1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/LoopUtils.h" 197 198 #define DEBUG_TYPE "loop-predication" 199 200 STATISTIC(TotalConsidered, "Number of guards considered"); 201 STATISTIC(TotalWidened, "Number of checks widened"); 202 203 using namespace llvm; 204 205 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 206 cl::Hidden, cl::init(true)); 207 208 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> 212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 213 cl::Hidden, cl::init(false)); 214 215 // This is the scale factor for the latch probability. We use this during 216 // profitability analysis to find other exiting blocks that have a much higher 217 // probability of exiting the loop instead of loop exiting via latch. 218 // This value should be greater than 1 for a sane profitability check. 219 static cl::opt<float> LatchExitProbabilityScale( 220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 221 cl::desc("scale factor for the latch probability. Value should be greater " 222 "than 1. Lower values are ignored")); 223 224 static cl::opt<bool> PredicateWidenableBranchGuards( 225 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 226 cl::desc("Whether or not we should predicate guards " 227 "expressed as widenable branches to deoptimize blocks"), 228 cl::init(true)); 229 230 namespace { 231 class LoopPredication { 232 /// Represents an induction variable check: 233 /// icmp Pred, <induction variable>, <loop invariant limit> 234 struct LoopICmp { 235 ICmpInst::Predicate Pred; 236 const SCEVAddRecExpr *IV; 237 const SCEV *Limit; 238 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 239 const SCEV *Limit) 240 : Pred(Pred), IV(IV), Limit(Limit) {} 241 LoopICmp() {} 242 void dump() { 243 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 244 << ", Limit = " << *Limit << "\n"; 245 } 246 }; 247 248 ScalarEvolution *SE; 249 BranchProbabilityInfo *BPI; 250 251 Loop *L; 252 const DataLayout *DL; 253 BasicBlock *Preheader; 254 LoopICmp LatchCheck; 255 256 bool isSupportedStep(const SCEV* Step); 257 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 258 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 259 ICI->getOperand(1)); 260 } 261 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 262 Value *RHS); 263 264 Optional<LoopICmp> parseLoopLatchICmp(); 265 266 bool CanExpand(const SCEV* S); 267 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 268 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 269 Instruction *InsertAt); 270 271 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 272 IRBuilder<> &Builder); 273 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 274 LoopICmp RangeCheck, 275 SCEVExpander &Expander, 276 IRBuilder<> &Builder); 277 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 278 LoopICmp RangeCheck, 279 SCEVExpander &Expander, 280 IRBuilder<> &Builder); 281 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 282 SCEVExpander &Expander, IRBuilder<> &Builder); 283 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 284 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 285 // If the loop always exits through another block in the loop, we should not 286 // predicate based on the latch check. For example, the latch check can be a 287 // very coarse grained check and there can be more fine grained exit checks 288 // within the loop. We identify such unprofitable loops through BPI. 289 bool isLoopProfitableToPredicate(); 290 291 // When the IV type is wider than the range operand type, we can still do loop 292 // predication, by generating SCEVs for the range and latch that are of the 293 // same type. We achieve this by generating a SCEV truncate expression for the 294 // latch IV. This is done iff truncation of the IV is a safe operation, 295 // without loss of information. 296 // Another way to achieve this is by generating a wider type SCEV for the 297 // range check operand, however, this needs a more involved check that 298 // operands do not overflow. This can lead to loss of information when the 299 // range operand is of the form: add i32 %offset, %iv. We need to prove that 300 // sext(x + y) is same as sext(x) + sext(y). 301 // This function returns true if we can safely represent the IV type in 302 // the RangeCheckType without loss of information. 303 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 304 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 305 // so. 306 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 307 308 public: 309 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 310 : SE(SE), BPI(BPI){}; 311 bool runOnLoop(Loop *L); 312 }; 313 314 class LoopPredicationLegacyPass : public LoopPass { 315 public: 316 static char ID; 317 LoopPredicationLegacyPass() : LoopPass(ID) { 318 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 319 } 320 321 void getAnalysisUsage(AnalysisUsage &AU) const override { 322 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 323 getLoopAnalysisUsage(AU); 324 } 325 326 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 327 if (skipLoop(L)) 328 return false; 329 