse index and an offset value for a fixup which needs the given 2805 /// expression, with the given kind and optional access type. Either reuse an 2806 /// existing use or create a new one, as needed. 2807 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, 2808 LSRUse::KindType Kind, 2809 MemAccessTy AccessTy) { 2810 const SCEV *Copy = Expr; 2811 Immediate Offset = ExtractImmediate(Expr, SE); 2812 2813 // Basic uses can't accept any offset, for example. 2814 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2815 Offset, /*HasBaseReg=*/ true)) { 2816 Expr = Copy; 2817 Offset = Immediate::getFixed(0); 2818 } 2819 2820 std::pair<UseMapTy::iterator, bool> P = 2821 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2822 if (!P.second) { 2823 // A use already existed with this base. 2824 size_t LUIdx = P.first->second; 2825 LSRUse &LU = Uses[LUIdx]; 2826 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2827 // Reuse this use. 2828 return std::make_pair(LUIdx, Offset); 2829 } 2830 2831 // Create a new use. 2832 size_t LUIdx = Uses.size(); 2833 P.first->second = LUIdx; 2834 Uses.push_back(LSRUse(Kind, AccessTy)); 2835 LSRUse &LU = Uses[LUIdx]; 2836 2837 LU.MinOffset = Offset; 2838 LU.MaxOffset = Offset; 2839 return std::make_pair(LUIdx, Offset); 2840 } 2841 2842 /// Delete the given use from the Uses list. 2843 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2844 if (&LU != &Uses.back()) 2845 std::swap(LU, Uses.back()); 2846 Uses.pop_back(); 2847 2848 // Update RegUses. 2849 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2850 } 2851 2852 /// Look for a use distinct from OrigLU which is has a formula that has the same 2853 /// registers as the given formula. 2854 LSRUse * 2855 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2856 const LSRUse &OrigLU) { 2857 // Search all uses for the formula. This could be more clever. 2858 for (LSRUse &LU : Uses) { 2859 // Check whether this use is close enough to OrigLU, to see whether it's 2860 // worthwhile looking through its formulae. 2861 // Ignore ICmpZero uses because they may contain formulae generated by 2862 // GenerateICmpZeroScales, in which case adding fixup offsets may 2863 // be invalid. 2864 if (&LU != &OrigLU && 2865 LU.Kind != LSRUse::ICmpZero && 2866 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2867 LU.WidestFixupType == OrigLU.WidestFixupType && 2868 LU.HasFormulaWithSameRegs(OrigF)) { 2869 // Scan through this use's formulae. 2870 for (const Formula &F : LU.Formulae) { 2871 // Check to see if this formula has the same registers and symbols 2872 // as OrigF. 2873 if (F.BaseRegs == OrigF.BaseRegs && 2874 F.ScaledReg == OrigF.ScaledReg && 2875 F.BaseGV == OrigF.BaseGV && 2876 F.Scale == OrigF.Scale && 2877 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2878 if (F.BaseOffset.isZero()) 2879 return &LU; 2880 // This is the formula where all the registers and symbols matched; 2881 // there aren't going to be any others. Since we declined it, we 2882 // can skip the rest of the formulae and proceed to the next LSRUse. 2883 break; 2884 } 2885 } 2886 } 2887 } 2888 2889 // Nothing looked good. 2890 return nullptr; 2891 } 2892 2893 void LSRInstance::CollectInterestingTypesAndFactors() { 2894 SmallSetVector<const SCEV *, 4> Strides; 2895 2896 // Collect interesting types and strides. 2897 SmallVector<const SCEV *, 4> Worklist; 2898 for (const IVStrideUse &U : IU) { 2899 const SCEV *Expr = IU.getExpr(U); 2900 if (!Expr) 2901 continue; 2902 2903 // Collect interesting types. 2904 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2905 2906 // Add strides for mentioned loops. 2907 Worklist.push_back(Expr); 2908 do { 2909 const SCEV *S = Worklist.pop_back_val(); 2910 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2911 if (AR->getLoop() == L) 2912 Strides.insert(AR->getStepRecurrence(SE)); 2913 Worklist.push_back(AR->getStart()); 2914 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2915 append_range(Worklist, Add->operands()); 2916 } 2917 } while (!Worklist.empty()); 2918 } 2919 2920 // Compute interesting factors from the set of interesting strides. 2921 for (SmallSetVector<const SCEV *, 4>::const_iterator 2922 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2923 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2924 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2925 const SCEV *OldStride = *I; 2926 const SCEV *NewStride = *NewStrideIter; 2927 2928 if (SE.getTypeSizeInBits(OldStride->getType()) != 2929 SE.getTypeSizeInBits(NewStride->getType())) { 2930 if (SE.getTypeSizeInBits(OldStride->getType()) > 2931 SE.getTypeSizeInBits(NewStride->getType())) 2932 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2933 else 2934 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2935 } 2936 if (const SCEVConstant *Factor = 2937 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2938 SE, true))) { 2939 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2940 Factors.insert(Factor->getAPInt().getSExtValue()); 2941 } else if (const SCEVConstant *Factor = 2942 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2943 NewStride, 2944 SE, true))) { 2945 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2946 Factors.insert(Factor->getAPInt().getSExtValue()); 2947 } 2948 } 2949 2950 // If all uses use the same type, don't bother looking for truncation-based 2951 // reuse. 2952 if (Types.size() == 1) 2953 Types.clear(); 2954 2955 LLVM_DEBUG(print_factors_and_types(dbgs())); 2956 } 2957 2958 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2959 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2960 /// IVStrideUses, we could partially skip this. 2961 static User::op_iterator 2962 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2963 Loop *L, ScalarEvolution &SE) { 2964 for(; OI != OE; ++OI) { 2965 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2966 if (!SE.isSCEVable(Oper->getType())) 2967 continue; 2968 2969 if (const SCEVAddRecExpr *AR = 2970 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2971 if (AR->getLoop() == L) 2972 break; 2973 } 2974 } 2975 } 2976 return OI; 2977 } 2978 2979 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2980 /// a convenient helper. 2981 static Value *getWideOperand(Value *Oper) { 2982 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2983 return Trunc->getOperand(0); 2984 return Oper; 2985 } 2986 2987 /// Return an approximation of this SCEV expression's "base", or NULL for any 2988 /// constant. Returning the expression itself is conservative. Returning a 2989 /// deeper subexpression is more precise and valid as long as it isn't less 2990 /// complex than another subexpression. For expressions involving multiple 2991 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2992 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2993 /// IVInc==b-a. 2994 /// 2995 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2996 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2997 static const SCEV *getExprBase(const SCEV *S) { 2998 switch (S->getSCEVType()) { 2999 default: // including scUnknown. 3000 return S; 3001 case scConstant: 3002 case scVScale: 3003 return nullptr; 3004 case scTruncate: 3005 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 3006 case scZeroExtend: 3007 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 3008 case scSignExtend: 3009 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 3010 case scAddExpr: { 3011 // Skip over scaled operands (scMulExpr) to follow add operands as long as 3012 // there's nothing more complex. 3013 // FIXME: not sure if we want to recognize negation. 3014 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 3015 for (const SCEV *SubExpr : reverse(Add->operands())) { 3016 if (SubExpr->getSCEVType() == scAddExpr) 3017 return getExprBase(SubExpr); 3018 3019 if (SubExpr->getSCEVType() != scMulExpr) 3020 return SubExpr; 3021 } 3022 return S; // all operands are scaled, be conservative. 3023 } 3024 case scAddRecExpr: 3025 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 3026 } 3027 llvm_unreachable("Unknown SCEV kind!"); 3028 } 3029 3030 /// Return true if the chain increment is profitable to expand into a loop 3031 /// invariant value, which may require its own register. A profitable chain 3032 /// increment will be an offset relative to the same base. We allow such offsets 3033 /// to potentially be used as chain increment as long as it's not obviously 3034 /// expensive to expand using real instructions. 3035 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 3036 const SCEV *IncExpr, 3037 ScalarEvolution &SE) { 3038 // Aggressively form chains when -stress-ivchain. 3039 if (StressIVChain) 3040 return true; 3041 3042 // Do not replace a constant offset from IV head with a nonconstant IV 3043 // increment. 3044 if (!isa<SCEVConstant>(IncExpr)) { 3045 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 3046 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 3047 return false; 3048 } 3049 3050 SmallPtrSet<const SCEV*, 8> Processed; 3051 return !isHighCostExpansion(IncExpr, Processed, SE); 3052 } 3053 3054 /// Return true if the number of registers needed for the chain is estimated to 3055 /// be less than the number required for the individual IV users. First prohibit 3056 /// any IV users that keep the IV live across increments (the Users set should 3057 /// be empty). Next count the number and type of increments in the chain. 3058 /// 3059 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 3060 /// effectively use postinc addressing modes. Only consider it profitable it the 3061 /// increments can be computed in fewer registers when chained. 3062 /// 3063 /// TODO: Consider IVInc free if it's already used in another chains. 3064 static bool isProfitableChain(IVChain &Chain, 3065 SmallPtrSetImpl<Instruction *> &Users, 3066 ScalarEvolution &SE, 3067 const TargetTransformInfo &TTI) { 3068 if (StressIVChain) 3069 return true; 3070 3071 if (!Chain.hasIncs()) 3072 return false; 3073 3074 if (!Users.empty()) { 3075 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 3076 for (Instruction *Inst 3077 : Users) { dbgs() << " " << *Inst << "\n"; }); 3078 return false; 3079 } 3080 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3081 3082 // The chain itself may require a register, so intialize cost to 1. 3083 int cost = 1; 3084 3085 // A complete chain likely eliminates the need for keeping the original IV in 3086 // a register. LSR does not currently know how to form a complete chain unless 3087 // the header phi already exists. 3088 if (isa<PHINode>(Chain.tailUserInst()) 3089 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 3090 --cost; 3091 } 3092 const SCEV *LastIncExpr = nullptr; 3093 unsigned NumConstIncrements = 0; 3094 unsigned NumVarIncrements = 0; 3095 unsigned NumReusedIncrements = 0; 3096 3097 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 3098 return true; 3099 3100 for (const IVInc &Inc : Chain) { 3101 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 3102 return true; 3103 if (Inc.IncExpr->isZero()) 3104 continue; 3105 3106 // Incrementing by zero or some constant is neutral. We assume constants can 3107 // be folded into an addressing mode or an add's immediate operand. 3108 if (isa<SCEVConstant>(Inc.IncExpr)) { 3109 ++NumConstIncrements; 3110 continue; 3111 } 3112 3113 if (Inc.IncExpr == LastIncExpr) 3114 ++NumReusedIncrements; 3115 else 3116 ++NumVarIncrements; 3117 3118 LastIncExpr = Inc.IncExpr; 3119 } 3120 // An IV chain with a single increment is handled by LSR's postinc 3121 // uses. However, a chain with multiple increments requires keeping the IV's 3122 // value live longer than it needs to be if chained. 3123 if (NumConstIncrements > 1) 3124 --cost; 3125 3126 // Materializing increment expressions in the preheader that didn't exist in 3127 // the original code may cost a register. For example, sign-extended array 3128 // indices can produce ridiculous increments like this: 3129 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 3130 cost += NumVarIncrements; 3131 3132 // Reusing variable increments likely saves a register to hold the multiple of 3133 // the stride. 3134 cost -= NumReusedIncrements; 3135 3136 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 3137 << "\n"); 3138 3139 return cost < 0; 3140 } 3141 3142 /// Add this IV user to an existing chain or make it the head of a new chain. 3143 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 3144 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 3145 // When IVs are used as types of varying widths, they are generally converted 3146 // to a wider type with some uses remaining narrow under a (free) trunc. 3147 Value *const NextIV = getWideOperand(IVOper); 3148 const SCEV *const OperExpr = SE.getSCEV(NextIV); 3149 const SCEV *const OperExprBase = getExprBase(OperExpr); 3150 3151 // Visit all existing chains. Check if its IVOper can be computed as a 3152 // profitable loop invariant increment from the last link in the Chain. 3153 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3154 const SCEV *LastIncExpr = nullptr; 3155 for (; ChainIdx < NChains; ++ChainIdx) { 3156 IVChain &Chain = IVChainVec[ChainIdx]; 3157 3158 // Prune the solution space aggressively by checking that both IV operands 3159 // are expressions that operate on the same unscaled SCEVUnknown. This 3160 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 3161 // first avoids creating extra SCEV expressions. 3162 if (!StressIVChain && Chain.ExprBase != OperExprBase) 3163 continue; 3164 3165 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 3166 if (PrevIV->getType() != NextIV->getType()) 3167 continue; 3168 3169 // A phi node terminates a chain. 3170 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 3171 continue; 3172 3173 // The increment must be loop-invariant so it can be kept in a register. 3174 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 3175 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 3176 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 3177 continue; 3178 3179 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 3180 LastIncExpr = IncExpr; 3181 break; 3182 } 3183 } 3184 // If we haven't found a chain, create a new one, unless we hit the max. Don't 3185 // bother for phi nodes, because they must be last in the chain. 3186 if (ChainIdx == NChains) { 3187 if (isa<PHINode>(UserInst)) 3188 return; 3189 if (NChains >= MaxChains && !StressIVChain) { 3190 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3191 return; 3192 } 3193 LastIncExpr = OperExpr; 3194 // IVUsers may have skipped over sign/zero extensions. We don't currently 3195 // attempt to form chains involving extensions unless they can be hoisted 3196 // into this loop's AddRec. 3197 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3198 return; 3199 ++NChains; 3200 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3201 OperExprBase)); 3202 ChainUsersVec.resize(NChains); 3203 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3204 << ") IV=" << *LastIncExpr << "\n"); 3205 } else { 3206 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3207 << ") IV+" << *LastIncExpr << "\n"); 3208 // Add this IV user to the end of the chain. 3209 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3210 } 3211 IVChain &Chain = IVChainVec[ChainIdx]; 3212 3213 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3214 // This chain's NearUsers become FarUsers. 3215 if (!LastIncExpr->isZero()) { 3216 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3217 NearUsers.end()); 3218 NearUsers.clear(); 3219 } 3220 3221 // All other uses of IVOperand become near uses of the chain. 3222 // We currently ignore intermediate values within SCEV expressions, assuming 3223 // they will eventually be used be the current chain, or can be computed 3224 // from one of the chain increments. To be more precise we could 3225 // transitively follow its user and only add leaf IV users to the set. 3226 for (User *U : IVOper->users()) { 3227 Instruction *OtherUse = dyn_cast<Instruction>(U); 3228 if (!OtherUse) 3229 continue; 3230 // Uses in the chain will no longer be uses if the chain is formed. 3231 // Include the head of the chain in this iteration (not Chain.begin()). 3232 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3233 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3234 for( ; IncIter != IncEnd; ++IncIter) { 3235 if (IncIter->UserInst == OtherUse) 3236 break; 3237 } 3238 if (IncIter != IncEnd) 3239 continue; 3240 3241 if (SE.isSCEVable(OtherUse->getType()) 3242 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3243 && IU.isIVUserOrOperand(OtherUse)) { 3244 continue; 3245 } 3246 NearUsers.insert(OtherUse); 3247 } 3248 3249 // Since this user is part of the chain, it's no longer considered a use 3250 // of the chain. 3251 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3252 } 3253 3254 /// Populate the vector of Chains. 3255 /// 3256 /// This decreases ILP at the architecture level. Targets with ample registers, 3257 /// multiple memory ports, and no register renaming probably don't want 3258 /// this. However, such targets should probably disable LSR altogether. 3259 /// 3260 /// The job of LSR is to make a reasonable choice of induction variables across 3261 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3262 /// ILP *within the loop* if the target wants it. 3263 /// 3264 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3265 /// will not reorder memory operations, it will recognize this as a chain, but 3266 /// will generate redundant IV increments. Ideally this would be corrected later 3267 /// by a smart scheduler: 3268 /// = A[i] 3269 /// = A[i+x] 3270 /// A[i] = 3271 /// A[i+x] = 3272 /// 3273 /// TODO: Walk the entire domtree within this loop, not just the path to the 3274 /// loop latch. This will discover chains on side paths, but requires 3275 /// maintaining multiple copies of the Chains state. 3276 void LSRInstance::CollectChains() { 3277 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3278 SmallVector<ChainUsers, 8> ChainUsersVec; 3279 3280 SmallVector<BasicBlock *,8> LatchPath; 3281 BasicBlock *LoopHeader = L->getHeader(); 3282 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3283 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3284 LatchPath.push_back(Rung->getBlock()); 3285 } 3286 LatchPath.push_back(LoopHeader); 3287 3288 // Walk the instruction stream from the loop header to the loop latch. 3289 for (BasicBlock *BB : reverse(LatchPath)) { 3290 for (Instruction &I : *BB) { 3291 // Skip instructions that weren't seen by IVUsers analysis. 3292 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3293 continue; 3294 3295 // Ignore users that are part of a SCEV expression. This way we only 3296 // consider leaf IV Users. This effectively rediscovers a portion of 3297 // IVUsers analysis but in program order this time. 3298 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3299 continue; 3300 3301 // Remove this instruction from any NearUsers set it may be in. 3302 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3303 ChainIdx < NChains; ++ChainIdx) { 3304 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3305 } 3306 // Search for operands that can be chained. 3307 SmallPtrSet<Instruction*, 4> UniqueOperands; 3308 User::op_iterator IVOpEnd = I.op_end(); 3309 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3310 while (IVOpIter != IVOpEnd) { 3311 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3312 if (UniqueOperands.insert(IVOpInst).second) 3313 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3314 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3315 } 3316 } // Continue walking down the instructions. 3317 } // Continue walking down the domtree. 3318 // Visit phi backedges to determine if the chain can generate the IV postinc. 3319 for (PHINode &PN : L->getHeader()->phis()) { 3320 if (!SE.isSCEVable(PN.getType())) 3321 continue; 3322 3323 Instruction *IncV = 3324 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3325 if (IncV) 3326 ChainInstruction(&PN, IncV, ChainUsersVec); 3327 } 3328 // Remove any unprofitable chains. 