1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/Local.h" 197 #include "llvm/Transforms/Utils/LoopUtils.h" 198 199 #define DEBUG_TYPE "loop-predication" 200 201 STATISTIC(TotalConsidered, "Number of guards considered"); 202 STATISTIC(TotalWidened, "Number of checks widened"); 203 204 using namespace llvm; 205 206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> 213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 214 cl::Hidden, cl::init(false)); 215 216 // This is the scale factor for the latch probability. We use this during 217 // profitability analysis to find other exiting blocks that have a much higher 218 // probability of exiting the loop instead of loop exiting via latch. 219 // This value should be greater than 1 for a sane profitability check. 220 static cl::opt<float> LatchExitProbabilityScale( 221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 222 cl::desc("scale factor for the latch probability. Value should be greater " 223 "than 1. Lower values are ignored")); 224 225 static cl::opt<bool> PredicateWidenableBranchGuards( 226 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 227 cl::desc("Whether or not we should predicate guards " 228 "expressed as widenable branches to deoptimize blocks"), 229 cl::init(true)); 230 231 namespace { 232 class LoopPredication { 233 /// Represents an induction variable check: 234 /// icmp Pred, <induction variable>, <loop invariant limit> 235 struct LoopICmp { 236 ICmpInst::Predicate Pred; 237 const SCEVAddRecExpr *IV; 238 const SCEV *Limit; 239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 240 const SCEV *Limit) 241 : Pred(Pred), IV(IV), Limit(Limit) {} 242 LoopICmp() {} 243 void dump() { 244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 245 << ", Limit = " << *Limit << "\n"; 246 } 247 }; 248 249 ScalarEvolution *SE; 250 BranchProbabilityInfo *BPI; 251 252 Loop *L; 253 const DataLayout *DL; 254 BasicBlock *Preheader; 255 LoopICmp LatchCheck; 256 257 bool isSupportedStep(const SCEV* Step); 258 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 259 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 260 ICI->getOperand(1)); 261 } 262 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 263 Value *RHS); 264 265 Optional<LoopICmp> parseLoopLatchICmp(); 266 267 /// Return an insertion point suitable for inserting a safe to speculate 268 /// instruction whose only user will be 'User' which has operands 'Ops'. A 269 /// trivial result would be the at the User itself, but we try to return a 270 /// loop invariant location if possible. 271 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 272 273 bool CanExpand(const SCEV* S); 274 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 275 ICmpInst::Predicate Pred, const SCEV *LHS, 276 const SCEV *RHS); 277 278 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 279 IRBuilder<> &Builder); 280 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 281 LoopICmp RangeCheck, 282 SCEVExpander &Expander, 283 IRBuilder<> &Builder); 284 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 285 LoopICmp RangeCheck, 286 SCEVExpander &Expander, 287 IRBuilder<> &Builder); 288 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 289 SCEVExpander &Expander, IRBuilder<> &Builder); 290 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 291 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 292 // If the loop always exits through another block in the loop, we should not 293 // predicate based on the latch check. For example, the latch check can be a 294 // very coarse grained check and there can be more fine grained exit checks 295 // within the loop. We identify such unprofitable loops through BPI. 296 bool isLoopProfitableToPredicate(); 297 298 // When the IV type is wider than the range operand type, we can still do loop 299 // predication, by generating SCEVs for the range and latch that are of the 300 // same type. We achieve this by generating a SCEV truncate expression for the 301 // latch IV. This is done iff truncation of the IV is a safe operation, 302 // without loss of information. 303 // Another way to achieve this is by generating a wider type SCEV for the 304 // range check operand, however, this needs a more involved check that 305 // operands do not overflow. This can lead to loss of information when the 306 // range operand is of the form: add i32 %offset, %iv. We need to prove that 307 // sext(x + y) is same as sext(x) + sext(y). 308 // This function returns true if we can safely represent the IV type in 309 // the RangeCheckType without loss of information. 