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 330 BranchProbabilityInfo &BPI = 331 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 332 LoopPredication LP(SE, &BPI); 333 return LP.runOnLoop(L); 334 } 335 }; 336 337 char LoopPredicationLegacyPass::ID = 0; 338 } // end namespace llvm 339 340 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 341 "Loop predication", false, false) 342 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 343 INITIALIZE_PASS_DEPENDENCY(LoopPass) 344 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 345 "Loop predication", false, false) 346 347 Pass *llvm::createLoopPredicationPass() { 348 return new LoopPredicationLegacyPass(); 349 } 350 351 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 352 LoopStandardAnalysisResults &AR, 353 LPMUpdater &U) { 354 const auto &FAM = 355 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 356 Function *F = L.getHeader()->getParent(); 357 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 358 LoopPredication LP(&AR.SE, BPI); 359 if (!LP.runOnLoop(&L)) 360 return PreservedAnalyses::all(); 361 362 return getLoopPassPreservedAnalyses(); 363 } 364 365 Optional<LoopPredication::LoopICmp> 366 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 367 Value *RHS) { 368 const SCEV *LHSS = SE->getSCEV(LHS); 369 if (isa<SCEVCouldNotCompute>(LHSS)) 370 return None; 371 const SCEV *RHSS = SE->getSCEV(RHS); 372 if (isa<SCEVCouldNotCompute>(RHSS)) 373 return None; 374 375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 376 if (SE->isLoopInvariant(LHSS, L)) { 377 std::swap(LHS, RHS); 378 std::swap(LHSS, RHSS); 379 Pred = ICmpInst::getSwappedPredicate(Pred); 380 } 381 382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 383 if (!AR || AR->getLoop() != L) 384 return None; 385 386 return LoopICmp(Pred, AR, RHSS); 387 } 388 389 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 390 IRBuilder<> &Builder, 391 ICmpInst::Predicate Pred, const SCEV *LHS, 392 const SCEV *RHS, Instruction *InsertAt) { 393 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 394 395 Type *Ty = LHS->getType(); 396 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 397 398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 399 return Builder.getTrue(); 400 401 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 402 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 403 return Builder.CreateICmp(Pred, LHSV, RHSV); 404 } 405 406 Optional<LoopPredication::LoopICmp> 407 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 408 409 auto *LatchType = LatchCheck.IV->getType(); 410 if (RangeCheckType == LatchType) 411 return LatchCheck; 412 // For now, bail out if latch type is narrower than range type. 413 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 414 return None; 415 if (!isSafeToTruncateWideIVType(RangeCheckType)) 416 return None; 417 // We can now safely identify the truncated version of the IV and limit for 418 // RangeCheckType. 419 LoopICmp NewLatchCheck; 420 NewLatchCheck.Pred = LatchCheck.Pred; 421 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 422 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 423 if (!NewLatchCheck.IV) 424 return None; 425 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 426 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 427 << "can be represented as range check type:" 428 << *RangeCheckType << "\n"); 429 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 430 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 431 return NewLatchCheck; 432 } 433 434 bool LoopPredication::isSupportedStep(const SCEV* Step) { 435 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 436 } 437 438 bool LoopPredication::CanExpand(const SCEV* S) { 439 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 440 } 441 442 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 443 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 444 SCEVExpander &Expander, IRBuilder<> &Builder) { 445 auto *Ty = RangeCheck.IV->getType(); 446 // Generate the widened condition for the forward loop: 447 // guardStart u< guardLimit && 448 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 449 // where <pred> depends on the latch condition predicate. See the file 450 // header comment for the reasoning. 451 // guardLimit - guardStart + latchStart - 1 452 const SCEV *GuardStart = RangeCheck.IV->getStart(); 453 const SCEV *GuardLimit = RangeCheck.Limit; 454 const SCEV *LatchStart = LatchCheck.IV->getStart(); 455 const SCEV *LatchLimit = LatchCheck.Limit; 456 457 // guardLimit - guardStart + latchStart - 1 458 const SCEV *RHS = 459 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 460 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 461 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 462 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 463 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 464 return None; 465 } 466 auto LimitCheckPred = 467 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 468 469 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 470 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 