1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // When S = 1 (i.e. forward iterating loop), the transformation is supported 102 // when: 103 // * The loop has a single latch with the condition of the form: 104 // B(X) = latchStart + X <pred> latchLimit, 105 // where <pred> is u<, u<=, s<, or s<=. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 156 // when: 157 // * The loop has a single latch with the condition of the form: 158 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 159 // * The guard condition is of the form 160 // G(X) = X - 1 u< guardLimit 161 // 162 // For the ugt latch comparison case M is: 163 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 164 // 165 // The only way the antecedent can be true and the consequent can be false is if 166 // X == 1. 167 // If X == 1 then the second half of the antecedent is 168 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 169 // 170 // So the widened condition is: 171 // guardStart u< guardLimit && latchLimit u>= 1. 172 // Similarly for sgt condition the widened condition is: 173 // guardStart u< guardLimit && latchLimit s>= 1. 174 // For uge condition the widened condition is: 175 // guardStart u< guardLimit && latchLimit u> 1. 176 // For sge condition the widened condition is: 177 // guardStart u< guardLimit && latchLimit s> 1. 178 //===----------------------------------------------------------------------===// 179 180 #include "llvm/Transforms/Scalar/LoopPredication.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/LoopInfo.h" 183 #include "llvm/Analysis/LoopPass.h" 184 #include "llvm/Analysis/ScalarEvolution.h" 185 #include "llvm/Analysis/ScalarEvolutionExpander.h" 186 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 187 #include "llvm/IR/Function.h" 188 #include "llvm/IR/GlobalValue.h" 189 #include "llvm/IR/IntrinsicInst.h" 190 #include "llvm/IR/Module.h" 191 #include "llvm/IR/PatternMatch.h" 192 #include "llvm/Pass.h" 193 #include "llvm/Support/Debug.h" 194 #include "llvm/Transforms/Scalar.h" 195 #include "llvm/Transforms/Utils/LoopUtils.h" 196 197 #define DEBUG_TYPE "loop-predication" 198 199 using namespace llvm; 200 201 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 202 cl::Hidden, cl::init(true)); 203 204 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 205 cl::Hidden, cl::init(true)); 206 207 static cl::opt<bool> 208 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 209 cl::Hidden, cl::init(false)); 210 211 // This is the scale factor for the latch probability. We use this during 212 // profitability analysis to find other exiting blocks that have a much higher 213 // probability of exiting the loop instead of loop exiting via latch. 214 // This value should be greater than 1 for a sane profitability check. 215 static cl::opt<float> LatchExitProbabilityScale( 216 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 217 cl::desc("scale factor for the latch probability. Value should be greater " 218 "than 1. Lower values are ignored")); 219 220 namespace { 221 class LoopPredication { 222 /// Represents an induction variable check: 223 /// icmp Pred, <induction variable>, <loop invariant limit> 224 struct LoopICmp { 225 ICmpInst::Predicate Pred; 226 const SCEVAddRecExpr *IV; 227 const SCEV *Limit; 228 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 229 const SCEV *Limit) 230 : Pred(Pred), IV(IV), Limit(Limit) {} 231 LoopICmp() {} 232 void dump() { 233 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 234 << ", Limit = " << *Limit << "\n"; 235 } 236 }; 237 238 ScalarEvolution *SE; 239 BranchProbabilityInfo *BPI; 240 241 Loop *L; 242 const DataLayout *DL; 243 BasicBlock *Preheader; 244 LoopICmp LatchCheck; 245 246 bool isSupportedStep(const SCEV* Step); 247 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 248 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 249 ICI->getOperand(1)); 250 } 251 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 252 Value *RHS); 253 254 Optional<LoopICmp> parseLoopLatchICmp(); 255 256 bool CanExpand(const SCEV* S); 257 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 258 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 259 Instruction *InsertAt); 260 261 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 262 IRBuilder<> &Builder); 263 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 264 LoopICmp RangeCheck, 265 SCEVExpander &Expander, 266 IRBuilder<> &Builder); 267 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 268 LoopICmp RangeCheck, 269 SCEVExpander &Expander, 270 IRBuilder<> &Builder); 271 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 272 273 // If the loop always exits through another block in the loop, we should not 274 // predicate based on the latch check. For example, the latch check can be a 275 // very coarse grained check and there can be more fine grained exit checks 276 // within the loop. We identify such unprofitable loops through BPI. 277 bool isLoopProfitableToPredicate(); 278 279 // When the IV type is wider than the range operand type, we can still do loop 280 // predication, by generating SCEVs for the range and latch that are of the 281 // same type. We achieve this by generating a SCEV truncate expression for the 282 // latch IV. This is done iff truncation of the IV is a safe operation, 283 // without loss of information. 