1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/Local.h" 197 #include "llvm/Transforms/Utils/LoopUtils.h" 198 199 #define DEBUG_TYPE "loop-predication" 200 201 STATISTIC(TotalConsidered, "Number of guards considered"); 202 STATISTIC(TotalWidened, "Number of checks widened"); 203 204 using namespace llvm; 205 206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> 213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 214 cl::Hidden, cl::init(false)); 215 216 // This is the scale factor for the latch probability. We use this during 217 // profitability analysis to find other exiting blocks that have a much higher 218 // probability of exiting the loop instead of loop exiting via latch. 219 // This value should be greater than 1 for a sane profitability check. 220 static cl::opt<float> LatchExitProbabilityScale( 221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 222 cl::desc("scale factor for the latch probability. Value should be greater " 223 "than 1. Lower values are ignored")); 224 225 static cl::opt<bool> PredicateWidenableBranchGuards( 226 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 227 cl::desc("Whether or not we should predicate guards " 228 "expressed as widenable branches to deoptimize blocks"), 229 cl::init(true)); 230 231 namespace { 232 class LoopPredication { 233 /// Represents an induction variable check: 234 /// icmp Pred, <induction variable>, <loop invariant limit> 235 struct LoopICmp { 236 ICmpInst::Predicate Pred; 237 const SCEVAddRecExpr *IV; 238 const SCEV *Limit; 239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 240 const SCEV *Limit) 241 : Pred(Pred), IV(IV), Limit(Limit) {} 242 LoopICmp() {} 243 void dump() { 244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 245 << ", Limit = " << *Limit << "\n"; 246 } 247 }; 248 249 ScalarEvolution *SE; 250 BranchProbabilityInfo *BPI; 251 252 Loop *L; 253 const DataLayout *DL; 254 BasicBlock *Preheader; 255 LoopICmp LatchCheck; 256 257 bool isSupportedStep(const SCEV* Step); 258 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 259 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 260 ICI->getOperand(1)); 261 } 262 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 263 Value *RHS); 264 265 Optional<LoopICmp> parseLoopLatchICmp(); 266 267 /// Return an insertion point suitable for inserting a safe to speculate 268 /// instruction whose only user will be 'User' which has operands 'Ops'. A 269 /// trivial result would be the at the User itself, but we try to return a 270 /// loop invariant location if possible. 271 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 272 /// Same as above, *except* that this uses the SCEV definition of invariant 273 /// which is that an expression *can be made* invariant via SCEVExpander. 274 /// Thus, this version is only suitable for finding an insert point to be be 275 /// passed to SCEVExpander! 276 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 277 278 bool CanExpand(const SCEV* S); 279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 280 ICmpInst::Predicate Pred, const SCEV *LHS, 281 const SCEV *RHS); 282 283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 284 Instruction *Guard); 285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 286 LoopICmp RangeCheck, 287 SCEVExpander &Expander, 288 Instruction *Guard); 289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 290 LoopICmp RangeCheck, 291 SCEVExpander &Expander, 292 Instruction *Guard); 293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 294 SCEVExpander &Expander, Instruction *Guard); 295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 297 // If the loop always exits through another block in the loop, we should not 298 // predicate based on the latch check. For example, the latch check can be a 299 // very coarse grained check and there can be more fine grained exit checks 300 // within the loop. We identify such unprofitable loops through BPI. 301 bool isLoopProfitableToPredicate(); 302 303 // When the IV type is wider than the range operand type, we can still do loop 304 // predication, by generating SCEVs for the range and latch that are of the 305 // same type. We achieve this by generating a SCEV truncate expression for the 306 // latch IV. This is done iff truncation of the IV is a safe operation, 307 // without loss of information. 308 // Another way to achieve this is by generating a wider type SCEV for the 309 // range check operand, however, this needs a more involved check that 310 // operands do not overflow. This can lead to loss of information when the 311 // range operand is of the form: add i32 %offset, %iv. We need to prove that 312 // sext(x + y) is same as sext(x) + sext(y). 313 // This function returns true if we can safely represent the IV type in 314 // the RangeCheckType without loss of information. 