3329 unsigned ChainIdx = 0; 3330 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3331 UsersIdx < NChains; ++UsersIdx) { 3332 if (!isProfitableChain(IVChainVec[UsersIdx], 3333 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3334 continue; 3335 // Preserve the chain at UsesIdx. 3336 if (ChainIdx != UsersIdx) 3337 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3338 FinalizeChain(IVChainVec[ChainIdx]); 3339 ++ChainIdx; 3340 } 3341 IVChainVec.resize(ChainIdx); 3342 } 3343 3344 void LSRInstance::FinalizeChain(IVChain &Chain) { 3345 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3346 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3347 3348 for (const IVInc &Inc : Chain) { 3349 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3350 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3351 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3352 IVIncSet.insert(UseI); 3353 } 3354 } 3355 3356 /// Return true if the IVInc can be folded into an addressing mode. 3357 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3358 Value *Operand, const TargetTransformInfo &TTI) { 3359 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3360 Immediate IncOffset = Immediate::getZero(); 3361 if (IncConst) { 3362 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) 3363 return false; 3364 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue()); 3365 } else { 3366 // Look for mul(vscale, constant), to detect a scalable offset. 3367 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr); 3368 if (!IncVScale || IncVScale->getNumOperands() != 2 || 3369 !isa<SCEVVScale>(IncVScale->getOperand(1))) 3370 return false; 3371 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0)); 3372 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64) 3373 return false; 3374 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue()); 3375 } 3376 3377 if (!isAddressUse(TTI, UserInst, Operand)) 3378 return false; 3379 3380 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3381 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3382 IncOffset, /*HasBaseReg=*/false)) 3383 return false; 3384 3385 return true; 3386 } 3387 3388 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3389 /// user's operand from the previous IV user's operand. 3390 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3391 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3392 // Find the new IVOperand for the head of the chain. It may have been replaced 3393 // by LSR. 3394 const IVInc &Head = Chain.Incs[0]; 3395 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3396 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3397 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3398 IVOpEnd, L, SE); 3399 Value *IVSrc = nullptr; 3400 while (IVOpIter != IVOpEnd) { 3401 IVSrc = getWideOperand(*IVOpIter); 3402 3403 // If this operand computes the expression that the chain needs, we may use 3404 // it. (Check this after setting IVSrc which is used below.) 3405 // 3406 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3407 // narrow for the chain, so we can no longer use it. We do allow using a 3408 // wider phi, assuming the LSR checked for free truncation. In that case we 3409 // should already have a truncate on this operand such that 3410 // getSCEV(IVSrc) == IncExpr. 3411 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3412 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3413 break; 3414 } 3415 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3416 } 3417 if (IVOpIter == IVOpEnd) { 3418 // Gracefully give up on this chain. 3419 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3420 return; 3421 } 3422 assert(IVSrc && "Failed to find IV chain source"); 3423 3424 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3425 Type *IVTy = IVSrc->getType(); 3426 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3427 const SCEV *LeftOverExpr = nullptr; 3428 const SCEV *Accum = SE.getZero(IntTy); 3429 SmallVector<std::pair<const SCEV *, Value *>> Bases; 3430 Bases.emplace_back(Accum, IVSrc); 3431 3432 for (const IVInc &Inc : Chain) { 3433 Instruction *InsertPt = Inc.UserInst; 3434 if (isa<PHINode>(InsertPt)) 3435 InsertPt = L->getLoopLatch()->getTerminator(); 3436 3437 // IVOper will replace the current IV User's operand. IVSrc is the IV 3438 // value currently held in a register. 3439 Value *IVOper = IVSrc; 3440 if (!Inc.IncExpr->isZero()) { 3441 // IncExpr was the result of subtraction of two narrow values, so must 3442 // be signed. 3443 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3444 Accum = SE.getAddExpr(Accum, IncExpr); 3445 LeftOverExpr = LeftOverExpr ? 3446 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3447 } 3448 3449 // Look through each base to see if any can produce a nice addressing mode. 3450 bool FoundBase = false; 3451 for (auto [MapScev, MapIVOper] : reverse(Bases)) { 3452 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev); 3453 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) { 3454 if (!Remainder->isZero()) { 3455 Rewriter.clearPostInc(); 3456 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt); 3457 const SCEV *IVOperExpr = 3458 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV)); 3459 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3460 } else { 3461 IVOper = MapIVOper; 3462 } 3463 3464 FoundBase = true; 3465 break; 3466 } 3467 } 3468 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { 3469 // Expand the IV increment. 3470 Rewriter.clearPostInc(); 3471 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3472 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3473 SE.getUnknown(IncV)); 3474 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3475 3476 // If an IV increment can't be folded, use it as the next IV value. 3477 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3478 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3479 Bases.emplace_back(Accum, IVOper); 3480 IVSrc = IVOper; 3481 LeftOverExpr = nullptr; 3482 } 3483 } 3484 Type *OperTy = Inc.IVOperand->getType(); 3485 if (IVTy != OperTy) { 3486 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3487 "cannot extend a chained IV"); 3488 IRBuilder<> Builder(InsertPt); 3489 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3490 } 3491 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3492 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3493 DeadInsts.emplace_back(OperandIsInstr); 3494 } 3495 // If LSR created a new, wider phi, we may also replace its postinc. We only 3496 // do this if we also found a wide value for the head of the chain. 3497 if (isa<PHINode>(Chain.tailUserInst())) { 3498 for (PHINode &Phi : L->getHeader()->phis()) { 3499 if (Phi.getType() != IVSrc->getType()) 3500 continue; 3501 Instruction *PostIncV = dyn_cast<Instruction>( 3502 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3503 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3504 continue; 3505 Value *IVOper = IVSrc; 3506 Type *PostIncTy = PostIncV->getType(); 3507 if (IVTy != PostIncTy) { 3508 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3509 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3510 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3511 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3512 } 3513 Phi.replaceUsesOfWith(PostIncV, IVOper); 3514 DeadInsts.emplace_back(PostIncV); 3515 } 3516 } 3517 } 3518 3519 void LSRInstance::CollectFixupsAndInitialFormulae() { 3520 BranchInst *ExitBranch = nullptr; 3521 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3522 3523 // For calculating baseline cost 3524 SmallPtrSet<const SCEV *, 16> Regs; 3525 DenseSet<const SCEV *> VisitedRegs; 3526 DenseSet<size_t> VisitedLSRUse; 3527 3528 for (const IVStrideUse &U : IU) { 3529 Instruction *UserInst = U.getUser(); 3530 // Skip IV users that are part of profitable IV Chains. 3531 User::op_iterator UseI = 3532 find(UserInst->operands(), U.getOperandValToReplace()); 3533 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3534 if (IVIncSet.count(UseI)) { 3535 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3536 continue; 3537 } 3538 3539 LSRUse::KindType Kind = LSRUse::Basic; 3540 MemAccessTy AccessTy; 3541 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3542 Kind = LSRUse::Address; 3543 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3544 } 3545 3546 const SCEV *S = IU.getExpr(U); 3547 if (!S) 3548 continue; 3549 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3550 3551 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3552 // (N - i == 0), and this allows (N - i) to be the expression that we work 3553 // with rather than just N or i, so we can consider the register 3554 // requirements for both N and i at the same time. Limiting this code to 3555 // equality icmps is not a problem because all interesting loops use 3556 // equality icmps, thanks to IndVarSimplify. 3557 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3558 // If CI can be saved in some target, like replaced inside hardware loop 3559 // in PowerPC, no need to generate initial formulae for it. 3560 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3561 continue; 3562 if (CI->isEquality()) { 3563 // Swap the operands if needed to put the OperandValToReplace on the 3564 // left, for consistency. 3565 Value *NV = CI->getOperand(1); 3566 if (NV == U.getOperandValToReplace()) { 3567 CI->setOperand(1, CI->getOperand(0)); 3568 CI->setOperand(0, NV); 3569 NV = CI->getOperand(1); 3570 Changed = true; 3571 } 3572 3573 // x == y --> x - y == 0 3574 const SCEV *N = SE.getSCEV(NV); 3575 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3576 (!NV->getType()->isPointerTy() || 3577 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3578 // S is normalized, so normalize N before folding it into S 3579 // to keep the result normalized. 3580 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3581 if (!N) 3582 continue; 3583 Kind = LSRUse::ICmpZero; 3584 S = SE.getMinusSCEV(N, S); 3585 } else if (L->isLoopInvariant(NV) && 3586 (!isa<Instruction>(NV) || 3587 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3588 !NV->getType()->isPointerTy()) { 3589 // If we can't generally expand the expression (e.g. it contains 3590 // a divide), but it is already at a loop invariant point before the 3591 // loop, wrap it in an unknown (to prevent the expander from trying 3592 // to re-expand in a potentially unsafe way.) The restriction to 3593 // integer types is required because the unknown hides the base, and 3594 // SCEV can't compute the difference of two unknown pointers. 3595 N = SE.getUnknown(NV); 3596 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3597 if (!N) 3598 continue; 3599 Kind = LSRUse::ICmpZero; 3600 S = SE.getMinusSCEV(N, S); 3601 assert(!isa<SCEVCouldNotCompute>(S)); 3602 } 3603 3604 // -1 and the negations of all interesting strides (except the negation 3605 // of -1) are now also interesting. 3606 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3607 if (Factors[i] != -1) 3608 Factors.insert(-(uint64_t)Factors[i]); 3609 Factors.insert(-1); 3610 } 3611 } 3612 3613 // Get or create an LSRUse. 3614 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy); 3615 size_t LUIdx = P.first; 3616 Immediate Offset = P.second; 3617 LSRUse &LU = Uses[LUIdx]; 3618 3619 // Record the fixup. 3620 LSRFixup &LF = LU.getNewFixup(); 3621 LF.UserInst = UserInst; 3622 LF.OperandValToReplace = U.getOperandValToReplace(); 3623 LF.PostIncLoops = TmpPostIncLoops; 3624 LF.Offset = Offset; 3625 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3626 3627 // Create SCEV as Formula for calculating baseline cost 3628 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3629 Formula F; 3630 F.initialMatch(S, L, SE); 3631 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3632 VisitedLSRUse.insert(LUIdx); 3633 } 3634 3635 if (!LU.WidestFixupType || 3636 SE.getTypeSizeInBits(LU.WidestFixupType) < 3637 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3638 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3639 3640 // If this is the first use of this LSRUse, give it a formula. 3641 if (LU.Formulae.empty()) { 3642 InsertInitialFormula(S, LU, LUIdx); 3643 CountRegisters(LU.Formulae.back(), LUIdx); 3644 } 3645 } 3646 3647 LLVM_DEBUG(print_fixups(dbgs())); 3648 } 3649 3650 /// Insert a formula for the given expression into the given use, separating out 3651 /// loop-variant portions from loop-invariant and loop-computable portions. 3652 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3653 size_t LUIdx) { 3654 // Mark uses whose expressions cannot be expanded. 3655 if (!Rewriter.isSafeToExpand(S)) 3656 LU.RigidFormula = true; 3657 3658 Formula F; 3659 F.initialMatch(S, L, SE); 3660 bool Inserted = InsertFormula(LU, LUIdx, F); 3661 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3662 } 3663 3664 /// Insert a simple single-register formula for the given expression into the 3665 /// given use. 3666 void 3667 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3668 LSRUse &LU, size_t LUIdx) { 3669 Formula F; 3670 F.BaseRegs.push_back(S); 3671 F.HasBaseReg = true; 3672 bool Inserted = InsertFormula(LU, LUIdx, F); 3673 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3674 } 3675 3676 /// Note which registers are used by the given formula, updating RegUses. 3677 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3678 if (F.ScaledReg) 3679 RegUses.countRegister(F.ScaledReg, LUIdx); 3680 for (const SCEV *BaseReg : F.BaseRegs) 3681 RegUses.countRegister(BaseReg, LUIdx); 3682 } 3683 3684 /// If the given formula has not yet been inserted, add it to the list, and 3685 /// return true. Return false otherwise. 3686 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3687 // Do not insert formula that we will not be able to expand. 3688 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3689 "Formula is illegal"); 3690 3691 if (!LU.InsertFormula(F, *L)) 3692 return false; 3693 3694 CountRegisters(F, LUIdx); 3695 return true; 3696 } 3697 3698 /// Check for other uses of loop-invariant values which we're tracking. These 3699 /// other uses will pin these values in registers, making them less profitable 3700 /// for elimination. 3701 /// TODO: This currently misses non-constant addrec step registers. 3702 /// TODO: Should this give more weight to users inside the loop? 3703 void 3704 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3705 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3706 SmallPtrSet<const SCEV *, 32> Visited; 3707 3708 // Don't collect outside uses if we are favoring postinc - the instructions in 3709 // the loop are more important than the ones outside of it. 3710 if (AMK == TTI::AMK_PostIndexed) 3711 return; 3712 3713 while (!Worklist.empty()) { 3714 const SCEV *S = Worklist.pop_back_val(); 3715 3716 // Don't process the same SCEV twice 3717 if (!Visited.insert(S).second) 3718 continue; 3719 3720 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3721 append_range(Worklist, N->operands()); 3722 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3723 Worklist.push_back(C->getOperand()); 3724 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3725 Worklist.push_back(D->getLHS()); 3726 Worklist.push_back(D->getRHS()); 3727 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3728 const Value *V = US->getValue(); 3729 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3730 // Look for instructions defined outside the loop. 3731 if (L->contains(Inst)) continue; 3732 } else if (isa<Constant>(V)) 3733 // Constants can be re-materialized. 3734 continue; 3735 for (const Use &U : V->uses()) { 3736 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3737 // Ignore non-instructions. 3738 if (!UserInst) 3739 continue; 3740 // Don't bother if the instruction is an EHPad. 3741 if (UserInst->isEHPad()) 3742 continue; 3743 // Ignore instructions in other functions (as can happen with 3744 // Constants). 3745 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3746 continue; 3747 // Ignore instructions not dominated by the loop. 3748 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3749 UserInst->getParent() : 3750 cast<PHINode>(UserInst)->getIncomingBlock( 3751 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3752 if (!DT.dominates(L->getHeader(), UseBB)) 3753 continue; 3754 // Don't bother if the instruction is in a BB which ends in an EHPad. 3755 if (UseBB->getTerminator()->isEHPad()) 3756 continue; 3757 3758 // Ignore cases in which the currently-examined value could come from 3759 // a basic block terminated with an EHPad. This checks all incoming 3760 // blocks of the phi node since it is possible that the same incoming 3761 // value comes from multiple basic blocks, only some of which may end 3762 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3763 // pass would try to insert instructions into an EHPad, hitting an 3764 // assertion. 3765 if (isa<PHINode>(UserInst)) { 3766 const auto *PhiNode = cast<PHINode>(UserInst); 3767 bool HasIncompatibleEHPTerminatedBlock = false; 3768 llvm::Value *ExpectedValue = U; 3769 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3770 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3771 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3772 HasIncompatibleEHPTerminatedBlock = true; 3773 break; 3774 } 3775 } 3776 } 3777 if (HasIncompatibleEHPTerminatedBlock) { 3778 continue; 3779 } 3780 } 3781 3782 // Don't bother rewriting PHIs in catchswitch blocks. 3783 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3784 continue; 3785 // Ignore uses which are part of other SCEV expressions, to avoid 3786 // analyzing them multiple times. 3787 if (SE.isSCEVable(UserInst->getType())) { 3788 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3789 // If the user is a no-op, look through to its uses. 3790 if (!isa<SCEVUnknown>(UserS)) 3791 continue; 3792 if (UserS == US) { 3793 Worklist.push_back( 3794 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3795 continue; 3796 } 3797 } 3798 // Ignore icmp instructions which are already being analyzed. 3799 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3800 unsigned OtherIdx = !U.getOperandNo(); 3801 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3802 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3803 continue; 3804 } 3805 3806 std::pair<size_t, Immediate> P = 3807 getUse(S, LSRUse::Basic, MemAccessTy()); 3808 size_t LUIdx = P.first; 3809 Immediate Offset = P.second; 3810 LSRUse &LU = Uses[LUIdx]; 3811 LSRFixup &LF = LU.getNewFixup(); 3812 LF.UserInst = const_cast<Instruction *>(UserInst); 3813 LF.OperandValToReplace = U; 3814 LF.Offset = Offset; 3815 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3816 if (!LU.WidestFixupType || 3817 SE.getTypeSizeInBits(LU.WidestFixupType) < 3818 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3819 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3820 InsertSupplementalFormula(US, LU, LUIdx); 3821 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3822 break; 3823 } 3824 } 3825 } 3826 } 3827 3828 /// Split S into subexpressions which can be pulled out into separate 3829 /// registers. If C is non-null, multiply each subexpression by C. 3830 /// 3831 /// Return remainder expression after factoring the subexpressions captured by 3832 /// Ops. If Ops is complete, return NULL. 3833 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3834 SmallVectorImpl<const SCEV *> &Ops, 3835 const Loop *L, 3836 ScalarEvolution &SE, 3837 unsigned Depth = 0) { 3838 // Arbitrarily cap recursion to protect compile time. 3839 if (Depth >= 3) 3840 return S; 3841 3842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3843 // Break out add operands. 3844 for (const SCEV *S : Add->operands()) { 3845 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3846 if (Remainder) 3847 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3848 } 3849 return nullptr; 3850 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3851 // Split a non-zero base out of an addrec. 