1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/MemorySSA.h" 187 #include "llvm/Analysis/MemorySSAUpdater.h" 188 #include "llvm/Analysis/ScalarEvolution.h" 189 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 190 #include "llvm/IR/Function.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/IR/ProfDataUtils.h" 195 #include "llvm/InitializePasses.h" 196 #include "llvm/Pass.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Support/Debug.h" 199 #include "llvm/Transforms/Scalar.h" 200 #include "llvm/Transforms/Utils/GuardUtils.h" 201 #include "llvm/Transforms/Utils/Local.h" 202 #include "llvm/Transforms/Utils/LoopUtils.h" 203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 204 #include <optional> 205 206 #define DEBUG_TYPE "loop-predication" 207 208 STATISTIC(TotalConsidered, "Number of guards considered"); 209 STATISTIC(TotalWidened, "Number of checks widened"); 210 211 using namespace llvm; 212 213 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 214 cl::Hidden, cl::init(true)); 215 216 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 217 cl::Hidden, cl::init(true)); 218 219 static cl::opt<bool> 220 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 221 cl::Hidden, cl::init(false)); 222 223 // This is the scale factor for the latch probability. We use this during 224 // profitability analysis to find other exiting blocks that have a much higher 225 // probability of exiting the loop instead of loop exiting via latch. 226 // This value should be greater than 1 for a sane profitability check. 227 static cl::opt<float> LatchExitProbabilityScale( 228 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 229 cl::desc("scale factor for the latch probability. Value should be greater " 230 "than 1. Lower values are ignored")); 231 232 static cl::opt<bool> PredicateWidenableBranchGuards( 233 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 234 cl::desc("Whether or not we should predicate guards " 235 "expressed as widenable branches to deoptimize blocks"), 236 cl::init(true)); 237 238 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions( 239 "loop-predication-insert-assumes-of-predicated-guards-conditions", 240 cl::Hidden, 241 cl::desc("Whether or not we should insert assumes of conditions of " 242 "predicated guards"), 243 cl::init(true)); 244 245 namespace { 246 /// Represents an induction variable check: 247 /// icmp Pred, <induction variable>, <loop invariant limit> 248 struct LoopICmp { 249 ICmpInst::Predicate Pred; 250 const SCEVAddRecExpr *IV; 251 const SCEV *Limit; 252 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 253 const SCEV *Limit) 254 : Pred(Pred), IV(IV), Limit(Limit) {} 255 LoopICmp() = default; 256 void dump() { 257 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 258 << ", Limit = " << *Limit << "\n"; 259 } 260 }; 261 262 class LoopPredication { 263 AliasAnalysis *AA; 264 DominatorTree *DT; 265 ScalarEvolution *SE; 266 LoopInfo *LI; 267 MemorySSAUpdater *MSSAU; 268 269 Loop *L; 270 const DataLayout *DL; 271 BasicBlock *Preheader; 272 LoopICmp LatchCheck; 273 274 bool isSupportedStep(const SCEV* Step); 275 std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 276 std::optional<LoopICmp> parseLoopLatchICmp(); 277 278 /// Return an insertion point suitable for inserting a safe to speculate 279 /// instruction whose only user will be 'User' which has operands 'Ops'. A 280 /// trivial result would be the at the User itself, but we try to return a 281 /// loop invariant location if possible. 282 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 283 /// Same as above, *except* that this uses the SCEV definition of invariant 284 /// which is that an expression *can be made* invariant via SCEVExpander. 285 /// Thus, this version is only suitable for finding an insert point to be be 286 /// passed to SCEVExpander! 287 Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User, 288 ArrayRef<const SCEV *> Ops); 289 290 /// Return true if the value is known to produce a single fixed value across 291 /// all iterations on which it executes. Note that this does not imply 292 /// speculation safety. That must be established separately. 293 bool isLoopInvariantValue(const SCEV* S); 294 295 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 296 ICmpInst::Predicate Pred, const SCEV *LHS, 297 const SCEV *RHS); 298 299 std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, 300 SCEVExpander &Expander, 301 Instruction *Guard); 302 std::optional<Value *> 303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, 304 SCEVExpander &Expander, 305 Instruction *Guard); 306 std::optional<Value *> 307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, 308 SCEVExpander &Expander, 309 Instruction *Guard); 310 void widenChecks(SmallVectorImpl<Value *> &Checks, 311 SmallVectorImpl<Value *> &WidenedChecks, 312 SCEVExpander &Expander, Instruction *Guard); 313 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 314 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 315 // If the loop always exits through another block in the loop, we should not 316 // predicate based on the latch check. For example, the latch check can be a 317 // very coarse grained check and there can be more fine grained exit checks 318 // within the loop. 319 bool isLoopProfitableToPredicate(); 320 321 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 322 323 public: 324 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, 