471 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 472 473 Instruction *InsertAt = Preheader->getTerminator(); 474 auto *LimitCheck = 475 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 476 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 477 GuardStart, GuardLimit, InsertAt); 478 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 479 } 480 481 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 482 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 483 SCEVExpander &Expander, IRBuilder<> &Builder) { 484 auto *Ty = RangeCheck.IV->getType(); 485 const SCEV *GuardStart = RangeCheck.IV->getStart(); 486 const SCEV *GuardLimit = RangeCheck.Limit; 487 const SCEV *LatchLimit = LatchCheck.Limit; 488 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 489 !CanExpand(LatchLimit)) { 490 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 491 return None; 492 } 493 // The decrement of the latch check IV should be the same as the 494 // rangeCheckIV. 495 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 496 if (RangeCheck.IV != PostDecLatchCheckIV) { 497 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 498 << *PostDecLatchCheckIV 499 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 500 return None; 501 } 502 503 // Generate the widened condition for CountDownLoop: 504 // guardStart u< guardLimit && 505 // latchLimit <pred> 1. 506 // See the header comment for reasoning of the checks. 507 Instruction *InsertAt = Preheader->getTerminator(); 508 auto LimitCheckPred = 509 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 510 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 511 GuardStart, GuardLimit, InsertAt); 512 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 513 SE->getOne(Ty), InsertAt); 514 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 515 } 516 517 /// If ICI can be widened to a loop invariant condition emits the loop 518 /// invariant condition in the loop preheader and return it, otherwise 519 /// returns None. 520 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 521 SCEVExpander &Expander, 522 IRBuilder<> &Builder) { 523 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 524 LLVM_DEBUG(ICI->dump()); 525 526 // parseLoopStructure guarantees that the latch condition is: 527 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 528 // We are looking for the range checks of the form: 529 // i u< guardLimit 530 auto RangeCheck = parseLoopICmp(ICI); 531 if (!RangeCheck) { 532 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 533 return None; 534 } 535 LLVM_DEBUG(dbgs() << "Guard check:\n"); 536 LLVM_DEBUG(RangeCheck->dump()); 537 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 538 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 539 << RangeCheck->Pred << ")!\n"); 540 return None; 541 } 542 auto *RangeCheckIV = RangeCheck->IV; 543 if (!RangeCheckIV->isAffine()) { 544 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 545 return None; 546 } 547 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 548 // We cannot just compare with latch IV step because the latch and range IVs 549 // may have different types. 550 if (!isSupportedStep(Step)) { 551 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 552 return None; 553 } 554 auto *Ty = RangeCheckIV->getType(); 555 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 556 if (!CurrLatchCheckOpt) { 557 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 558 "corresponding to range type: " 559 << *Ty << "\n"); 560 return None; 561 } 562 563 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 564 // At this point, the range and latch step should have the same type, but need 565 // not have the same value (we support both 1 and -1 steps). 566 assert(Step->getType() == 567 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 568 "Range and latch steps should be of same type!"); 569 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 570 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 571 return None; 572 } 573 574 if (Step->isOne()) 575 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 576 Expander, Builder); 577 else { 578 assert(Step->isAllOnesValue() && "Step should be -1!"); 579 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 580 Expander, Builder); 581 } 582 } 583 584 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 585 Value *Condition, 586 SCEVExpander &Expander, 587 IRBuilder<> &Builder) { 588 unsigned NumWidened = 0; 589 // The guard condition is expected to be in form of: 590 // cond1 && cond2 && cond3 ... 591 // Iterate over subconditions looking for icmp conditions which can be 592 // widened across loop iterations. Widening these conditions remember the 593 // resulting list of subconditions in Checks vector. 