xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision d109e2a7c3b7602c92e1fd92884876a28b68fd78)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/GuardUtils.h"
183 #include "llvm/Analysis/LoopInfo.h"
184 #include "llvm/Analysis/LoopPass.h"
185 #include "llvm/Analysis/ScalarEvolution.h"
186 #include "llvm/Analysis/ScalarEvolutionExpander.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/Pass.h"
194 #include "llvm/Support/Debug.h"
195 #include "llvm/Transforms/Scalar.h"
196 #include "llvm/Transforms/Utils/Local.h"
197 #include "llvm/Transforms/Utils/LoopUtils.h"
198 
199 #define DEBUG_TYPE "loop-predication"
200 
201 STATISTIC(TotalConsidered, "Number of guards considered");
202 STATISTIC(TotalWidened, "Number of checks widened");
203 
204 using namespace llvm;
205 
206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
207                                         cl::Hidden, cl::init(true));
208 
209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
210                                         cl::Hidden, cl::init(true));
211 
212 static cl::opt<bool>
213     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
214                             cl::Hidden, cl::init(false));
215 
216 // This is the scale factor for the latch probability. We use this during
217 // profitability analysis to find other exiting blocks that have a much higher
218 // probability of exiting the loop instead of loop exiting via latch.
219 // This value should be greater than 1 for a sane profitability check.
220 static cl::opt<float> LatchExitProbabilityScale(
221     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
222     cl::desc("scale factor for the latch probability. Value should be greater "
223              "than 1. Lower values are ignored"));
224 
225 static cl::opt<bool> PredicateWidenableBranchGuards(
226     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
227     cl::desc("Whether or not we should predicate guards "
228              "expressed as widenable branches to deoptimize blocks"),
229     cl::init(true));
230 
231 namespace {
232 class LoopPredication {
233   /// Represents an induction variable check:
234   ///   icmp Pred, <induction variable>, <loop invariant limit>
235   struct LoopICmp {
236     ICmpInst::Predicate Pred;
237     const SCEVAddRecExpr *IV;
238     const SCEV *Limit;
239     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240              const SCEV *Limit)
241         : Pred(Pred), IV(IV), Limit(Limit) {}
242     LoopICmp() {}
243     void dump() {
244       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245              << ", Limit = " << *Limit << "\n";
246     }
247   };
248 
249   ScalarEvolution *SE;
250   BranchProbabilityInfo *BPI;
251 
252   Loop *L;
253   const DataLayout *DL;
254   BasicBlock *Preheader;
255   LoopICmp LatchCheck;
256 
257   bool isSupportedStep(const SCEV* Step);
258   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
259     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
260                          ICI->getOperand(1));
261   }
262   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
263                                    Value *RHS);
264 
265   Optional<LoopICmp> parseLoopLatchICmp();
266 
267   bool CanExpand(const SCEV* S);
268   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
269                      ICmpInst::Predicate Pred, const SCEV *LHS,
270                      const SCEV *RHS);
271 
272   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
273                                         IRBuilder<> &Builder);
274   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
275                                                         LoopICmp RangeCheck,
276                                                         SCEVExpander &Expander,
277                                                         IRBuilder<> &Builder);
278   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
279                                                         LoopICmp RangeCheck,
280                                                         SCEVExpander &Expander,
281                                                         IRBuilder<> &Builder);
282   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
283                          SCEVExpander &Expander, IRBuilder<> &Builder);
284   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
285   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
286   // If the loop always exits through another block in the loop, we should not
287   // predicate based on the latch check. For example, the latch check can be a
288   // very coarse grained check and there can be more fine grained exit checks
289   // within the loop. We identify such unprofitable loops through BPI.
290   bool isLoopProfitableToPredicate();
291 
292   // When the IV type is wider than the range operand type, we can still do loop
293   // predication, by generating SCEVs for the range and latch that are of the
294   // same type. We achieve this by generating a SCEV truncate expression for the
295   // latch IV. This is done iff truncation of the IV is a safe operation,
296   // without loss of information.
297   // Another way to achieve this is by generating a wider type SCEV for the
298   // range check operand, however, this needs a more involved check that
299   // operands do not overflow. This can lead to loss of information when the
300   // range operand is of the form: add i32 %offset, %iv. We need to prove that
301   // sext(x + y) is same as sext(x) + sext(y).
302   // This function returns true if we can safely represent the IV type in
303   // the RangeCheckType without loss of information.
304   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
305   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
306   // so.