315 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 316 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 317 // so. 318 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 319 320 public: 321 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 322 : SE(SE), BPI(BPI){}; 323 bool runOnLoop(Loop *L); 324 }; 325 326 class LoopPredicationLegacyPass : public LoopPass { 327 public: 328 static char ID; 329 LoopPredicationLegacyPass() : LoopPass(ID) { 330 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 331 } 332 333 void getAnalysisUsage(AnalysisUsage &AU) const override { 334 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 335 getLoopAnalysisUsage(AU); 336 } 337 338 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 339 if (skipLoop(L)) 340 return false; 341 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 342 BranchProbabilityInfo &BPI = 343 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 344 LoopPredication LP(SE, &BPI); 345 return LP.runOnLoop(L); 346 } 347 }; 348 349 char LoopPredicationLegacyPass::ID = 0; 350 } // end namespace llvm 351 352 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 353 "Loop predication", false, false) 354 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 355 INITIALIZE_PASS_DEPENDENCY(LoopPass) 356 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 357 "Loop predication", false, false) 358 359 Pass *llvm::createLoopPredicationPass() { 360 return new LoopPredicationLegacyPass(); 361 } 362 363 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 364 LoopStandardAnalysisResults &AR, 365 LPMUpdater &U) { 366 const auto &FAM = 367 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 368 Function *F = L.getHeader()->getParent(); 369 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 370 LoopPredication LP(&AR.SE, BPI); 371 if (!LP.runOnLoop(&L)) 372 return PreservedAnalyses::all(); 373 374 return getLoopPassPreservedAnalyses(); 375 } 376 377 Optional<LoopPredication::LoopICmp> 378 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 379 Value *RHS) { 380 const SCEV *LHSS = SE->getSCEV(LHS); 381 if (isa<SCEVCouldNotCompute>(LHSS)) 382 return None; 383 const SCEV *RHSS = SE->getSCEV(RHS); 384 if (isa<SCEVCouldNotCompute>(RHSS)) 385 return None; 386 387 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 388 if (SE->isLoopInvariant(LHSS, L)) { 389 std::swap(LHS, RHS); 390 std::swap(LHSS, RHSS); 391 Pred = ICmpInst::getSwappedPredicate(Pred); 392 } 393 394 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 395 if (!AR || AR->getLoop() != L) 396 return None; 397 398 return LoopICmp(Pred, AR, RHSS); 399 } 400 401 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 402 Instruction *Guard, 403 ICmpInst::Predicate Pred, const SCEV *LHS, 404 const SCEV *RHS) { 405 Type *Ty = LHS->getType(); 406 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 407 408 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 409 IRBuilder<> Builder(Guard); 410 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 411 return Builder.getTrue(); 412 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 413 LHS, RHS)) 414 return Builder.getFalse(); 415 } 416 417 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 418 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 419 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 420 return Builder.CreateICmp(Pred, LHSV, RHSV); 421 } 422 423 Optional<LoopPredication::LoopICmp> 424 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 425 426 auto *LatchType = LatchCheck.IV->getType(); 427 if (RangeCheckType == LatchType) 428 return LatchCheck; 429 // For now, bail out if latch type is narrower than range type. 430 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 431 return None; 432 if (!isSafeToTruncateWideIVType(RangeCheckType)) 433 return None; 434 // We can now safely identify the truncated version of the IV and limit for 435 // RangeCheckType. 436 LoopICmp NewLatchCheck; 437 NewLatchCheck.Pred = LatchCheck.Pred; 438 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 439 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 440 if (!NewLatchCheck.IV) 441 return None; 442 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 443 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 444 << "can be represented as range check type:" 445 << *RangeCheckType << "\n"); 446 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 447 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 448 return NewLatchCheck; 449 } 450 451 bool LoopPredication::isSupportedStep(const SCEV* Step) { 452 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 453 } 454 455 Instruction *LoopPredication::findInsertPt(Instruction *Use, 456 ArrayRef<Value*> Ops) { 457 for (Value *Op : Ops) 458 if (!L->isLoopInvariant(Op)) 459 return Use; 460 return Preheader->getTerminator(); 461 } 462 463 Instruction *LoopPredication::findInsertPt(Instruction *Use, 464 ArrayRef<const SCEV*> Ops) { 465 for (const SCEV *Op : Ops) 466 if (!SE->isLoopInvariant(Op, L)) 467 return Use; 468 return Preheader->getTerminator(); 469 } 470 471 472 bool LoopPredication::CanExpand(const SCEV* S) { 473 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 474 } 475 476 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 477 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 478 SCEVExpander &Expander, Instruction *Guard) { 479 auto *Ty = RangeCheck.IV->getType(); 480 // Generate the widened condition for the forward loop: 481 // guardStart u< guardLimit && 482 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 483 // where <pred> depends on the latch condition predicate. See the file 484 // header comment for the reasoning. 