1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/LoopUtils.h" 197 198 #define DEBUG_TYPE "loop-predication" 199 200 STATISTIC(TotalConsidered, "Number of guards considered"); 201 STATISTIC(TotalWidened, "Number of checks widened"); 202 203 using namespace llvm; 204 205 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 206 cl::Hidden, cl::init(true)); 207 208 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> 212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 213 cl::Hidden, cl::init(false)); 214 215 // This is the scale factor for the latch probability. We use this during 216 // profitability analysis to find other exiting blocks that have a much higher 217 // probability of exiting the loop instead of loop exiting via latch. 218 // This value should be greater than 1 for a sane profitability check. 219 static cl::opt<float> LatchExitProbabilityScale( 220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 221 cl::desc("scale factor for the latch probability. Value should be greater " 222 "than 1. Lower values are ignored")); 223 224 namespace { 225 class LoopPredication { 226 /// Represents an induction variable check: 227 /// icmp Pred, <induction variable>, <loop invariant limit> 228 struct LoopICmp { 229 ICmpInst::Predicate Pred; 230 const SCEVAddRecExpr *IV; 231 const SCEV *Limit; 232 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 233 const SCEV *Limit) 234 : Pred(Pred), IV(IV), Limit(Limit) {} 235 LoopICmp() {} 236 void dump() { 237 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 238 << ", Limit = " << *Limit << "\n"; 239 } 240 }; 241 242 ScalarEvolution *SE; 243 BranchProbabilityInfo *BPI; 244 245 Loop *L; 246 const DataLayout *DL; 247 BasicBlock *Preheader; 248 LoopICmp LatchCheck; 249 250 bool isSupportedStep(const SCEV* Step); 251 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 252 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 253 ICI->getOperand(1)); 254 } 255 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 256 Value *RHS); 257 258 Optional<LoopICmp> parseLoopLatchICmp(); 259 260 bool CanExpand(const SCEV* S); 261 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 262 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 263 Instruction *InsertAt); 264 265 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 266 IRBuilder<> &Builder); 267 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 268 LoopICmp RangeCheck, 269 SCEVExpander &Expander, 270 IRBuilder<> &Builder); 271 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 272 LoopICmp RangeCheck, 273 SCEVExpander &Expander, 274 IRBuilder<> &Builder); 275 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 276 SCEVExpander &Expander, IRBuilder<> &Builder); 277 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 278 279 // If the loop always exits through another block in the loop, we should not 280 // predicate based on the latch check. For example, the latch check can be a 281 // very coarse grained check and there can be more fine grained exit checks 282 // within the loop. We identify such unprofitable loops through BPI. 283 bool isLoopProfitableToPredicate(); 284 285 // When the IV type is wider than the range operand type, we can still do loop 286 // predication, by generating SCEVs for the range and latch that are of the 287 // same type. We achieve this by generating a SCEV truncate expression for the 288 // latch IV. This is done iff truncation of the IV is a safe operation, 289 // without loss of information. 290 // Another way to achieve this is by generating a wider type SCEV for the 291 // range check operand, however, this needs a more involved check that 292 // operands do not overflow. This can lead to loss of information when the 293 // range operand is of the form: add i32 %offset, %iv. We need to prove that 294 // sext(x + y) is same as sext(x) + sext(y). 295 // This function returns true if we can safely represent the IV type in 296 // the RangeCheckType without loss of information. 