3852 if (AR->getStart()->isZero() || !AR->isAffine()) 3853 return S; 3854 3855 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3856 C, Ops, L, SE, Depth+1); 3857 // Split the non-zero AddRec unless it is part of a nested recurrence that 3858 // does not pertain to this loop. 3859 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3860 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3861 Remainder = nullptr; 3862 } 3863 if (Remainder != AR->getStart()) { 3864 if (!Remainder) 3865 Remainder = SE.getConstant(AR->getType(), 0); 3866 return SE.getAddRecExpr(Remainder, 3867 AR->getStepRecurrence(SE), 3868 AR->getLoop(), 3869 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3870 SCEV::FlagAnyWrap); 3871 } 3872 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3873 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3874 if (Mul->getNumOperands() != 2) 3875 return S; 3876 if (const SCEVConstant *Op0 = 3877 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3878 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3879 const SCEV *Remainder = 3880 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3881 if (Remainder) 3882 Ops.push_back(SE.getMulExpr(C, Remainder)); 3883 return nullptr; 3884 } 3885 } 3886 return S; 3887 } 3888 3889 /// Return true if the SCEV represents a value that may end up as a 3890 /// post-increment operation. 3891 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3892 LSRUse &LU, const SCEV *S, const Loop *L, 3893 ScalarEvolution &SE) { 3894 if (LU.Kind != LSRUse::Address || 3895 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3896 return false; 3897 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3898 if (!AR) 3899 return false; 3900 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3901 if (!isa<SCEVConstant>(LoopStep)) 3902 return false; 3903 // Check if a post-indexed load/store can be used. 3904 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3905 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3906 const SCEV *LoopStart = AR->getStart(); 3907 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3908 return true; 3909 } 3910 return false; 3911 } 3912 3913 /// Helper function for LSRInstance::GenerateReassociations. 3914 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3915 const Formula &Base, 3916 unsigned Depth, size_t Idx, 3917 bool IsScaledReg) { 3918 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3919 // Don't generate reassociations for the base register of a value that 3920 // may generate a post-increment operator. The reason is that the 3921 // reassociations cause extra base+register formula to be created, 3922 // and possibly chosen, but the post-increment is more efficient. 3923 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3924 return; 3925 SmallVector<const SCEV *, 8> AddOps; 3926 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3927 if (Remainder) 3928 AddOps.push_back(Remainder); 3929 3930 if (AddOps.size() == 1) 3931 return; 3932 3933 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3934 JE = AddOps.end(); 3935 J != JE; ++J) { 3936 // Loop-variant "unknown" values are uninteresting; we won't be able to 3937 // do anything meaningful with them. 3938 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3939 continue; 3940 3941 // Don't pull a constant into a register if the constant could be folded 3942 // into an immediate field. 3943 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3944 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3945 continue; 3946 3947 // Collect all operands except *J. 3948 SmallVector<const SCEV *, 8> InnerAddOps( 3949 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3950 InnerAddOps.append(std::next(J), 3951 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3952 3953 // Don't leave just a constant behind in a register if the constant could 3954 // be folded into an immediate field. 3955 if (InnerAddOps.size() == 1 && 3956 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3957 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3958 continue; 3959 3960 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3961 if (InnerSum->isZero()) 3962 continue; 3963 Formula F = Base; 3964 3965 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) 3966 continue; 3967 3968 // Add the remaining pieces of the add back into the new formula. 3969 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3970 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3971 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3972 InnerSumSC->getValue()->getZExtValue())) { 3973 F.UnfoldedOffset = 3974 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3975 InnerSumSC->getValue()->getZExtValue()); 3976 if (IsScaledReg) 3977 F.ScaledReg = nullptr; 3978 else 3979 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3980 } else if (IsScaledReg) 3981 F.ScaledReg = InnerSum; 3982 else 3983 F.BaseRegs[Idx] = InnerSum; 3984 3985 // Add J as its own register, or an unfolded immediate. 3986 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3987 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3988 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3989 SC->getValue()->getZExtValue())) 3990 F.UnfoldedOffset = 3991 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3992 SC->getValue()->getZExtValue()); 3993 else 3994 F.BaseRegs.push_back(*J); 3995 // We may have changed the number of register in base regs, adjust the 3996 // formula accordingly. 3997 F.canonicalize(*L); 3998 3999 if (InsertFormula(LU, LUIdx, F)) 4000 // If that formula hadn't been seen before, recurse to find more like 4001 // it. 4002 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 4003 // Because just Depth is not enough to bound compile time. 4004 // This means that every time AddOps.size() is greater 16^x we will add 4005 // x to Depth. 4006 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 4007 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 4008 } 4009 } 4010 4011 /// Split out subexpressions from adds and the bases of addrecs. 4012 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 4013 Formula Base, unsigned Depth) { 4014 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 4015 // Arbitrarily cap recursion to protect compile time. 4016 if (Depth >= 3) 4017 return; 4018 4019 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4020 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 4021 4022 if (Base.Scale == 1) 4023 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 4024 /* Idx */ -1, /* IsScaledReg */ true); 4025 } 4026 4027 /// Generate a formula consisting of all of the loop-dominating registers added 4028 /// into a single register. 4029 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 4030 Formula Base) { 4031 // This method is only interesting on a plurality of registers. 4032 if (Base.BaseRegs.size() + (Base.Scale == 1) + 4033 (Base.UnfoldedOffset.isNonZero()) <= 4034 1) 4035 return; 4036 4037 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 4038 // processing the formula. 4039 Base.unscale(); 4040 SmallVector<const SCEV *, 4> Ops; 4041 Formula NewBase = Base; 4042 NewBase.BaseRegs.clear(); 4043 Type *CombinedIntegerType = nullptr; 4044 for (const SCEV *BaseReg : Base.BaseRegs) { 4045 if (SE.properlyDominates(BaseReg, L->getHeader()) && 4046 !SE.hasComputableLoopEvolution(BaseReg, L)) { 4047 if (!CombinedIntegerType) 4048 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 4049 Ops.push_back(BaseReg); 4050 } 4051 else 4052 NewBase.BaseRegs.push_back(BaseReg); 4053 } 4054 4055 // If no register is relevant, we're done. 4056 if (Ops.size() == 0) 4057 return; 4058 4059 // Utility function for generating the required variants of the combined 4060 // registers. 4061 auto GenerateFormula = [&](const SCEV *Sum) { 4062 Formula F = NewBase; 4063 4064 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 4065 // opportunity to fold something. For now, just ignore such cases 4066 // rather than proceed with zero in a register. 4067 if (Sum->isZero()) 4068 return; 4069 4070 F.BaseRegs.push_back(Sum); 4071 F.canonicalize(*L); 4072 (void)InsertFormula(LU, LUIdx, F); 4073 }; 4074 4075 // If we collected at least two registers, generate a formula combining them. 4076 if (Ops.size() > 1) { 4077 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 4078 GenerateFormula(SE.getAddExpr(OpsCopy)); 4079 } 4080 4081 // If we have an unfolded offset, generate a formula combining it with the 4082 // registers collected. 4083 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { 4084 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 4085 Ops.push_back(SE.getConstant(CombinedIntegerType, 4086 NewBase.UnfoldedOffset.getFixedValue(), true)); 4087 NewBase.UnfoldedOffset = Immediate::getFixed(0); 4088 GenerateFormula(SE.getAddExpr(Ops)); 4089 } 4090 } 4091 4092 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 4093 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 4094 const Formula &Base, size_t Idx, 4095 bool IsScaledReg) { 4096 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4097 GlobalValue *GV = ExtractSymbol(G, SE); 4098 if (G->isZero() || !GV) 4099 return; 4100 Formula F = Base; 4101 F.BaseGV = GV; 4102 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4103 return; 4104 if (IsScaledReg) 4105 F.ScaledReg = G; 4106 else 4107 F.BaseRegs[Idx] = G; 4108 (void)InsertFormula(LU, LUIdx, F); 4109 } 4110 4111 /// Generate reuse formulae using symbolic offsets. 4112 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 4113 Formula Base) { 4114 // We can't add a symbolic offset if the address already contains one. 4115 if (Base.BaseGV) return; 4116 4117 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4118 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 4119 if (Base.Scale == 1) 4120 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 4121 /* IsScaledReg */ true); 4122 } 4123 4124 /// Helper function for LSRInstance::GenerateConstantOffsets. 4125 void LSRInstance::GenerateConstantOffsetsImpl( 4126 LSRUse &LU, unsigned LUIdx, const Formula &Base, 4127 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { 4128 4129 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { 4130 Formula F = Base; 4131 if (!Base.BaseOffset.isCompatibleImmediate(Offset)) 4132 return; 4133 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset); 4134 4135 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 4136 // Add the offset to the base register. 4137 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType()); 4138 const SCEV *NewG = SE.getAddExpr(NewOffset, G); 4139 // If it cancelled out, drop the base register, otherwise update it. 4140 if (NewG->isZero()) { 4141 if (IsScaledReg) { 4142 F.Scale = 0; 4143 F.ScaledReg = nullptr; 4144 } else 4145 F.deleteBaseReg(F.BaseRegs[Idx]); 4146 F.canonicalize(*L); 4147 } else if (IsScaledReg) 4148 F.ScaledReg = NewG; 4149 else 4150 F.BaseRegs[Idx] = NewG; 4151 4152 (void)InsertFormula(LU, LUIdx, F); 4153 } 4154 }; 4155 4156 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4157 4158 // With constant offsets and constant steps, we can generate pre-inc 4159 // accesses by having the offset equal the step. So, for access #0 with a 4160 // step of 8, we generate a G - 8 base which would require the first access 4161 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 4162 // for itself and hopefully becomes the base for other accesses. This means 4163 // means that a single pre-indexed access can be generated to become the new 4164 // base pointer for each iteration of the loop, resulting in no extra add/sub 4165 // instructions for pointer updating. 4166 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 4167 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 4168 if (auto *StepRec = 4169 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 4170 const APInt &StepInt = StepRec->getAPInt(); 4171 int64_t Step = StepInt.isNegative() ? 4172 StepInt.getSExtValue() : StepInt.getZExtValue(); 4173 4174 for (Immediate Offset : Worklist) { 4175 if (Offset.isFixed()) { 4176 Offset = Immediate::getFixed(Offset.getFixedValue() - Step); 4177 GenerateOffset(G, Offset); 4178 } 4179 } 4180 } 4181 } 4182 } 4183 for (Immediate Offset : Worklist) 4184 GenerateOffset(G, Offset); 4185 4186 Immediate Imm = ExtractImmediate(G, SE); 4187 if (G->isZero() || Imm.isZero() || 4188 !Base.BaseOffset.isCompatibleImmediate(Imm)) 4189 return; 4190 Formula F = Base; 4191 F.BaseOffset = F.BaseOffset.addUnsigned(Imm); 4192 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4193 return; 4194 if (IsScaledReg) { 4195 F.ScaledReg = G; 4196 } else { 4197 F.BaseRegs[Idx] = G; 4198 // We may generate non canonical Formula if G is a recurrent expr reg 4199 // related with current loop while F.ScaledReg is not. 4200 F.canonicalize(*L); 4201 } 4202 (void)InsertFormula(LU, LUIdx, F); 4203 } 4204 4205 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 4206 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 4207 Formula Base) { 4208 // TODO: For now, just add the min and max offset, because it usually isn't 4209 // worthwhile looking at everything inbetween. 4210 SmallVector<Immediate, 2> Worklist; 4211 Worklist.push_back(LU.MinOffset); 4212 if (LU.MaxOffset != LU.MinOffset) 4213 Worklist.push_back(LU.MaxOffset); 4214 4215 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4216 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 4217 if (Base.Scale == 1) 4218 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 4219 /* IsScaledReg */ true); 4220 } 4221 4222 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 4223 /// == y -> x*c == y*c. 4224 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 4225 Formula Base) { 4226 if (LU.Kind != LSRUse::ICmpZero) return; 4227 4228 // Determine the integer type for the base formula. 4229 Type *IntTy = Base.getType(); 4230 if (!IntTy) return; 4231 if (SE.getTypeSizeInBits(IntTy) > 64) return; 4232 4233 // Don't do this if there is more than one offset. 4234 if (LU.MinOffset != LU.MaxOffset) return; 4235 4236 // Check if transformation is valid. It is illegal to multiply pointer. 4237 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4238 return; 4239 for (const SCEV *BaseReg : Base.BaseRegs) 4240 if (BaseReg->getType()->isPointerTy()) 4241 return; 4242 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 4243 4244 // Check each interesting stride. 4245 for (int64_t Factor : Factors) { 4246 // Check that Factor can be represented by IntTy 4247 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4248 continue; 4249 // Check that the multiplication doesn't overflow. 4250 if (Base.BaseOffset.isMin() && Factor == -1) 4251 continue; 4252 // Not supporting scalable immediates. 4253 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) 4254 continue; 4255 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor); 4256 assert(Factor != 0 && "Zero factor not expected!"); 4257 if (NewBaseOffset.getFixedValue() / Factor != 4258 Base.BaseOffset.getFixedValue()) 4259 continue; 4260 // If the offset will be truncated at this use, check that it is in bounds. 4261 if (!IntTy->isPointerTy() && 4262 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue())) 4263 continue; 4264 4265 // Check that multiplying with the use offset doesn't overflow. 4266 Immediate Offset = LU.MinOffset; 4267 if (Offset.isMin() && Factor == -1) 4268 continue; 4269 Offset = Offset.mulUnsigned(Factor); 4270 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) 4271 continue; 4272 // If the offset will be truncated at this use, check that it is in bounds. 4273 if (!IntTy->isPointerTy() && 4274 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue())) 4275 continue; 4276 4277 Formula F = Base; 4278 F.BaseOffset = NewBaseOffset; 4279 4280 // Check that this scale is legal. 4281 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4282 continue; 4283 4284 // Compensate for the use having MinOffset built into it. 4285 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset); 4286 4287 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4288 4289 // Check that multiplying with each base register doesn't overflow. 4290 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4291 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4292 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4293 goto next; 4294 } 4295 4296 // Check that multiplying with the scaled register doesn't overflow. 4297 if (F.ScaledReg) { 4298 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4299 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4300 continue; 4301 } 4302 4303 // Check that multiplying with the unfolded offset doesn't overflow. 4304 if (F.UnfoldedOffset.isNonZero()) { 4305 if (F.UnfoldedOffset.isMin() && Factor == -1) 4306 continue; 4307 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor); 4308 if (F.UnfoldedOffset.getFixedValue() / Factor != 4309 Base.UnfoldedOffset.getFixedValue()) 4310 continue; 4311 // If the offset will be truncated, check that it is in bounds. 4312 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( 4313 IntTy, F.UnfoldedOffset.getFixedValue())) 4314 continue; 4315 } 4316 4317 // If we make it here and it's legal, add it. 4318 (void)InsertFormula(LU, LUIdx, F); 4319 next:; 4320 } 4321 } 4322 4323 /// Generate stride factor reuse formulae by making use of scaled-offset address 4324 /// modes, for example. 4325 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4326 // Determine the integer type for the base formula. 4327 Type *IntTy = Base.getType(); 4328 if (!IntTy) return; 4329 4330 // If this Formula already has a scaled register, we can't add another one. 4331 // Try to unscale the formula to generate a better scale. 4332 if (Base.Scale != 0 && !Base.unscale()) 4333 return; 4334 4335 assert(Base.Scale == 0 && "unscale did not did its job!"); 4336 4337 // Check each interesting stride. 4338 for (int64_t Factor : Factors) { 4339 Base.Scale = Factor; 4340 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4341 // Check whether this scale is going to be legal. 4342 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4343 Base)) { 4344 // As a special-case, handle special out-of-loop Basic users specially. 4345 // TODO: Reconsider this special case. 4346 if (LU.Kind == LSRUse::Basic && 4347 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4348 LU.AccessTy, Base) && 4349 LU.AllFixupsOutsideLoop) 4350 LU.Kind = LSRUse::Special; 4351 else 4352 continue; 4353 } 4354 // For an ICmpZero, negating a solitary base register won't lead to 4355 // new solutions. 4356 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && 4357 Base.BaseOffset.isZero() && !Base.BaseGV) 4358 continue; 4359 // For each addrec base reg, if its loop is current loop, apply the scale. 4360 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4361 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4362 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4363 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4364 if (FactorS->isZero()) 4365 continue; 4366 // Divide out the factor, ignoring high bits, since we'll be 4367 // scaling the value back up in the end. 4368 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4369 if (!Quotient->isZero()) { 4370 // TODO: This could be optimized to avoid all the copying. 4371 Formula F = Base; 4372 F.ScaledReg = Quotient; 4373 F.deleteBaseReg(F.BaseRegs[i]); 4374 // The canonical representation of 1*reg is reg, which is already in 4375 // Base. In that case, do not try to insert the formula, it will be 4376 // rejected anyway. 4377 if (F.Scale == 1 && (F.BaseRegs.empty() || 4378 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4379 continue; 4380 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4381 // non canonical Formula with ScaledReg's loop not being L. 4382 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4383 F.canonicalize(*L); 4384 (void)InsertFormula(LU, LUIdx, F); 4385 } 4386 } 4387 } 4388 } 4389 } 4390 4391 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4392 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4393 /// perform the extension/truncate and normalize again, as the normalized form 4394 /// can result in folds that are not valid in the post-inc use contexts. The 4395 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4396 static const SCEV * 4397 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4398 const SCEV *Expr, Type *ToTy, 4399 ScalarEvolution &SE) { 4400 const SCEV *Result = nullptr; 4401 for (auto &L : Loops) { 4402 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4403 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4404 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4405 if (!New || (Result && New != Result)) 4406 return nullptr; 4407 Result = New; 4408 } 4409 4410 assert(Result && "failed to create expression"); 4411 return Result; 4412 } 4413 4414 /// Generate reuse formulae from different IV types. 