310 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 311 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 312 // so. 313 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 314 315 public: 316 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 317 : SE(SE), BPI(BPI){}; 318 bool runOnLoop(Loop *L); 319 }; 320 321 class LoopPredicationLegacyPass : public LoopPass { 322 public: 323 static char ID; 324 LoopPredicationLegacyPass() : LoopPass(ID) { 325 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 326 } 327 328 void getAnalysisUsage(AnalysisUsage &AU) const override { 329 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 330 getLoopAnalysisUsage(AU); 331 } 332 333 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 334 if (skipLoop(L)) 335 return false; 336 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 337 BranchProbabilityInfo &BPI = 338 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 339 LoopPredication LP(SE, &BPI); 340 return LP.runOnLoop(L); 341 } 342 }; 343 344 char LoopPredicationLegacyPass::ID = 0; 345 } // end namespace llvm 346 347 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 348 "Loop predication", false, false) 349 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 350 INITIALIZE_PASS_DEPENDENCY(LoopPass) 351 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 352 "Loop predication", false, false) 353 354 Pass *llvm::createLoopPredicationPass() { 355 return new LoopPredicationLegacyPass(); 356 } 357 358 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 359 LoopStandardAnalysisResults &AR, 360 LPMUpdater &U) { 361 const auto &FAM = 362 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 363 Function *F = L.getHeader()->getParent(); 364 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 365 LoopPredication LP(&AR.SE, BPI); 366 if (!LP.runOnLoop(&L)) 367 return PreservedAnalyses::all(); 368 369 return getLoopPassPreservedAnalyses(); 370 } 371 372 Optional<LoopPredication::LoopICmp> 373 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 374 Value *RHS) { 375 const SCEV *LHSS = SE->getSCEV(LHS); 376 if (isa<SCEVCouldNotCompute>(LHSS)) 377 return None; 378 const SCEV *RHSS = SE->getSCEV(RHS); 379 if (isa<SCEVCouldNotCompute>(RHSS)) 380 return None; 381 382 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 383 if (SE->isLoopInvariant(LHSS, L)) { 384 std::swap(LHS, RHS); 385 std::swap(LHSS, RHSS); 386 Pred = ICmpInst::getSwappedPredicate(Pred); 387 } 388 389 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 390 if (!AR || AR->getLoop() != L) 391 return None; 392 393 return LoopICmp(Pred, AR, RHSS); 394 } 395 396 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 397 IRBuilder<> &Builder, 398 ICmpInst::Predicate Pred, const SCEV *LHS, 399 const SCEV *RHS) { 400 Type *Ty = LHS->getType(); 401 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 402 403 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 404 return Builder.getTrue(); 405 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 406 LHS, RHS)) 407 return Builder.getFalse(); 408 409 Instruction *InsertAt = &*Builder.GetInsertPoint(); 410 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 411 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 412 return Builder.CreateICmp(Pred, LHSV, RHSV); 413 } 414 415 Optional<LoopPredication::LoopICmp> 416 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 417 418 auto *LatchType = LatchCheck.IV->getType(); 419 if (RangeCheckType == LatchType) 420 return LatchCheck; 421 // For now, bail out if latch type is narrower than range type. 422 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 423 return None; 424 if (!isSafeToTruncateWideIVType(RangeCheckType)) 425 return None; 426 // We can now safely identify the truncated version of the IV and limit for 427 // RangeCheckType. 428 LoopICmp NewLatchCheck; 429 NewLatchCheck.Pred = LatchCheck.Pred; 430 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 431 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 432 if (!NewLatchCheck.IV) 433 return None; 434 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 435 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 436 << "can be represented as range check type:" 437 << *RangeCheckType << "\n"); 438 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 439 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 440 return NewLatchCheck; 441 } 442 443 bool LoopPredication::isSupportedStep(const SCEV* Step) { 444 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 445 } 446 447 Instruction *LoopPredication::findInsertPt(Instruction *Use, 448 ArrayRef<Value*> Ops) { 449 for (Value *Op : Ops) 450 if (!L->isLoopInvariant(Op)) 451 return Use; 452 return Preheader->getTerminator(); 453 } 454 455 bool LoopPredication::CanExpand(const SCEV* S) { 456 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 457 } 458 459 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 460 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 461 SCEVExpander &Expander, IRBuilder<> &Builder) { 462 auto *Ty = RangeCheck.IV->getType(); 463 // Generate the widened condition for the forward loop: 464 // guardStart u< guardLimit && 465 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 466 // where <pred> depends on the latch condition predicate. See the file 467 // header comment for the reasoning. 