xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision fbe64a2cfb413181b23cf5f307af8f86bf3c870a)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/GuardUtils.h"
183 #include "llvm/Analysis/LoopInfo.h"
184 #include "llvm/Analysis/LoopPass.h"
185 #include "llvm/Analysis/ScalarEvolution.h"
186 #include "llvm/Analysis/ScalarEvolutionExpander.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/Pass.h"
194 #include "llvm/Support/Debug.h"
195 #include "llvm/Transforms/Scalar.h"
196 #include "llvm/Transforms/Utils/Local.h"
197 #include "llvm/Transforms/Utils/LoopUtils.h"
198 
199 #define DEBUG_TYPE "loop-predication"
200 
201 STATISTIC(TotalConsidered, "Number of guards considered");
202 STATISTIC(TotalWidened, "Number of checks widened");
203 
204 using namespace llvm;
205 
206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
207                                         cl::Hidden, cl::init(true));
208 
209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
210                                         cl::Hidden, cl::init(true));
211 
212 static cl::opt<bool>
213     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
214                             cl::Hidden, cl::init(false));
215 
216 // This is the scale factor for the latch probability. We use this during
217 // profitability analysis to find other exiting blocks that have a much higher
218 // probability of exiting the loop instead of loop exiting via latch.
219 // This value should be greater than 1 for a sane profitability check.
220 static cl::opt<float> LatchExitProbabilityScale(
221     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
222     cl::desc("scale factor for the latch probability. Value should be greater "
223              "than 1. Lower values are ignored"));
224 
225 static cl::opt<bool> PredicateWidenableBranchGuards(
226     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
227     cl::desc("Whether or not we should predicate guards "
228              "expressed as widenable branches to deoptimize blocks"),
229     cl::init(true));
230 
231 namespace {
232 class LoopPredication {
233   /// Represents an induction variable check:
234   ///   icmp Pred, <induction variable>, <loop invariant limit>
235   struct LoopICmp {
236     ICmpInst::Predicate Pred;
237     const SCEVAddRecExpr *IV;
238     const SCEV *Limit;
239     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240              const SCEV *Limit)
241         : Pred(Pred), IV(IV), Limit(Limit) {}
242     LoopICmp() {}
243     void dump() {
244       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245              << ", Limit = " << *Limit << "\n";
246     }
247   };
248 
249   ScalarEvolution *SE;
250   BranchProbabilityInfo *BPI;
251 
252   Loop *L;
253   const DataLayout *DL;
254   BasicBlock *Preheader;
255   LoopICmp LatchCheck;
256 
257   bool isSupportedStep(const SCEV* Step);
258   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
259     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
260                          ICI->getOperand(1));
261   }
262   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
263                                    Value *RHS);
264 
265   Optional<LoopICmp> parseLoopLatchICmp();
266 
267   /// Return an insertion point suitable for inserting a safe to speculate
268   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
269   /// trivial result would be the at the User itself, but we try to return a
270   /// loop invariant location if possible.
271   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
272 
273   bool CanExpand(const SCEV* S);
274   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
275                      ICmpInst::Predicate Pred, const SCEV *LHS,
276                      const SCEV *RHS);
277 
278   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
279                                         IRBuilder<> &Builder);
280   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
281                                                         LoopICmp RangeCheck,
282                                                         SCEVExpander &Expander,
283                                                         IRBuilder<> &Builder);
284   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
285                                                         LoopICmp RangeCheck,
286                                                         SCEVExpander &Expander,
287                                                         IRBuilder<> &Builder);
288   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
289                          SCEVExpander &Expander, IRBuilder<> &Builder);
290   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
291   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
292   // If the loop always exits through another block in the loop, we should not
293   // predicate based on the latch check. For example, the latch check can be a
294   // very coarse grained check and there can be more fine grained exit checks
295   // within the loop. We identify such unprofitable loops through BPI.