4415 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4416 // Don't bother truncating symbolic values. 4417 if (Base.BaseGV) return; 4418 4419 // Determine the integer type for the base formula. 4420 Type *DstTy = Base.getType(); 4421 if (!DstTy) return; 4422 if (DstTy->isPointerTy()) 4423 return; 4424 4425 // It is invalid to extend a pointer type so exit early if ScaledReg or 4426 // any of the BaseRegs are pointers. 4427 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4428 return; 4429 if (any_of(Base.BaseRegs, 4430 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4431 return; 4432 4433 SmallVector<PostIncLoopSet> Loops; 4434 for (auto &LF : LU.Fixups) 4435 Loops.push_back(LF.PostIncLoops); 4436 4437 for (Type *SrcTy : Types) { 4438 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4439 Formula F = Base; 4440 4441 // Sometimes SCEV is able to prove zero during ext transform. It may 4442 // happen if SCEV did not do all possible transforms while creating the 4443 // initial node (maybe due to depth limitations), but it can do them while 4444 // taking ext. 4445 if (F.ScaledReg) { 4446 const SCEV *NewScaledReg = 4447 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4448 if (!NewScaledReg || NewScaledReg->isZero()) 4449 continue; 4450 F.ScaledReg = NewScaledReg; 4451 } 4452 bool HasZeroBaseReg = false; 4453 for (const SCEV *&BaseReg : F.BaseRegs) { 4454 const SCEV *NewBaseReg = 4455 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4456 if (!NewBaseReg || NewBaseReg->isZero()) { 4457 HasZeroBaseReg = true; 4458 break; 4459 } 4460 BaseReg = NewBaseReg; 4461 } 4462 if (HasZeroBaseReg) 4463 continue; 4464 4465 // TODO: This assumes we've done basic processing on all uses and 4466 // have an idea what the register usage is. 4467 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4468 continue; 4469 4470 F.canonicalize(*L); 4471 (void)InsertFormula(LU, LUIdx, F); 4472 } 4473 } 4474 } 4475 4476 namespace { 4477 4478 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4479 /// modifications so that the search phase doesn't have to worry about the data 4480 /// structures moving underneath it. 4481 struct WorkItem { 4482 size_t LUIdx; 4483 Immediate Imm; 4484 const SCEV *OrigReg; 4485 4486 WorkItem(size_t LI, Immediate I, const SCEV *R) 4487 : LUIdx(LI), Imm(I), OrigReg(R) {} 4488 4489 void print(raw_ostream &OS) const; 4490 void dump() const; 4491 }; 4492 4493 } // end anonymous namespace 4494 4495 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4496 void WorkItem::print(raw_ostream &OS) const { 4497 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4498 << " , add offset " << Imm; 4499 } 4500 4501 LLVM_DUMP_METHOD void WorkItem::dump() const { 4502 print(errs()); errs() << '\n'; 4503 } 4504 #endif 4505 4506 /// Look for registers which are a constant distance apart and try to form reuse 4507 /// opportunities between them. 4508 void LSRInstance::GenerateCrossUseConstantOffsets() { 4509 // Group the registers by their value without any added constant offset. 4510 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; 4511 4512 DenseMap<const SCEV *, ImmMapTy> Map; 4513 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4514 SmallVector<const SCEV *, 8> Sequence; 4515 for (const SCEV *Use : RegUses) { 4516 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4517 Immediate Imm = ExtractImmediate(Reg, SE); 4518 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4519 if (Pair.second) 4520 Sequence.push_back(Reg); 4521 Pair.first->second.insert(std::make_pair(Imm, Use)); 4522 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4523 } 4524 4525 // Now examine each set of registers with the same base value. Build up 4526 // a list of work to do and do the work in a separate step so that we're 4527 // not adding formulae and register counts while we're searching. 4528 SmallVector<WorkItem, 32> WorkItems; 4529 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> 4530 UniqueItems; 4531 for (const SCEV *Reg : Sequence) { 4532 const ImmMapTy &Imms = Map.find(Reg)->second; 4533 4534 // It's not worthwhile looking for reuse if there's only one offset. 4535 if (Imms.size() == 1) 4536 continue; 4537 4538 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4539 for (const auto &Entry 4540 : Imms) dbgs() 4541 << ' ' << Entry.first; 4542 dbgs() << '\n'); 4543 4544 // Examine each offset. 4545 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4546 J != JE; ++J) { 4547 const SCEV *OrigReg = J->second; 4548 4549 Immediate JImm = J->first; 4550 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4551 4552 if (!isa<SCEVConstant>(OrigReg) && 4553 UsedByIndicesMap[Reg].count() == 1) { 4554 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4555 << '\n'); 4556 continue; 4557 } 4558 4559 // Conservatively examine offsets between this orig reg a few selected 4560 // other orig regs. 4561 Immediate First = Imms.begin()->first; 4562 Immediate Last = std::prev(Imms.end())->first; 4563 if (!First.isCompatibleImmediate(Last)) { 4564 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4565 << "\n"); 4566 continue; 4567 } 4568 // Only scalable if both terms are scalable, or if one is scalable and 4569 // the other is 0. 4570 bool Scalable = First.isScalable() || Last.isScalable(); 4571 int64_t FI = First.getKnownMinValue(); 4572 int64_t LI = Last.getKnownMinValue(); 4573 // Compute (First + Last) / 2 without overflow using the fact that 4574 // First + Last = 2 * (First + Last) + (First ^ Last). 4575 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); 4576 // If the result is negative and FI is odd and LI even (or vice versa), 4577 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4578 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); 4579 ImmMapTy::const_iterator OtherImms[] = { 4580 Imms.begin(), std::prev(Imms.end()), 4581 Imms.lower_bound(Immediate::get(Avg, Scalable))}; 4582 for (const auto &M : OtherImms) { 4583 if (M == J || M == JE) continue; 4584 if (!JImm.isCompatibleImmediate(M->first)) 4585 continue; 4586 4587 // Compute the difference between the two. 4588 Immediate Imm = JImm.subUnsigned(M->first); 4589 for (unsigned LUIdx : UsedByIndices.set_bits()) 4590 // Make a memo of this use, offset, and register tuple. 4591 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4592 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4593 } 4594 } 4595 } 4596 4597 Map.clear(); 4598 Sequence.clear(); 4599 UsedByIndicesMap.clear(); 4600 UniqueItems.clear(); 4601 4602 // Now iterate through the worklist and add new formulae. 4603 for (const WorkItem &WI : WorkItems) { 4604 size_t LUIdx = WI.LUIdx; 4605 LSRUse &LU = Uses[LUIdx]; 4606 Immediate Imm = WI.Imm; 4607 const SCEV *OrigReg = WI.OrigReg; 4608 4609 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4610 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy); 4611 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4612 4613 // TODO: Use a more targeted data structure. 4614 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4615 Formula F = LU.Formulae[L]; 4616 // FIXME: The code for the scaled and unscaled registers looks 4617 // very similar but slightly different. Investigate if they 4618 // could be merged. That way, we would not have to unscale the 4619 // Formula. 4620 F.unscale(); 4621 // Use the immediate in the scaled register. 4622 if (F.ScaledReg == OrigReg) { 4623 if (!F.BaseOffset.isCompatibleImmediate(Imm)) 4624 continue; 4625 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale)); 4626 // Don't create 50 + reg(-50). 4627 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy); 4628 if (F.referencesReg(S)) 4629 continue; 4630 Formula NewF = F; 4631 NewF.BaseOffset = Offset; 4632 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4633 NewF)) 4634 continue; 4635 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4636 4637 // If the new scale is a constant in a register, and adding the constant 4638 // value to the immediate would produce a value closer to zero than the 4639 // immediate itself, then the formula isn't worthwhile. 4640 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) { 4641 // FIXME: Do we need to do something for scalable immediates here? 4642 // A scalable SCEV won't be constant, but we might still have 4643 // something in the offset? Bail out for now to be safe. 4644 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4645 continue; 4646 if (C->getValue()->isNegative() != 4647 (NewF.BaseOffset.isLessThanZero()) && 4648 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4649 .ule(std::abs(NewF.BaseOffset.getFixedValue()))) 4650 continue; 4651 } 4652 4653 // OK, looks good. 4654 NewF.canonicalize(*this->L); 4655 (void)InsertFormula(LU, LUIdx, NewF); 4656 } else { 4657 // Use the immediate in a base register. 4658 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4659 const SCEV *BaseReg = F.BaseRegs[N]; 4660 if (BaseReg != OrigReg) 4661 continue; 4662 Formula NewF = F; 4663 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || 4664 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || 4665 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset)) 4666 continue; 4667 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm); 4668 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4669 LU.Kind, LU.AccessTy, NewF)) { 4670 if (AMK == TTI::AMK_PostIndexed && 4671 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4672 continue; 4673 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm); 4674 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset)) 4675 continue; 4676 NewF = F; 4677 NewF.UnfoldedOffset = NewUnfoldedOffset; 4678 } 4679 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4680 4681 // If the new formula has a constant in a register, and adding the 4682 // constant value to the immediate would produce a value closer to 4683 // zero than the immediate itself, then the formula isn't worthwhile. 4684 for (const SCEV *NewReg : NewF.BaseRegs) 4685 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) { 4686 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4687 goto skip_formula; 4688 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4689 .abs() 4690 .slt(std::abs(NewF.BaseOffset.getFixedValue())) && 4691 (C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4692 .countr_zero() >= 4693 (unsigned)llvm::countr_zero<uint64_t>( 4694 NewF.BaseOffset.getFixedValue())) 4695 goto skip_formula; 4696 } 4697 4698 // Ok, looks good. 4699 NewF.canonicalize(*this->L); 4700 (void)InsertFormula(LU, LUIdx, NewF); 4701 break; 4702 skip_formula:; 4703 } 4704 } 4705 } 4706 } 4707 } 4708 4709 /// Generate formulae for each use. 4710 void 4711 LSRInstance::GenerateAllReuseFormulae() { 4712 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4713 // queries are more precise. 4714 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4715 LSRUse &LU = Uses[LUIdx]; 4716 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4717 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4718 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4719 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4720 } 4721 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4722 LSRUse &LU = Uses[LUIdx]; 4723 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4724 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4725 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4726 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4727 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4728 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4729 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4730 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4731 } 4732 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4733 LSRUse &LU = Uses[LUIdx]; 4734 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4735 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4736 } 4737 4738 GenerateCrossUseConstantOffsets(); 4739 4740 LLVM_DEBUG(dbgs() << "\n" 4741 "After generating reuse formulae:\n"; 4742 print_uses(dbgs())); 4743 } 4744 4745 /// If there are multiple formulae with the same set of registers used 4746 /// by other uses, pick the best one and delete the others. 4747 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4748 DenseSet<const SCEV *> VisitedRegs; 4749 SmallPtrSet<const SCEV *, 16> Regs; 4750 SmallPtrSet<const SCEV *, 16> LoserRegs; 4751 #ifndef NDEBUG 4752 bool ChangedFormulae = false; 4753 #endif 4754 4755 // Collect the best formula for each unique set of shared registers. This 4756 // is reset for each use. 4757 using BestFormulaeTy = 4758 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4759 4760 BestFormulaeTy BestFormulae; 4761 4762 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4763 LSRUse &LU = Uses[LUIdx]; 4764 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4765 dbgs() << '\n'); 4766 4767 bool Any = false; 4768 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4769 FIdx != NumForms; ++FIdx) { 4770 Formula &F = LU.Formulae[FIdx]; 4771 4772 // Some formulas are instant losers. For example, they may depend on 4773 // nonexistent AddRecs from other loops. These need to be filtered 4774 // immediately, otherwise heuristics could choose them over others leading 4775 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4776 // avoids the need to recompute this information across formulae using the 4777 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4778 // the corresponding bad register from the Regs set. 4779 Cost CostF(L, SE, TTI, AMK); 4780 Regs.clear(); 4781 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4782 if (CostF.isLoser()) { 4783 // During initial formula generation, undesirable formulae are generated 4784 // by uses within other loops that have some non-trivial address mode or 4785 // use the postinc form of the IV. LSR needs to provide these formulae 4786 // as the basis of rediscovering the desired formula that uses an AddRec 4787 // corresponding to the existing phi. Once all formulae have been 4788 // generated, these initial losers may be pruned. 4789 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4790 dbgs() << "\n"); 4791 } 4792 else { 4793 SmallVector<const SCEV *, 4> Key; 4794 for (const SCEV *Reg : F.BaseRegs) { 4795 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4796 Key.push_back(Reg); 4797 } 4798 if (F.ScaledReg && 4799 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4800 Key.push_back(F.ScaledReg); 4801 // Unstable sort by host order ok, because this is only used for 4802 // uniquifying. 4803 llvm::sort(Key); 4804 4805 std::pair<BestFormulaeTy::const_iterator, bool> P = 4806 BestFormulae.insert(std::make_pair(Key, FIdx)); 4807 if (P.second) 4808 continue; 4809 4810 Formula &Best = LU.Formulae[P.first->second]; 4811 4812 Cost CostBest(L, SE, TTI, AMK); 4813 Regs.clear(); 4814 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4815 if (CostF.isLess(CostBest)) 4816 std::swap(F, Best); 4817 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4818 dbgs() << "\n" 4819 " in favor of formula "; 4820 Best.print(dbgs()); dbgs() << '\n'); 4821 } 4822 #ifndef NDEBUG 4823 ChangedFormulae = true; 4824 #endif 4825 LU.DeleteFormula(F); 4826 --FIdx; 4827 --NumForms; 4828 Any = true; 4829 } 4830 4831 // Now that we've filtered out some formulae, recompute the Regs set. 4832 if (Any) 4833 LU.RecomputeRegs(LUIdx, RegUses); 4834 4835 // Reset this to prepare for the next use. 4836 BestFormulae.clear(); 4837 } 4838 4839 LLVM_DEBUG(if (ChangedFormulae) { 4840 dbgs() << "\n" 4841 "After filtering out undesirable candidates:\n"; 4842 print_uses(dbgs()); 4843 }); 4844 } 4845 4846 /// Estimate the worst-case number of solutions the solver might have to 4847 /// consider. It almost never considers this many solutions because it prune the 4848 /// search space, but the pruning isn't always sufficient. 4849 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4850 size_t Power = 1; 4851 for (const LSRUse &LU : Uses) { 4852 size_t FSize = LU.Formulae.size(); 4853 if (FSize >= ComplexityLimit) { 4854 Power = ComplexityLimit; 4855 break; 4856 } 4857 Power *= FSize; 4858 if (Power >= ComplexityLimit) 4859 break; 4860 } 4861 return Power; 4862 } 4863 4864 /// When one formula uses a superset of the registers of another formula, it 4865 /// won't help reduce register pressure (though it may not necessarily hurt 4866 /// register pressure); remove it to simplify the system. 4867 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4868 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4869 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4870 4871 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4872 "which use a superset of registers used by other " 4873 "formulae.\n"); 4874 4875 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4876 LSRUse &LU = Uses[LUIdx]; 4877 bool Any = false; 4878 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4879 Formula &F = LU.Formulae[i]; 4880 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) 4881 continue; 4882 // Look for a formula with a constant or GV in a register. If the use 4883 // also has a formula with that same value in an immediate field, 4884 // delete the one that uses a register. 4885 for (SmallVectorImpl<const SCEV *>::const_iterator 4886 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4887 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4888 Formula NewF = F; 4889 //FIXME: Formulas should store bitwidth to do wrapping properly. 4890 // See PR41034. 4891 NewF.BaseOffset = 4892 Immediate::getFixed(NewF.BaseOffset.getFixedValue() + 4893 (uint64_t)C->getValue()->getSExtValue()); 4894 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4895 (I - F.BaseRegs.begin())); 4896 if (LU.HasFormulaWithSameRegs(NewF)) { 4897 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4898 dbgs() << '\n'); 4899 LU.DeleteFormula(F); 4900 --i; 4901 --e; 4902 Any = true; 4903 break; 4904 } 4905 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4906 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4907 if (!F.BaseGV) { 4908 Formula NewF = F; 4909 NewF.BaseGV = GV; 4910 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4911 (I - F.BaseRegs.begin())); 4912 if (LU.HasFormulaWithSameRegs(NewF)) { 4913 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4914 dbgs() << '\n'); 4915 LU.DeleteFormula(F); 4916 --i; 4917 --e; 4918 Any = true; 4919 break; 4920 } 4921 } 4922 } 4923 } 4924 } 4925 if (Any) 4926 LU.RecomputeRegs(LUIdx, RegUses); 4927 } 4928 4929 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4930 } 4931 } 4932 4933 /// When there are many registers for expressions like A, A+1, A+2, etc., 4934 /// allocate a single register for them. 4935 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4936 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4937 return; 4938 4939 LLVM_DEBUG( 4940 dbgs() << "The search space is too complex.\n" 4941 "Narrowing the search space by assuming that uses separated " 4942 "by a constant offset will use the same registers.\n"); 4943 4944 // This is especially useful for unrolled loops. 4945 4946 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4947 LSRUse &LU = Uses[LUIdx]; 4948 for (const Formula &F : LU.Formulae) { 4949 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) 4950 continue; 4951 4952 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4953 if (!LUThatHas) 4954 continue; 4955 4956 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4957 LU.Kind, LU.AccessTy)) 4958 continue; 4959 4960 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4961 4962 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4963 4964 // Transfer the fixups of LU to LUThatHas. 4965 for (LSRFixup &Fixup : LU.Fixups) { 4966 Fixup.Offset += F.BaseOffset; 4967 LUThatHas->pushFixup(Fixup); 4968 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4969 } 4970 4971 // Delete formulae from the new use which are no longer legal. 