468 // guardLimit - guardStart + latchStart - 1 469 const SCEV *GuardStart = RangeCheck.IV->getStart(); 470 const SCEV *GuardLimit = RangeCheck.Limit; 471 const SCEV *LatchStart = LatchCheck.IV->getStart(); 472 const SCEV *LatchLimit = LatchCheck.Limit; 473 474 // guardLimit - guardStart + latchStart - 1 475 const SCEV *RHS = 476 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 477 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 478 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 479 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 480 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 481 return None; 482 } 483 auto LimitCheckPred = 484 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 485 486 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 487 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 488 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 489 490 auto *LimitCheck = 491 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS); 492 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 493 GuardStart, GuardLimit); 494 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 495 } 496 497 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 498 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 499 SCEVExpander &Expander, IRBuilder<> &Builder) { 500 auto *Ty = RangeCheck.IV->getType(); 501 const SCEV *GuardStart = RangeCheck.IV->getStart(); 502 const SCEV *GuardLimit = RangeCheck.Limit; 503 const SCEV *LatchLimit = LatchCheck.Limit; 504 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 505 !CanExpand(LatchLimit)) { 506 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 507 return None; 508 } 509 // The decrement of the latch check IV should be the same as the 510 // rangeCheckIV. 511 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 512 if (RangeCheck.IV != PostDecLatchCheckIV) { 513 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 514 << *PostDecLatchCheckIV 515 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 516 return None; 517 } 518 519 // Generate the widened condition for CountDownLoop: 520 // guardStart u< guardLimit && 521 // latchLimit <pred> 1. 522 // See the header comment for reasoning of the checks. 523 auto LimitCheckPred = 524 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 525 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 526 GuardStart, GuardLimit); 527 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 528 SE->getOne(Ty)); 529 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 530 } 531 532 /// If ICI can be widened to a loop invariant condition emits the loop 533 /// invariant condition in the loop preheader and return it, otherwise 534 /// returns None. 535 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 536 SCEVExpander &Expander, 537 IRBuilder<> &Builder) { 538 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 539 LLVM_DEBUG(ICI->dump()); 540 541 // parseLoopStructure guarantees that the latch condition is: 542 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 543 // We are looking for the range checks of the form: 544 // i u< guardLimit 545 auto RangeCheck = parseLoopICmp(ICI); 546 if (!RangeCheck) { 547 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 548 return None; 549 } 550 LLVM_DEBUG(dbgs() << "Guard check:\n"); 551 LLVM_DEBUG(RangeCheck->dump()); 552 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 553 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 554 << RangeCheck->Pred << ")!\n"); 555 return None; 556 } 557 auto *RangeCheckIV = RangeCheck->IV; 558 if (!RangeCheckIV->isAffine()) { 559 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 560 return None; 561 } 562 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 563 // We cannot just compare with latch IV step because the latch and range IVs 564 // may have different types. 565 if (!isSupportedStep(Step)) { 566 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 567 return None; 568 } 569 auto *Ty = RangeCheckIV->getType(); 570 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 571 if (!CurrLatchCheckOpt) { 572 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 573 "corresponding to range type: " 574 << *Ty << "\n"); 575 return None; 576 } 577 578 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 579 // At this point, the range and latch step should have the same type, but need 580 // not have the same value (we support both 1 and -1 steps). 581 assert(Step->getType() == 582 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 583 "Range and latch steps should be of same type!"); 584 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 585 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 586 return None; 587 } 588 589 if (Step->isOne()) 590 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 591 Expander, Builder); 592 else { 593 assert(Step->isAllOnesValue() && "Step should be -1!"); 594 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 595 Expander, Builder); 596 } 597 } 598 599 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 600 Value *Condition, 601 SCEVExpander &Expander, 602 IRBuilder<> &Builder) { 603 unsigned NumWidened = 0; 604 // The guard condition is expected to be in form of: 605 // cond1 && cond2 && cond3 ... 606 // Iterate over subconditions looking for icmp conditions which can be 607 // widened across loop iterations. Widening these conditions remember the 608 // resulting list of subconditions in Checks vector. 