325 LoopInfo *LI, MemorySSAUpdater *MSSAU) 326 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){}; 327 bool runOnLoop(Loop *L); 328 }; 329 330 class LoopPredicationLegacyPass : public LoopPass { 331 public: 332 static char ID; 333 LoopPredicationLegacyPass() : LoopPass(ID) { 334 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 335 } 336 337 void getAnalysisUsage(AnalysisUsage &AU) const override { 338 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 339 getLoopAnalysisUsage(AU); 340 AU.addPreserved<MemorySSAWrapperPass>(); 341 } 342 343 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 344 if (skipLoop(L)) 345 return false; 346 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 347 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 348 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 349 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 350 std::unique_ptr<MemorySSAUpdater> MSSAU; 351 if (MSSAWP) 352 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA()); 353 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 354 LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr); 355 return LP.runOnLoop(L); 356 } 357 }; 358 359 char LoopPredicationLegacyPass::ID = 0; 360 } // end namespace 361 362 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 363 "Loop predication", false, false) 364 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 365 INITIALIZE_PASS_DEPENDENCY(LoopPass) 366 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 367 "Loop predication", false, false) 368 369 Pass *llvm::createLoopPredicationPass() { 370 return new LoopPredicationLegacyPass(); 371 } 372 373 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 374 LoopStandardAnalysisResults &AR, 375 LPMUpdater &U) { 376 std::unique_ptr<MemorySSAUpdater> MSSAU; 377 if (AR.MSSA) 378 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA); 379 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, 380 MSSAU ? MSSAU.get() : nullptr); 381 if (!LP.runOnLoop(&L)) 382 return PreservedAnalyses::all(); 383 384 auto PA = getLoopPassPreservedAnalyses(); 385 if (AR.MSSA) 386 PA.preserve<MemorySSAAnalysis>(); 387 return PA; 388 } 389 390 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) { 391 auto Pred = ICI->getPredicate(); 392 auto *LHS = ICI->getOperand(0); 393 auto *RHS = ICI->getOperand(1); 394 395 const SCEV *LHSS = SE->getSCEV(LHS); 396 if (isa<SCEVCouldNotCompute>(LHSS)) 397 return std::nullopt; 398 const SCEV *RHSS = SE->getSCEV(RHS); 399 if (isa<SCEVCouldNotCompute>(RHSS)) 400 return std::nullopt; 401 402 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 403 if (SE->isLoopInvariant(LHSS, L)) { 404 std::swap(LHS, RHS); 405 std::swap(LHSS, RHSS); 406 Pred = ICmpInst::getSwappedPredicate(Pred); 407 } 408 409 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 410 if (!AR || AR->getLoop() != L) 411 return std::nullopt; 412 413 return LoopICmp(Pred, AR, RHSS); 414 } 415 416 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 417 Instruction *Guard, 418 ICmpInst::Predicate Pred, const SCEV *LHS, 419 const SCEV *RHS) { 420 Type *Ty = LHS->getType(); 421 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 422 423 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 424 IRBuilder<> Builder(Guard); 425 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 426 return Builder.getTrue(); 427 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 428 LHS, RHS)) 429 return Builder.getFalse(); 430 } 431 432 Value *LHSV = 433 Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS})); 434 Value *RHSV = 435 Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS})); 436 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 437 return Builder.CreateICmp(Pred, LHSV, RHSV); 438 } 439 440 // Returns true if its safe to truncate the IV to RangeCheckType. 441 // When the IV type is wider than the range operand type, we can still do loop 442 // predication, by generating SCEVs for the range and latch that are of the 443 // same type. We achieve this by generating a SCEV truncate expression for the 444 // latch IV. This is done iff truncation of the IV is a safe operation, 445 // without loss of information. 446 // Another way to achieve this is by generating a wider type SCEV for the 447 // range check operand, however, this needs a more involved check that 448 // operands do not overflow. This can lead to loss of information when the 449 // range operand is of the form: add i32 %offset, %iv. We need to prove that 450 // sext(x + y) is same as sext(x) + sext(y). 451 // This function returns true if we can safely represent the IV type in 452 // the RangeCheckType without loss of information. 453 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 454 ScalarEvolution &SE, 455 const LoopICmp LatchCheck, 456 Type *RangeCheckType) { 457 if (!EnableIVTruncation) 458 return false; 459 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() > 460 DL.getTypeSizeInBits(RangeCheckType).getFixedValue() && 461 "Expected latch check IV type to be larger than range check operand " 462 "type!"); 463 // The start and end values of the IV should be known. This is to guarantee 464 // that truncating the wide type will not lose information. 