284 // Another way to achieve this is by generating a wider type SCEV for the 285 // range check operand, however, this needs a more involved check that 286 // operands do not overflow. This can lead to loss of information when the 287 // range operand is of the form: add i32 %offset, %iv. We need to prove that 288 // sext(x + y) is same as sext(x) + sext(y). 289 // This function returns true if we can safely represent the IV type in 290 // the RangeCheckType without loss of information. 291 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 292 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 293 // so. 294 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 295 296 public: 297 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 298 : SE(SE), BPI(BPI){}; 299 bool runOnLoop(Loop *L); 300 }; 301 302 class LoopPredicationLegacyPass : public LoopPass { 303 public: 304 static char ID; 305 LoopPredicationLegacyPass() : LoopPass(ID) { 306 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 307 } 308 309 void getAnalysisUsage(AnalysisUsage &AU) const override { 310 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 311 getLoopAnalysisUsage(AU); 312 } 313 314 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 315 if (skipLoop(L)) 316 return false; 317 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 318 BranchProbabilityInfo &BPI = 319 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 320 LoopPredication LP(SE, &BPI); 321 return LP.runOnLoop(L); 322 } 323 }; 324 325 char LoopPredicationLegacyPass::ID = 0; 326 } // end namespace llvm 327 328 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 329 "Loop predication", false, false) 330 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 331 INITIALIZE_PASS_DEPENDENCY(LoopPass) 332 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 333 "Loop predication", false, false) 334 335 Pass *llvm::createLoopPredicationPass() { 336 return new LoopPredicationLegacyPass(); 337 } 338 339 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 340 LoopStandardAnalysisResults &AR, 341 LPMUpdater &U) { 342 const auto &FAM = 343 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 344 Function *F = L.getHeader()->getParent(); 345 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 346 LoopPredication LP(&AR.SE, BPI); 347 if (!LP.runOnLoop(&L)) 348 return PreservedAnalyses::all(); 349 350 return getLoopPassPreservedAnalyses(); 351 } 352 353 Optional<LoopPredication::LoopICmp> 354 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 355 Value *RHS) { 356 const SCEV *LHSS = SE->getSCEV(LHS); 357 if (isa<SCEVCouldNotCompute>(LHSS)) 358 return None; 359 const SCEV *RHSS = SE->getSCEV(RHS); 360 if (isa<SCEVCouldNotCompute>(RHSS)) 361 return None; 362 363 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 364 if (SE->isLoopInvariant(LHSS, L)) { 365 std::swap(LHS, RHS); 366 std::swap(LHSS, RHSS); 367 Pred = ICmpInst::getSwappedPredicate(Pred); 368 } 369 370 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 371 if (!AR || AR->getLoop() != L) 372 return None; 373 374 return LoopICmp(Pred, AR, RHSS); 375 } 376 377 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 378 IRBuilder<> &Builder, 379 ICmpInst::Predicate Pred, const SCEV *LHS, 380 const SCEV *RHS, Instruction *InsertAt) { 381 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 382 383 Type *Ty = LHS->getType(); 384 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 385 386 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 387 return Builder.getTrue(); 388 389 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 390 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 391 return Builder.CreateICmp(Pred, LHSV, RHSV); 392 } 393 394 Optional<LoopPredication::LoopICmp> 395 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 396 397 auto *LatchType = LatchCheck.IV->getType(); 398 if (RangeCheckType == LatchType) 399 return LatchCheck; 400 // For now, bail out if latch type is narrower than range type. 401 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 402 return None; 403 if (!isSafeToTruncateWideIVType(RangeCheckType)) 404 return None; 405 // We can now safely identify the truncated version of the IV and limit for 406 // RangeCheckType. 