594 SmallVector<Value *, 4> Worklist(1, Condition); 595 SmallPtrSet<Value *, 4> Visited; 596 do { 597 Value *Condition = Worklist.pop_back_val(); 598 if (!Visited.insert(Condition).second) 599 continue; 600 601 Value *LHS, *RHS; 602 using namespace llvm::PatternMatch; 603 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 604 Worklist.push_back(LHS); 605 Worklist.push_back(RHS); 606 continue; 607 } 608 609 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 610 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 611 Checks.push_back(NewRangeCheck.getValue()); 612 NumWidened++; 613 continue; 614 } 615 } 616 617 // Save the condition as is if we can't widen it 618 Checks.push_back(Condition); 619 } while (!Worklist.empty()); 620 return NumWidened; 621 } 622 623 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 624 SCEVExpander &Expander) { 625 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 626 LLVM_DEBUG(Guard->dump()); 627 628 TotalConsidered++; 629 SmallVector<Value *, 4> Checks; 630 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 631 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 632 Builder); 633 if (NumWidened == 0) 634 return false; 635 636 TotalWidened += NumWidened; 637 638 // Emit the new guard condition 639 Builder.SetInsertPoint(Guard); 640 Value *LastCheck = nullptr; 641 for (auto *Check : Checks) 642 if (!LastCheck) 643 LastCheck = Check; 644 else 645 LastCheck = Builder.CreateAnd(LastCheck, Check); 646 Guard->setOperand(0, LastCheck); 647 648 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 649 return true; 650 } 651 652 bool LoopPredication::widenWidenableBranchGuardConditions( 653 BranchInst *Guard, SCEVExpander &Expander) { 654 assert(isGuardAsWidenableBranch(Guard) && "Must be!"); 655 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 656 LLVM_DEBUG(Guard->dump()); 657 658 TotalConsidered++; 659 SmallVector<Value *, 4> Checks; 660 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 661 Value *Condition = nullptr, *WidenableCondition = nullptr; 662 BasicBlock *GBB = nullptr, *DBB = nullptr; 663 parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB); 664 unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder); 665 if (NumWidened == 0) 666 return false; 667 668 TotalWidened += NumWidened; 669 670 // Emit the new guard condition 671 Builder.SetInsertPoint(Guard); 672 Value *LastCheck = nullptr; 673 for (auto *Check : Checks) 674 if (!LastCheck) 675 LastCheck = Check; 676 else 677 LastCheck = Builder.CreateAnd(LastCheck, Check); 678 // Make sure that the check contains widenable condition and therefore can be 679 // further widened. 680 LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition); 681 Guard->setOperand(0, LastCheck); 682 assert(isGuardAsWidenableBranch(Guard) && 683 "Stopped being a guard after transform?"); 684 685 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 686 return true; 687 } 688 689 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 690 using namespace PatternMatch; 691 692 BasicBlock *LoopLatch = L->getLoopLatch(); 693 if (!LoopLatch) { 694 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 695 return None; 696 } 697 698 ICmpInst::Predicate Pred; 699 Value *LHS, *RHS; 700 BasicBlock *TrueDest, *FalseDest; 701 702 if (!match(LoopLatch->getTerminator(), 703 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 704 FalseDest))) { 705 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 706 return None; 707 } 708 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 709 "One of the latch's destinations must be the header"); 710 if (TrueDest != L->getHeader()) 711 Pred = ICmpInst::getInversePredicate(Pred); 712 713 auto Result = parseLoopICmp(Pred, LHS, RHS); 714 if (!Result) { 715 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 716 return None; 717 } 718 719 // Check affine first, so if it's not we don't try to compute the step 720 // recurrence. 721 if (!Result->IV->isAffine()) { 722 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 723 return None; 724 } 725 726 auto *Step = Result->IV->getStepRecurrence(*SE); 727 if (!isSupportedStep(Step)) { 728 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 729 return None; 730 } 731 732 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 733 if (Step->isOne()) { 734 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 735 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 736 } else { 737 assert(Step->isAllOnesValue() && "Step should be -1!"); 738 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 739 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 740 } 741 }; 742 743 if (IsUnsupportedPredicate(Step, Result->Pred)) { 744 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 745 << ")!\n"); 746 return None; 747 } 748 return Result; 749 } 750 751 // Returns true if its safe to truncate the IV to RangeCheckType. 752 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 753 if (!EnableIVTruncation) 754 return false; 755 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 756 DL->getTypeSizeInBits(RangeCheckType) && 757 "Expected latch check IV type to be larger than range check operand " 758 "type!"); 759 // The start and end values of the IV should be known. This is to guarantee 760 // that truncating the wide type will not lose information. 