296   bool isLoopProfitableToPredicate();
297 
298   // When the IV type is wider than the range operand type, we can still do loop
299   // predication, by generating SCEVs for the range and latch that are of the
300   // same type. We achieve this by generating a SCEV truncate expression for the
301   // latch IV. This is done iff truncation of the IV is a safe operation,
302   // without loss of information.
303   // Another way to achieve this is by generating a wider type SCEV for the
304   // range check operand, however, this needs a more involved check that
305   // operands do not overflow. This can lead to loss of information when the
306   // range operand is of the form: add i32 %offset, %iv. We need to prove that
307   // sext(x + y) is same as sext(x) + sext(y).
308   // This function returns true if we can safely represent the IV type in
309   // the RangeCheckType without loss of information.
310   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
311   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
312   // so.
313   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
314 
315 public:
316   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
317       : SE(SE), BPI(BPI){};
318   bool runOnLoop(Loop *L);
319 };
320 
321 class LoopPredicationLegacyPass : public LoopPass {
322 public:
323   static char ID;
324   LoopPredicationLegacyPass() : LoopPass(ID) {
325     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
326   }
327 
328   void getAnalysisUsage(AnalysisUsage &AU) const override {
329     AU.addRequired<BranchProbabilityInfoWrapperPass>();
330     getLoopAnalysisUsage(AU);
331   }
332 
333   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
334     if (skipLoop(L))
335       return false;
336     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
337     BranchProbabilityInfo &BPI =
338         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
339     LoopPredication LP(SE, &BPI);
340     return LP.runOnLoop(L);
341   }
342 };
343 
344 char LoopPredicationLegacyPass::ID = 0;
345 } // end namespace llvm
346 
347 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
348                       "Loop predication", false, false)
349 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
350 INITIALIZE_PASS_DEPENDENCY(LoopPass)
351 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
352                     "Loop predication", false, false)
353 
354 Pass *llvm::createLoopPredicationPass() {
355   return new LoopPredicationLegacyPass();
356 }
357 
358 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
359                                            LoopStandardAnalysisResults &AR,
360                                            LPMUpdater &U) {
361   const auto &FAM =
362       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
363   Function *F = L.getHeader()->getParent();
364   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
365   LoopPredication LP(&AR.SE, BPI);
366   if (!LP.runOnLoop(&L))
367     return PreservedAnalyses::all();
368 
369   return getLoopPassPreservedAnalyses();
370 }
371 
372 Optional<LoopPredication::LoopICmp>
373 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
374                                Value *RHS) {
375   const SCEV *LHSS = SE->getSCEV(LHS);
376   if (isa<SCEVCouldNotCompute>(LHSS))
377     return None;
378   const SCEV *RHSS = SE->getSCEV(RHS);
379   if (isa<SCEVCouldNotCompute>(RHSS))
380     return None;
381 
382   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
383   if (SE->isLoopInvariant(LHSS, L)) {
384     std::swap(LHS, RHS);
385     std::swap(LHSS, RHSS);
386     Pred = ICmpInst::getSwappedPredicate(Pred);
387   }
388 
389   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
390   if (!AR || AR->getLoop() != L)
391     return None;
392 
393   return LoopICmp(Pred, AR, RHSS);
394 }
395 
396 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
397                                     IRBuilder<> &Builder,
398                                     ICmpInst::Predicate Pred, const SCEV *LHS,
399                                     const SCEV *RHS) {
400   Type *Ty = LHS->getType();
401   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
402 
403   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
404     return Builder.getTrue();
405   if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
406                                    LHS, RHS))
407     return Builder.getFalse();
408 
409   Instruction *InsertAt = &*Builder.GetInsertPoint();
410   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
411   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
412   return Builder.CreateICmp(Pred, LHSV, RHSV);
413 }
414 
415 Optional<LoopPredication::LoopICmp>
416 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
417 
418   auto *LatchType = LatchCheck.IV->getType();
419   if (RangeCheckType == LatchType)
420     return LatchCheck;
421   // For now, bail out if latch type is narrower than range type.