307   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
308 
309 public:
310   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
311       : SE(SE), BPI(BPI){};
312   bool runOnLoop(Loop *L);
313 };
314 
315 class LoopPredicationLegacyPass : public LoopPass {
316 public:
317   static char ID;
318   LoopPredicationLegacyPass() : LoopPass(ID) {
319     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
320   }
321 
322   void getAnalysisUsage(AnalysisUsage &AU) const override {
323     AU.addRequired<BranchProbabilityInfoWrapperPass>();
324     getLoopAnalysisUsage(AU);
325   }
326 
327   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
328     if (skipLoop(L))
329       return false;
330     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
331     BranchProbabilityInfo &BPI =
332         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
333     LoopPredication LP(SE, &BPI);
334     return LP.runOnLoop(L);
335   }
336 };
337 
338 char LoopPredicationLegacyPass::ID = 0;
339 } // end namespace llvm
340 
341 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
342                       "Loop predication", false, false)
343 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
344 INITIALIZE_PASS_DEPENDENCY(LoopPass)
345 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
346                     "Loop predication", false, false)
347 
348 Pass *llvm::createLoopPredicationPass() {
349   return new LoopPredicationLegacyPass();
350 }
351 
352 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
353                                            LoopStandardAnalysisResults &AR,
354                                            LPMUpdater &U) {
355   const auto &FAM =
356       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
357   Function *F = L.getHeader()->getParent();
358   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
359   LoopPredication LP(&AR.SE, BPI);
360   if (!LP.runOnLoop(&L))
361     return PreservedAnalyses::all();
362 
363   return getLoopPassPreservedAnalyses();
364 }
365 
366 Optional<LoopPredication::LoopICmp>
367 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
368                                Value *RHS) {
369   const SCEV *LHSS = SE->getSCEV(LHS);
370   if (isa<SCEVCouldNotCompute>(LHSS))
371     return None;
372   const SCEV *RHSS = SE->getSCEV(RHS);
373   if (isa<SCEVCouldNotCompute>(RHSS))
374     return None;
375 
376   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
377   if (SE->isLoopInvariant(LHSS, L)) {
378     std::swap(LHS, RHS);
379     std::swap(LHSS, RHSS);
380     Pred = ICmpInst::getSwappedPredicate(Pred);
381   }
382 
383   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
384   if (!AR || AR->getLoop() != L)
385     return None;
386 
387   return LoopICmp(Pred, AR, RHSS);
388 }
389 
390 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
391                                     IRBuilder<> &Builder,
392                                     ICmpInst::Predicate Pred, const SCEV *LHS,
393                                     const SCEV *RHS) {
394   Type *Ty = LHS->getType();
395   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
396 
397   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
398     return Builder.getTrue();
399 
400   Instruction *InsertAt = &*Builder.GetInsertPoint();
401   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
402   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
403   return Builder.CreateICmp(Pred, LHSV, RHSV);
404 }
405 
406 Optional<LoopPredication::LoopICmp>
407 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
408 
409   auto *LatchType = LatchCheck.IV->getType();
410   if (RangeCheckType == LatchType)
411     return LatchCheck;
412   // For now, bail out if latch type is narrower than range type.
413   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
414     return None;
415   if (!isSafeToTruncateWideIVType(RangeCheckType))
416     return None;
417   // We can now safely identify the truncated version of the IV and limit for
418   // RangeCheckType.
419   LoopICmp NewLatchCheck;
420   NewLatchCheck.Pred = LatchCheck.Pred;
421   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
422       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
423   if (!NewLatchCheck.IV)
424     return None;
425   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
426   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
427                     << "can be represented as range check type:"
428                     << *RangeCheckType << "\n");
429   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
430   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
431   return NewLatchCheck;
432 }
433 
434 bool LoopPredication::isSupportedStep(const SCEV* Step) {
435   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
436 }
437 
438 bool LoopPredication::CanExpand(const SCEV* S) {
439   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
440 }
441 
442 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
443     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
444     SCEVExpander &Expander, IRBuilder<> &Builder) {
445   auto *Ty = RangeCheck.IV->getType();
446   // Generate the widened condition for the forward loop:
447   //   guardStart u< guardLimit &&
448   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
449   // where <pred> depends on the latch condition predicate. See the file
450   // header comment for the reasoning.