297 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 298 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 299 // so. 300 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 301 302 public: 303 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 304 : SE(SE), BPI(BPI){}; 305 bool runOnLoop(Loop *L); 306 }; 307 308 class LoopPredicationLegacyPass : public LoopPass { 309 public: 310 static char ID; 311 LoopPredicationLegacyPass() : LoopPass(ID) { 312 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 313 } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 317 getLoopAnalysisUsage(AU); 318 } 319 320 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 321 if (skipLoop(L)) 322 return false; 323 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 324 BranchProbabilityInfo &BPI = 325 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 326 LoopPredication LP(SE, &BPI); 327 return LP.runOnLoop(L); 328 } 329 }; 330 331 char LoopPredicationLegacyPass::ID = 0; 332 } // end namespace llvm 333 334 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 335 "Loop predication", false, false) 336 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 337 INITIALIZE_PASS_DEPENDENCY(LoopPass) 338 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 339 "Loop predication", false, false) 340 341 Pass *llvm::createLoopPredicationPass() { 342 return new LoopPredicationLegacyPass(); 343 } 344 345 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 346 LoopStandardAnalysisResults &AR, 347 LPMUpdater &U) { 348 const auto &FAM = 349 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 350 Function *F = L.getHeader()->getParent(); 351 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 352 LoopPredication LP(&AR.SE, BPI); 353 if (!LP.runOnLoop(&L)) 354 return PreservedAnalyses::all(); 355 356 return getLoopPassPreservedAnalyses(); 357 } 358 359 Optional<LoopPredication::LoopICmp> 360 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 361 Value *RHS) { 362 const SCEV *LHSS = SE->getSCEV(LHS); 363 if (isa<SCEVCouldNotCompute>(LHSS)) 364 return None; 365 const SCEV *RHSS = SE->getSCEV(RHS); 366 if (isa<SCEVCouldNotCompute>(RHSS)) 367 return None; 368 369 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 370 if (SE->isLoopInvariant(LHSS, L)) { 371 std::swap(LHS, RHS); 372 std::swap(LHSS, RHSS); 373 Pred = ICmpInst::getSwappedPredicate(Pred); 374 } 375 376 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 377 if (!AR || AR->getLoop() != L) 378 return None; 379 380 return LoopICmp(Pred, AR, RHSS); 381 } 382 383 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 384 IRBuilder<> &Builder, 385 ICmpInst::Predicate Pred, const SCEV *LHS, 386 const SCEV *RHS, Instruction *InsertAt) { 387 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 388 389 Type *Ty = LHS->getType(); 390 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 391 392 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 393 return Builder.getTrue(); 394 395 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 396 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 397 return Builder.CreateICmp(Pred, LHSV, RHSV); 398 } 399 400 Optional<LoopPredication::LoopICmp> 401 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 402 403 auto *LatchType = LatchCheck.IV->getType(); 404 if (RangeCheckType == LatchType) 405 return LatchCheck; 406 // For now, bail out if latch type is narrower than range type. 407 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 408 return None; 409 if (!isSafeToTruncateWideIVType(RangeCheckType)) 410 return None; 411 // We can now safely identify the truncated version of the IV and limit for 412 // RangeCheckType. 413 LoopICmp NewLatchCheck; 414 NewLatchCheck.Pred = LatchCheck.Pred; 415 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 416 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 417 if (!NewLatchCheck.IV) 418 return None; 419 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 420 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 421 << "can be represented as range check type:" 422 << *RangeCheckType << "\n"); 423 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 424 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 425 return NewLatchCheck; 426 } 427 428 bool LoopPredication::isSupportedStep(const SCEV* Step) { 429 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 430 } 431 432 bool LoopPredication::CanExpand(const SCEV* S) { 433 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 434 } 435 436 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 437 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 438 SCEVExpander &Expander, IRBuilder<> &Builder) { 439 auto *Ty = RangeCheck.IV->getType(); 440 // Generate the widened condition for the forward loop: 441 // guardStart u< guardLimit && 442 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 443 // where <pred> depends on the latch condition predicate. See the file 444 // header comment for the reasoning. 