xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopSink.cpp (revision bce1bf0ee29e2da6be1e114a3a7678275a110a42)
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 //   loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 //   InsertBBs = BBs that uses I
24 //   For BB in sorted(LoopBBs):
25 //     DomBBs = BBs in InsertBBs that are dominated by BB
26 //     if freq(DomBBs) > freq(BB)
27 //       InsertBBs = UseBBs - DomBBs + BB
28 //   For BB in InsertBBs:
29 //     Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AliasSetTracker.h"
38 #include "llvm/Analysis/BlockFrequencyInfo.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "loopsink"
55 
56 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
57 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
58 
59 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
60     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
61     cl::desc("Do not sink instructions that require cloning unless they "
62              "execute less than this percent of the time."));
63 
64 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
65     "max-uses-for-sinking", cl::Hidden, cl::init(30),
66     cl::desc("Do not sink instructions that have too many uses."));
67 
68 static cl::opt<bool> EnableMSSAInLoopSink(
69     "enable-mssa-in-loop-sink", cl::Hidden, cl::init(true),
70     cl::desc("Enable MemorySSA for LoopSink in new pass manager"));
71 
72 static cl::opt<bool> EnableMSSAInLegacyLoopSink(
73     "enable-mssa-in-legacy-loop-sink", cl::Hidden, cl::init(false),
74     cl::desc("Enable MemorySSA for LoopSink in legacy pass manager"));
75 
76 /// Return adjusted total frequency of \p BBs.
77 ///
78 /// * If there is only one BB, sinking instruction will not introduce code
79 ///   size increase. Thus there is no need to adjust the frequency.
80 /// * If there are more than one BB, sinking would lead to code size increase.
81 ///   In this case, we add some "tax" to the total frequency to make it harder
82 ///   to sink. E.g.
83 ///     Freq(Preheader) = 100
84 ///     Freq(BBs) = sum(50, 49) = 99
85 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
86 ///   BBs as the difference is too small to justify the code size increase.
87 ///   To model this, The adjusted Freq(BBs) will be:
88 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
89 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
90                                       BlockFrequencyInfo &BFI) {
91   BlockFrequency T = 0;
92   for (BasicBlock *B : BBs)
93     T += BFI.getBlockFreq(B);
94   if (BBs.size() > 1)
95     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
96   return T;
97 }
98 
99 /// Return a set of basic blocks to insert sinked instructions.
100 ///
101 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
102 ///
103 /// * Inside the loop \p L
104 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
105 ///   that domintates the UseBB
106 /// * Has minimum total frequency that is no greater than preheader frequency
107 ///
108 /// The purpose of the function is to find the optimal sinking points to
109 /// minimize execution cost, which is defined as "sum of frequency of
110 /// BBsToSinkInto".
111 /// As a result, the returned BBsToSinkInto needs to have minimum total
112 /// frequency.
113 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
114 /// frequency, the optimal solution is not sinking (return empty set).
115 ///
116 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
117 /// It stores a list of BBs that is:
118 ///
119 /// * Inside the loop \p L
120 /// * Has a frequency no larger than the loop's preheader
121 /// * Sorted by BB frequency
122 ///
123 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
124 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
125 /// caller.
126 static SmallPtrSet<BasicBlock *, 2>
127 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
128                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
129                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
130   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
131   if (UseBBs.size() == 0)
132     return BBsToSinkInto;
133 
134   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
135   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
136 
137   // For every iteration:
138   //   * Pick the ColdestBB from ColdLoopBBs
139   //   * Find the set BBsDominatedByColdestBB that satisfy:
140   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
141   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
142   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
143   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
144   //     BBsToSinkInto
145   for (BasicBlock *ColdestBB : ColdLoopBBs) {
146     BBsDominatedByColdestBB.clear();
147     for (BasicBlock *SinkedBB : BBsToSinkInto)
148       if (DT.dominates(ColdestBB, SinkedBB))
149         BBsDominatedByColdestBB.insert(SinkedBB);
150     if (BBsDominatedByColdestBB.size() == 0)
151       continue;
152     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
153         BFI.getBlockFreq(ColdestBB)) {
154       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
155         BBsToSinkInto.erase(DominatedBB);
156       }
157       BBsToSinkInto.insert(ColdestBB);
158     }
159   }
160 
161   // Can't sink into blocks that have no valid insertion point.
162   for (BasicBlock *BB : BBsToSinkInto) {
163     if (BB->getFirstInsertionPt() == BB->end()) {
164       BBsToSinkInto.clear();
165       break;
166     }
167   }
168 
169   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
170   // do not sink.
171   if (adjustedSumFreq(BBsToSinkInto, BFI) >
172       BFI.getBlockFreq(L.getLoopPreheader()))
173     BBsToSinkInto.clear();
174   return BBsToSinkInto;
175 }
176 
177 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
178 // sinking is successful.
179 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
180 // determinism.
