xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision b55637b5d76c6f7aa5aea4bfbd2bc832f9e68ec8)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/GuardUtils.h"
183 #include "llvm/Analysis/LoopInfo.h"
184 #include "llvm/Analysis/LoopPass.h"
185 #include "llvm/Analysis/ScalarEvolution.h"
186 #include "llvm/Analysis/ScalarEvolutionExpander.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/Pass.h"
194 #include "llvm/Support/Debug.h"
195 #include "llvm/Transforms/Scalar.h"
196 #include "llvm/Transforms/Utils/LoopUtils.h"
197 
198 #define DEBUG_TYPE "loop-predication"
199 
200 STATISTIC(TotalConsidered, "Number of guards considered");
201 STATISTIC(TotalWidened, "Number of checks widened");
202 
203 using namespace llvm;
204 
205 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
206                                         cl::Hidden, cl::init(true));
207 
208 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
209                                         cl::Hidden, cl::init(true));
210 
211 static cl::opt<bool>
212     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
213                             cl::Hidden, cl::init(false));
214 
215 // This is the scale factor for the latch probability. We use this during
216 // profitability analysis to find other exiting blocks that have a much higher
217 // probability of exiting the loop instead of loop exiting via latch.
218 // This value should be greater than 1 for a sane profitability check.
219 static cl::opt<float> LatchExitProbabilityScale(
220     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
221     cl::desc("scale factor for the latch probability. Value should be greater "
222              "than 1. Lower values are ignored"));
223 
224 static cl::opt<bool> PredicateWidenableBranchGuards(
225     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
226     cl::desc("Whether or not we should predicate guards "
227              "expressed as widenable branches to deoptimize blocks"),
228     cl::init(true));
229 
230 namespace {
231 class LoopPredication {
232   /// Represents an induction variable check:
233   ///   icmp Pred, <induction variable>, <loop invariant limit>
234   struct LoopICmp {
235     ICmpInst::Predicate Pred;
236     const SCEVAddRecExpr *IV;
237     const SCEV *Limit;
238     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
239              const SCEV *Limit)
240         : Pred(Pred), IV(IV), Limit(Limit) {}
241     LoopICmp() {}
242     void dump() {
243       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
244              << ", Limit = " << *Limit << "\n";
245     }
246   };
247 
248   ScalarEvolution *SE;
249   BranchProbabilityInfo *BPI;
250 
251   Loop *L;
252   const DataLayout *DL;
253   BasicBlock *Preheader;
254   LoopICmp LatchCheck;
255 
256   bool isSupportedStep(const SCEV* Step);
257   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
258     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
259                          ICI->getOperand(1));
260   }
261   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
262                                    Value *RHS);
263 
264   Optional<LoopICmp> parseLoopLatchICmp();
265 
266   bool CanExpand(const SCEV* S);
267   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
268                      ICmpInst::Predicate Pred, const SCEV *LHS,
269                      const SCEV *RHS);
270 
271   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
272                                         IRBuilder<> &Builder);
273   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
274                                                         LoopICmp RangeCheck,
275                                                         SCEVExpander &Expander,
276                                                         IRBuilder<> &Builder);
277   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
278                                                         LoopICmp RangeCheck,
279                                                         SCEVExpander &Expander,
280                                                         IRBuilder<> &Builder);
281   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
282                          SCEVExpander &Expander, IRBuilder<> &Builder);
283   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
284   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
285   // If the loop always exits through another block in the loop, we should not
286   // predicate based on the latch check. For example, the latch check can be a
287   // very coarse grained check and there can be more fine grained exit checks
288   // within the loop. We identify such unprofitable loops through BPI.
289   bool isLoopProfitableToPredicate();
290 
291   // When the IV type is wider than the range operand type, we can still do loop
292   // predication, by generating SCEVs for the range and latch that are of the
293   // same type. We achieve this by generating a SCEV truncate expression for the
294   // latch IV. This is done iff truncation of the IV is a safe operation,
295   // without loss of information.
296   // Another way to achieve this is by generating a wider type SCEV for the
297   // range check operand, however, this needs a more involved check that
298   // operands do not overflow. This can lead to loss of information when the
299   // range operand is of the form: add i32 %offset, %iv. We need to prove that
300   // sext(x + y) is same as sext(x) + sext(y).
301   // This function returns true if we can safely represent the IV type in
302   // the RangeCheckType without loss of information.
303   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
304   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
305   // so.