422   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
423     return None;
424   if (!isSafeToTruncateWideIVType(RangeCheckType))
425     return None;
426   // We can now safely identify the truncated version of the IV and limit for
427   // RangeCheckType.
428   LoopICmp NewLatchCheck;
429   NewLatchCheck.Pred = LatchCheck.Pred;
430   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
431       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
432   if (!NewLatchCheck.IV)
433     return None;
434   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
435   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
436                     << "can be represented as range check type:"
437                     << *RangeCheckType << "\n");
438   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
439   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
440   return NewLatchCheck;
441 }
442 
443 bool LoopPredication::isSupportedStep(const SCEV* Step) {
444   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
445 }
446 
447 Instruction *LoopPredication::findInsertPt(Instruction *Use,
448                                            ArrayRef<Value*> Ops) {
449   for (Value *Op : Ops)
450     if (!L->isLoopInvariant(Op))
451       return Use;
452   return Preheader->getTerminator();
453 }
454 
455 bool LoopPredication::CanExpand(const SCEV* S) {
456   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
457 }
458 
459 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
460     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
461     SCEVExpander &Expander, IRBuilder<> &Builder) {
462   auto *Ty = RangeCheck.IV->getType();
463   // Generate the widened condition for the forward loop:
464   //   guardStart u< guardLimit &&
465   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
466   // where <pred> depends on the latch condition predicate. See the file
467   // header comment for the reasoning.
468   // guardLimit - guardStart + latchStart - 1
469   const SCEV *GuardStart = RangeCheck.IV->getStart();
470   const SCEV *GuardLimit = RangeCheck.Limit;
471   const SCEV *LatchStart = LatchCheck.IV->getStart();
472   const SCEV *LatchLimit = LatchCheck.Limit;
473 
474   // guardLimit - guardStart + latchStart - 1
475   const SCEV *RHS =
476       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
477                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
478   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
479       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
480     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
481     return None;
482   }
483   auto LimitCheckPred =
484       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
485 
486   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
487   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
488   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
489 
490   auto *LimitCheck =
491       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS);
492   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
493                                           GuardStart, GuardLimit);
494   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
495 }
496 
497 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
498     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
499     SCEVExpander &Expander, IRBuilder<> &Builder) {
500   auto *Ty = RangeCheck.IV->getType();
501   const SCEV *GuardStart = RangeCheck.IV->getStart();
502   const SCEV *GuardLimit = RangeCheck.Limit;
503   const SCEV *LatchLimit = LatchCheck.Limit;
504   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
505       !CanExpand(LatchLimit)) {
506     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
507     return None;
508   }
509   // The decrement of the latch check IV should be the same as the
510   // rangeCheckIV.
511   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
512   if (RangeCheck.IV != PostDecLatchCheckIV) {
513     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
514                       << *PostDecLatchCheckIV
515                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
516     return None;
517   }
518 
519   // Generate the widened condition for CountDownLoop:
520   // guardStart u< guardLimit &&
521   // latchLimit <pred> 1.
522   // See the header comment for reasoning of the checks.
523   auto LimitCheckPred =
524       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
525   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
526                                           GuardStart, GuardLimit);
527   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
528                                  SE->getOne(Ty));
529   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
530 }
531 
532 /// If ICI can be widened to a loop invariant condition emits the loop
533 /// invariant condition in the loop preheader and return it, otherwise
534 /// returns None.
535 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
536                                                        SCEVExpander &Expander,
537                                                        IRBuilder<> &Builder) {
538   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
539   LLVM_DEBUG(ICI->dump());
540 
541   // parseLoopStructure guarantees that the latch condition is:
542   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
543   // We are looking for the range checks of the form:
544   //   i u< guardLimit
545   auto RangeCheck = parseLoopICmp(ICI);
546   if (!RangeCheck) {
547     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
548     return None;
549   }
550   LLVM_DEBUG(dbgs() << "Guard check:\n");
551   LLVM_DEBUG(RangeCheck->dump());
552   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
553     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
554                       << RangeCheck->Pred << ")!\n");
555     return None;
556   }
557   auto *RangeCheckIV = RangeCheck->IV;
558   if (!RangeCheckIV->isAffine()) {
559     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
560     return None;
561   }
562   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
563   // We cannot just compare with latch IV step because the latch and range IVs
564   // may have different types.