181 static bool sinkInstruction(
182     Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
183     const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
184     DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
185   // Compute the set of blocks in loop L which contain a use of I.
186   SmallPtrSet<BasicBlock *, 2> BBs;
187   for (auto &U : I.uses()) {
188     Instruction *UI = cast<Instruction>(U.getUser());
189     // We cannot sink I to PHI-uses.
190     if (isa<PHINode>(UI))
191       return false;
192     // We cannot sink I if it has uses outside of the loop.
193     if (!L.contains(LI.getLoopFor(UI->getParent())))
194       return false;
195     BBs.insert(UI->getParent());
196   }
197 
198   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
199   // BBs.size() to avoid expensive computation.
200   // FIXME: Handle code size growth for min_size and opt_size.
201   if (BBs.size() > MaxNumberOfUseBBsForSinking)
202     return false;
203 
204   // Find the set of BBs that we should insert a copy of I.
205   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
206       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
207   if (BBsToSinkInto.empty())
208     return false;
209 
210   // Return if any of the candidate blocks to sink into is non-cold.
211   if (BBsToSinkInto.size() > 1 &&
212       !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
213     return false;
214 
215   // Copy the final BBs into a vector and sort them using the total ordering
216   // of the loop block numbers as iterating the set doesn't give a useful
217   // order. No need to stable sort as the block numbers are a total ordering.
218   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
219   llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
220   llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
221     return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
222   });
223 
224   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
225   // FIXME: Optimize the efficiency for cloned value replacement. The current
226   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
227   for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
228     assert(LoopBlockNumber.find(N)->second >
229                LoopBlockNumber.find(MoveBB)->second &&
230            "BBs not sorted!");
231     // Clone I and replace its uses.
232     Instruction *IC = I.clone();
233     IC->setName(I.getName());
234     IC->insertBefore(&*N->getFirstInsertionPt());
235 
236     if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
237       // Create a new MemoryAccess and let MemorySSA set its defining access.
238       MemoryAccess *NewMemAcc =
239           MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
240       if (NewMemAcc) {
241         if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
242           MSSAU->insertDef(MemDef, /*RenameUses=*/true);
243         else {
244           auto *MemUse = cast<MemoryUse>(NewMemAcc);
245           MSSAU->insertUse(MemUse, /*RenameUses=*/true);
246         }
247       }
248     }
249 
250     // Replaces uses of I with IC in N
251     I.replaceUsesWithIf(IC, [N](Use &U) {
252       return cast<Instruction>(U.getUser())->getParent() == N;
253     });
254     // Replaces uses of I with IC in blocks dominated by N
255     replaceDominatedUsesWith(&I, IC, DT, N);
256     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
257                       << '\n');
258     NumLoopSunkCloned++;
259   }
260   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
261   NumLoopSunk++;
262   I.moveBefore(&*MoveBB->getFirstInsertionPt());
263 
264   if (MSSAU)
265     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
266             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
267       MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
268 
269   return true;
270 }
271 
272 /// Sinks instructions from loop's preheader to the loop body if the
273 /// sum frequency of inserted copy is smaller than preheader's frequency.
274 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
275                                           DominatorTree &DT,
276                                           BlockFrequencyInfo &BFI,
277                                           ScalarEvolution *SE,
278                                           AliasSetTracker *CurAST,
279                                           MemorySSA *MSSA) {
280   BasicBlock *Preheader = L.getLoopPreheader();
281   assert(Preheader && "Expected loop to have preheader");
282 
283   assert(Preheader->getParent()->hasProfileData() &&
284          "Unexpected call when profile data unavailable.");
285 
286   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
287   // If there are no basic blocks with lower frequency than the preheader then
288   // we can avoid the detailed analysis as we will never find profitable sinking
289   // opportunities.
290   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
291         return BFI.getBlockFreq(BB) > PreheaderFreq;
292       }))
293     return false;
294 
295   std::unique_ptr<MemorySSAUpdater> MSSAU;
296   std::unique_ptr<SinkAndHoistLICMFlags> LICMFlags;
297   if (MSSA) {
298     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
299     LICMFlags =
300         std::make_unique<SinkAndHoistLICMFlags>(/*IsSink=*/true, &L, MSSA);
301   }
302 
303   bool Changed = false;
304 
305   // Sort loop's basic blocks by frequency
306   SmallVector<BasicBlock *, 10> ColdLoopBBs;
307   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
308   int i = 0;
309   for (BasicBlock *B : L.blocks())
310     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
311       ColdLoopBBs.push_back(B);
312       LoopBlockNumber[B] = ++i;
313     }
314   llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
315     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
316   });
317 
318   // Traverse preheader's instructions in reverse order becaue if A depends
319   // on B (A appears after B), A needs to be sinked first before B can be
320   // sinked.
321   for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
322     if (isa<PHINode>(&I))
323       continue;
324     // No need to check for instruction's operands are loop invariant.