485 // guardLimit - guardStart + latchStart - 1 486 const SCEV *GuardStart = RangeCheck.IV->getStart(); 487 const SCEV *GuardLimit = RangeCheck.Limit; 488 const SCEV *LatchStart = LatchCheck.IV->getStart(); 489 const SCEV *LatchLimit = LatchCheck.Limit; 490 491 // guardLimit - guardStart + latchStart - 1 492 const SCEV *RHS = 493 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 494 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 495 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 496 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 497 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 498 return None; 499 } 500 auto LimitCheckPred = 501 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 502 503 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 504 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 505 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 506 507 auto *LimitCheck = 508 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 509 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 510 GuardStart, GuardLimit); 511 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 512 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 513 } 514 515 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 516 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 517 SCEVExpander &Expander, Instruction *Guard) { 518 auto *Ty = RangeCheck.IV->getType(); 519 const SCEV *GuardStart = RangeCheck.IV->getStart(); 520 const SCEV *GuardLimit = RangeCheck.Limit; 521 const SCEV *LatchLimit = LatchCheck.Limit; 522 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 523 !CanExpand(LatchLimit)) { 524 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 525 return None; 526 } 527 // The decrement of the latch check IV should be the same as the 528 // rangeCheckIV. 529 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 530 if (RangeCheck.IV != PostDecLatchCheckIV) { 531 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 532 << *PostDecLatchCheckIV 533 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 534 return None; 535 } 536 537 // Generate the widened condition for CountDownLoop: 538 // guardStart u< guardLimit && 539 // latchLimit <pred> 1. 540 // See the header comment for reasoning of the checks. 541 auto LimitCheckPred = 542 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 543 auto *FirstIterationCheck = expandCheck(Expander, Guard, 544 ICmpInst::ICMP_ULT, 545 GuardStart, GuardLimit); 546 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 547 SE->getOne(Ty)); 548 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 549 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 550 } 551 552 /// If ICI can be widened to a loop invariant condition emits the loop 553 /// invariant condition in the loop preheader and return it, otherwise 554 /// returns None. 555 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 556 SCEVExpander &Expander, 557 Instruction *Guard) { 558 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 559 LLVM_DEBUG(ICI->dump()); 560 561 // parseLoopStructure guarantees that the latch condition is: 562 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 563 // We are looking for the range checks of the form: 564 // i u< guardLimit 565 auto RangeCheck = parseLoopICmp(ICI); 566 if (!RangeCheck) { 567 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 568 return None; 569 } 570 LLVM_DEBUG(dbgs() << "Guard check:\n"); 571 LLVM_DEBUG(RangeCheck->dump()); 572 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 573 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 574 << RangeCheck->Pred << ")!\n"); 575 return None; 576 } 577 auto *RangeCheckIV = RangeCheck->IV; 578 if (!RangeCheckIV->isAffine()) { 579 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 580 return None; 581 } 582 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 583 // We cannot just compare with latch IV step because the latch and range IVs 584 // may have different types. 585 if (!isSupportedStep(Step)) { 586 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 587 return None; 588 } 589 auto *Ty = RangeCheckIV->getType(); 590 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 591 if (!CurrLatchCheckOpt) { 592 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 593 "corresponding to range type: " 594 << *Ty << "\n"); 595 return None; 596 } 597 598 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 599 // At this point, the range and latch step should have the same type, but need 600 // not have the same value (we support both 1 and -1 steps). 601 assert(Step->getType() == 602 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 603 "Range and latch steps should be of same type!"); 604 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 605 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 606 return None; 607 } 608 609 if (Step->isOne()) 610 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 611 Expander, Guard); 612 else { 613 assert(Step->isAllOnesValue() && "Step should be -1!"); 614 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 615 Expander, Guard); 616 } 617 } 618 619 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 620 Value *Condition, 621 SCEVExpander &Expander, 622 Instruction *Guard) { 623 unsigned NumWidened = 0; 624 // The guard condition is expected to be in form of: 625 // cond1 && cond2 && cond3 ... 626 // Iterate over subconditions looking for icmp conditions which can be 627 // widened across loop iterations. Widening these conditions remember the 628 // resulting list of subconditions in Checks vector. 