609 SmallVector<Value *, 4> Worklist(1, Condition); 610 SmallPtrSet<Value *, 4> Visited; 611 Value *WideableCond = nullptr; 612 do { 613 Value *Condition = Worklist.pop_back_val(); 614 if (!Visited.insert(Condition).second) 615 continue; 616 617 Value *LHS, *RHS; 618 using namespace llvm::PatternMatch; 619 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 620 Worklist.push_back(LHS); 621 Worklist.push_back(RHS); 622 continue; 623 } 624 625 if (match(Condition, 626 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 627 // Pick any, we don't care which 628 WideableCond = Condition; 629 continue; 630 } 631 632 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 633 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 634 Builder)) { 635 Checks.push_back(NewRangeCheck.getValue()); 636 NumWidened++; 637 continue; 638 } 639 } 640 641 // Save the condition as is if we can't widen it 642 Checks.push_back(Condition); 643 } while (!Worklist.empty()); 644 // At the moment, our matching logic for wideable conditions implicitly 645 // assumes we preserve the form: (br (and Cond, WC())). FIXME 646 // Note that if there were multiple calls to wideable condition in the 647 // traversal, we only need to keep one, and which one is arbitrary. 648 if (WideableCond) 649 Checks.push_back(WideableCond); 650 return NumWidened; 651 } 652 653 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 654 SCEVExpander &Expander) { 655 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 656 LLVM_DEBUG(Guard->dump()); 657 658 TotalConsidered++; 659 SmallVector<Value *, 4> Checks; 660 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 661 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 662 Builder); 663 if (NumWidened == 0) 664 return false; 665 666 TotalWidened += NumWidened; 667 668 // Emit the new guard condition 669 Builder.SetInsertPoint(findInsertPt(Guard, Checks)); 670 Value *LastCheck = nullptr; 671 for (auto *Check : Checks) 672 if (!LastCheck) 673 LastCheck = Check; 674 else 675 LastCheck = Builder.CreateAnd(LastCheck, Check); 676 auto *OldCond = Guard->getOperand(0); 677 Guard->setOperand(0, LastCheck); 678 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 679 680 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 681 return true; 682 } 683 684 bool LoopPredication::widenWidenableBranchGuardConditions( 685 BranchInst *BI, SCEVExpander &Expander) { 686 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 687 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 688 LLVM_DEBUG(BI->dump()); 689 690 TotalConsidered++; 691 SmallVector<Value *, 4> Checks; 692 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 693 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 694 Expander, Builder); 695 if (NumWidened == 0) 696 return false; 697 698 TotalWidened += NumWidened; 699 700 // Emit the new guard condition 701 Builder.SetInsertPoint(findInsertPt(BI, Checks)); 702 Value *LastCheck = nullptr; 703 for (auto *Check : Checks) 704 if (!LastCheck) 705 LastCheck = Check; 706 else 707 LastCheck = Builder.CreateAnd(LastCheck, Check); 708 auto *OldCond = BI->getCondition(); 709 BI->setCondition(LastCheck); 710 assert(isGuardAsWidenableBranch(BI) && 711 "Stopped being a guard after transform?"); 712 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 713 714 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 715 return true; 716 } 717 718 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 719 using namespace PatternMatch; 720 721 BasicBlock *LoopLatch = L->getLoopLatch(); 722 if (!LoopLatch) { 723 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 724 return None; 725 } 726 727 ICmpInst::Predicate Pred; 728 Value *LHS, *RHS; 729 BasicBlock *TrueDest, *FalseDest; 730 731 if (!match(LoopLatch->getTerminator(), 732 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 733 FalseDest))) { 734 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 735 return None; 736 } 737 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 738 "One of the latch's destinations must be the header"); 739 if (TrueDest != L->getHeader()) 740 Pred = ICmpInst::getInversePredicate(Pred); 741 742 auto Result = parseLoopICmp(Pred, LHS, RHS); 743 if (!Result) { 744 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 745 return None; 746 } 747 748 // Check affine first, so if it's not we don't try to compute the step 749 // recurrence. 750 if (!Result->IV->isAffine()) { 751 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 752 return None; 753 } 754 755 auto *Step = Result->IV->getStepRecurrence(*SE); 756 if (!isSupportedStep(Step)) { 757 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 758 return None; 759 } 760 761 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 762 if (Step->isOne()) { 763 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 764 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 765 } else { 766 assert(Step->isAllOnesValue() && "Step should be -1!"); 767 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 768 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 769 } 770 }; 771 772 if (IsUnsupportedPredicate(Step, Result->Pred)) { 773 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 774 << ")!\n"); 775 return None; 776 } 777 return Result; 778 } 779 780 // Returns true if its safe to truncate the IV to RangeCheckType. 781 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 782 if (!EnableIVTruncation) 783 return false; 784 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 785 DL->getTypeSizeInBits(RangeCheckType) && 786 "Expected latch check IV type to be larger than range check operand " 787 "type!"); 788 // The start and end values of the IV should be known. This is to guarantee 789 // that truncating the wide type will not lose information. 