465 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 466 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 467 if (!Limit || !Start) 468 return false; 469 // This check makes sure that the IV does not change sign during loop 470 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 471 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 472 // IV wraps around, and the truncation of the IV would lose the range of 473 // iterations between 2^32 and 2^64. 474 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred)) 475 return false; 476 // The active bits should be less than the bits in the RangeCheckType. This 477 // guarantees that truncating the latch check to RangeCheckType is a safe 478 // operation. 479 auto RangeCheckTypeBitSize = 480 DL.getTypeSizeInBits(RangeCheckType).getFixedValue(); 481 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 482 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 483 } 484 485 486 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 487 // the requested type if safe to do so. May involve the use of a new IV. 488 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 489 ScalarEvolution &SE, 490 const LoopICmp LatchCheck, 491 Type *RangeCheckType) { 492 493 auto *LatchType = LatchCheck.IV->getType(); 494 if (RangeCheckType == LatchType) 495 return LatchCheck; 496 // For now, bail out if latch type is narrower than range type. 497 if (DL.getTypeSizeInBits(LatchType).getFixedValue() < 498 DL.getTypeSizeInBits(RangeCheckType).getFixedValue()) 499 return std::nullopt; 500 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 501 return std::nullopt; 502 // We can now safely identify the truncated version of the IV and limit for 503 // RangeCheckType. 504 LoopICmp NewLatchCheck; 505 NewLatchCheck.Pred = LatchCheck.Pred; 506 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 507 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 508 if (!NewLatchCheck.IV) 509 return std::nullopt; 510 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 511 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 512 << "can be represented as range check type:" 513 << *RangeCheckType << "\n"); 514 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 515 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 516 return NewLatchCheck; 517 } 518 519 bool LoopPredication::isSupportedStep(const SCEV* Step) { 520 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 521 } 522 523 Instruction *LoopPredication::findInsertPt(Instruction *Use, 524 ArrayRef<Value*> Ops) { 525 for (Value *Op : Ops) 526 if (!L->isLoopInvariant(Op)) 527 return Use; 528 return Preheader->getTerminator(); 529 } 530 531 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander, 532 Instruction *Use, 533 ArrayRef<const SCEV *> Ops) { 534 // Subtlety: SCEV considers things to be invariant if the value produced is 535 // the same across iterations. This is not the same as being able to 536 // evaluate outside the loop, which is what we actually need here. 537 for (const SCEV *Op : Ops) 538 if (!SE->isLoopInvariant(Op, L) || 539 !Expander.isSafeToExpandAt(Op, Preheader->getTerminator())) 540 return Use; 541 return Preheader->getTerminator(); 542 } 543 544 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 545 // Handling expressions which produce invariant results, but *haven't* yet 546 // been removed from the loop serves two important purposes. 547 // 1) Most importantly, it resolves a pass ordering cycle which would 548 // otherwise need us to iteration licm, loop-predication, and either 549 // loop-unswitch or loop-peeling to make progress on examples with lots of 550 // predicable range checks in a row. (Since, in the general case, we can't 551 // hoist the length checks until the dominating checks have been discharged 552 // as we can't prove doing so is safe.) 553 // 2) As a nice side effect, this exposes the value of peeling or unswitching 554 // much more obviously in the IR. Otherwise, the cost modeling for other 555 // transforms would end up needing to duplicate all of this logic to model a 556 // check which becomes predictable based on a modeled peel or unswitch. 557 // 558 // The cost of doing so in the worst case is an extra fill from the stack in 559 // the loop to materialize the loop invariant test value instead of checking 560 // against the original IV which is presumable in a register inside the loop. 561 // Such cases are presumably rare, and hint at missing oppurtunities for 562 // other passes. 563 564 if (SE->isLoopInvariant(S, L)) 565 // Note: This the SCEV variant, so the original Value* may be within the 566 // loop even though SCEV has proven it is loop invariant. 567 return true; 568 569 // Handle a particular important case which SCEV doesn't yet know about which 570 // shows up in range checks on arrays with immutable lengths. 571 // TODO: This should be sunk inside SCEV. 572 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 573 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 574 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 575 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) || 576 LI->hasMetadata(LLVMContext::MD_invariant_load)) 577 return true; 578 return false; 579 } 580 581 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 582 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, 583 Instruction *Guard) { 584 auto *Ty = RangeCheck.IV->getType(); 585 // Generate the widened condition for the forward loop: 586 // guardStart u< guardLimit && 587 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 588 // where <pred> depends on the latch condition predicate. See the file 589 // header comment for the reasoning. 