445 // guardLimit - guardStart + latchStart - 1 446 const SCEV *GuardStart = RangeCheck.IV->getStart(); 447 const SCEV *GuardLimit = RangeCheck.Limit; 448 const SCEV *LatchStart = LatchCheck.IV->getStart(); 449 const SCEV *LatchLimit = LatchCheck.Limit; 450 451 // guardLimit - guardStart + latchStart - 1 452 const SCEV *RHS = 453 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 454 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 455 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 456 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 457 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 458 return None; 459 } 460 auto LimitCheckPred = 461 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 462 463 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 464 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 465 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 466 467 Instruction *InsertAt = Preheader->getTerminator(); 468 auto *LimitCheck = 469 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 470 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 471 GuardStart, GuardLimit, InsertAt); 472 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 473 } 474 475 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 476 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 477 SCEVExpander &Expander, IRBuilder<> &Builder) { 478 auto *Ty = RangeCheck.IV->getType(); 479 const SCEV *GuardStart = RangeCheck.IV->getStart(); 480 const SCEV *GuardLimit = RangeCheck.Limit; 481 const SCEV *LatchLimit = LatchCheck.Limit; 482 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 483 !CanExpand(LatchLimit)) { 484 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 485 return None; 486 } 487 // The decrement of the latch check IV should be the same as the 488 // rangeCheckIV. 489 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 490 if (RangeCheck.IV != PostDecLatchCheckIV) { 491 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 492 << *PostDecLatchCheckIV 493 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 494 return None; 495 } 496 497 // Generate the widened condition for CountDownLoop: 498 // guardStart u< guardLimit && 499 // latchLimit <pred> 1. 500 // See the header comment for reasoning of the checks. 501 Instruction *InsertAt = Preheader->getTerminator(); 502 auto LimitCheckPred = 503 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 504 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 505 GuardStart, GuardLimit, InsertAt); 506 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 507 SE->getOne(Ty), InsertAt); 508 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 509 } 510 511 /// If ICI can be widened to a loop invariant condition emits the loop 512 /// invariant condition in the loop preheader and return it, otherwise 513 /// returns None. 514 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 515 SCEVExpander &Expander, 516 IRBuilder<> &Builder) { 517 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 518 LLVM_DEBUG(ICI->dump()); 519 520 // parseLoopStructure guarantees that the latch condition is: 521 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 522 // We are looking for the range checks of the form: 523 // i u< guardLimit 524 auto RangeCheck = parseLoopICmp(ICI); 525 if (!RangeCheck) { 526 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 527 return None; 528 } 529 LLVM_DEBUG(dbgs() << "Guard check:\n"); 530 LLVM_DEBUG(RangeCheck->dump()); 531 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 532 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 533 << RangeCheck->Pred << ")!\n"); 534 return None; 535 } 536 auto *RangeCheckIV = RangeCheck->IV; 537 if (!RangeCheckIV->isAffine()) { 538 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 539 return None; 540 } 541 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 542 // We cannot just compare with latch IV step because the latch and range IVs 543 // may have different types. 544 if (!isSupportedStep(Step)) { 545 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 546 return None; 547 } 548 auto *Ty = RangeCheckIV->getType(); 549 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 550 if (!CurrLatchCheckOpt) { 551 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 552 "corresponding to range type: " 553 << *Ty << "\n"); 554 return None; 555 } 556 557 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 558 // At this point, the range and latch step should have the same type, but need 559 // not have the same value (we support both 1 and -1 steps). 