451   // guardLimit - guardStart + latchStart - 1
452   const SCEV *GuardStart = RangeCheck.IV->getStart();
453   const SCEV *GuardLimit = RangeCheck.Limit;
454   const SCEV *LatchStart = LatchCheck.IV->getStart();
455   const SCEV *LatchLimit = LatchCheck.Limit;
456 
457   // guardLimit - guardStart + latchStart - 1
458   const SCEV *RHS =
459       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
460                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
461   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
462       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
463     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
464     return None;
465   }
466   auto LimitCheckPred =
467       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
468 
469   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
470   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
471   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
472 
473   auto *LimitCheck =
474       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS);
475   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
476                                           GuardStart, GuardLimit);
477   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
478 }
479 
480 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
481     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
482     SCEVExpander &Expander, IRBuilder<> &Builder) {
483   auto *Ty = RangeCheck.IV->getType();
484   const SCEV *GuardStart = RangeCheck.IV->getStart();
485   const SCEV *GuardLimit = RangeCheck.Limit;
486   const SCEV *LatchLimit = LatchCheck.Limit;
487   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
488       !CanExpand(LatchLimit)) {
489     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
490     return None;
491   }
492   // The decrement of the latch check IV should be the same as the
493   // rangeCheckIV.
494   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
495   if (RangeCheck.IV != PostDecLatchCheckIV) {
496     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
497                       << *PostDecLatchCheckIV
498                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
499     return None;
500   }
501 
502   // Generate the widened condition for CountDownLoop:
503   // guardStart u< guardLimit &&
504   // latchLimit <pred> 1.
505   // See the header comment for reasoning of the checks.
506   auto LimitCheckPred =
507       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
508   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
509                                           GuardStart, GuardLimit);
510   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
511                                  SE->getOne(Ty));
512   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
513 }
514 
515 /// If ICI can be widened to a loop invariant condition emits the loop
516 /// invariant condition in the loop preheader and return it, otherwise
517 /// returns None.
518 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
519                                                        SCEVExpander &Expander,
520                                                        IRBuilder<> &Builder) {
521   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
522   LLVM_DEBUG(ICI->dump());
523 
524   // parseLoopStructure guarantees that the latch condition is:
525   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
526   // We are looking for the range checks of the form:
527   //   i u< guardLimit
528   auto RangeCheck = parseLoopICmp(ICI);
529   if (!RangeCheck) {
530     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
531     return None;
532   }
533   LLVM_DEBUG(dbgs() << "Guard check:\n");
534   LLVM_DEBUG(RangeCheck->dump());
535   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
536     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
537                       << RangeCheck->Pred << ")!\n");
538     return None;
539   }
540   auto *RangeCheckIV = RangeCheck->IV;
541   if (!RangeCheckIV->isAffine()) {
542     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
543     return None;
544   }
545   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
546   // We cannot just compare with latch IV step because the latch and range IVs
547   // may have different types.
548   if (!isSupportedStep(Step)) {
549     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
550     return None;
551   }
552   auto *Ty = RangeCheckIV->getType();
553   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
554   if (!CurrLatchCheckOpt) {
555     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
556                          "corresponding to range type: "
557                       << *Ty << "\n");
558     return None;
559   }
560 
561   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
562   // At this point, the range and latch step should have the same type, but need
563   // not have the same value (we support both 1 and -1 steps).
564   assert(Step->getType() ==
565              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
566          "Range and latch steps should be of same type!");
567   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
568     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
569     return None;
570   }
571 
572   if (Step->isOne())
573     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
574                                                Expander, Builder);
575   else {
576     assert(Step->isAllOnesValue() && "Step should be -1!");
577     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
578                                                Expander, Builder);
579   }
580 }
581 
582 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
583                                         Value *Condition,
584                                         SCEVExpander &Expander,
585                                         IRBuilder<> &Builder) {
586   unsigned NumWidened = 0;
587   // The guard condition is expected to be in form of:
588   //   cond1 && cond2 && cond3 ...
589   // Iterate over subconditions looking for icmp conditions which can be
590   // widened across loop iterations. Widening these conditions remember the
591   // resulting list of subconditions in Checks vector.