565   if (!isSupportedStep(Step)) {
566     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
567     return None;
568   }
569   auto *Ty = RangeCheckIV->getType();
570   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
571   if (!CurrLatchCheckOpt) {
572     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
573                          "corresponding to range type: "
574                       << *Ty << "\n");
575     return None;
576   }
577 
578   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
579   // At this point, the range and latch step should have the same type, but need
580   // not have the same value (we support both 1 and -1 steps).
581   assert(Step->getType() ==
582              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
583          "Range and latch steps should be of same type!");
584   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
585     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
586     return None;
587   }
588 
589   if (Step->isOne())
590     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
591                                                Expander, Builder);
592   else {
593     assert(Step->isAllOnesValue() && "Step should be -1!");
594     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
595                                                Expander, Builder);
596   }
597 }
598 
599 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
600                                         Value *Condition,
601                                         SCEVExpander &Expander,
602                                         IRBuilder<> &Builder) {
603   unsigned NumWidened = 0;
604   // The guard condition is expected to be in form of:
605   //   cond1 && cond2 && cond3 ...
606   // Iterate over subconditions looking for icmp conditions which can be
607   // widened across loop iterations. Widening these conditions remember the
608   // resulting list of subconditions in Checks vector.
609   SmallVector<Value *, 4> Worklist(1, Condition);
610   SmallPtrSet<Value *, 4> Visited;
611   Value *WideableCond = nullptr;
612   do {
613     Value *Condition = Worklist.pop_back_val();
614     if (!Visited.insert(Condition).second)
615       continue;
616 
617     Value *LHS, *RHS;
618     using namespace llvm::PatternMatch;
619     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
620       Worklist.push_back(LHS);
621       Worklist.push_back(RHS);
622       continue;
623     }
624 
625     if (match(Condition,
626               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
627       // Pick any, we don't care which
628       WideableCond = Condition;
629       continue;
630     }
631 
632     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
633       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
634                                                    Builder)) {
635         Checks.push_back(NewRangeCheck.getValue());
636         NumWidened++;
637         continue;
638       }
639     }
640 
641     // Save the condition as is if we can't widen it
642     Checks.push_back(Condition);
643   } while (!Worklist.empty());
644   // At the moment, our matching logic for wideable conditions implicitly
645   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
646   // Note that if there were multiple calls to wideable condition in the
647   // traversal, we only need to keep one, and which one is arbitrary.