4972 bool Any = false; 4973 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4974 Formula &F = LUThatHas->Formulae[i]; 4975 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4976 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4977 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4978 LUThatHas->DeleteFormula(F); 4979 --i; 4980 --e; 4981 Any = true; 4982 } 4983 } 4984 4985 if (Any) 4986 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4987 4988 // Delete the old use. 4989 DeleteUse(LU, LUIdx); 4990 --LUIdx; 4991 --NumUses; 4992 break; 4993 } 4994 } 4995 4996 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4997 } 4998 4999 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 5000 /// we've done more filtering, as it may be able to find more formulae to 5001 /// eliminate. 5002 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 5003 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5004 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5005 5006 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 5007 "undesirable dedicated registers.\n"); 5008 5009 FilterOutUndesirableDedicatedRegisters(); 5010 5011 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5012 } 5013 } 5014 5015 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 5016 /// Pick the best one and delete the others. 5017 /// This narrowing heuristic is to keep as many formulae with different 5018 /// Scale and ScaledReg pair as possible while narrowing the search space. 5019 /// The benefit is that it is more likely to find out a better solution 5020 /// from a formulae set with more Scale and ScaledReg variations than 5021 /// a formulae set with the same Scale and ScaledReg. The picking winner 5022 /// reg heuristic will often keep the formulae with the same Scale and 5023 /// ScaledReg and filter others, and we want to avoid that if possible. 5024 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 5025 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5026 return; 5027 5028 LLVM_DEBUG( 5029 dbgs() << "The search space is too complex.\n" 5030 "Narrowing the search space by choosing the best Formula " 5031 "from the Formulae with the same Scale and ScaledReg.\n"); 5032 5033 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 5034 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 5035 5036 BestFormulaeTy BestFormulae; 5037 #ifndef NDEBUG 5038 bool ChangedFormulae = false; 5039 #endif 5040 DenseSet<const SCEV *> VisitedRegs; 5041 SmallPtrSet<const SCEV *, 16> Regs; 5042 5043 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5044 LSRUse &LU = Uses[LUIdx]; 5045 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 5046 dbgs() << '\n'); 5047 5048 // Return true if Formula FA is better than Formula FB. 5049 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 5050 // First we will try to choose the Formula with fewer new registers. 5051 // For a register used by current Formula, the more the register is 5052 // shared among LSRUses, the less we increase the register number 5053 // counter of the formula. 5054 size_t FARegNum = 0; 5055 for (const SCEV *Reg : FA.BaseRegs) { 5056 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5057 FARegNum += (NumUses - UsedByIndices.count() + 1); 5058 } 5059 size_t FBRegNum = 0; 5060 for (const SCEV *Reg : FB.BaseRegs) { 5061 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5062 FBRegNum += (NumUses - UsedByIndices.count() + 1); 5063 } 5064 if (FARegNum != FBRegNum) 5065 return FARegNum < FBRegNum; 5066 5067 // If the new register numbers are the same, choose the Formula with 5068 // less Cost. 5069 Cost CostFA(L, SE, TTI, AMK); 5070 Cost CostFB(L, SE, TTI, AMK); 5071 Regs.clear(); 5072 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 5073 Regs.clear(); 5074 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 5075 return CostFA.isLess(CostFB); 5076 }; 5077 5078 bool Any = false; 5079 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5080 ++FIdx) { 5081 Formula &F = LU.Formulae[FIdx]; 5082 if (!F.ScaledReg) 5083 continue; 5084 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 5085 if (P.second) 5086 continue; 5087 5088 Formula &Best = LU.Formulae[P.first->second]; 5089 if (IsBetterThan(F, Best)) 5090 std::swap(F, Best); 5091 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5092 dbgs() << "\n" 5093 " in favor of formula "; 5094 Best.print(dbgs()); dbgs() << '\n'); 5095 #ifndef NDEBUG 5096 ChangedFormulae = true; 5097 #endif 5098 LU.DeleteFormula(F); 5099 --FIdx; 5100 --NumForms; 5101 Any = true; 5102 } 5103 if (Any) 5104 LU.RecomputeRegs(LUIdx, RegUses); 5105 5106 // Reset this to prepare for the next use. 5107 BestFormulae.clear(); 5108 } 5109 5110 LLVM_DEBUG(if (ChangedFormulae) { 5111 dbgs() << "\n" 5112 "After filtering out undesirable candidates:\n"; 5113 print_uses(dbgs()); 5114 }); 5115 } 5116 5117 /// If we are over the complexity limit, filter out any post-inc prefering 5118 /// variables to only post-inc values. 5119 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 5120 if (AMK != TTI::AMK_PostIndexed) 5121 return; 5122 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5123 return; 5124 5125 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 5126 "Narrowing the search space by choosing the lowest " 5127 "register Formula for PostInc Uses.\n"); 5128 5129 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5130 LSRUse &LU = Uses[LUIdx]; 5131 5132 if (LU.Kind != LSRUse::Address) 5133 continue; 5134 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 5135 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 5136 continue; 5137 5138 size_t MinRegs = std::numeric_limits<size_t>::max(); 5139 for (const Formula &F : LU.Formulae) 5140 MinRegs = std::min(F.getNumRegs(), MinRegs); 5141 5142 bool Any = false; 5143 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5144 ++FIdx) { 5145 Formula &F = LU.Formulae[FIdx]; 5146 if (F.getNumRegs() > MinRegs) { 5147 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5148 dbgs() << "\n"); 5149 LU.DeleteFormula(F); 5150 --FIdx; 5151 --NumForms; 5152 Any = true; 5153 } 5154 } 5155 if (Any) 5156 LU.RecomputeRegs(LUIdx, RegUses); 5157 5158 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5159 break; 5160 } 5161 5162 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5163 } 5164 5165 /// The function delete formulas with high registers number expectation. 5166 /// Assuming we don't know the value of each formula (already delete 5167 /// all inefficient), generate probability of not selecting for each 5168 /// register. 5169 /// For example, 5170 /// Use1: 5171 /// reg(a) + reg({0,+,1}) 5172 /// reg(a) + reg({-1,+,1}) + 1 5173 /// reg({a,+,1}) 5174 /// Use2: 5175 /// reg(b) + reg({0,+,1}) 5176 /// reg(b) + reg({-1,+,1}) + 1 5177 /// reg({b,+,1}) 5178 /// Use3: 5179 /// reg(c) + reg(b) + reg({0,+,1}) 5180 /// reg(c) + reg({b,+,1}) 5181 /// 5182 /// Probability of not selecting 5183 /// Use1 Use2 Use3 5184 /// reg(a) (1/3) * 1 * 1 5185 /// reg(b) 1 * (1/3) * (1/2) 5186 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 5187 /// reg({-1,+,1}) (2/3) * (2/3) * 1 5188 /// reg({a,+,1}) (2/3) * 1 * 1 5189 /// reg({b,+,1}) 1 * (2/3) * (2/3) 5190 /// reg(c) 1 * 1 * 0 5191 /// 5192 /// Now count registers number mathematical expectation for each formula: 5193 /// Note that for each use we exclude probability if not selecting for the use. 5194 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 5195 /// probabilty 1/3 of not selecting for Use1). 5196 /// Use1: 5197 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 5198 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 5199 /// reg({a,+,1}) 1 5200 /// Use2: 5201 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 5202 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 5203 /// reg({b,+,1}) 2/3 5204 /// Use3: 5205 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 5206 /// reg(c) + reg({b,+,1}) 1 + 2/3 5207 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 5208 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5209 return; 5210 // Ok, we have too many of formulae on our hands to conveniently handle. 5211 // Use a rough heuristic to thin out the list. 5212 5213 // Set of Regs wich will be 100% used in final solution. 5214 // Used in each formula of a solution (in example above this is reg(c)). 5215 // We can skip them in calculations. 5216 SmallPtrSet<const SCEV *, 4> UniqRegs; 5217 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5218 5219 // Map each register to probability of not selecting 5220 DenseMap <const SCEV *, float> RegNumMap; 5221 for (const SCEV *Reg : RegUses) { 5222 if (UniqRegs.count(Reg)) 5223 continue; 5224 float PNotSel = 1; 5225 for (const LSRUse &LU : Uses) { 5226 if (!LU.Regs.count(Reg)) 5227 continue; 5228 float P = LU.getNotSelectedProbability(Reg); 5229 if (P != 0.0) 5230 PNotSel *= P; 5231 else 5232 UniqRegs.insert(Reg); 5233 } 5234 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 5235 } 5236 5237 LLVM_DEBUG( 5238 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 5239 5240 // Delete formulas where registers number expectation is high. 5241 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5242 LSRUse &LU = Uses[LUIdx]; 5243 // If nothing to delete - continue. 5244 if (LU.Formulae.size() < 2) 5245 continue; 5246 // This is temporary solution to test performance. Float should be 5247 // replaced with round independent type (based on integers) to avoid 5248 // different results for different target builds. 5249 float FMinRegNum = LU.Formulae[0].getNumRegs(); 5250 float FMinARegNum = LU.Formulae[0].getNumRegs(); 5251 size_t MinIdx = 0; 5252 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5253 Formula &F = LU.Formulae[i]; 5254 float FRegNum = 0; 5255 float FARegNum = 0; 5256 for (const SCEV *BaseReg : F.BaseRegs) { 5257 if (UniqRegs.count(BaseReg)) 5258 continue; 5259 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5260 if (isa<SCEVAddRecExpr>(BaseReg)) 5261 FARegNum += 5262 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5263 } 5264 if (const SCEV *ScaledReg = F.ScaledReg) { 5265 if (!UniqRegs.count(ScaledReg)) { 5266 FRegNum += 5267 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5268 if (isa<SCEVAddRecExpr>(ScaledReg)) 5269 FARegNum += 5270 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5271 } 5272 } 5273 if (FMinRegNum > FRegNum || 5274 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 5275 FMinRegNum = FRegNum; 5276 FMinARegNum = FARegNum; 5277 MinIdx = i; 5278 } 5279 } 5280 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 5281 dbgs() << " with min reg num " << FMinRegNum << '\n'); 5282 if (MinIdx != 0) 5283 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 5284 while (LU.Formulae.size() != 1) { 5285 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5286 dbgs() << '\n'); 5287 LU.Formulae.pop_back(); 5288 } 5289 LU.RecomputeRegs(LUIdx, RegUses); 5290 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5291 Formula &F = LU.Formulae[0]; 5292 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5293 // When we choose the formula, the regs become unique. 5294 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5295 if (F.ScaledReg) 5296 UniqRegs.insert(F.ScaledReg); 5297 } 5298 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5299 } 5300 5301 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5302 // would the addressing offset +C would be legal where the negative offset -C is 5303 // not. 5304 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5305 ScalarEvolution &SE, const SCEV *Best, 5306 const SCEV *Reg, 5307 MemAccessTy AccessType) { 5308 if (Best->getType() != Reg->getType() || 5309 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5310 cast<SCEVAddRecExpr>(Best)->getLoop() != 5311 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5312 return false; 5313 std::optional<APInt> Diff = SE.computeConstantDifference(Best, Reg); 5314 if (!Diff) 5315 return false; 5316 5317 return TTI.isLegalAddressingMode( 5318 AccessType.MemTy, /*BaseGV=*/nullptr, 5319 /*BaseOffset=*/Diff->getSExtValue(), 5320 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5321 !TTI.isLegalAddressingMode( 5322 AccessType.MemTy, /*BaseGV=*/nullptr, 5323 /*BaseOffset=*/-Diff->getSExtValue(), 5324 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5325 } 5326 5327 /// Pick a register which seems likely to be profitable, and then in any use 5328 /// which has any reference to that register, delete all formulae which do not 5329 /// reference that register. 5330 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5331 // With all other options exhausted, loop until the system is simple 5332 // enough to handle. 5333 SmallPtrSet<const SCEV *, 4> Taken; 5334 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5335 // Ok, we have too many of formulae on our hands to conveniently handle. 5336 // Use a rough heuristic to thin out the list. 5337 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5338 5339 // Pick the register which is used by the most LSRUses, which is likely 5340 // to be a good reuse register candidate. 5341 const SCEV *Best = nullptr; 5342 unsigned BestNum = 0; 5343 for (const SCEV *Reg : RegUses) { 5344 if (Taken.count(Reg)) 5345 continue; 5346 if (!Best) { 5347 Best = Reg; 5348 BestNum = RegUses.getUsedByIndices(Reg).count(); 5349 } else { 5350 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5351 if (Count > BestNum) { 5352 Best = Reg; 5353 BestNum = Count; 5354 } 5355 5356 // If the scores are the same, but the Reg is simpler for the target 5357 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5358 // handle +C but not -C), opt for the simpler formula. 5359 if (Count == BestNum) { 5360 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5361 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5362 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5363 Uses[LUIdx].AccessTy)) { 5364 Best = Reg; 5365 BestNum = Count; 5366 } 5367 } 5368 } 5369 } 5370 assert(Best && "Failed to find best LSRUse candidate"); 5371 5372 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5373 << " will yield profitable reuse.\n"); 5374 Taken.insert(Best); 5375 5376 // In any use with formulae which references this register, delete formulae 5377 // which don't reference it. 5378 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5379 LSRUse &LU = Uses[LUIdx]; 5380 if (!LU.Regs.count(Best)) continue; 5381 5382 bool Any = false; 5383 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5384 Formula &F = LU.Formulae[i]; 5385 if (!F.referencesReg(Best)) { 5386 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5387 LU.DeleteFormula(F); 5388 --e; 5389 --i; 5390 Any = true; 5391 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5392 continue; 5393 } 5394 } 5395 5396 if (Any) 5397 LU.RecomputeRegs(LUIdx, RegUses); 5398 } 5399 5400 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5401 } 5402 } 5403 5404 /// If there are an extraordinary number of formulae to choose from, use some 5405 /// rough heuristics to prune down the number of formulae. This keeps the main 5406 /// solver from taking an extraordinary amount of time in some worst-case 5407 /// scenarios. 5408 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5409 NarrowSearchSpaceByDetectingSupersets(); 5410 NarrowSearchSpaceByCollapsingUnrolledCode(); 5411 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5412 if (FilterSameScaledReg) 5413 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5414 NarrowSearchSpaceByFilterPostInc(); 5415 if (LSRExpNarrow) 5416 NarrowSearchSpaceByDeletingCostlyFormulas(); 5417 else 5418 NarrowSearchSpaceByPickingWinnerRegs(); 5419 } 5420 5421 /// This is the recursive solver. 5422 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5423 Cost &SolutionCost, 5424 SmallVectorImpl<const Formula *> &Workspace, 5425 const Cost &CurCost, 5426 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5427 DenseSet<const SCEV *> &VisitedRegs) const { 5428 // Some ideas: 5429 // - prune more: 5430 // - use more aggressive filtering 5431 // - sort the formula so that the most profitable solutions are found first 5432 // - sort the uses too 5433 // - search faster: 5434 // - don't compute a cost, and then compare. compare while computing a cost 5435 // and bail early. 5436 // - track register sets with SmallBitVector 5437 5438 const LSRUse &LU = Uses[Workspace.size()]; 5439 5440 // If this use references any register that's already a part of the 5441 // in-progress solution, consider it a requirement that a formula must 5442 // reference that register in order to be considered. This prunes out 5443 // unprofitable searching. 5444 SmallSetVector<const SCEV *, 4> ReqRegs; 5445 for (const SCEV *S : CurRegs) 5446 if (LU.Regs.count(S)) 5447 ReqRegs.insert(S); 5448 5449 SmallPtrSet<const SCEV *, 16> NewRegs; 5450 Cost NewCost(L, SE, TTI, AMK); 5451 for (const Formula &F : LU.Formulae) { 5452 // Ignore formulae which may not be ideal in terms of register reuse of 5453 // ReqRegs. The formula should use all required registers before 5454 // introducing new ones. 5455 // This can sometimes (notably when trying to favour postinc) lead to 5456 // sub-optimial decisions. There it is best left to the cost modelling to 5457 // get correct. 5458 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5459 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5460 for (const SCEV *Reg : ReqRegs) { 5461 if ((F.ScaledReg && F.ScaledReg == Reg) || 5462 is_contained(F.BaseRegs, Reg)) { 5463 --NumReqRegsToFind; 5464 if (NumReqRegsToFind == 0) 5465 break; 5466 } 5467 } 5468 if (NumReqRegsToFind != 0) { 5469 // If none of the formulae satisfied the required registers, then we could 5470 // clear ReqRegs and try again. Currently, we simply give up in this case. 5471 continue; 5472 } 5473 } 5474 5475 // Evaluate the cost of the current formula. If it's already worse than 5476 // the current best, prune the search at that point. 5477 NewCost = CurCost; 5478 NewRegs = CurRegs; 5479 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5480 if (NewCost.isLess(SolutionCost)) { 5481 Workspace.push_back(&F); 5482 if (Workspace.size() != Uses.size()) { 5483 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5484 NewRegs, VisitedRegs); 5485 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5486 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5487 } else { 5488 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5489 dbgs() << ".\nRegs:\n"; 5490 for (const SCEV *S : NewRegs) dbgs() 5491 << "- " << *S << "\n"; 5492 dbgs() << '\n'); 5493 5494 SolutionCost = NewCost; 5495 Solution = Workspace; 5496 } 5497 Workspace.pop_back(); 5498 } 5499 } 5500 } 5501 5502 /// Choose one formula from each use. Return the results in the given Solution 5503 /// vector. 5504 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5505 SmallVector<const Formula *, 8> Workspace; 5506 Cost SolutionCost(L, SE, TTI, AMK); 5507 SolutionCost.Lose(); 5508 Cost CurCost(L, SE, TTI, AMK); 5509 SmallPtrSet<const SCEV *, 16> CurRegs; 5510 DenseSet<const SCEV *> VisitedRegs; 5511 Workspace.reserve(Uses.size()); 5512 5513 // SolveRecurse does all the work. 5514 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5515 CurRegs, VisitedRegs); 5516 if (Solution.empty()) { 5517 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5518 return; 5519 } 5520 5521 // Ok, we've now made all our decisions. 5522 LLVM_DEBUG(dbgs() << "\n" 5523 "The chosen solution requires "; 5524 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5525 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5526 dbgs() << " "; 5527 Uses[i].print(dbgs()); 5528 dbgs() << "\n" 5529 " "; 5530 Solution[i]->print(dbgs()); 5531 dbgs() << '\n'; 5532 }); 5533 5534 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5535 5536 const bool EnableDropUnprofitableSolution = [&] { 5537 switch (AllowDropSolutionIfLessProfitable) { 5538 case cl::BOU_TRUE: 5539 return true; 5540 case cl::BOU_FALSE: 5541 return false; 5542 case cl::BOU_UNSET: 5543 return TTI.shouldDropLSRSolutionIfLessProfitable(); 5544 } 5545 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 5546 }(); 5547 5548 if (BaselineCost.isLess(SolutionCost)) { 5549 if (!EnableDropUnprofitableSolution) 5550 LLVM_DEBUG( 5551 dbgs() << "Baseline is more profitable than chosen solution, " 5552 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5553 else { 5554 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5555 "solution, dropping LSR solution.