592   SmallVector<Value *, 4> Worklist(1, Condition);
593   SmallPtrSet<Value *, 4> Visited;
594   do {
595     Value *Condition = Worklist.pop_back_val();
596     if (!Visited.insert(Condition).second)
597       continue;
598 
599     Value *LHS, *RHS;
600     using namespace llvm::PatternMatch;
601     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
602       Worklist.push_back(LHS);
603       Worklist.push_back(RHS);
604       continue;
605     }
606 
607     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
608       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
609                                                    Builder)) {
610         Checks.push_back(NewRangeCheck.getValue());
611         NumWidened++;
612         continue;
613       }
614     }
615 
616     // Save the condition as is if we can't widen it
617     Checks.push_back(Condition);
618   } while (!Worklist.empty());
619   return NumWidened;
620 }
621 
622 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
623                                            SCEVExpander &Expander) {
624   LLVM_DEBUG(dbgs() << "Processing guard:\n");
625   LLVM_DEBUG(Guard->dump());
626 
627   TotalConsidered++;
628   SmallVector<Value *, 4> Checks;
629   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
630   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
631                                       Builder);
632   if (NumWidened == 0)
633     return false;
634 
635   TotalWidened += NumWidened;
636 
637   // Emit the new guard condition
638   Builder.SetInsertPoint(Guard);
639   Value *LastCheck = nullptr;
640   for (auto *Check : Checks)
641     if (!LastCheck)
642       LastCheck = Check;
643     else
644       LastCheck = Builder.CreateAnd(LastCheck, Check);
645   auto *OldCond = Guard->getOperand(0);
646   Guard->setOperand(0, LastCheck);
647   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
648 
649   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
650   return true;
651 }
652 
653 bool LoopPredication::widenWidenableBranchGuardConditions(
654     BranchInst *Guard, SCEVExpander &Expander) {
655   assert(isGuardAsWidenableBranch(Guard) && "Must be!");
656   LLVM_DEBUG(dbgs() << "Processing guard:\n");
657   LLVM_DEBUG(Guard->dump());
658 
659   TotalConsidered++;
660   SmallVector<Value *, 4> Checks;
661   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
662   Value *Condition = nullptr, *WidenableCondition = nullptr;
663   BasicBlock *GBB = nullptr, *DBB = nullptr;
664   parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB);
665   unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder);
666   if (NumWidened == 0)
667     return false;
668 
669   TotalWidened += NumWidened;
670 
671   // Emit the new guard condition
672   Builder.SetInsertPoint(Guard);
673   Value *LastCheck = nullptr;
674   for (auto *Check : Checks)
675     if (!LastCheck)
676       LastCheck = Check;
677     else
678       LastCheck = Builder.CreateAnd(LastCheck, Check);
679   // Make sure that the check contains widenable condition and therefore can be
680   // further widened.
681   LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition);
682   auto *OldCond = Guard->getOperand(0);
683   Guard->setOperand(0, LastCheck);
684   assert(isGuardAsWidenableBranch(Guard) &&
685          "Stopped being a guard after transform?");
686   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
687 
688   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
689   return true;
690 }
691 
692 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
693   using namespace PatternMatch;
694 
695   BasicBlock *LoopLatch = L->getLoopLatch();
696   if (!LoopLatch) {
697     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
698     return None;
699   }
700 
701   ICmpInst::Predicate Pred;
702   Value *LHS, *RHS;
703   BasicBlock *TrueDest, *FalseDest;
704 
705   if (!match(LoopLatch->getTerminator(),
706              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
707                   FalseDest))) {
708     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
709     return None;
710   }
711   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
712          "One of the latch's destinations must be the header");
713   if (TrueDest != L->getHeader())
714     Pred = ICmpInst::getInversePredicate(Pred);
715 
716   auto Result = parseLoopICmp(Pred, LHS, RHS);
717   if (!Result) {
718     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
719     return None;
720   }
721 
722   // Check affine first, so if it's not we don't try to compute the step
723   // recurrence.
724   if (!Result->IV->isAffine()) {
725     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
726     return None;
727   }
728 
729   auto *Step = Result->IV->getStepRecurrence(*SE);
730   if (!isSupportedStep(Step)) {
731     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
732     return None;
733   }
734 
735   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
736     if (Step->isOne()) {
737       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
738              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
739     } else {
740       assert(Step->isAllOnesValue() && "Step should be -1!");
741       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
742              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
743     }
744   };
745 
746   if (IsUnsupportedPredicate(Step, Result->Pred)) {
747     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
748                       << ")!\n");
749     return None;
750   }
751   return Result;
752 }
753 
754 // Returns true if its safe to truncate the IV to RangeCheckType.
755 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
756   if (!EnableIVTruncation)
757     return false;
758   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
759              DL->getTypeSizeInBits(RangeCheckType) &&
760          "Expected latch check IV type to be larger than range check operand "
761          "type!");
762   // The start and end values of the IV should be known. This is to guarantee
763   // that truncating the wide type will not lose information.
764   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
765   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
766   if (!Limit || !Start)
767     return false;
768   // This check makes sure that the IV does not change sign during loop
769   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
770   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
771   // IV wraps around, and the truncation of the IV would lose the range of
772   // iterations between 2^32 and 2^64.