648   if (WideableCond)
649     Checks.push_back(WideableCond);
650   return NumWidened;
651 }
652 
653 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
654                                            SCEVExpander &Expander) {
655   LLVM_DEBUG(dbgs() << "Processing guard:\n");
656   LLVM_DEBUG(Guard->dump());
657 
658   TotalConsidered++;
659   SmallVector<Value *, 4> Checks;
660   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
661   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
662                                       Builder);
663   if (NumWidened == 0)
664     return false;
665 
666   TotalWidened += NumWidened;
667 
668   // Emit the new guard condition
669   Builder.SetInsertPoint(findInsertPt(Guard, Checks));
670   Value *LastCheck = nullptr;
671   for (auto *Check : Checks)
672     if (!LastCheck)
673       LastCheck = Check;
674     else
675       LastCheck = Builder.CreateAnd(LastCheck, Check);
676   auto *OldCond = Guard->getOperand(0);
677   Guard->setOperand(0, LastCheck);
678   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
679 
680   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
681   return true;
682 }
683 
684 bool LoopPredication::widenWidenableBranchGuardConditions(
685     BranchInst *BI, SCEVExpander &Expander) {
686   assert(isGuardAsWidenableBranch(BI) && "Must be!");
687   LLVM_DEBUG(dbgs() << "Processing guard:\n");
688   LLVM_DEBUG(BI->dump());
689 
690   TotalConsidered++;
691   SmallVector<Value *, 4> Checks;
692   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
693   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
694                                       Expander, Builder);
695   if (NumWidened == 0)
696     return false;
697 
698   TotalWidened += NumWidened;
699 
700   // Emit the new guard condition
701   Builder.SetInsertPoint(findInsertPt(BI, Checks));
702   Value *LastCheck = nullptr;
703   for (auto *Check : Checks)
704     if (!LastCheck)
705       LastCheck = Check;
706     else
707       LastCheck = Builder.CreateAnd(LastCheck, Check);
708   auto *OldCond = BI->getCondition();
709   BI->setCondition(LastCheck);
710   assert(isGuardAsWidenableBranch(BI) &&
711          "Stopped being a guard after transform?");
712   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
713 
714   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
715   return true;
716 }
717 
718 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
719   using namespace PatternMatch;
720 
721   BasicBlock *LoopLatch = L->getLoopLatch();
722   if (!LoopLatch) {
723     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
724     return None;
725   }
726 
727   ICmpInst::Predicate Pred;
728   Value *LHS, *RHS;
729   BasicBlock *TrueDest, *FalseDest;
730 
731   if (!match(LoopLatch->getTerminator(),
732              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
733                   FalseDest))) {
734     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
735     return None;
736   }
737   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
738          "One of the latch's destinations must be the header");
739   if (TrueDest != L->getHeader())
740     Pred = ICmpInst::getInversePredicate(Pred);
741 
742   auto Result = parseLoopICmp(Pred, LHS, RHS);
743   if (!Result) {
744     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
745     return None;
746   }
747 
748   // Check affine first, so if it's not we don't try to compute the step
749   // recurrence.
750   if (!Result->IV->isAffine()) {
751     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
752     return None;
753   }
754 
755   auto *Step = Result->IV->getStepRecurrence(*SE);
756   if (!isSupportedStep(Step)) {
757     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
758     return None;
759   }
760 
761   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
762     if (Step->isOne()) {
763       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
764              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
765     } else {
766       assert(Step->isAllOnesValue() && "Step should be -1!");
767       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
768              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
769     }
770   };
771 
772   if (IsUnsupportedPredicate(Step, Result->Pred)) {
773     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
774                       << ")!\n");
775     return None;
776   }
777   return Result;
778 }
779 
780 // Returns true if its safe to truncate the IV to RangeCheckType.
781 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
782   if (!EnableIVTruncation)
783     return false;
784   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
785              DL->getTypeSizeInBits(RangeCheckType) &&
786          "Expected latch check IV type to be larger than range check operand "
787          "type!");
788   // The start and end values of the IV should be known. This is to guarantee
789   // that truncating the wide type will not lose information.
790   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
791   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
792   if (!Limit || !Start)
793     return false;
794   // This check makes sure that the IV does not change sign during loop
795   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
796   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
797   // IV wraps around, and the truncation of the IV would lose the range of
798   // iterations between 2^32 and 2^64.
799   bool Increasing;
800   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
801     return false;
802   // The active bits should be less than the bits in the RangeCheckType. This
803   // guarantees that truncating the latch check to RangeCheckType is a safe
804   // operation.
805   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
806   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
807          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
808 }
809 
810 bool LoopPredication::isLoopProfitableToPredicate() {
811   if (SkipProfitabilityChecks || !BPI)
812     return true;
813 
814   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
815   L->getExitEdges(ExitEdges);
816   // If there is only one exiting edge in the loop, it is always profitable to
817   // predicate the loop.
818   if (ExitEdges.size() == 1)
819     return true;
820 
821   // Calculate the exiting probabilities of all exiting edges from the loop,
822   // starting with the LatchExitProbability.