\n";); 5556 Solution.clear(); 5557 } 5558 } 5559 } 5560 5561 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5562 /// we can go while still being dominated by the input positions. This helps 5563 /// canonicalize the insert position, which encourages sharing. 5564 BasicBlock::iterator 5565 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5566 const SmallVectorImpl<Instruction *> &Inputs) 5567 const { 5568 Instruction *Tentative = &*IP; 5569 while (true) { 5570 bool AllDominate = true; 5571 Instruction *BetterPos = nullptr; 5572 // Don't bother attempting to insert before a catchswitch, their basic block 5573 // cannot have other non-PHI instructions. 5574 if (isa<CatchSwitchInst>(Tentative)) 5575 return IP; 5576 5577 for (Instruction *Inst : Inputs) { 5578 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5579 AllDominate = false; 5580 break; 5581 } 5582 // Attempt to find an insert position in the middle of the block, 5583 // instead of at the end, so that it can be used for other expansions. 5584 if (Tentative->getParent() == Inst->getParent() && 5585 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5586 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5587 } 5588 if (!AllDominate) 5589 break; 5590 if (BetterPos) 5591 IP = BetterPos->getIterator(); 5592 else 5593 IP = Tentative->getIterator(); 5594 5595 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5596 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5597 5598 BasicBlock *IDom; 5599 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5600 if (!Rung) return IP; 5601 Rung = Rung->getIDom(); 5602 if (!Rung) return IP; 5603 IDom = Rung->getBlock(); 5604 5605 // Don't climb into a loop though. 5606 const Loop *IDomLoop = LI.getLoopFor(IDom); 5607 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5608 if (IDomDepth <= IPLoopDepth && 5609 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5610 break; 5611 } 5612 5613 Tentative = IDom->getTerminator(); 5614 } 5615 5616 return IP; 5617 } 5618 5619 /// Determine an input position which will be dominated by the operands and 5620 /// which will dominate the result. 5621 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5622 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5623 // Collect some instructions which must be dominated by the 5624 // expanding replacement. These must be dominated by any operands that 5625 // will be required in the expansion. 5626 SmallVector<Instruction *, 4> Inputs; 5627 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5628 Inputs.push_back(I); 5629 if (LU.Kind == LSRUse::ICmpZero) 5630 if (Instruction *I = 5631 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5632 Inputs.push_back(I); 5633 if (LF.PostIncLoops.count(L)) { 5634 if (LF.isUseFullyOutsideLoop(L)) 5635 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5636 else 5637 Inputs.push_back(IVIncInsertPos); 5638 } 5639 // The expansion must also be dominated by the increment positions of any 5640 // loops it for which it is using post-inc mode. 5641 for (const Loop *PIL : LF.PostIncLoops) { 5642 if (PIL == L) continue; 5643 5644 // Be dominated by the loop exit. 5645 SmallVector<BasicBlock *, 4> ExitingBlocks; 5646 PIL->getExitingBlocks(ExitingBlocks); 5647 if (!ExitingBlocks.empty()) { 5648 BasicBlock *BB = ExitingBlocks[0]; 5649 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5650 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5651 Inputs.push_back(BB->getTerminator()); 5652 } 5653 } 5654 5655 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5656 && !isa<DbgInfoIntrinsic>(LowestIP) && 5657 "Insertion point must be a normal instruction"); 5658 5659 // Then, climb up the immediate dominator tree as far as we can go while 5660 // still being dominated by the input positions. 5661 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5662 5663 // Don't insert instructions before PHI nodes. 5664 while (isa<PHINode>(IP)) ++IP; 5665 5666 // Ignore landingpad instructions. 5667 while (IP->isEHPad()) ++IP; 5668 5669 // Ignore debug intrinsics. 5670 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5671 5672 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5673 // IP consistent across expansions and allows the previously inserted 5674 // instructions to be reused by subsequent expansion. 5675 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5676 ++IP; 5677 5678 return IP; 5679 } 5680 5681 /// Emit instructions for the leading candidate expression for this LSRUse (this 5682 /// is called "expanding"). 5683 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5684 const Formula &F, BasicBlock::iterator IP, 5685 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5686 if (LU.RigidFormula) 5687 return LF.OperandValToReplace; 5688 5689 // Determine an input position which will be dominated by the operands and 5690 // which will dominate the result. 5691 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5692 Rewriter.setInsertPoint(&*IP); 5693 5694 // Inform the Rewriter if we have a post-increment use, so that it can 5695 // perform an advantageous expansion. 5696 Rewriter.setPostInc(LF.PostIncLoops); 5697 5698 // This is the type that the user actually needs. 5699 Type *OpTy = LF.OperandValToReplace->getType(); 5700 // This will be the type that we'll initially expand to. 5701 Type *Ty = F.getType(); 5702 if (!Ty) 5703 // No type known; just expand directly to the ultimate type. 5704 Ty = OpTy; 5705 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5706 // Expand directly to the ultimate type if it's the right size. 5707 Ty = OpTy; 5708 // This is the type to do integer arithmetic in. 5709 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5710 5711 // Build up a list of operands to add together to form the full base. 5712 SmallVector<const SCEV *, 8> Ops; 5713 5714 // Expand the BaseRegs portion. 5715 for (const SCEV *Reg : F.BaseRegs) { 5716 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5717 5718 // If we're expanding for a post-inc user, make the post-inc adjustment. 5719 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5720 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5721 } 5722 5723 // Expand the ScaledReg portion. 5724 Value *ICmpScaledV = nullptr; 5725 if (F.Scale != 0) { 5726 const SCEV *ScaledS = F.ScaledReg; 5727 5728 // If we're expanding for a post-inc user, make the post-inc adjustment. 5729 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5730 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5731 5732 if (LU.Kind == LSRUse::ICmpZero) { 5733 // Expand ScaleReg as if it was part of the base regs. 5734 if (F.Scale == 1) 5735 Ops.push_back( 5736 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5737 else { 5738 // An interesting way of "folding" with an icmp is to use a negated 5739 // scale, which we'll implement by inserting it into the other operand 5740 // of the icmp. 5741 assert(F.Scale == -1 && 5742 "The only scale supported by ICmpZero uses is -1!"); 5743 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5744 } 5745 } else { 5746 // Otherwise just expand the scaled register and an explicit scale, 5747 // which is expected to be matched as part of the address. 5748 5749 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5750 // Unless the addressing mode will not be folded. 5751 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5752 isAMCompletelyFolded(TTI, LU, F)) { 5753 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5754 Ops.clear(); 5755 Ops.push_back(SE.getUnknown(FullV)); 5756 } 5757 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5758 if (F.Scale != 1) 5759 ScaledS = 5760 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5761 Ops.push_back(ScaledS); 5762 } 5763 } 5764 5765 // Expand the GV portion. 5766 if (F.BaseGV) { 5767 // Flush the operand list to suppress SCEVExpander hoisting. 5768 if (!Ops.empty()) { 5769 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5770 Ops.clear(); 5771 Ops.push_back(SE.getUnknown(FullV)); 5772 } 5773 Ops.push_back(SE.getUnknown(F.BaseGV)); 5774 } 5775 5776 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5777 // unfolded offsets. LSR assumes they both live next to their uses. 5778 if (!Ops.empty()) { 5779 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5780 Ops.clear(); 5781 Ops.push_back(SE.getUnknown(FullV)); 5782 } 5783 5784 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail 5785 // out at this point, or should we generate a SCEV adding together mixed 5786 // offsets? 5787 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && 5788 "Expanding mismatched offsets\n"); 5789 // Expand the immediate portion. 5790 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset); 5791 if (Offset.isNonZero()) { 5792 if (LU.Kind == LSRUse::ICmpZero) { 5793 // The other interesting way of "folding" with an ICmpZero is to use a 5794 // negated immediate. 5795 if (!ICmpScaledV) 5796 ICmpScaledV = 5797 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue()); 5798 else { 5799 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5800 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue()); 5801 } 5802 } else { 5803 // Just add the immediate values. These again are expected to be matched 5804 // as part of the address. 5805 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy)); 5806 } 5807 } 5808 5809 // Expand the unfolded offset portion. 5810 Immediate UnfoldedOffset = F.UnfoldedOffset; 5811 if (UnfoldedOffset.isNonZero()) { 5812 // Just add the immediate values. 5813 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy)); 5814 } 5815 5816 // Emit instructions summing all the operands. 5817 const SCEV *FullS = Ops.empty() ? 5818 SE.getConstant(IntTy, 0) : 5819 SE.getAddExpr(Ops); 5820 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5821 5822 // We're done expanding now, so reset the rewriter. 5823 Rewriter.clearPostInc(); 5824 5825 // An ICmpZero Formula represents an ICmp which we're handling as a 5826 // comparison against zero. Now that we've expanded an expression for that 5827 // form, update the ICmp's other operand. 5828 if (LU.Kind == LSRUse::ICmpZero) { 5829 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5830 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5831 DeadInsts.emplace_back(OperandIsInstr); 5832 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5833 "a scale at the same time!"); 5834 if (F.Scale == -1) { 5835 if (ICmpScaledV->getType() != OpTy) { 5836 Instruction *Cast = CastInst::Create( 5837 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false), 5838 ICmpScaledV, OpTy, "tmp", CI->getIterator()); 5839 ICmpScaledV = Cast; 5840 } 5841 CI->setOperand(1, ICmpScaledV); 5842 } else { 5843 // A scale of 1 means that the scale has been expanded as part of the 5844 // base regs. 5845 assert((F.Scale == 0 || F.Scale == 1) && 5846 "ICmp does not support folding a global value and " 5847 "a scale at the same time!"); 5848 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5849 -(uint64_t)Offset.getFixedValue()); 5850 if (C->getType() != OpTy) { 5851 C = ConstantFoldCastOperand( 5852 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5853 CI->getDataLayout()); 5854 assert(C && "Cast of ConstantInt should have folded"); 5855 } 5856 5857 CI->setOperand(1, C); 5858 } 5859 } 5860 5861 return FullV; 5862 } 5863 5864 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5865 /// effectively happens in their predecessor blocks, so the expression may need 5866 /// to be expanded in multiple places. 5867 void LSRInstance::RewriteForPHI(PHINode *PN, const LSRUse &LU, 5868 const LSRFixup &LF, const Formula &F, 5869 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 5870 DenseMap<BasicBlock *, Value *> Inserted; 5871 5872 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5873 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5874 bool needUpdateFixups = false; 5875 BasicBlock *BB = PN->getIncomingBlock(i); 5876 5877 // If this is a critical edge, split the edge so that we do not insert 5878 // the code on all predecessor/successor paths. We do this unless this 5879 // is the canonical backedge for this loop, which complicates post-inc 5880 // users. 5881 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5882 !isa<IndirectBrInst>(BB->getTerminator()) && 5883 !isa<CatchSwitchInst>(BB->getTerminator())) { 5884 BasicBlock *Parent = PN->getParent(); 5885 Loop *PNLoop = LI.getLoopFor(Parent); 5886 if (!PNLoop || Parent != PNLoop->getHeader()) { 5887 // Split the critical edge. 5888 BasicBlock *NewBB = nullptr; 5889 if (!Parent->isLandingPad()) { 5890 NewBB = 5891 SplitCriticalEdge(BB, Parent, 5892 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5893 .setMergeIdenticalEdges() 5894 .setKeepOneInputPHIs()); 5895 } else { 5896 SmallVector<BasicBlock*, 2> NewBBs; 5897 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5898 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5899 NewBB = NewBBs[0]; 5900 } 5901 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5902 // phi predecessors are identical. The simple thing to do is skip 5903 // splitting in this case rather than complicate the API. 5904 if (NewBB) { 5905 // If PN is outside of the loop and BB is in the loop, we want to 5906 // move the block to be immediately before the PHI block, not 5907 // immediately after BB. 5908 if (L->contains(BB) && !L->contains(PN)) 5909 NewBB->moveBefore(PN->getParent()); 5910 5911 // Splitting the edge can reduce the number of PHI entries we have. 5912 e = PN->getNumIncomingValues(); 5913 BB = NewBB; 5914 i = PN->getBasicBlockIndex(BB); 5915 5916 needUpdateFixups = true; 5917 } 5918 } 5919 } 5920 5921 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5922 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5923 if (!Pair.second) 5924 PN->setIncomingValue(i, Pair.first->second); 5925 else { 5926 Value *FullV = 5927 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5928 5929 // If this is reuse-by-noop-cast, insert the noop cast. 5930 Type *OpTy = LF.OperandValToReplace->getType(); 5931 if (FullV->getType() != OpTy) 5932 FullV = CastInst::Create( 5933 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV, 5934 LF.OperandValToReplace->getType(), "tmp", 5935 BB->getTerminator()->getIterator()); 5936 5937 // If the incoming block for this value is not in the loop, it means the 5938 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5939 // the inserted value. 5940 if (auto *I = dyn_cast<Instruction>(FullV)) 5941 if (L->contains(I) && !L->contains(BB)) 5942 InsertedNonLCSSAInsts.insert(I); 5943 5944 PN->setIncomingValue(i, FullV); 5945 Pair.first->second = FullV; 5946 } 5947 5948 // If LSR splits critical edge and phi node has other pending 5949 // fixup operands, we need to update those pending fixups. Otherwise 5950 // formulae will not be implemented completely and some instructions 5951 // will not be eliminated. 5952 if (needUpdateFixups) { 5953 for (LSRUse &LU : Uses) 5954 for (LSRFixup &Fixup : LU.Fixups) 5955 // If fixup is supposed to rewrite some operand in the phi 5956 // that was just updated, it may be already moved to 5957 // another phi node. Such fixup requires update. 5958 if (Fixup.UserInst == PN) { 5959 // Check if the operand we try to replace still exists in the 5960 // original phi. 5961 bool foundInOriginalPHI = false; 5962 for (const auto &val : PN->incoming_values()) 5963 if (val == Fixup.OperandValToReplace) { 5964 foundInOriginalPHI = true; 5965 break; 5966 } 5967 5968 // If fixup operand found in original PHI - nothing to do. 5969 if (foundInOriginalPHI) 5970 continue; 5971 5972 // Otherwise it might be moved to another PHI and requires update. 5973 // If fixup operand not found in any of the incoming blocks that 5974 // means we have already rewritten it - nothing to do. 5975 for (const auto &Block : PN->blocks()) 5976 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5977 ++I) { 5978 PHINode *NewPN = cast<PHINode>(I); 5979 for (const auto &val : NewPN->incoming_values()) 5980 if (val == Fixup.OperandValToReplace) 5981 Fixup.UserInst = NewPN; 5982 } 5983 } 5984 } 5985 } 5986 } 5987 5988 /// Emit instructions for the leading candidate expression for this LSRUse (this 5989 /// is called "expanding"), and update the UserInst to reference the newly 5990 /// expanded value. 5991 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5992 const Formula &F, 5993 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 5994 // First, find an insertion point that dominates UserInst. For PHI nodes, 5995 // find the nearest block which dominates all the relevant uses. 5996 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5997 RewriteForPHI(PN, LU, LF, F, DeadInsts); 5998 } else { 5999 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 6000 6001 // If this is reuse-by-noop-cast, insert the noop cast. 6002 Type *OpTy = LF.OperandValToReplace->getType(); 6003 if (FullV->getType() != OpTy) { 6004 Instruction *Cast = 6005 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 6006 FullV, OpTy, "tmp", LF.UserInst->getIterator()); 6007 FullV = Cast; 6008 } 6009 6010 // Update the user. ICmpZero is handled specially here (for now) because 6011 // Expand may have updated one of the operands of the icmp already, and 6012 // its new value may happen to be equal to LF.OperandValToReplace, in 6013 // which case doing replaceUsesOfWith leads to replacing both operands 6014 // with the same value. TODO: Reorganize this. 6015 if (LU.Kind == LSRUse::ICmpZero) 6016 LF.UserInst->setOperand(0, FullV); 6017 else 6018 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 6019 } 6020 6021 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 6022 DeadInsts.emplace_back(OperandIsInstr); 6023 } 6024 6025 // Trying to hoist the IVInc to loop header if all IVInc users are in 6026 // the loop header. It will help backend to generate post index load/store 6027 // when the latch block is different from loop header block. 6028 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 6029 const LSRUse &LU, Instruction *IVIncInsertPos, 6030 Loop *L) { 6031 if (LU.Kind != LSRUse::Address) 6032 return false; 6033 6034 // For now this code do the conservative optimization, only work for 6035 // the header block. Later we can hoist the IVInc to the block post 6036 // dominate all users. 6037 BasicBlock *LHeader = L->getHeader(); 6038 if (IVIncInsertPos->getParent() == LHeader) 6039 return false; 6040 6041 if (!Fixup.OperandValToReplace || 6042 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 6043 Instruction *UI = cast<Instruction>(U); 6044 return UI->getParent() != LHeader; 6045 })) 6046 return false; 6047 6048 Instruction *I = Fixup.UserInst; 6049 Type *Ty = I->getType(); 6050 return Ty->isIntegerTy() && 6051 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 6052 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 6053 } 6054 6055 /// Rewrite all the fixup locations with new values, following the chosen 6056 /// solution. 6057 void LSRInstance::ImplementSolution( 6058 const SmallVectorImpl<const Formula *> &Solution) { 6059 // Keep track of instructions we may have made dead, so that 6060 // we can remove them after we are done working. 6061 SmallVector<WeakTrackingVH, 16> DeadInsts; 6062 6063 // Mark phi nodes that terminate chains so the expander tries to reuse them. 6064 for (const IVChain &Chain : IVChainVec) { 6065 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 6066 Rewriter.setChainedPhi(PN); 6067 } 6068 6069 // Expand the new value definitions and update the users. 