629 SmallVector<Value *, 4> Worklist(1, Condition); 630 SmallPtrSet<Value *, 4> Visited; 631 Value *WideableCond = nullptr; 632 do { 633 Value *Condition = Worklist.pop_back_val(); 634 if (!Visited.insert(Condition).second) 635 continue; 636 637 Value *LHS, *RHS; 638 using namespace llvm::PatternMatch; 639 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 640 Worklist.push_back(LHS); 641 Worklist.push_back(RHS); 642 continue; 643 } 644 645 if (match(Condition, 646 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 647 // Pick any, we don't care which 648 WideableCond = Condition; 649 continue; 650 } 651 652 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 653 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 654 Guard)) { 655 Checks.push_back(NewRangeCheck.getValue()); 656 NumWidened++; 657 continue; 658 } 659 } 660 661 // Save the condition as is if we can't widen it 662 Checks.push_back(Condition); 663 } while (!Worklist.empty()); 664 // At the moment, our matching logic for wideable conditions implicitly 665 // assumes we preserve the form: (br (and Cond, WC())). FIXME 666 // Note that if there were multiple calls to wideable condition in the 667 // traversal, we only need to keep one, and which one is arbitrary. 668 if (WideableCond) 669 Checks.push_back(WideableCond); 670 return NumWidened; 671 } 672 673 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 674 SCEVExpander &Expander) { 675 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 676 LLVM_DEBUG(Guard->dump()); 677 678 TotalConsidered++; 679 SmallVector<Value *, 4> Checks; 680 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 681 Guard); 682 if (NumWidened == 0) 683 return false; 684 685 TotalWidened += NumWidened; 686 687 // Emit the new guard condition 688 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 689 Value *LastCheck = nullptr; 690 for (auto *Check : Checks) 691 if (!LastCheck) 692 LastCheck = Check; 693 else 694 LastCheck = Builder.CreateAnd(LastCheck, Check); 695 auto *OldCond = Guard->getOperand(0); 696 Guard->setOperand(0, LastCheck); 697 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 698 699 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 700 return true; 701 } 702 703 bool LoopPredication::widenWidenableBranchGuardConditions( 704 BranchInst *BI, SCEVExpander &Expander) { 705 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 706 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 707 LLVM_DEBUG(BI->dump()); 708 709 TotalConsidered++; 710 SmallVector<Value *, 4> Checks; 711 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 712 Expander, BI); 713 if (NumWidened == 0) 714 return false; 715 716 TotalWidened += NumWidened; 717 718 // Emit the new guard condition 719 IRBuilder<> Builder(findInsertPt(BI, Checks)); 720 Value *LastCheck = nullptr; 721 for (auto *Check : Checks) 722 if (!LastCheck) 723 LastCheck = Check; 724 else 725 LastCheck = Builder.CreateAnd(LastCheck, Check); 726 auto *OldCond = BI->getCondition(); 727 BI->setCondition(LastCheck); 728 assert(isGuardAsWidenableBranch(BI) && 729 "Stopped being a guard after transform?"); 730 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 731 732 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 733 return true; 734 } 735 736 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 737 using namespace PatternMatch; 738 739 BasicBlock *LoopLatch = L->getLoopLatch(); 740 if (!LoopLatch) { 741 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 742 return None; 743 } 744 745 ICmpInst::Predicate Pred; 746 Value *LHS, *RHS; 747 BasicBlock *TrueDest, *FalseDest; 748 749 if (!match(LoopLatch->getTerminator(), 750 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 751 FalseDest))) { 752 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 753 return None; 754 } 755 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 756 "One of the latch's destinations must be the header"); 757 if (TrueDest != L->getHeader()) 758 Pred = ICmpInst::getInversePredicate(Pred); 759 760 auto Result = parseLoopICmp(Pred, LHS, RHS); 761 if (!Result) { 762 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 763 return None; 764 } 765 766 // Check affine first, so if it's not we don't try to compute the step 767 // recurrence. 768 if (!Result->IV->isAffine()) { 769 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 770 return None; 771 } 772 773 auto *Step = Result->IV->getStepRecurrence(*SE); 774 if (!isSupportedStep(Step)) { 775 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 776 return None; 777 } 778 779 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 780 if (Step->isOne()) { 781 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 782 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 783 } else { 784 assert(Step->isAllOnesValue() && "Step should be -1!"); 785 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 786 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 787 } 788 }; 789 790 if (IsUnsupportedPredicate(Step, Result->Pred)) { 791 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 792 << ")!\n"); 793 return None; 794 } 795 return Result; 796 } 797 798 // Returns true if its safe to truncate the IV to RangeCheckType. 799 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 800 if (!EnableIVTruncation) 801 return false; 802 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 803 DL->getTypeSizeInBits(RangeCheckType) && 804 "Expected latch check IV type to be larger than range check operand " 805 "type!"); 806 // The start and end values of the IV should be known. This is to guarantee 807 // that truncating the wide type will not lose information. 