590 // guardLimit - guardStart + latchStart - 1 591 const SCEV *GuardStart = RangeCheck.IV->getStart(); 592 const SCEV *GuardLimit = RangeCheck.Limit; 593 const SCEV *LatchStart = LatchCheck.IV->getStart(); 594 const SCEV *LatchLimit = LatchCheck.Limit; 595 // Subtlety: We need all the values to be *invariant* across all iterations, 596 // but we only need to check expansion safety for those which *aren't* 597 // already guaranteed to dominate the guard. 598 if (!isLoopInvariantValue(GuardStart) || 599 !isLoopInvariantValue(GuardLimit) || 600 !isLoopInvariantValue(LatchStart) || 601 !isLoopInvariantValue(LatchLimit)) { 602 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 603 return std::nullopt; 604 } 605 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 606 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 607 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 608 return std::nullopt; 609 } 610 611 // guardLimit - guardStart + latchStart - 1 612 const SCEV *RHS = 613 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 614 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 615 auto LimitCheckPred = 616 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 617 618 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 619 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 620 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 621 622 auto *LimitCheck = 623 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 624 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 625 GuardStart, GuardLimit); 626 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 627 return Builder.CreateFreeze( 628 Builder.CreateAnd(FirstIterationCheck, LimitCheck)); 629 } 630 631 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 632 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, 633 Instruction *Guard) { 634 auto *Ty = RangeCheck.IV->getType(); 635 const SCEV *GuardStart = RangeCheck.IV->getStart(); 636 const SCEV *GuardLimit = RangeCheck.Limit; 637 const SCEV *LatchStart = LatchCheck.IV->getStart(); 638 const SCEV *LatchLimit = LatchCheck.Limit; 639 // Subtlety: We need all the values to be *invariant* across all iterations, 640 // but we only need to check expansion safety for those which *aren't* 641 // already guaranteed to dominate the guard. 642 if (!isLoopInvariantValue(GuardStart) || 643 !isLoopInvariantValue(GuardLimit) || 644 !isLoopInvariantValue(LatchStart) || 645 !isLoopInvariantValue(LatchLimit)) { 646 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 647 return std::nullopt; 648 } 649 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 650 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 651 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 652 return std::nullopt; 653 } 654 // The decrement of the latch check IV should be the same as the 655 // rangeCheckIV. 656 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 657 if (RangeCheck.IV != PostDecLatchCheckIV) { 658 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 659 << *PostDecLatchCheckIV 660 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 661 return std::nullopt; 662 } 663 664 // Generate the widened condition for CountDownLoop: 665 // guardStart u< guardLimit && 666 // latchLimit <pred> 1. 667 // See the header comment for reasoning of the checks. 668 auto LimitCheckPred = 669 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 670 auto *FirstIterationCheck = expandCheck(Expander, Guard, 671 ICmpInst::ICMP_ULT, 672 GuardStart, GuardLimit); 673 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 674 SE->getOne(Ty)); 675 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 676 return Builder.CreateFreeze( 677 Builder.CreateAnd(FirstIterationCheck, LimitCheck)); 678 } 679 680 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 681 LoopICmp& RC) { 682 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 683 // ULT/UGE form for ease of handling by our caller. 684 if (ICmpInst::isEquality(RC.Pred) && 685 RC.IV->getStepRecurrence(*SE)->isOne() && 686 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 687 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 688 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 689 } 690 691 /// If ICI can be widened to a loop invariant condition emits the loop 692 /// invariant condition in the loop preheader and return it, otherwise 693 /// returns std::nullopt. 694 std::optional<Value *> 695 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 696 Instruction *Guard) { 697 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 698 LLVM_DEBUG(ICI->dump()); 699 700 // parseLoopStructure guarantees that the latch condition is: 701 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 702 // We are looking for the range checks of the form: 703 // i u< guardLimit 704 auto RangeCheck = parseLoopICmp(ICI); 705 if (!RangeCheck) { 706 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 707 return std::nullopt; 708 } 709 LLVM_DEBUG(dbgs() << "Guard check:\n"); 710 LLVM_DEBUG(RangeCheck->dump()); 711 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 712 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 713 << RangeCheck->Pred << ")!\n"); 714 return std::nullopt; 715 } 716 auto *RangeCheckIV = RangeCheck->IV; 717 if (!RangeCheckIV->isAffine()) { 718 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 719 return std::nullopt; 720 } 721 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 722 // We cannot just compare with latch IV step because the latch and range IVs 723 // may have different types. 