6070 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 6071 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 6072 Instruction *InsertPos = 6073 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 6074 ? L->getHeader()->getTerminator() 6075 : IVIncInsertPos; 6076 Rewriter.setIVIncInsertPos(L, InsertPos); 6077 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 6078 Changed = true; 6079 } 6080 6081 auto InsertedInsts = InsertedNonLCSSAInsts.takeVector(); 6082 formLCSSAForInstructions(InsertedInsts, DT, LI, &SE); 6083 6084 for (const IVChain &Chain : IVChainVec) { 6085 GenerateIVChain(Chain, DeadInsts); 6086 Changed = true; 6087 } 6088 6089 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 6090 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 6091 ScalarEvolutionIVs.push_back(IV); 6092 6093 // Clean up after ourselves. This must be done before deleting any 6094 // instructions. 6095 Rewriter.clear(); 6096 6097 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 6098 &TLI, MSSAU); 6099 6100 // In our cost analysis above, we assume that each addrec consumes exactly 6101 // one register, and arrange to have increments inserted just before the 6102 // latch to maximimize the chance this is true. However, if we reused 6103 // existing IVs, we now need to move the increments to match our 6104 // expectations. Otherwise, our cost modeling results in us having a 6105 // chosen a non-optimal result for the actual schedule. (And yes, this 6106 // scheduling decision does impact later codegen.) 6107 for (PHINode &PN : L->getHeader()->phis()) { 6108 BinaryOperator *BO = nullptr; 6109 Value *Start = nullptr, *Step = nullptr; 6110 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 6111 continue; 6112 6113 switch (BO->getOpcode()) { 6114 case Instruction::Sub: 6115 if (BO->getOperand(0) != &PN) 6116 // sub is non-commutative - match handling elsewhere in LSR 6117 continue; 6118 break; 6119 case Instruction::Add: 6120 break; 6121 default: 6122 continue; 6123 }; 6124 6125 if (!isa<Constant>(Step)) 6126 // If not a constant step, might increase register pressure 6127 // (We assume constants have been canonicalized to RHS) 6128 continue; 6129 6130 if (BO->getParent() == IVIncInsertPos->getParent()) 6131 // Only bother moving across blocks. Isel can handle block local case. 6132 continue; 6133 6134 // Can we legally schedule inc at the desired point? 6135 if (!llvm::all_of(BO->uses(), 6136 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 6137 continue; 6138 BO->moveBefore(IVIncInsertPos); 6139 Changed = true; 6140 } 6141 6142 6143 } 6144 6145 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6146 DominatorTree &DT, LoopInfo &LI, 6147 const TargetTransformInfo &TTI, AssumptionCache &AC, 6148 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 6149 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 6150 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 6151 ? PreferredAddresingMode 6152 : TTI.getPreferredAddressingMode(L, &SE)), 6153 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false), 6154 BaselineCost(L, SE, TTI, AMK) { 6155 // If LoopSimplify form is not available, stay out of trouble. 6156 if (!L->isLoopSimplifyForm()) 6157 return; 6158 6159 // If there's no interesting work to be done, bail early. 6160 if (IU.empty()) return; 6161 6162 // If there's too much analysis to be done, bail early. We won't be able to 6163 // model the problem anyway. 6164 unsigned NumUsers = 0; 6165 for (const IVStrideUse &U : IU) { 6166 if (++NumUsers > MaxIVUsers) { 6167 (void)U; 6168 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 6169 << "\n"); 6170 return; 6171 } 6172 // Bail out if we have a PHI on an EHPad that gets a value from a 6173 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 6174 // no good place to stick any instructions. 6175 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 6176 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 6177 if (isa<FuncletPadInst>(FirstNonPHI) || 6178 isa<CatchSwitchInst>(FirstNonPHI)) 6179 for (BasicBlock *PredBB : PN->blocks()) 6180 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 6181 return; 6182 } 6183 } 6184 6185 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 6186 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 6187 dbgs() << ":\n"); 6188 6189 // Configure SCEVExpander already now, so the correct mode is used for 6190 // isSafeToExpand() checks. 6191 #ifndef NDEBUG 6192 Rewriter.setDebugType(DEBUG_TYPE); 6193 #endif 6194 Rewriter.disableCanonicalMode(); 6195 Rewriter.enableLSRMode(); 6196 6197 // First, perform some low-level loop optimizations. 6198 OptimizeShadowIV(); 6199 OptimizeLoopTermCond(); 6200 6201 // If loop preparation eliminates all interesting IV users, bail. 6202 if (IU.empty()) return; 6203 6204 // Skip nested loops until we can model them better with formulae. 6205 if (!L->isInnermost()) { 6206 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 6207 return; 6208 } 6209 6210 // Start collecting data and preparing for the solver. 6211 // If number of registers is not the major cost, we cannot benefit from the 6212 // current profitable chain optimization which is based on number of 6213 // registers. 6214 // FIXME: add profitable chain optimization for other kinds major cost, for 6215 // example number of instructions. 6216 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 6217 CollectChains(); 6218 CollectInterestingTypesAndFactors(); 6219 CollectFixupsAndInitialFormulae(); 6220 CollectLoopInvariantFixupsAndFormulae(); 6221 6222 if (Uses.empty()) 6223 return; 6224 6225 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 6226 print_uses(dbgs())); 6227 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 6228 BaselineCost.print(dbgs()); dbgs() << "\n"); 6229 6230 // Now use the reuse data to generate a bunch of interesting ways 6231 // to formulate the values needed for the uses. 6232 GenerateAllReuseFormulae(); 6233 6234 FilterOutUndesirableDedicatedRegisters(); 6235 NarrowSearchSpaceUsingHeuristics(); 6236 6237 SmallVector<const Formula *, 8> Solution; 6238 Solve(Solution); 6239 6240 // Release memory that is no longer needed. 6241 Factors.clear(); 6242 Types.clear(); 6243 RegUses.clear(); 6244 6245 if (Solution.empty()) 6246 return; 6247 6248 #ifndef NDEBUG 6249 // Formulae should be legal. 6250 for (const LSRUse &LU : Uses) { 6251 for (const Formula &F : LU.Formulae) 6252 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 6253 F) && "Illegal formula generated!"); 6254 }; 6255 #endif 6256 6257 // Now that we've decided what we want, make it so. 6258 ImplementSolution(Solution); 6259 } 6260 6261 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 6262 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 6263 if (Factors.empty() && Types.empty()) return; 6264 6265 OS << "LSR has identified the following interesting factors and types: "; 6266 bool First = true; 6267 6268 for (int64_t Factor : Factors) { 6269 if (!First) OS << ", "; 6270 First = false; 6271 OS << '*' << Factor; 6272 } 6273 6274 for (Type *Ty : Types) { 6275 if (!First) OS << ", "; 6276 First = false; 6277 OS << '(' << *Ty << ')'; 6278 } 6279 OS << '\n'; 6280 } 6281 6282 void LSRInstance::print_fixups(raw_ostream &OS) const { 6283 OS << "LSR is examining the following fixup sites:\n"; 6284 for (const LSRUse &LU : Uses) 6285 for (const LSRFixup &LF : LU.Fixups) { 6286 dbgs() << " "; 6287 LF.print(OS); 6288 OS << '\n'; 6289 } 6290 } 6291 6292 void LSRInstance::print_uses(raw_ostream &OS) const { 6293 OS << "LSR is examining the following uses:\n"; 6294 for (const LSRUse &LU : Uses) { 6295 dbgs() << " "; 6296 LU.print(OS); 6297 OS << '\n'; 6298 for (const Formula &F : LU.Formulae) { 6299 OS << " "; 6300 F.print(OS); 6301 OS << '\n'; 6302 } 6303 } 6304 } 6305 6306 void LSRInstance::print(raw_ostream &OS) const { 6307 print_factors_and_types(OS); 6308 print_fixups(OS); 6309 print_uses(OS); 6310 } 6311 6312 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6313 print(errs()); errs() << '\n'; 6314 } 6315 #endif 6316 6317 namespace { 6318 6319 class LoopStrengthReduce : public LoopPass { 6320 public: 6321 static char ID; // Pass ID, replacement for typeid 6322 6323 LoopStrengthReduce(); 6324 6325 private: 6326 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6327 void getAnalysisUsage(AnalysisUsage &AU) const override; 6328 }; 6329 6330 } // end anonymous namespace 6331 6332 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6333 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6334 } 6335 6336 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6337 // We split critical edges, so we change the CFG. However, we do update 6338 // many analyses if they are around. 6339 AU.addPreservedID(LoopSimplifyID); 6340 6341 AU.addRequired<LoopInfoWrapperPass>(); 6342 AU.addPreserved<LoopInfoWrapperPass>(); 6343 AU.addRequiredID(LoopSimplifyID); 6344 AU.addRequired<DominatorTreeWrapperPass>(); 6345 AU.addPreserved<DominatorTreeWrapperPass>(); 6346 AU.addRequired<ScalarEvolutionWrapperPass>(); 6347 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6348 AU.addRequired<AssumptionCacheTracker>(); 6349 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6350 // Requiring LoopSimplify a second time here prevents IVUsers from running 6351 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6352 AU.addRequiredID(LoopSimplifyID); 6353 AU.addRequired<IVUsersWrapperPass>(); 6354 AU.addPreserved<IVUsersWrapperPass>(); 6355 AU.addRequired<TargetTransformInfoWrapperPass>(); 6356 AU.addPreserved<MemorySSAWrapperPass>(); 6357 } 6358 6359 namespace { 6360 6361 /// Enables more convenient iteration over a DWARF expression vector. 6362 static iterator_range<llvm::DIExpression::expr_op_iterator> 6363 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6364 llvm::DIExpression::expr_op_iterator Begin = 6365 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6366 llvm::DIExpression::expr_op_iterator End = 6367 llvm::DIExpression::expr_op_iterator(Expr.end()); 6368 return {Begin, End}; 6369 } 6370 6371 struct SCEVDbgValueBuilder { 6372 SCEVDbgValueBuilder() = default; 6373 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6374 6375 void clone(const SCEVDbgValueBuilder &Base) { 6376 LocationOps = Base.LocationOps; 6377 Expr = Base.Expr; 6378 } 6379 6380 void clear() { 6381 LocationOps.clear(); 6382 Expr.clear(); 6383 } 6384 6385 /// The DIExpression as we translate the SCEV. 6386 SmallVector<uint64_t, 6> Expr; 6387 /// The location ops of the DIExpression. 6388 SmallVector<Value *, 2> LocationOps; 6389 6390 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6391 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6392 6393 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6394 /// in the set of values referenced by the expression. 6395 void pushLocation(llvm::Value *V) { 6396 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6397 auto *It = llvm::find(LocationOps, V); 6398 unsigned ArgIndex = 0; 6399 if (It != LocationOps.end()) { 6400 ArgIndex = std::distance(LocationOps.begin(), It); 6401 } else { 6402 ArgIndex = LocationOps.size(); 6403 LocationOps.push_back(V); 6404 } 6405 Expr.push_back(ArgIndex); 6406 } 6407 6408 void pushValue(const SCEVUnknown *U) { 6409 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6410 pushLocation(V); 6411 } 6412 6413 bool pushConst(const SCEVConstant *C) { 6414 if (C->getAPInt().getSignificantBits() > 64) 6415 return false; 6416 Expr.push_back(llvm::dwarf::DW_OP_consts); 6417 Expr.push_back(C->getAPInt().getSExtValue()); 6418 return true; 6419 } 6420 6421 // Iterating the expression as DWARF ops is convenient when updating 6422 // DWARF_OP_LLVM_args. 6423 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6424 return ToDwarfOpIter(Expr); 6425 } 6426 6427 /// Several SCEV types are sequences of the same arithmetic operator applied 6428 /// to constants and values that may be extended or truncated. 6429 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6430 uint64_t DwarfOp) { 6431 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6432 "Expected arithmetic SCEV type"); 6433 bool Success = true; 6434 unsigned EmitOperator = 0; 6435 for (const auto &Op : CommExpr->operands()) { 6436 Success &= pushSCEV(Op); 6437 6438 if (EmitOperator >= 1) 6439 pushOperator(DwarfOp); 6440 ++EmitOperator; 6441 } 6442 return Success; 6443 } 6444 6445 // TODO: Identify and omit noop casts. 6446 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6447 const llvm::SCEV *Inner = C->getOperand(0); 6448 const llvm::Type *Type = C->getType(); 6449 uint64_t ToWidth = Type->getIntegerBitWidth(); 6450 bool Success = pushSCEV(Inner); 6451 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6452 IsSigned ? llvm::dwarf::DW_ATE_signed 6453 : llvm::dwarf::DW_ATE_unsigned}; 6454 for (const auto &Op : CastOps) 6455 pushOperator(Op); 6456 return Success; 6457 } 6458 6459 // TODO: MinMax - although these haven't been encountered in the test suite. 6460 bool pushSCEV(const llvm::SCEV *S) { 6461 bool Success = true; 6462 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6463 Success &= pushConst(StartInt); 6464 6465 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6466 if (!U->getValue()) 6467 return false; 6468 pushLocation(U->getValue()); 6469 6470 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6471 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6472 6473 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6474 Success &= pushSCEV(UDiv->getLHS()); 6475 Success &= pushSCEV(UDiv->getRHS()); 6476 pushOperator(llvm::dwarf::DW_OP_div); 6477 6478 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6479 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6480 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6481 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6482 "Unexpected cast type in SCEV."); 6483 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6484 6485 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6486 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6487 6488 } else if (isa<SCEVAddRecExpr>(S)) { 6489 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6490 // unsupported. 6491 return false; 6492 6493 } else { 6494 return false; 6495 } 6496 return Success; 6497 } 6498 6499 /// Return true if the combination of arithmetic operator and underlying 6500 /// SCEV constant value is an identity function. 6501 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6502 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6503 if (C->getAPInt().getSignificantBits() > 64) 6504 return false; 6505 int64_t I = C->getAPInt().getSExtValue(); 6506 switch (Op) { 6507 case llvm::dwarf::DW_OP_plus: 6508 case llvm::dwarf::DW_OP_minus: 6509 return I == 0; 6510 case llvm::dwarf::DW_OP_mul: 6511 case llvm::dwarf::DW_OP_div: 6512 return I == 1; 6513 } 6514 } 6515 return false; 6516 } 6517 6518 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6519 /// builder's expression stack. The stack should already contain an 6520 /// expression for the iteration count, so that it can be multiplied by 6521 /// the stride and added to the start. 6522 /// Components of the expression are omitted if they are an identity function. 6523 /// Chain (non-affine) SCEVs are not supported. 6524 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6525 assert(SAR.isAffine() && "Expected affine SCEV"); 6526 // TODO: Is this check needed? 6527 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6528 return false; 6529 6530 const SCEV *Start = SAR.getStart(); 6531 const SCEV *Stride = SAR.getStepRecurrence(SE); 6532 6533 // Skip pushing arithmetic noops. 6534 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6535 if (!pushSCEV(Stride)) 6536 return false; 6537 pushOperator(llvm::dwarf::DW_OP_mul); 6538 } 6539 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6540 if (!pushSCEV(Start)) 6541 return false; 6542 pushOperator(llvm::dwarf::DW_OP_plus); 6543 } 6544 return true; 6545 } 6546 6547 /// Create an expression that is an offset from a value (usually the IV). 6548 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6549 pushLocation(OffsetValue); 6550 DIExpression::appendOffset(Expr, Offset); 6551 LLVM_DEBUG( 6552 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6553 << std::to_string(Offset) << "\n"); 6554 } 6555 6556 /// Combine a translation of the SCEV and the IV to create an expression that 6557 /// recovers a location's value. 6558 /// returns true if an expression was created. 6559 bool createIterCountExpr(const SCEV *S, 6560 const SCEVDbgValueBuilder &IterationCount, 6561 ScalarEvolution &SE) { 6562 // SCEVs for SSA values are most frquently of the form 6563 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6564 // This is because %a is a PHI node that is not the IV. However, these 6565 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6566 // so its not expected this point will be reached. 6567 if (!isa<SCEVAddRecExpr>(S)) 6568 return false; 6569 6570 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6571 << '\n'); 6572 6573 const auto *Rec = cast<SCEVAddRecExpr>(S); 6574 if (!Rec->isAffine()) 6575 return false; 6576 6577 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6578 return false; 6579 6580 // Initialise a new builder with the iteration count expression. In 6581 // combination with the value's SCEV this enables recovery. 6582 clone(IterationCount); 6583 if (!SCEVToValueExpr(*Rec, SE)) 6584 return false; 6585 6586 return true; 6587 } 6588 6589 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6590 /// builder's expression stack. The stack should already contain an 6591 /// expression for the iteration count, so that it can be multiplied by 6592 /// the stride and added to the start. 6593 /// Components of the expression are omitted if they are an identity function. 6594 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6595 ScalarEvolution &SE) { 6596 assert(SAR.isAffine() && "Expected affine SCEV"); 6597 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6598 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6599 << SAR << '\n'); 6600 return false; 6601 } 6602 const SCEV *Start = SAR.getStart(); 6603 const SCEV *Stride = SAR.getStepRecurrence(SE); 6604 6605 // Skip pushing arithmetic noops. 6606 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6607 if (!pushSCEV(Start)) 6608 return false; 6609 pushOperator(llvm::dwarf::DW_OP_minus); 6610 } 6611 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6612 if (!pushSCEV(Stride)) 6613 return false; 6614 pushOperator(llvm::dwarf::DW_OP_div); 6615 } 6616 return true; 6617 } 6618 6619 // Append the current expression and locations to a location list and an 6620 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6621 // the locations already present in the destination list. 6622 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6623 SmallVectorImpl<Value *> &DestLocations) { 6624 assert(!DestLocations.empty() && 6625 "Expected the locations vector to contain the IV"); 6626 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6627 // modified to account for the locations already in the destination vector. 6628 // All builders contain the IV as the first location op. 6629 assert(!LocationOps.empty() && 6630 "Expected the location ops to contain the IV."); 6631 // DestIndexMap[n] contains the index in DestLocations for the nth 6632 // location in this SCEVDbgValueBuilder. 6633 SmallVector<uint64_t, 2> DestIndexMap; 6634 for (const auto &Op : LocationOps) { 6635 auto It = find(DestLocations, Op); 6636 if (It != DestLocations.end()) { 6637 // Location already exists in DestLocations, reuse existing ArgIndex. 6638 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6639 continue; 6640 } 6641 // Location is not in DestLocations, add it. 6642 DestIndexMap.push_back(DestLocations.size()); 6643 DestLocations.push_back(Op); 6644 } 6645 6646 for (const auto &Op : expr_ops()) { 6647 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6648 Op.appendToVector(DestExpr); 6649 continue; 6650 } 6651 6652 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6653 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6654 // DestIndexMap[n] contains its new index in DestLocations. 6655 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6656 DestExpr.push_back(NewIndex); 6657 } 6658 } 6659 }; 6660 6661 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6662 /// and DIExpression. 