773   bool Increasing;
774   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
775     return false;
776   // The active bits should be less than the bits in the RangeCheckType. This
777   // guarantees that truncating the latch check to RangeCheckType is a safe
778   // operation.
779   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
780   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
781          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
782 }
783 
784 bool LoopPredication::isLoopProfitableToPredicate() {
785   if (SkipProfitabilityChecks || !BPI)
786     return true;
787 
788   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
789   L->getExitEdges(ExitEdges);
790   // If there is only one exiting edge in the loop, it is always profitable to
791   // predicate the loop.
792   if (ExitEdges.size() == 1)
793     return true;
794 
795   // Calculate the exiting probabilities of all exiting edges from the loop,
796   // starting with the LatchExitProbability.
797   // Heuristic for profitability: If any of the exiting blocks' probability of
798   // exiting the loop is larger than exiting through the latch block, it's not
799   // profitable to predicate the loop.
800   auto *LatchBlock = L->getLoopLatch();
801   assert(LatchBlock && "Should have a single latch at this point!");
802   auto *LatchTerm = LatchBlock->getTerminator();
803   assert(LatchTerm->getNumSuccessors() == 2 &&
804          "expected to be an exiting block with 2 succs!");
805   unsigned LatchBrExitIdx =
806       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
807   BranchProbability LatchExitProbability =
808       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
809 
810   // Protect against degenerate inputs provided by the user. Providing a value
811   // less than one, can invert the definition of profitable loop predication.
812   float ScaleFactor = LatchExitProbabilityScale;
813   if (ScaleFactor < 1) {
814     LLVM_DEBUG(
815         dbgs()
816         << "Ignored user setting for loop-predication-latch-probability-scale: "
817         << LatchExitProbabilityScale << "\n");
818     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
819     ScaleFactor = 1.0;
820   }
821   const auto LatchProbabilityThreshold =
822       LatchExitProbability * ScaleFactor;
823 
824   for (const auto &ExitEdge : ExitEdges) {
825     BranchProbability ExitingBlockProbability =
826         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
827     // Some exiting edge has higher probability than the latch exiting edge.
828     // No longer profitable to predicate.
829     if (ExitingBlockProbability > LatchProbabilityThreshold)
830       return false;
831   }
832   // Using BPI, we have concluded that the most probable way to exit from the
833   // loop is through the latch (or there's no profile information and all
834   // exits are equally likely).
835   return true;
836 }
837 
838 bool LoopPredication::runOnLoop(Loop *Loop) {
839   L = Loop;
840 
841   LLVM_DEBUG(dbgs() << "Analyzing ");
842   LLVM_DEBUG(L->dump());
843 
844   Module *M = L->getHeader()->getModule();
845 
846   // There is nothing to do if the module doesn't use guards
847   auto *GuardDecl =
848       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
849   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
850   auto *WCDecl = M->getFunction(
851       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
852   bool HasWidenableConditions =
853       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
854   if (!HasIntrinsicGuards && !HasWidenableConditions)
855     return false;
856 
857   DL = &M->getDataLayout();
858 
859   Preheader = L->getLoopPreheader();
860   if (!Preheader)
861     return false;
862 
863   auto LatchCheckOpt = parseLoopLatchICmp();
864   if (!LatchCheckOpt)
865     return false;
866   LatchCheck = *LatchCheckOpt;
867 
868   LLVM_DEBUG(dbgs() << "Latch check:\n");
869   LLVM_DEBUG(LatchCheck.dump());
870 
871   if (!isLoopProfitableToPredicate()) {
872     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
873     return false;
874   }
875   // Collect all the guards into a vector and process later, so as not
876   // to invalidate the instruction iterator.
877   SmallVector<IntrinsicInst *, 4> Guards;
878   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
879   for (const auto BB : L->blocks()) {
880     for (auto &I : *BB)
881       if (isGuard(&I))
882         Guards.push_back(cast<IntrinsicInst>(&I));
883     if (PredicateWidenableBranchGuards &&
884         isGuardAsWidenableBranch(BB->getTerminator()))
885       GuardsAsWidenableBranches.push_back(
886           cast<BranchInst>(BB->getTerminator()));
887   }
888 
889   if (Guards.empty() && GuardsAsWidenableBranches.empty())
890     return false;
891 
892   SCEVExpander Expander(*SE, *DL, "loop-predication");
893 
894   bool Changed = false;
895   for (auto *Guard : Guards)
896     Changed |= widenGuardConditions(Guard, Expander);
897   for (auto *Guard : GuardsAsWidenableBranches)
898     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
899 
900   return Changed;
901 }
902