761 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 762 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 763 if (!Limit || !Start) 764 return false; 765 // This check makes sure that the IV does not change sign during loop 766 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 767 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 768 // IV wraps around, and the truncation of the IV would lose the range of 769 // iterations between 2^32 and 2^64. 770 bool Increasing; 771 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 772 return false; 773 // The active bits should be less than the bits in the RangeCheckType. This 774 // guarantees that truncating the latch check to RangeCheckType is a safe 775 // operation. 776 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 777 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 778 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 779 } 780 781 bool LoopPredication::isLoopProfitableToPredicate() { 782 if (SkipProfitabilityChecks || !BPI) 783 return true; 784 785 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 786 L->getExitEdges(ExitEdges); 787 // If there is only one exiting edge in the loop, it is always profitable to 788 // predicate the loop. 789 if (ExitEdges.size() == 1) 790 return true; 791 792 // Calculate the exiting probabilities of all exiting edges from the loop, 793 // starting with the LatchExitProbability. 794 // Heuristic for profitability: If any of the exiting blocks' probability of 795 // exiting the loop is larger than exiting through the latch block, it's not 796 // profitable to predicate the loop. 797 auto *LatchBlock = L->getLoopLatch(); 798 assert(LatchBlock && "Should have a single latch at this point!"); 799 auto *LatchTerm = LatchBlock->getTerminator(); 800 assert(LatchTerm->getNumSuccessors() == 2 && 801 "expected to be an exiting block with 2 succs!"); 802 unsigned LatchBrExitIdx = 803 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 804 BranchProbability LatchExitProbability = 805 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 806 807 // Protect against degenerate inputs provided by the user. Providing a value 808 // less than one, can invert the definition of profitable loop predication. 809 float ScaleFactor = LatchExitProbabilityScale; 810 if (ScaleFactor < 1) { 811 LLVM_DEBUG( 812 dbgs() 813 << "Ignored user setting for loop-predication-latch-probability-scale: " 814 << LatchExitProbabilityScale << "\n"); 815 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 816 ScaleFactor = 1.0; 817 } 818 const auto LatchProbabilityThreshold = 819 LatchExitProbability * ScaleFactor; 820 821 for (const auto &ExitEdge : ExitEdges) { 822 BranchProbability ExitingBlockProbability = 823 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 824 // Some exiting edge has higher probability than the latch exiting edge. 825 // No longer profitable to predicate. 826 if (ExitingBlockProbability > LatchProbabilityThreshold) 827 return false; 828 } 829 // Using BPI, we have concluded that the most probable way to exit from the 830 // loop is through the latch (or there's no profile information and all 831 // exits are equally likely). 832 return true; 833 } 834 835 bool LoopPredication::runOnLoop(Loop *Loop) { 836 L = Loop; 837 838 LLVM_DEBUG(dbgs() << "Analyzing "); 839 LLVM_DEBUG(L->dump()); 840 841 Module *M = L->getHeader()->getModule(); 842 843 // There is nothing to do if the module doesn't use guards 844 auto *GuardDecl = 845 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 846 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 847 auto *WCDecl = M->getFunction( 848 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 849 bool HasWidenableConditions = 850 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 851 if (!HasIntrinsicGuards && !HasWidenableConditions) 852 return false; 853 854 DL = &M->getDataLayout(); 855 856 Preheader = L->getLoopPreheader(); 857 if (!Preheader) 858 return false; 859 860 auto LatchCheckOpt = parseLoopLatchICmp(); 861 if (!LatchCheckOpt) 862 return false; 863 LatchCheck = *LatchCheckOpt; 864 865 LLVM_DEBUG(dbgs() << "Latch check:\n"); 866 LLVM_DEBUG(LatchCheck.dump()); 867 868 if (!isLoopProfitableToPredicate()) { 869 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 870 return false; 871 } 872 // Collect all the guards into a vector and process later, so as not 873 // to invalidate the instruction iterator. 874 SmallVector<IntrinsicInst *, 4> Guards; 875 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 876 for (const auto BB : L->blocks()) { 877 for (auto &I : *BB) 878 if (isGuard(&I)) 879 Guards.push_back(cast<IntrinsicInst>(&I)); 880 if (PredicateWidenableBranchGuards && 881 isGuardAsWidenableBranch(BB->getTerminator())) 882 GuardsAsWidenableBranches.push_back( 883 cast<BranchInst>(BB->getTerminator())); 884 } 885 886 if (Guards.empty() && GuardsAsWidenableBranches.empty()) 887 return false; 888 889 SCEVExpander Expander(*SE, *DL, "loop-predication"); 890 891 bool Changed = false; 892 for (auto *Guard : Guards) 893 Changed |= widenGuardConditions(Guard, Expander); 894 for (auto *Guard : GuardsAsWidenableBranches) 895 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 896 897 return Changed; 898 } 899