6663 struct DVIRecoveryRec { 6664 DVIRecoveryRec(DbgValueInst *DbgValue) 6665 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6666 HadLocationArgList(false) {} 6667 DVIRecoveryRec(DbgVariableRecord *DVR) 6668 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} 6669 6670 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; 6671 DIExpression *Expr; 6672 bool HadLocationArgList; 6673 SmallVector<WeakVH, 2> LocationOps; 6674 SmallVector<const llvm::SCEV *, 2> SCEVs; 6675 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6676 6677 void clear() { 6678 for (auto &RE : RecoveryExprs) 6679 RE.reset(); 6680 RecoveryExprs.clear(); 6681 } 6682 6683 ~DVIRecoveryRec() { clear(); } 6684 }; 6685 } // namespace 6686 6687 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6688 /// This helps in determining if a DIArglist is necessary or can be omitted from 6689 /// the dbg.value. 6690 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6691 auto expr_ops = ToDwarfOpIter(Expr); 6692 unsigned Count = 0; 6693 for (auto Op : expr_ops) 6694 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6695 Count++; 6696 return Count; 6697 } 6698 6699 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6700 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6701 /// because a DIArglist is not created for the first argument of the dbg.value. 6702 template <typename T> 6703 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6704 SmallVectorImpl<uint64_t> &Ops) { 6705 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6706 "contain any DW_OP_llvm_arg operands."); 6707 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6708 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6709 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6710 } 6711 6712 /// Overwrite DVI with locations placed into a DIArglist. 6713 template <typename T> 6714 static void updateDVIWithLocations(T &DbgVal, 6715 SmallVectorImpl<Value *> &Locations, 6716 SmallVectorImpl<uint64_t> &Ops) { 6717 assert(numLLVMArgOps(Ops) != 0 && 6718 "Expected expression that references DIArglist locations using " 6719 "DW_OP_llvm_arg operands."); 6720 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6721 for (Value *V : Locations) 6722 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6723 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6724 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6725 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6726 } 6727 6728 /// Write the new expression and new location ops for the dbg.value. If possible 6729 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6730 /// can be omitted if: 6731 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6732 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6733 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6734 SmallVectorImpl<Value *> &NewLocationOps, 6735 SmallVectorImpl<uint64_t> &NewExpr) { 6736 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6737 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6738 if (NumLLVMArgs == 0) { 6739 // Location assumed to be on the stack. 6740 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6741 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6742 // There is only a single DW_OP_llvm_arg at the start of the expression, 6743 // so it can be omitted along with DIArglist. 6744 assert(NewExpr[1] == 0 && 6745 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6746 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6747 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6748 } else { 6749 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6750 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6751 } 6752 6753 // If the DIExpression was previously empty then add the stack terminator. 6754 // Non-empty expressions have only had elements inserted into them and so 6755 // the terminator should already be present e.g. stack_value or fragment. 6756 DIExpression *SalvageExpr = DbgVal->getExpression(); 6757 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6758 SalvageExpr = 6759 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6760 DbgVal->setExpression(SalvageExpr); 6761 } 6762 }; 6763 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6764 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6765 else 6766 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6767 } 6768 6769 /// Cached location ops may be erased during LSR, in which case a poison is 6770 /// required when restoring from the cache. The type of that location is no 6771 /// longer available, so just use int8. The poison will be replaced by one or 6772 /// more locations later when a SCEVDbgValueBuilder selects alternative 6773 /// locations to use for the salvage. 6774 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6775 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6776 } 6777 6778 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6779 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6780 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6781 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6782 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6783 assert(DVIRec.Expr && "Expected an expression"); 6784 DbgVal->setExpression(DVIRec.Expr); 6785 6786 // Even a single location-op may be inside a DIArgList and referenced with 6787 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6788 if (!DVIRec.HadLocationArgList) { 6789 assert(DVIRec.LocationOps.size() == 1 && 6790 "Unexpected number of location ops."); 6791 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6792 // this case was not present before, so force the location back to a 6793 // single uncontained Value. 6794 Value *CachedValue = 6795 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6796 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6797 } else { 6798 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6799 for (WeakVH VH : DVIRec.LocationOps) { 6800 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6801 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6802 } 6803 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6804 DbgVal->setRawLocation( 6805 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6806 } 6807 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6808 }; 6809 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6810 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6811 else 6812 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6813 } 6814 6815 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6816 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6817 const SCEV *SCEVInductionVar, 6818 SCEVDbgValueBuilder IterCountExpr) { 6819 6820 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6821 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6822 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation()) 6823 return false; 6824 6825 // LSR may have caused several changes to the dbg.value in the failed salvage 6826 // attempt. So restore the DIExpression, the location ops and also the 6827 // location ops format, which is always DIArglist for multiple ops, but only 6828 // sometimes for a single op. 6829 restorePreTransformState(DVIRec); 6830 6831 // LocationOpIndexMap[i] will store the post-LSR location index of 6832 // the non-optimised out location at pre-LSR index i. 6833 SmallVector<int64_t, 2> LocationOpIndexMap; 6834 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6835 SmallVector<Value *, 2> NewLocationOps; 6836 NewLocationOps.push_back(LSRInductionVar); 6837 6838 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6839 WeakVH VH = DVIRec.LocationOps[i]; 6840 // Place the locations not optimised out in the list first, avoiding 6841 // inserts later. The map is used to update the DIExpression's 6842 // DW_OP_LLVM_arg arguments as the expression is updated. 6843 if (VH && !isa<UndefValue>(VH)) { 6844 NewLocationOps.push_back(VH); 6845 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6846 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6847 << " now at index " << LocationOpIndexMap[i] << "\n"); 6848 continue; 6849 } 6850 6851 // It's possible that a value referred to in the SCEV may have been 6852 // optimised out by LSR. 6853 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6854 SE.containsUndefs(DVIRec.SCEVs[i])) { 6855 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6856 << " refers to a location that is now undef or erased. " 6857 "Salvage abandoned.\n"); 6858 return false; 6859 } 6860 6861 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6862 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6863 6864 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6865 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6866 6867 // Create an offset-based salvage expression if possible, as it requires 6868 // less DWARF ops than an iteration count-based expression. 6869 if (std::optional<APInt> Offset = 6870 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6871 if (Offset->getSignificantBits() <= 64) 6872 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6873 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6874 SE)) 6875 return false; 6876 } 6877 6878 // Merge the DbgValueBuilder generated expressions and the original 6879 // DIExpression, place the result into an new vector. 6880 SmallVector<uint64_t, 3> NewExpr; 6881 if (DVIRec.Expr->getNumElements() == 0) { 6882 assert(DVIRec.RecoveryExprs.size() == 1 && 6883 "Expected only a single recovery expression for an empty " 6884 "DIExpression."); 6885 assert(DVIRec.RecoveryExprs[0] && 6886 "Expected a SCEVDbgSalvageBuilder for location 0"); 6887 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6888 B->appendToVectors(NewExpr, NewLocationOps); 6889 } 6890 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6891 // Most Ops needn't be updated. 6892 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6893 Op.appendToVector(NewExpr); 6894 continue; 6895 } 6896 6897 uint64_t LocationArgIndex = Op.getArg(0); 6898 SCEVDbgValueBuilder *DbgBuilder = 6899 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6900 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6901 // optimise it away. So just translate the argument to the updated 6902 // location index. 6903 if (!DbgBuilder) { 6904 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6905 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6906 "Expected a positive index for the location-op position."); 6907 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6908 continue; 6909 } 6910 // The location has a recovery expression. 6911 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6912 } 6913 6914 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6915 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6916 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6917 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6918 else 6919 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6920 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n"); 6921 return true; 6922 } 6923 6924 /// Obtain an expression for the iteration count, then attempt to salvage the 6925 /// dbg.value intrinsics. 6926 static void DbgRewriteSalvageableDVIs( 6927 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6928 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6929 if (DVIToUpdate.empty()) 6930 return; 6931 6932 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6933 assert(SCEVInductionVar && 6934 "Anticipated a SCEV for the post-LSR induction variable"); 6935 6936 if (const SCEVAddRecExpr *IVAddRec = 6937 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6938 if (!IVAddRec->isAffine()) 6939 return; 6940 6941 // Prevent translation using excessive resources. 6942 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6943 return; 6944 6945 // The iteration count is required to recover location values. 6946 SCEVDbgValueBuilder IterCountExpr; 6947 IterCountExpr.pushLocation(LSRInductionVar); 6948 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6949 return; 6950 6951 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6952 << '\n'); 6953 6954 for (auto &DVIRec : DVIToUpdate) { 6955 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6956 IterCountExpr); 6957 } 6958 } 6959 } 6960 6961 /// Identify and cache salvageable DVI locations and expressions along with the 6962 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6963 /// cacheing and salvaging. 6964 static void DbgGatherSalvagableDVI( 6965 Loop *L, ScalarEvolution &SE, 6966 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6967 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6968 for (const auto &B : L->getBlocks()) { 6969 for (auto &I : *B) { 6970 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6971 // Ensure that if any location op is undef that the dbg.vlue is not 6972 // cached. 6973 if (DbgVal->isKillLocation()) 6974 return false; 6975 6976 // Check that the location op SCEVs are suitable for translation to 6977 // DIExpression. 6978 const auto &HasTranslatableLocationOps = 6979 [&](const auto *DbgValToTranslate) -> bool { 6980 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6981 if (!LocOp) 6982 return false; 6983 6984 if (!SE.isSCEVable(LocOp->getType())) 6985 return false; 6986 6987 const SCEV *S = SE.getSCEV(LocOp); 6988 if (SE.containsUndefs(S)) 6989 return false; 6990 } 6991 return true; 6992 }; 6993 6994 if (!HasTranslatableLocationOps(DbgVal)) 6995 return false; 6996 6997 std::unique_ptr<DVIRecoveryRec> NewRec = 6998 std::make_unique<DVIRecoveryRec>(DbgVal); 6999 // Each location Op may need a SCEVDbgValueBuilder in order to recover 7000 // it. Pre-allocating a vector will enable quick lookups of the builder 7001 // later during the salvage. 7002 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 7003 for (const auto LocOp : DbgVal->location_ops()) { 7004 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 7005 NewRec->LocationOps.push_back(LocOp); 7006 NewRec->HadLocationArgList = DbgVal->hasArgList(); 7007 } 7008 SalvageableDVISCEVs.push_back(std::move(NewRec)); 7009 return true; 7010 }; 7011 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 7012 if (DVR.isDbgValue() || DVR.isDbgAssign()) 7013 ProcessDbgValue(&DVR); 7014 } 7015 auto DVI = dyn_cast<DbgValueInst>(&I); 7016 if (!DVI) 7017 continue; 7018 if (ProcessDbgValue(DVI)) 7019 DVIHandles.insert(DVI); 7020 } 7021 } 7022 } 7023 7024 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 7025 /// any PHi from the loop header is usable, but may have less chance of 7026 /// surviving subsequent transforms. 7027 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 7028 const LSRInstance &LSR) { 7029 7030 auto IsSuitableIV = [&](PHINode *P) { 7031 if (!SE.isSCEVable(P->getType())) 7032 return false; 7033 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 7034 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 7035 return false; 7036 }; 7037 7038 // For now, just pick the first IV that was generated and inserted by 7039 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 7040 // by subsequent transforms. 7041 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 7042 if (!IV) 7043 continue; 7044 7045 // There should only be PHI node IVs. 7046 PHINode *P = cast<PHINode>(&*IV); 7047 7048 if (IsSuitableIV(P)) 7049 return P; 7050 } 7051 7052 for (PHINode &P : L.getHeader()->phis()) { 7053 if (IsSuitableIV(&P)) 7054 return &P; 7055 } 7056 return nullptr; 7057 } 7058 7059 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 7060 DominatorTree &DT, LoopInfo &LI, 7061 const TargetTransformInfo &TTI, 7062 AssumptionCache &AC, TargetLibraryInfo &TLI, 7063 MemorySSA *MSSA) { 7064 7065 // Debug preservation - before we start removing anything identify which DVI 7066 // meet the salvageable criteria and store their DIExpression and SCEVs. 7067 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 7068 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 7069 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 7070 7071 bool Changed = false; 7072 std::unique_ptr<MemorySSAUpdater> MSSAU; 7073 if (MSSA) 7074 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 7075 7076 // Run the main LSR transformation. 7077 const LSRInstance &Reducer = 7078 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 7079 Changed |= Reducer.getChanged(); 7080 7081 // Remove any extra phis created by processing inner loops. 7082 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7083 if (EnablePhiElim && L->isLoopSimplifyForm()) { 7084 SmallVector<WeakTrackingVH, 16> DeadInsts; 7085 const DataLayout &DL = L->getHeader()->getDataLayout(); 7086 SCEVExpander Rewriter(SE, DL, "lsr", false); 7087 #ifndef NDEBUG 7088 Rewriter.setDebugType(DEBUG_TYPE); 7089 #endif 7090 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 7091 Rewriter.clear(); 7092 if (numFolded) { 7093 Changed = true; 7094 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7095 MSSAU.get()); 7096 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7097 } 7098 } 7099 // LSR may at times remove all uses of an induction variable from a loop. 7100 // The only remaining use is the PHI in the exit block. 7101 // When this is the case, if the exit value of the IV can be calculated using 7102 // SCEV, we can replace the exit block PHI with the final value of the IV and 7103 // skip the updates in each loop iteration. 7104 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 7105 SmallVector<WeakTrackingVH, 16> DeadInsts; 7106 const DataLayout &DL = L->getHeader()->getDataLayout(); 7107 SCEVExpander Rewriter(SE, DL, "lsr", true); 7108 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 7109 UnusedIndVarInLoop, DeadInsts); 7110 Rewriter.clear(); 7111 if (Rewrites) { 7112 Changed = true; 7113 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7114 MSSAU.get()); 7115 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7116 } 7117 } 7118 7119 if (SalvageableDVIRecords.empty()) 7120 return Changed; 7121 7122 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7123 // expressions composed using the derived iteration count. 7124 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7125 for (const auto &L : LI) { 7126 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7127 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7128 else { 7129 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7130 "could not be identified.\n"); 7131 } 7132 } 7133 7134 for (auto &Rec : SalvageableDVIRecords) 7135 Rec->clear(); 7136 SalvageableDVIRecords.clear(); 7137 DVIHandles.clear(); 7138 return Changed; 7139 } 7140 7141 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7142 if (skipLoop(L)) 7143 return false; 7144 7145 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7146 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7147 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7148 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7149 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7150 *L->getHeader()->getParent()); 7151 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7152 *L->getHeader()->getParent()); 7153 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7154 *L->getHeader()->getParent()); 7155 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7156 MemorySSA *MSSA = nullptr; 7157 if (MSSAAnalysis) 7158 MSSA = &MSSAAnalysis->getMSSA(); 7159 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7160 } 7161 7162 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7163 LoopStandardAnalysisResults &AR, 7164 LPMUpdater &) { 7165 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7166 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7167 return PreservedAnalyses::all(); 7168 7169 auto PA = getLoopPassPreservedAnalyses(); 7170 if (AR.MSSA) 7171 PA.preserve<MemorySSAAnalysis>(); 7172 return PA; 7173 } 7174 7175 char LoopStrengthReduce::ID = 0; 7176 7177 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7178 "Loop Strength Reduction", false, false) 7179 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7180 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7181 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7182 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7183 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7184 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7185 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7186 "Loop Strength Reduction", false, false) 7187 7188 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7189