724 if (!isSupportedStep(Step)) { 725 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 726 return std::nullopt; 727 } 728 auto *Ty = RangeCheckIV->getType(); 729 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 730 if (!CurrLatchCheckOpt) { 731 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 732 "corresponding to range type: " 733 << *Ty << "\n"); 734 return std::nullopt; 735 } 736 737 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 738 // At this point, the range and latch step should have the same type, but need 739 // not have the same value (we support both 1 and -1 steps). 740 assert(Step->getType() == 741 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 742 "Range and latch steps should be of same type!"); 743 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 744 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 745 return std::nullopt; 746 } 747 748 if (Step->isOne()) 749 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 750 Expander, Guard); 751 else { 752 assert(Step->isAllOnesValue() && "Step should be -1!"); 753 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 754 Expander, Guard); 755 } 756 } 757 758 void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks, 759 SmallVectorImpl<Value *> &WidenedChecks, 760 SCEVExpander &Expander, Instruction *Guard) { 761 for (auto &Check : Checks) 762 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Check)) 763 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) { 764 WidenedChecks.push_back(Check); 765 Check = *NewRangeCheck; 766 } 767 } 768 769 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 770 SCEVExpander &Expander) { 771 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 772 LLVM_DEBUG(Guard->dump()); 773 774 TotalConsidered++; 775 SmallVector<Value *, 4> Checks; 776 SmallVector<Value *> WidenedChecks; 777 parseWidenableGuard(Guard, Checks); 778 widenChecks(Checks, WidenedChecks, Expander, Guard); 779 if (WidenedChecks.empty()) 780 return false; 781 782 TotalWidened += WidenedChecks.size(); 783 784 // Emit the new guard condition 785 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 786 Value *AllChecks = Builder.CreateAnd(Checks); 787 auto *OldCond = Guard->getOperand(0); 788 Guard->setOperand(0, AllChecks); 789 if (InsertAssumesOfPredicatedGuardsConditions) { 790 Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard)); 791 Builder.CreateAssumption(OldCond); 792 } 793 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 794 795 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n"); 796 return true; 797 } 798 799 bool LoopPredication::widenWidenableBranchGuardConditions( 800 BranchInst *BI, SCEVExpander &Expander) { 801 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 802 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 803 LLVM_DEBUG(BI->dump()); 804 805 TotalConsidered++; 806 SmallVector<Value *, 4> Checks; 807 SmallVector<Value *> WidenedChecks; 808 parseWidenableGuard(BI, Checks); 809 // At the moment, our matching logic for wideable conditions implicitly 810 // assumes we preserve the form: (br (and Cond, WC())). FIXME 811 auto WC = extractWidenableCondition(BI); 812 Checks.push_back(WC); 813 widenChecks(Checks, WidenedChecks, Expander, BI); 814 if (WidenedChecks.empty()) 815 return false; 816 817 TotalWidened += WidenedChecks.size(); 818 819 // Emit the new guard condition 820 IRBuilder<> Builder(findInsertPt(BI, Checks)); 821 Value *AllChecks = Builder.CreateAnd(Checks); 822 auto *OldCond = BI->getCondition(); 823 BI->setCondition(AllChecks); 824 if (InsertAssumesOfPredicatedGuardsConditions) { 825 BasicBlock *IfTrueBB = BI->getSuccessor(0); 826 Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt()); 827 // If this block has other predecessors, we might not be able to use Cond. 828 // In this case, create a Phi where every other input is `true` and input 829 // from guard block is Cond. 830 Value *AssumeCond = Builder.CreateAnd(WidenedChecks); 831 if (!IfTrueBB->getUniquePredecessor()) { 832 auto *GuardBB = BI->getParent(); 833 auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB), 834 "assume.cond"); 835 for (auto *Pred : predecessors(IfTrueBB)) 836 PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred); 837 AssumeCond = PN; 838 } 839 Builder.CreateAssumption(AssumeCond); 840 } 841 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 842 assert(isGuardAsWidenableBranch(BI) && 843 "Stopped being a guard after transform?"); 844 845 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n"); 846 return true; 847 } 848 849 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 850 using namespace PatternMatch; 851 852 BasicBlock *LoopLatch = L->getLoopLatch(); 853 if (!LoopLatch) { 854 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 855 return std::nullopt; 856 } 857 858 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 859 if (!BI || !BI->isConditional()) { 860 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 861 return std::nullopt; 862 } 863 BasicBlock *TrueDest = BI->getSuccessor(0); 864 assert( 865 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 866 "One of the latch's destinations must be the header"); 867 868 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 869 if (!ICI) { 870 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 871 return std::nullopt; 872 } 873 auto Result = parseLoopICmp(ICI); 874 if (!Result) { 875 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 876 return std::nullopt; 877 } 878 879 if (TrueDest != L->getHeader()) 880 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 881 882 // Check affine first, so if it's not we don't try to compute the step 883 // recurrence. 