407 LoopICmp NewLatchCheck; 408 NewLatchCheck.Pred = LatchCheck.Pred; 409 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 410 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 411 if (!NewLatchCheck.IV) 412 return None; 413 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 414 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 415 << "can be represented as range check type:" 416 << *RangeCheckType << "\n"); 417 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 418 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 419 return NewLatchCheck; 420 } 421 422 bool LoopPredication::isSupportedStep(const SCEV* Step) { 423 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 424 } 425 426 bool LoopPredication::CanExpand(const SCEV* S) { 427 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 428 } 429 430 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 431 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 432 SCEVExpander &Expander, IRBuilder<> &Builder) { 433 auto *Ty = RangeCheck.IV->getType(); 434 // Generate the widened condition for the forward loop: 435 // guardStart u< guardLimit && 436 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 437 // where <pred> depends on the latch condition predicate. See the file 438 // header comment for the reasoning. 439 // guardLimit - guardStart + latchStart - 1 440 const SCEV *GuardStart = RangeCheck.IV->getStart(); 441 const SCEV *GuardLimit = RangeCheck.Limit; 442 const SCEV *LatchStart = LatchCheck.IV->getStart(); 443 const SCEV *LatchLimit = LatchCheck.Limit; 444 445 // guardLimit - guardStart + latchStart - 1 446 const SCEV *RHS = 447 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 448 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 449 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 450 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 451 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 452 return None; 453 } 454 auto LimitCheckPred = 455 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 456 457 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 458 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 459 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 460 461 Instruction *InsertAt = Preheader->getTerminator(); 462 auto *LimitCheck = 463 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 464 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 465 GuardStart, GuardLimit, InsertAt); 466 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 467 } 468 469 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 470 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 471 SCEVExpander &Expander, IRBuilder<> &Builder) { 472 auto *Ty = RangeCheck.IV->getType(); 473 const SCEV *GuardStart = RangeCheck.IV->getStart(); 474 const SCEV *GuardLimit = RangeCheck.Limit; 475 const SCEV *LatchLimit = LatchCheck.Limit; 476 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 477 !CanExpand(LatchLimit)) { 478 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 479 return None; 480 } 481 // The decrement of the latch check IV should be the same as the 482 // rangeCheckIV. 483 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 484 if (RangeCheck.IV != PostDecLatchCheckIV) { 485 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 486 << *PostDecLatchCheckIV 487 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 488 return None; 489 } 490 491 // Generate the widened condition for CountDownLoop: 492 // guardStart u< guardLimit && 493 // latchLimit <pred> 1. 494 // See the header comment for reasoning of the checks. 495 Instruction *InsertAt = Preheader->getTerminator(); 496 auto LimitCheckPred = 497 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 498 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 499 GuardStart, GuardLimit, InsertAt); 500 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 501 SE->getOne(Ty), InsertAt); 502 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 503 } 504 505 /// If ICI can be widened to a loop invariant condition emits the loop 506 /// invariant condition in the loop preheader and return it, otherwise 507 /// returns None. 508 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 509 SCEVExpander &Expander, 510 IRBuilder<> &Builder) { 511 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 512 LLVM_DEBUG(ICI->dump()); 513 514 // parseLoopStructure guarantees that the latch condition is: 515 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 516 // We are looking for the range checks of the form: 517 // i u< guardLimit 518 auto RangeCheck = parseLoopICmp(ICI); 519 if (!RangeCheck) { 520 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 521 return None; 522 } 523 LLVM_DEBUG(dbgs() << "Guard check:\n"); 524 LLVM_DEBUG(RangeCheck->dump()); 525 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 526 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 527 << RangeCheck->Pred << ")!\n"); 528 return None; 529 } 530 auto *RangeCheckIV = RangeCheck->IV; 531 if (!RangeCheckIV->isAffine()) { 532 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 533 return None; 534 } 535 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 536 // We cannot just compare with latch IV step because the latch and range IVs 537 // may have different types. 