823   // Heuristic for profitability: If any of the exiting blocks' probability of
824   // exiting the loop is larger than exiting through the latch block, it's not
825   // profitable to predicate the loop.
826   auto *LatchBlock = L->getLoopLatch();
827   assert(LatchBlock && "Should have a single latch at this point!");
828   auto *LatchTerm = LatchBlock->getTerminator();
829   assert(LatchTerm->getNumSuccessors() == 2 &&
830          "expected to be an exiting block with 2 succs!");
831   unsigned LatchBrExitIdx =
832       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
833   BranchProbability LatchExitProbability =
834       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
835 
836   // Protect against degenerate inputs provided by the user. Providing a value
837   // less than one, can invert the definition of profitable loop predication.
838   float ScaleFactor = LatchExitProbabilityScale;
839   if (ScaleFactor < 1) {
840     LLVM_DEBUG(
841         dbgs()
842         << "Ignored user setting for loop-predication-latch-probability-scale: "
843         << LatchExitProbabilityScale << "\n");
844     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
845     ScaleFactor = 1.0;
846   }
847   const auto LatchProbabilityThreshold =
848       LatchExitProbability * ScaleFactor;
849 
850   for (const auto &ExitEdge : ExitEdges) {
851     BranchProbability ExitingBlockProbability =
852         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
853     // Some exiting edge has higher probability than the latch exiting edge.
854     // No longer profitable to predicate.
855     if (ExitingBlockProbability > LatchProbabilityThreshold)
856       return false;
857   }
858   // Using BPI, we have concluded that the most probable way to exit from the
859   // loop is through the latch (or there's no profile information and all
860   // exits are equally likely).
861   return true;
862 }
863 
864 bool LoopPredication::runOnLoop(Loop *Loop) {
865   L = Loop;
866 
867   LLVM_DEBUG(dbgs() << "Analyzing ");
868   LLVM_DEBUG(L->dump());
869 
870   Module *M = L->getHeader()->getModule();
871 
872   // There is nothing to do if the module doesn't use guards
873   auto *GuardDecl =
874       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
875   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
876   auto *WCDecl = M->getFunction(
877       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
878   bool HasWidenableConditions =
879       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
880   if (!HasIntrinsicGuards && !HasWidenableConditions)
881     return false;
882 
883   DL = &M->getDataLayout();
884 
885   Preheader = L->getLoopPreheader();
886   if (!Preheader)
887     return false;
888 
889   auto LatchCheckOpt = parseLoopLatchICmp();
890   if (!LatchCheckOpt)
891     return false;
892   LatchCheck = *LatchCheckOpt;
893 
894   LLVM_DEBUG(dbgs() << "Latch check:\n");
895   LLVM_DEBUG(LatchCheck.dump());
896 
897   if (!isLoopProfitableToPredicate()) {
898     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
899     return false;
900   }
901   // Collect all the guards into a vector and process later, so as not
902   // to invalidate the instruction iterator.
903   SmallVector<IntrinsicInst *, 4> Guards;
904   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
905   for (const auto BB : L->blocks()) {
906     for (auto &I : *BB)
907       if (isGuard(&I))
908         Guards.push_back(cast<IntrinsicInst>(&I));
909     if (PredicateWidenableBranchGuards &&
910         isGuardAsWidenableBranch(BB->getTerminator()))
911       GuardsAsWidenableBranches.push_back(
912           cast<BranchInst>(BB->getTerminator()));
913   }
914 
915   if (Guards.empty() && GuardsAsWidenableBranches.empty())
916     return false;
917 
918   SCEVExpander Expander(*SE, *DL, "loop-predication");
919 
920   bool Changed = false;
921   for (auto *Guard : Guards)
922     Changed |= widenGuardConditions(Guard, Expander);
923   for (auto *Guard : GuardsAsWidenableBranches)
924     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
925 
926   return Changed;
927 }
928