790 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 791 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 792 if (!Limit || !Start) 793 return false; 794 // This check makes sure that the IV does not change sign during loop 795 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 796 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 797 // IV wraps around, and the truncation of the IV would lose the range of 798 // iterations between 2^32 and 2^64. 799 bool Increasing; 800 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 801 return false; 802 // The active bits should be less than the bits in the RangeCheckType. This 803 // guarantees that truncating the latch check to RangeCheckType is a safe 804 // operation. 805 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 806 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 807 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 808 } 809 810 bool LoopPredication::isLoopProfitableToPredicate() { 811 if (SkipProfitabilityChecks || !BPI) 812 return true; 813 814 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 815 L->getExitEdges(ExitEdges); 816 // If there is only one exiting edge in the loop, it is always profitable to 817 // predicate the loop. 818 if (ExitEdges.size() == 1) 819 return true; 820 821 // Calculate the exiting probabilities of all exiting edges from the loop, 822 // starting with the LatchExitProbability. 823 // Heuristic for profitability: If any of the exiting blocks' probability of 824 // exiting the loop is larger than exiting through the latch block, it's not 825 // profitable to predicate the loop. 826 auto *LatchBlock = L->getLoopLatch(); 827 assert(LatchBlock && "Should have a single latch at this point!"); 828 auto *LatchTerm = LatchBlock->getTerminator(); 829 assert(LatchTerm->getNumSuccessors() == 2 && 830 "expected to be an exiting block with 2 succs!"); 831 unsigned LatchBrExitIdx = 832 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 833 BranchProbability LatchExitProbability = 834 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 835 836 // Protect against degenerate inputs provided by the user. Providing a value 837 // less than one, can invert the definition of profitable loop predication. 838 float ScaleFactor = LatchExitProbabilityScale; 839 if (ScaleFactor < 1) { 840 LLVM_DEBUG( 841 dbgs() 842 << "Ignored user setting for loop-predication-latch-probability-scale: " 843 << LatchExitProbabilityScale << "\n"); 844 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 845 ScaleFactor = 1.0; 846 } 847 const auto LatchProbabilityThreshold = 848 LatchExitProbability * ScaleFactor; 849 850 for (const auto &ExitEdge : ExitEdges) { 851 BranchProbability ExitingBlockProbability = 852 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 853 // Some exiting edge has higher probability than the latch exiting edge. 854 // No longer profitable to predicate. 855 if (ExitingBlockProbability > LatchProbabilityThreshold) 856 return false; 857 } 858 // Using BPI, we have concluded that the most probable way to exit from the 859 // loop is through the latch (or there's no profile information and all 860 // exits are equally likely). 861 return true; 862 } 863 864 bool LoopPredication::runOnLoop(Loop *Loop) { 865 L = Loop; 866 867 LLVM_DEBUG(dbgs() << "Analyzing "); 868 LLVM_DEBUG(L->dump()); 869 870 Module *M = L->getHeader()->getModule(); 871 872 // There is nothing to do if the module doesn't use guards 873 auto *GuardDecl = 874 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 875 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 876 auto *WCDecl = M->getFunction( 877 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 878 bool HasWidenableConditions = 879 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 880 if (!HasIntrinsicGuards && !HasWidenableConditions) 881 return false; 882 883 DL = &M->getDataLayout(); 884 885 Preheader = L->getLoopPreheader(); 886 if (!Preheader) 887 return false; 888 889 auto LatchCheckOpt = parseLoopLatchICmp(); 890 if (!LatchCheckOpt) 891 return false; 892 LatchCheck = *LatchCheckOpt; 893 894 LLVM_DEBUG(dbgs() << "Latch check:\n"); 895 LLVM_DEBUG(LatchCheck.dump()); 896 897 if (!isLoopProfitableToPredicate()) { 898 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 899 return false; 900 } 901 // Collect all the guards into a vector and process later, so as not 902 // to invalidate the instruction iterator. 903 SmallVector<IntrinsicInst *, 4> Guards; 904 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 905 for (const auto BB : L->blocks()) { 906 for (auto &I : *BB) 907 if (isGuard(&I)) 908 Guards.push_back(cast<IntrinsicInst>(&I)); 909 if (PredicateWidenableBranchGuards && 910 isGuardAsWidenableBranch(BB->getTerminator())) 911 GuardsAsWidenableBranches.push_back( 912 cast<BranchInst>(BB->getTerminator())); 913 } 914 915 if (Guards.empty() && GuardsAsWidenableBranches.empty()) 916 return false; 917 918 SCEVExpander Expander(*SE, *DL, "loop-predication"); 919 920 bool Changed = false; 921 for (auto *Guard : Guards) 922 Changed |= widenGuardConditions(Guard, Expander); 923 for (auto *Guard : GuardsAsWidenableBranches) 924 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 925 926 return Changed; 927 } 928