538 if (!isSupportedStep(Step)) { 539 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 540 return None; 541 } 542 auto *Ty = RangeCheckIV->getType(); 543 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 544 if (!CurrLatchCheckOpt) { 545 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 546 "corresponding to range type: " 547 << *Ty << "\n"); 548 return None; 549 } 550 551 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 552 // At this point, the range and latch step should have the same type, but need 553 // not have the same value (we support both 1 and -1 steps). 554 assert(Step->getType() == 555 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 556 "Range and latch steps should be of same type!"); 557 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 558 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 559 return None; 560 } 561 562 if (Step->isOne()) 563 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 564 Expander, Builder); 565 else { 566 assert(Step->isAllOnesValue() && "Step should be -1!"); 567 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 568 Expander, Builder); 569 } 570 } 571 572 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 573 SCEVExpander &Expander) { 574 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 575 LLVM_DEBUG(Guard->dump()); 576 577 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 578 579 // The guard condition is expected to be in form of: 580 // cond1 && cond2 && cond3 ... 581 // Iterate over subconditions looking for icmp conditions which can be 582 // widened across loop iterations. Widening these conditions remember the 583 // resulting list of subconditions in Checks vector. 584 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 585 SmallPtrSet<Value *, 4> Visited; 586 587 SmallVector<Value *, 4> Checks; 588 589 unsigned NumWidened = 0; 590 do { 591 Value *Condition = Worklist.pop_back_val(); 592 if (!Visited.insert(Condition).second) 593 continue; 594 595 Value *LHS, *RHS; 596 using namespace llvm::PatternMatch; 597 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 598 Worklist.push_back(LHS); 599 Worklist.push_back(RHS); 600 continue; 601 } 602 603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 604 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 605 Checks.push_back(NewRangeCheck.getValue()); 606 NumWidened++; 607 continue; 608 } 609 } 610 611 // Save the condition as is if we can't widen it 612 Checks.push_back(Condition); 613 } while (Worklist.size() != 0); 614 615 if (NumWidened == 0) 616 return false; 617 618 // Emit the new guard condition 619 Builder.SetInsertPoint(Guard); 620 Value *LastCheck = nullptr; 621 for (auto *Check : Checks) 622 if (!LastCheck) 623 LastCheck = Check; 624 else 625 LastCheck = Builder.CreateAnd(LastCheck, Check); 626 Guard->setOperand(0, LastCheck); 627 628 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 629 return true; 630 } 631 632 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 633 using namespace PatternMatch; 634 635 BasicBlock *LoopLatch = L->getLoopLatch(); 636 if (!LoopLatch) { 637 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 638 return None; 639 } 640 641 ICmpInst::Predicate Pred; 642 Value *LHS, *RHS; 643 BasicBlock *TrueDest, *FalseDest; 644 645 if (!match(LoopLatch->getTerminator(), 646 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 647 FalseDest))) { 648 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 649 return None; 650 } 651 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 652 "One of the latch's destinations must be the header"); 653 if (TrueDest != L->getHeader()) 654 Pred = ICmpInst::getInversePredicate(Pred); 655 656 auto Result = parseLoopICmp(Pred, LHS, RHS); 657 if (!Result) { 658 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 659 return None; 660 } 661 662 // Check affine first, so if it's not we don't try to compute the step 663 // recurrence. 664 if (!Result->IV->isAffine()) { 665 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 666 return None; 667 } 668 669 auto *Step = Result->IV->getStepRecurrence(*SE); 670 if (!isSupportedStep(Step)) { 671 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 672 return None; 673 } 674 675 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 676 if (Step->isOne()) { 677 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 678 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 679 } else { 680 assert(Step->isAllOnesValue() && "Step should be -1!"); 681 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 682 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 683 } 684 }; 685 686 if (IsUnsupportedPredicate(Step, Result->Pred)) { 687 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 688 << ")!\n"); 689 return None; 690 } 691 return Result; 692 } 693 694 // Returns true if its safe to truncate the IV to RangeCheckType. 