560 assert(Step->getType() == 561 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 562 "Range and latch steps should be of same type!"); 563 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 564 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 565 return None; 566 } 567 568 if (Step->isOne()) 569 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 570 Expander, Builder); 571 else { 572 assert(Step->isAllOnesValue() && "Step should be -1!"); 573 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 574 Expander, Builder); 575 } 576 } 577 578 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 579 Value *Condition, 580 SCEVExpander &Expander, 581 IRBuilder<> &Builder) { 582 unsigned NumWidened = 0; 583 // The guard condition is expected to be in form of: 584 // cond1 && cond2 && cond3 ... 585 // Iterate over subconditions looking for icmp conditions which can be 586 // widened across loop iterations. Widening these conditions remember the 587 // resulting list of subconditions in Checks vector. 588 SmallVector<Value *, 4> Worklist(1, Condition); 589 SmallPtrSet<Value *, 4> Visited; 590 do { 591 Value *Condition = Worklist.pop_back_val(); 592 if (!Visited.insert(Condition).second) 593 continue; 594 595 Value *LHS, *RHS; 596 using namespace llvm::PatternMatch; 597 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 598 Worklist.push_back(LHS); 599 Worklist.push_back(RHS); 600 continue; 601 } 602 603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 604 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 605 Checks.push_back(NewRangeCheck.getValue()); 606 NumWidened++; 607 continue; 608 } 609 } 610 611 // Save the condition as is if we can't widen it 612 Checks.push_back(Condition); 613 } while (!Worklist.empty()); 614 return NumWidened; 615 } 616 617 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 618 SCEVExpander &Expander) { 619 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 620 LLVM_DEBUG(Guard->dump()); 621 622 TotalConsidered++; 623 SmallVector<Value *, 4> Checks; 624 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 625 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 626 Builder); 627 if (NumWidened == 0) 628 return false; 629 630 TotalWidened += NumWidened; 631 632 // Emit the new guard condition 633 Builder.SetInsertPoint(Guard); 634 Value *LastCheck = nullptr; 635 for (auto *Check : Checks) 636 if (!LastCheck) 637 LastCheck = Check; 638 else 639 LastCheck = Builder.CreateAnd(LastCheck, Check); 640 Guard->setOperand(0, LastCheck); 641 642 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 643 return true; 644 } 645 646 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 647 using namespace PatternMatch; 648 649 BasicBlock *LoopLatch = L->getLoopLatch(); 650 if (!LoopLatch) { 651 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 652 return None; 653 } 654 655 ICmpInst::Predicate Pred; 656 Value *LHS, *RHS; 657 BasicBlock *TrueDest, *FalseDest; 658 659 if (!match(LoopLatch->getTerminator(), 660 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 661 FalseDest))) { 662 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 663 return None; 664 } 665 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 666 "One of the latch's destinations must be the header"); 667 if (TrueDest != L->getHeader()) 668 Pred = ICmpInst::getInversePredicate(Pred); 669 670 auto Result = parseLoopICmp(Pred, LHS, RHS); 671 if (!Result) { 672 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 673 return None; 674 } 675 676 // Check affine first, so if it's not we don't try to compute the step 677 // recurrence. 678 if (!Result->IV->isAffine()) { 679 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 680 return None; 681 } 682 683 auto *Step = Result->IV->getStepRecurrence(*SE); 684 if (!isSupportedStep(Step)) { 685 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 686 return None; 687 } 688 689 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 690 if (Step->isOne()) { 691 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 692 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 693 } else { 694 assert(Step->isAllOnesValue() && "Step should be -1!"); 695 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 696 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 697 } 698 }; 699 700 if (IsUnsupportedPredicate(Step, Result->Pred)) { 701 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 702 << ")!\n"); 703 return None; 704 } 705 return Result; 706 } 707 708 // Returns true if its safe to truncate the IV to RangeCheckType. 709 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 710 if (!EnableIVTruncation) 711 return false; 712 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 713 DL->getTypeSizeInBits(RangeCheckType) && 714 "Expected latch check IV type to be larger than range check operand " 715 "type!"); 716 // The start and end values of the IV should be known. This is to guarantee 717 // that truncating the wide type will not lose information. 