884 if (!Result->IV->isAffine()) { 885 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 886 return std::nullopt; 887 } 888 889 auto *Step = Result->IV->getStepRecurrence(*SE); 890 if (!isSupportedStep(Step)) { 891 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 892 return std::nullopt; 893 } 894 895 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 896 if (Step->isOne()) { 897 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 898 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 899 } else { 900 assert(Step->isAllOnesValue() && "Step should be -1!"); 901 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 902 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 903 } 904 }; 905 906 normalizePredicate(SE, L, *Result); 907 if (IsUnsupportedPredicate(Step, Result->Pred)) { 908 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 909 << ")!\n"); 910 return std::nullopt; 911 } 912 913 return Result; 914 } 915 916 bool LoopPredication::isLoopProfitableToPredicate() { 917 if (SkipProfitabilityChecks) 918 return true; 919 920 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 921 L->getExitEdges(ExitEdges); 922 // If there is only one exiting edge in the loop, it is always profitable to 923 // predicate the loop. 924 if (ExitEdges.size() == 1) 925 return true; 926 927 // Calculate the exiting probabilities of all exiting edges from the loop, 928 // starting with the LatchExitProbability. 929 // Heuristic for profitability: If any of the exiting blocks' probability of 930 // exiting the loop is larger than exiting through the latch block, it's not 931 // profitable to predicate the loop. 932 auto *LatchBlock = L->getLoopLatch(); 933 assert(LatchBlock && "Should have a single latch at this point!"); 934 auto *LatchTerm = LatchBlock->getTerminator(); 935 assert(LatchTerm->getNumSuccessors() == 2 && 936 "expected to be an exiting block with 2 succs!"); 937 unsigned LatchBrExitIdx = 938 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 939 // We compute branch probabilities without BPI. We do not rely on BPI since 940 // Loop predication is usually run in an LPM and BPI is only preserved 941 // lossily within loop pass managers, while BPI has an inherent notion of 942 // being complete for an entire function. 943 944 // If the latch exits into a deoptimize or an unreachable block, do not 945 // predicate on that latch check. 946 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx); 947 if (isa<UnreachableInst>(LatchTerm) || 948 LatchExitBlock->getTerminatingDeoptimizeCall()) 949 return false; 950 951 // Latch terminator has no valid profile data, so nothing to check 952 // profitability on. 953 if (!hasValidBranchWeightMD(*LatchTerm)) 954 return true; 955 956 auto ComputeBranchProbability = 957 [&](const BasicBlock *ExitingBlock, 958 const BasicBlock *ExitBlock) -> BranchProbability { 959 auto *Term = ExitingBlock->getTerminator(); 960 unsigned NumSucc = Term->getNumSuccessors(); 961 if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) { 962 SmallVector<uint32_t> Weights; 963 extractBranchWeights(ProfileData, Weights); 964 uint64_t Numerator = 0, Denominator = 0; 965 for (auto [i, Weight] : llvm::enumerate(Weights)) { 966 if (Term->getSuccessor(i) == ExitBlock) 967 Numerator += Weight; 968 Denominator += Weight; 969 } 970 return BranchProbability::getBranchProbability(Numerator, Denominator); 971 } else { 972 assert(LatchBlock != ExitingBlock && 973 "Latch term should always have profile data!"); 974 // No profile data, so we choose the weight as 1/num_of_succ(Src) 975 return BranchProbability::getBranchProbability(1, NumSucc); 976 } 977 }; 978 979 BranchProbability LatchExitProbability = 980 ComputeBranchProbability(LatchBlock, LatchExitBlock); 981 982 // Protect against degenerate inputs provided by the user. Providing a value 983 // less than one, can invert the definition of profitable loop predication. 984 float ScaleFactor = LatchExitProbabilityScale; 985 if (ScaleFactor < 1) { 986 LLVM_DEBUG( 987 dbgs() 988 << "Ignored user setting for loop-predication-latch-probability-scale: " 989 << LatchExitProbabilityScale << "\n"); 990 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 991 ScaleFactor = 1.0; 992 } 993 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor; 994 995 for (const auto &ExitEdge : ExitEdges) { 996 BranchProbability ExitingBlockProbability = 997 ComputeBranchProbability(ExitEdge.first, ExitEdge.second); 998 // Some exiting edge has higher probability than the latch exiting edge. 999 // No longer profitable to predicate. 1000 if (ExitingBlockProbability > LatchProbabilityThreshold) 1001 return false; 1002 } 1003 1004 // We have concluded that the most probable way to exit from the 1005 // loop is through the latch (or there's no profile information and all 1006 // exits are equally likely). 