695 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 696 if (!EnableIVTruncation) 697 return false; 698 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 699 DL->getTypeSizeInBits(RangeCheckType) && 700 "Expected latch check IV type to be larger than range check operand " 701 "type!"); 702 // The start and end values of the IV should be known. This is to guarantee 703 // that truncating the wide type will not lose information. 704 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 705 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 706 if (!Limit || !Start) 707 return false; 708 // This check makes sure that the IV does not change sign during loop 709 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 710 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 711 // IV wraps around, and the truncation of the IV would lose the range of 712 // iterations between 2^32 and 2^64. 713 bool Increasing; 714 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 715 return false; 716 // The active bits should be less than the bits in the RangeCheckType. This 717 // guarantees that truncating the latch check to RangeCheckType is a safe 718 // operation. 719 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 720 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 721 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 722 } 723 724 bool LoopPredication::isLoopProfitableToPredicate() { 725 if (SkipProfitabilityChecks || !BPI) 726 return true; 727 728 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 729 L->getExitEdges(ExitEdges); 730 // If there is only one exiting edge in the loop, it is always profitable to 731 // predicate the loop. 732 if (ExitEdges.size() == 1) 733 return true; 734 735 // Calculate the exiting probabilities of all exiting edges from the loop, 736 // starting with the LatchExitProbability. 737 // Heuristic for profitability: If any of the exiting blocks' probability of 738 // exiting the loop is larger than exiting through the latch block, it's not 739 // profitable to predicate the loop. 740 auto *LatchBlock = L->getLoopLatch(); 741 assert(LatchBlock && "Should have a single latch at this point!"); 742 auto *LatchTerm = LatchBlock->getTerminator(); 743 assert(LatchTerm->getNumSuccessors() == 2 && 744 "expected to be an exiting block with 2 succs!"); 745 unsigned LatchBrExitIdx = 746 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 747 BranchProbability LatchExitProbability = 748 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 749 750 // Protect against degenerate inputs provided by the user. Providing a value 751 // less than one, can invert the definition of profitable loop predication. 752 float ScaleFactor = LatchExitProbabilityScale; 753 if (ScaleFactor < 1) { 754 LLVM_DEBUG( 755 dbgs() 756 << "Ignored user setting for loop-predication-latch-probability-scale: " 757 << LatchExitProbabilityScale << "\n"); 758 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 759 ScaleFactor = 1.0; 760 } 761 const auto LatchProbabilityThreshold = 762 LatchExitProbability * ScaleFactor; 763 764 for (const auto &ExitEdge : ExitEdges) { 765 BranchProbability ExitingBlockProbability = 766 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 767 // Some exiting edge has higher probability than the latch exiting edge. 768 // No longer profitable to predicate. 769 if (ExitingBlockProbability > LatchProbabilityThreshold) 770 return false; 771 } 772 // Using BPI, we have concluded that the most probable way to exit from the 773 // loop is through the latch (or there's no profile information and all 774 // exits are equally likely). 775 return true; 776 } 777 778 bool LoopPredication::runOnLoop(Loop *Loop) { 779 L = Loop; 780 781 LLVM_DEBUG(dbgs() << "Analyzing "); 782 LLVM_DEBUG(L->dump()); 783 784 Module *M = L->getHeader()->getModule(); 785 786 // There is nothing to do if the module doesn't use guards 787 auto *GuardDecl = 788 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 789 if (!GuardDecl || GuardDecl->use_empty()) 790 return false; 791 792 DL = &M->getDataLayout(); 793 794 Preheader = L->getLoopPreheader(); 795 if (!Preheader) 796 return false; 797 798 auto LatchCheckOpt = parseLoopLatchICmp(); 799 if (!LatchCheckOpt) 800 return false; 801 LatchCheck = *LatchCheckOpt; 802 803 LLVM_DEBUG(dbgs() << "Latch check:\n"); 804 LLVM_DEBUG(LatchCheck.dump()); 805 806 if (!isLoopProfitableToPredicate()) { 807 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 808 return false; 809 } 810 // Collect all the guards into a vector and process later, so as not 811 // to invalidate the instruction iterator. 812 SmallVector<IntrinsicInst *, 4> Guards; 813 for (const auto BB : L->blocks()) 814 for (auto &I : *BB) 815 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 816 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 817 Guards.push_back(II); 818 819 if (Guards.empty()) 820 return false; 821 822 SCEVExpander Expander(*SE, *DL, "loop-predication"); 823 824 bool Changed = false; 825 for (auto *Guard : Guards) 826 Changed |= widenGuardConditions(Guard, Expander); 827 828 return Changed; 829 } 830