325     assert(L.hasLoopInvariantOperands(&I) &&
326            "Insts in a loop's preheader should have loop invariant operands!");
327     if (!canSinkOrHoistInst(I, &AA, &DT, &L, CurAST, MSSAU.get(), false,
328                             LICMFlags.get()))
329       continue;
330     if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
331                         MSSAU.get()))
332       Changed = true;
333   }
334 
335   if (Changed && SE)
336     SE->forgetLoopDispositions(&L);
337   return Changed;
338 }
339 
340 static void computeAliasSet(Loop &L, BasicBlock &Preheader,
341                             AliasSetTracker &CurAST) {
342   for (BasicBlock *BB : L.blocks())
343     CurAST.add(*BB);
344   CurAST.add(Preheader);
345 }
346 
347 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
348   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
349   // Nothing to do if there are no loops.
350   if (LI.empty())
351     return PreservedAnalyses::all();
352 
353   AAResults &AA = FAM.getResult<AAManager>(F);
354   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
355   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
356 
357   MemorySSA *MSSA = EnableMSSAInLoopSink
358                         ? &FAM.getResult<MemorySSAAnalysis>(F).getMSSA()
359                         : nullptr;
360 
361   // We want to do a postorder walk over the loops. Since loops are a tree this
362   // is equivalent to a reversed preorder walk and preorder is easy to compute
363   // without recursion. Since we reverse the preorder, we will visit siblings
364   // in reverse program order. This isn't expected to matter at all but is more
365   // consistent with sinking algorithms which generally work bottom-up.
366   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
367 
368   bool Changed = false;
369   do {
370     Loop &L = *PreorderLoops.pop_back_val();
371 
372     BasicBlock *Preheader = L.getLoopPreheader();
373     if (!Preheader)
374       continue;
375 
376     // Enable LoopSink only when runtime profile is available.
377     // With static profile, the sinking decision may be sub-optimal.
378     if (!Preheader->getParent()->hasProfileData())
379       continue;
380 
381     std::unique_ptr<AliasSetTracker> CurAST;
382     if (!EnableMSSAInLoopSink) {
383       CurAST = std::make_unique<AliasSetTracker>(AA);
384       computeAliasSet(L, *Preheader, *CurAST);
385     }
386 
387     // Note that we don't pass SCEV here because it is only used to invalidate
388     // loops in SCEV and we don't preserve (or request) SCEV at all making that
389     // unnecessary.
390     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
391                                              /*ScalarEvolution*/ nullptr,
392                                              CurAST.get(), MSSA);
393   } while (!PreorderLoops.empty());
394 
395   if (!Changed)
396     return PreservedAnalyses::all();
397 
398   PreservedAnalyses PA;
399   PA.preserveSet<CFGAnalyses>();
400 
401   if (MSSA) {
402     PA.preserve<MemorySSAAnalysis>();
403 
404     if (VerifyMemorySSA)
405       MSSA->verifyMemorySSA();
406   }
407 
408   return PA;
409 }
410 
411 namespace {
412 struct LegacyLoopSinkPass : public LoopPass {
413   static char ID;
414   LegacyLoopSinkPass() : LoopPass(ID) {
415     initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
416   }
417 
418   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
419     if (skipLoop(L))
420       return false;
421 
422     BasicBlock *Preheader = L->getLoopPreheader();
423     if (!Preheader)
424       return false;
425 
426     // Enable LoopSink only when runtime profile is available.
427     // With static profile, the sinking decision may be sub-optimal.
428     if (!Preheader->getParent()->hasProfileData())
429       return false;
430 
431     AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
432     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
433     std::unique_ptr<AliasSetTracker> CurAST;
434     MemorySSA *MSSA = nullptr;
435     if (EnableMSSAInLegacyLoopSink)
436       MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
437     else {
438       CurAST = std::make_unique<AliasSetTracker>(AA);
439       computeAliasSet(*L, *Preheader, *CurAST);
440     }
441 
442     bool Changed = sinkLoopInvariantInstructions(
443         *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
444         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
445         getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
446         SE ? &SE->getSE() : nullptr, CurAST.get(), MSSA);
447 
448     if (MSSA && VerifyMemorySSA)
449       MSSA->verifyMemorySSA();
450 
451     return Changed;
452   }
453 
454   void getAnalysisUsage(AnalysisUsage &AU) const override {
455     AU.setPreservesCFG();
456     AU.addRequired<BlockFrequencyInfoWrapperPass>();
457     getLoopAnalysisUsage(AU);
458     if (EnableMSSAInLegacyLoopSink) {
459       AU.addRequired<MemorySSAWrapperPass>();
460       AU.addPreserved<MemorySSAWrapperPass>();
461     }
462   }
463 };
464 }
465 
466 char LegacyLoopSinkPass::ID = 0;
467 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
468                       false)
469 INITIALIZE_PASS_DEPENDENCY(LoopPass)
470 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
471 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
472 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
473 
474 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
475