808 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 809 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 810 if (!Limit || !Start) 811 return false; 812 // This check makes sure that the IV does not change sign during loop 813 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 814 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 815 // IV wraps around, and the truncation of the IV would lose the range of 816 // iterations between 2^32 and 2^64. 817 bool Increasing; 818 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 819 return false; 820 // The active bits should be less than the bits in the RangeCheckType. This 821 // guarantees that truncating the latch check to RangeCheckType is a safe 822 // operation. 823 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 824 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 825 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 826 } 827 828 bool LoopPredication::isLoopProfitableToPredicate() { 829 if (SkipProfitabilityChecks || !BPI) 830 return true; 831 832 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 833 L->getExitEdges(ExitEdges); 834 // If there is only one exiting edge in the loop, it is always profitable to 835 // predicate the loop. 836 if (ExitEdges.size() == 1) 837 return true; 838 839 // Calculate the exiting probabilities of all exiting edges from the loop, 840 // starting with the LatchExitProbability. 841 // Heuristic for profitability: If any of the exiting blocks' probability of 842 // exiting the loop is larger than exiting through the latch block, it's not 843 // profitable to predicate the loop. 844 auto *LatchBlock = L->getLoopLatch(); 845 assert(LatchBlock && "Should have a single latch at this point!"); 846 auto *LatchTerm = LatchBlock->getTerminator(); 847 assert(LatchTerm->getNumSuccessors() == 2 && 848 "expected to be an exiting block with 2 succs!"); 849 unsigned LatchBrExitIdx = 850 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 851 BranchProbability LatchExitProbability = 852 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 853 854 // Protect against degenerate inputs provided by the user. Providing a value 855 // less than one, can invert the definition of profitable loop predication. 856 float ScaleFactor = LatchExitProbabilityScale; 857 if (ScaleFactor < 1) { 858 LLVM_DEBUG( 859 dbgs() 860 << "Ignored user setting for loop-predication-latch-probability-scale: " 861 << LatchExitProbabilityScale << "\n"); 862 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 863 ScaleFactor = 1.0; 864 } 865 const auto LatchProbabilityThreshold = 866 LatchExitProbability * ScaleFactor; 867 868 for (const auto &ExitEdge : ExitEdges) { 869 BranchProbability ExitingBlockProbability = 870 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 871 // Some exiting edge has higher probability than the latch exiting edge. 872 // No longer profitable to predicate. 873 if (ExitingBlockProbability > LatchProbabilityThreshold) 874 return false; 875 } 876 // Using BPI, we have concluded that the most probable way to exit from the 877 // loop is through the latch (or there's no profile information and all 878 // exits are equally likely). 879 return true; 880 } 881 882 bool LoopPredication::runOnLoop(Loop *Loop) { 883 L = Loop; 884 885 LLVM_DEBUG(dbgs() << "Analyzing "); 886 LLVM_DEBUG(L->dump()); 887 888 Module *M = L->getHeader()->getModule(); 889 890 // There is nothing to do if the module doesn't use guards 891 auto *GuardDecl = 892 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 893 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 894 auto *WCDecl = M->getFunction( 895 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 896 bool HasWidenableConditions = 897 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 898 if (!HasIntrinsicGuards && !HasWidenableConditions) 899 return false; 900 901 DL = &M->getDataLayout(); 902 903 Preheader = L->getLoopPreheader(); 904 if (!Preheader) 905 return false; 906 907 auto LatchCheckOpt = parseLoopLatchICmp(); 908 if (!LatchCheckOpt) 909 return false; 910 LatchCheck = *LatchCheckOpt; 911 912 LLVM_DEBUG(dbgs() << "Latch check:\n"); 913 LLVM_DEBUG(LatchCheck.dump()); 914 915 if (!isLoopProfitableToPredicate()) { 916 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 917 return false; 918 } 919 // Collect all the guards into a vector and process later, so as not 920 // to invalidate the instruction iterator. 921 SmallVector<IntrinsicInst *, 4> Guards; 922 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 923 for (const auto BB : L->blocks()) { 924 for (auto &I : *BB) 925 if (isGuard(&I)) 926 Guards.push_back(cast<IntrinsicInst>(&I)); 927 if (PredicateWidenableBranchGuards && 928 isGuardAsWidenableBranch(BB->getTerminator())) 929 GuardsAsWidenableBranches.push_back( 930 cast<BranchInst>(BB->getTerminator())); 931 } 932 933 if (Guards.empty() && GuardsAsWidenableBranches.empty()) 934 return false; 935 936 SCEVExpander Expander(*SE, *DL, "loop-predication"); 937 938 bool Changed = false; 939 for (auto *Guard : Guards) 940 Changed |= widenGuardConditions(Guard, Expander); 941 for (auto *Guard : GuardsAsWidenableBranches) 942 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 943 944 return Changed; 945 } 946