1007 return true; 1008 } 1009 1010 /// If we can (cheaply) find a widenable branch which controls entry into the 1011 /// loop, return it. 1012 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 1013 // Walk back through any unconditional executed blocks and see if we can find 1014 // a widenable condition which seems to control execution of this loop. Note 1015 // that we predict that maythrow calls are likely untaken and thus that it's 1016 // profitable to widen a branch before a maythrow call with a condition 1017 // afterwards even though that may cause the slow path to run in a case where 1018 // it wouldn't have otherwise. 1019 BasicBlock *BB = L->getLoopPreheader(); 1020 if (!BB) 1021 return nullptr; 1022 do { 1023 if (BasicBlock *Pred = BB->getSinglePredecessor()) 1024 if (BB == Pred->getSingleSuccessor()) { 1025 BB = Pred; 1026 continue; 1027 } 1028 break; 1029 } while (true); 1030 1031 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1032 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 1033 if (BI->getSuccessor(0) == BB && isWidenableBranch(BI)) 1034 return BI; 1035 } 1036 return nullptr; 1037 } 1038 1039 /// Return the minimum of all analyzeable exit counts. This is an upper bound 1040 /// on the actual exit count. If there are not at least two analyzeable exits, 1041 /// returns SCEVCouldNotCompute. 1042 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1043 DominatorTree &DT, 1044 Loop *L) { 1045 SmallVector<BasicBlock *, 16> ExitingBlocks; 1046 L->getExitingBlocks(ExitingBlocks); 1047 1048 SmallVector<const SCEV *, 4> ExitCounts; 1049 for (BasicBlock *ExitingBB : ExitingBlocks) { 1050 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1051 if (isa<SCEVCouldNotCompute>(ExitCount)) 1052 continue; 1053 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1054 "We should only have known counts for exiting blocks that " 1055 "dominate latch!"); 1056 ExitCounts.push_back(ExitCount); 1057 } 1058 if (ExitCounts.size() < 2) 1059 return SE.getCouldNotCompute(); 1060 return SE.getUMinFromMismatchedTypes(ExitCounts); 1061 } 1062 1063 /// This implements an analogous, but entirely distinct transform from the main 1064 /// loop predication transform. This one is phrased in terms of using a 1065 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1066 /// following loop. This is close in spirit to the IndVarSimplify transform 1067 /// of the same name, but is materially different widening loosens legality 1068 /// sharply. 1069 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1070 // The transformation performed here aims to widen a widenable condition 1071 // above the loop such that all analyzeable exit leading to deopt are dead. 1072 // It assumes that the latch is the dominant exit for profitability and that 1073 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1074 // semantics of widenable expressions for legality. (i.e. being able to fall 1075 // down the widenable path spuriously allows us to ignore exit order, 1076 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1077 // which restrict the applicability of the non-WC based version of this 1078 // transform in IndVarSimplify.) 1079 // 1080 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1081 // imply flags on the expression being hoisted and inserting new uses (flags 1082 // are only correct for current uses). The result is that we may be 1083 // inserting a branch on the value which can be either poison or undef. In 1084 // this case, the branch can legally go either way; we just need to avoid 1085 // introducing UB. This is achieved through the use of the freeze 1086 // instruction. 1087 1088 SmallVector<BasicBlock *, 16> ExitingBlocks; 1089 L->getExitingBlocks(ExitingBlocks); 1090 1091 if (ExitingBlocks.empty()) 1092 return false; // Nothing to do. 1093 1094 auto *Latch = L->getLoopLatch(); 1095 if (!Latch) 1096 return false; 1097 1098 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1099 if (!WidenableBR) 1100 return false; 1101 1102 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1103 if (isa<SCEVCouldNotCompute>(LatchEC)) 1104 return false; // profitability - want hot exit in analyzeable set 1105 1106 // At this point, we have found an analyzeable latch, and a widenable 1107 // condition above the loop. If we have a widenable exit within the loop 1108 // (for which we can't compute exit counts), drop the ability to further 1109 // widen so that we gain ability to analyze it's exit count and perform this 1110 // transform. TODO: It'd be nice to know for sure the exit became 1111 // analyzeable after dropping widenability. 1112 bool ChangedLoop = false; 1113 1114 for (auto *ExitingBB : ExitingBlocks) { 1115 if (LI->getLoopFor(ExitingBB) != L) 1116 continue; 1117 1118 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1119 if (!BI) 1120 continue; 1121 1122 if (auto WC = extractWidenableCondition(BI)) 1123 if (L->contains(BI->getSuccessor(0))) { 1124 assert(WC->hasOneUse() && "Not appropriate widenable branch!"); 1125 WC->user_back()->replaceUsesOfWith( 1126 WC, ConstantInt::getTrue(BI->getContext())); 1127 ChangedLoop = true; 1128 } 1129 } 1130 if (ChangedLoop) 1131 SE->forgetLoop(L); 1132 1133 // The insertion point for the widening should be at the widenably call, not 1134 // at the WidenableBR. If we do this at the widenableBR, we can incorrectly 1135 // change a loop-invariant condition to a loop-varying one. 1136 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1137 1138 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1139 // important for profitability. We may have a loop which hasn't been fully 1140 // canonicalized just yet. If the exit we chose to widen is provably never 1141 // taken, we want the widened form to *also* be provably never taken. We 1142 // can't guarantee this as a current unanalyzeable exit may later become 1143 // analyzeable, but we can at least avoid the obvious cases. 