718 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 719 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 720 if (!Limit || !Start) 721 return false; 722 // This check makes sure that the IV does not change sign during loop 723 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 724 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 725 // IV wraps around, and the truncation of the IV would lose the range of 726 // iterations between 2^32 and 2^64. 727 bool Increasing; 728 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 729 return false; 730 // The active bits should be less than the bits in the RangeCheckType. This 731 // guarantees that truncating the latch check to RangeCheckType is a safe 732 // operation. 733 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 734 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 735 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 736 } 737 738 bool LoopPredication::isLoopProfitableToPredicate() { 739 if (SkipProfitabilityChecks || !BPI) 740 return true; 741 742 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 743 L->getExitEdges(ExitEdges); 744 // If there is only one exiting edge in the loop, it is always profitable to 745 // predicate the loop. 746 if (ExitEdges.size() == 1) 747 return true; 748 749 // Calculate the exiting probabilities of all exiting edges from the loop, 750 // starting with the LatchExitProbability. 751 // Heuristic for profitability: If any of the exiting blocks' probability of 752 // exiting the loop is larger than exiting through the latch block, it's not 753 // profitable to predicate the loop. 754 auto *LatchBlock = L->getLoopLatch(); 755 assert(LatchBlock && "Should have a single latch at this point!"); 756 auto *LatchTerm = LatchBlock->getTerminator(); 757 assert(LatchTerm->getNumSuccessors() == 2 && 758 "expected to be an exiting block with 2 succs!"); 759 unsigned LatchBrExitIdx = 760 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 761 BranchProbability LatchExitProbability = 762 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 763 764 // Protect against degenerate inputs provided by the user. Providing a value 765 // less than one, can invert the definition of profitable loop predication. 766 float ScaleFactor = LatchExitProbabilityScale; 767 if (ScaleFactor < 1) { 768 LLVM_DEBUG( 769 dbgs() 770 << "Ignored user setting for loop-predication-latch-probability-scale: " 771 << LatchExitProbabilityScale << "\n"); 772 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 773 ScaleFactor = 1.0; 774 } 775 const auto LatchProbabilityThreshold = 776 LatchExitProbability * ScaleFactor; 777 778 for (const auto &ExitEdge : ExitEdges) { 779 BranchProbability ExitingBlockProbability = 780 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 781 // Some exiting edge has higher probability than the latch exiting edge. 782 // No longer profitable to predicate. 783 if (ExitingBlockProbability > LatchProbabilityThreshold) 784 return false; 785 } 786 // Using BPI, we have concluded that the most probable way to exit from the 787 // loop is through the latch (or there's no profile information and all 788 // exits are equally likely). 789 return true; 790 } 791 792 bool LoopPredication::runOnLoop(Loop *Loop) { 793 L = Loop; 794 795 LLVM_DEBUG(dbgs() << "Analyzing "); 796 LLVM_DEBUG(L->dump()); 797 798 Module *M = L->getHeader()->getModule(); 799 800 // There is nothing to do if the module doesn't use guards 801 auto *GuardDecl = 802 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 803 if (!GuardDecl || GuardDecl->use_empty()) 804 return false; 805 806 DL = &M->getDataLayout(); 807 808 Preheader = L->getLoopPreheader(); 809 if (!Preheader) 810 return false; 811 812 auto LatchCheckOpt = parseLoopLatchICmp(); 813 if (!LatchCheckOpt) 814 return false; 815 LatchCheck = *LatchCheckOpt; 816 817 LLVM_DEBUG(dbgs() << "Latch check:\n"); 818 LLVM_DEBUG(LatchCheck.dump()); 819 820 if (!isLoopProfitableToPredicate()) { 821 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 822 return false; 823 } 824 // Collect all the guards into a vector and process later, so as not 825 // to invalidate the instruction iterator. 826 SmallVector<IntrinsicInst *, 4> Guards; 827 for (const auto BB : L->blocks()) 828 for (auto &I : *BB) 829 if (isGuard(&I)) 830 Guards.push_back(cast<IntrinsicInst>(&I)); 831 832 if (Guards.empty()) 833 return false; 834 835 SCEVExpander Expander(*SE, *DL, "loop-predication"); 836 837 bool Changed = false; 838 for (auto *Guard : Guards) 839 Changed |= widenGuardConditions(Guard, Expander); 840 841 return Changed; 842 } 843