1144 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1145 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1146 !SE->isLoopInvariant(MinEC, L) || 1147 !Rewriter.isSafeToExpandAt(MinEC, IP)) 1148 return ChangedLoop; 1149 1150 Rewriter.setInsertPoint(IP); 1151 IRBuilder<> B(IP); 1152 1153 bool InvalidateLoop = false; 1154 Value *MinECV = nullptr; // lazily generated if needed 1155 for (BasicBlock *ExitingBB : ExitingBlocks) { 1156 // If our exiting block exits multiple loops, we can only rewrite the 1157 // innermost one. Otherwise, we're changing how many times the innermost 1158 // loop runs before it exits. 1159 if (LI->getLoopFor(ExitingBB) != L) 1160 continue; 1161 1162 // Can't rewrite non-branch yet. 1163 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1164 if (!BI) 1165 continue; 1166 1167 // If already constant, nothing to do. 1168 if (isa<Constant>(BI->getCondition())) 1169 continue; 1170 1171 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1172 if (isa<SCEVCouldNotCompute>(ExitCount) || 1173 ExitCount->getType()->isPointerTy() || 1174 !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR)) 1175 continue; 1176 1177 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1178 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1179 if (!ExitBB->getPostdominatingDeoptimizeCall()) 1180 continue; 1181 1182 /// Here we can be fairly sure that executing this exit will most likely 1183 /// lead to executing llvm.experimental.deoptimize. 1184 /// This is a profitability heuristic, not a legality constraint. 1185 1186 // If we found a widenable exit condition, do two things: 1187 // 1) fold the widened exit test into the widenable condition 1188 // 2) fold the branch to untaken - avoids infinite looping 1189 1190 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1191 if (!MinECV) 1192 MinECV = Rewriter.expandCodeFor(MinEC); 1193 Value *RHS = MinECV; 1194 if (ECV->getType() != RHS->getType()) { 1195 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1196 ECV = B.CreateZExt(ECV, WiderTy); 1197 RHS = B.CreateZExt(RHS, WiderTy); 1198 } 1199 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1200 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1201 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1202 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1203 // context. 1204 NewCond = B.CreateFreeze(NewCond); 1205 1206 widenWidenableBranch(WidenableBR, NewCond); 1207 1208 Value *OldCond = BI->getCondition(); 1209 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1210 InvalidateLoop = true; 1211 } 1212 1213 if (InvalidateLoop) 1214 // We just mutated a bunch of loop exits changing there exit counts 1215 // widely. We need to force recomputation of the exit counts given these 1216 // changes. Note that all of the inserted exits are never taken, and 1217 // should be removed next time the CFG is modified. 1218 SE->forgetLoop(L); 1219 1220 // Always return `true` since we have moved the WidenableBR's condition. 1221 return true; 1222 } 1223 1224 bool LoopPredication::runOnLoop(Loop *Loop) { 1225 L = Loop; 1226 1227 LLVM_DEBUG(dbgs() << "Analyzing "); 1228 LLVM_DEBUG(L->dump()); 1229 1230 Module *M = L->getHeader()->getModule(); 1231 1232 // There is nothing to do if the module doesn't use guards 1233 auto *GuardDecl = 1234 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1235 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1236 auto *WCDecl = M->getFunction( 1237 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1238 bool HasWidenableConditions = 1239 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1240 if (!HasIntrinsicGuards && !HasWidenableConditions) 1241 return false; 1242 1243 DL = &M->getDataLayout(); 1244 1245 Preheader = L->getLoopPreheader(); 1246 if (!Preheader) 1247 return false; 1248 1249 auto LatchCheckOpt = parseLoopLatchICmp(); 1250 if (!LatchCheckOpt) 1251 return false; 1252 LatchCheck = *LatchCheckOpt; 1253 1254 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1255 LLVM_DEBUG(LatchCheck.dump()); 1256 1257 if (!isLoopProfitableToPredicate()) { 1258 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1259 return false; 1260 } 1261 // Collect all the guards into a vector and process later, so as not 1262 // to invalidate the instruction iterator. 1263 SmallVector<IntrinsicInst *, 4> Guards; 1264 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1265 for (const auto BB : L->blocks()) { 1266 for (auto &I : *BB) 1267 if (isGuard(&I)) 1268 Guards.push_back(cast<IntrinsicInst>(&I)); 1269 if (PredicateWidenableBranchGuards && 1270 isGuardAsWidenableBranch(BB->getTerminator())) 1271 GuardsAsWidenableBranches.push_back( 1272 cast<BranchInst>(BB->getTerminator())); 1273 } 1274 1275 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1276 bool Changed = false; 1277 for (auto *Guard : Guards) 1278 Changed |= widenGuardConditions(Guard, Expander); 1279 for (auto *Guard : GuardsAsWidenableBranches) 1280 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1281 Changed |= predicateLoopExits(L, Expander); 1282 1283 if (MSSAU && VerifyMemorySSA) 1284 MSSAU->getMemorySSA()->verifyMemorySSA(); 1285 return Changed; 1286 } 1287