306   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
307 
308 public:
309   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
310       : SE(SE), BPI(BPI){};
311   bool runOnLoop(Loop *L);
312 };
313 
314 class LoopPredicationLegacyPass : public LoopPass {
315 public:
316   static char ID;
317   LoopPredicationLegacyPass() : LoopPass(ID) {
318     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
319   }
320 
321   void getAnalysisUsage(AnalysisUsage &AU) const override {
322     AU.addRequired<BranchProbabilityInfoWrapperPass>();
323     getLoopAnalysisUsage(AU);
324   }
325 
326   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
327     if (skipLoop(L))
328       return false;
329     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
330     BranchProbabilityInfo &BPI =
331         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
332     LoopPredication LP(SE, &BPI);
333     return LP.runOnLoop(L);
334   }
335 };
336 
337 char LoopPredicationLegacyPass::ID = 0;
338 } // end namespace llvm
339 
340 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
341                       "Loop predication", false, false)
342 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
343 INITIALIZE_PASS_DEPENDENCY(LoopPass)
344 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
345                     "Loop predication", false, false)
346 
347 Pass *llvm::createLoopPredicationPass() {
348   return new LoopPredicationLegacyPass();
349 }
350 
351 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
352                                            LoopStandardAnalysisResults &AR,
353                                            LPMUpdater &U) {
354   const auto &FAM =
355       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
356   Function *F = L.getHeader()->getParent();
357   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
358   LoopPredication LP(&AR.SE, BPI);
359   if (!LP.runOnLoop(&L))
360     return PreservedAnalyses::all();
361 
362   return getLoopPassPreservedAnalyses();
363 }
364 
365 Optional<LoopPredication::LoopICmp>
366 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
367                                Value *RHS) {
368   const SCEV *LHSS = SE->getSCEV(LHS);
369   if (isa<SCEVCouldNotCompute>(LHSS))
370     return None;
371   const SCEV *RHSS = SE->getSCEV(RHS);
372   if (isa<SCEVCouldNotCompute>(RHSS))
373     return None;
374 
375   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376   if (SE->isLoopInvariant(LHSS, L)) {
377     std::swap(LHS, RHS);
378     std::swap(LHSS, RHSS);
379     Pred = ICmpInst::getSwappedPredicate(Pred);
380   }
381 
382   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383   if (!AR || AR->getLoop() != L)
384     return None;
385 
386   return LoopICmp(Pred, AR, RHSS);
387 }
388 
389 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
390                                     IRBuilder<> &Builder,
391                                     ICmpInst::Predicate Pred, const SCEV *LHS,
392                                     const SCEV *RHS) {
393   Type *Ty = LHS->getType();
394   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
395 
396   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
397     return Builder.getTrue();
398 
399   Instruction *InsertAt = &*Builder.GetInsertPoint();
400   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
401   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
402   return Builder.CreateICmp(Pred, LHSV, RHSV);
403 }
404 
405 Optional<LoopPredication::LoopICmp>
406 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
407 
408   auto *LatchType = LatchCheck.IV->getType();
409   if (RangeCheckType == LatchType)
410     return LatchCheck;
411   // For now, bail out if latch type is narrower than range type.
412   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
413     return None;
414   if (!isSafeToTruncateWideIVType(RangeCheckType))
415     return None;
416   // We can now safely identify the truncated version of the IV and limit for
417   // RangeCheckType.
418   LoopICmp NewLatchCheck;
419   NewLatchCheck.Pred = LatchCheck.Pred;
420   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
421       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
422   if (!NewLatchCheck.IV)
423     return None;
424   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
425   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
426                     << "can be represented as range check type:"
427                     << *RangeCheckType << "\n");
428   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
429   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
430   return NewLatchCheck;
431 }
432 
433 bool LoopPredication::isSupportedStep(const SCEV* Step) {
434   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
435 }
436 
437 bool LoopPredication::CanExpand(const SCEV* S) {
438   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
439 }
440 
441 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
442     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
443     SCEVExpander &Expander, IRBuilder<> &Builder) {
444   auto *Ty = RangeCheck.IV->getType();
445   // Generate the widened condition for the forward loop:
446   //   guardStart u< guardLimit &&
447   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
448   // where <pred> depends on the latch condition predicate. See the file
449   // header comment for the reasoning.
450   // guardLimit - guardStart + latchStart - 1
451   const SCEV *GuardStart = RangeCheck.IV->getStart();
452   const SCEV *GuardLimit = RangeCheck.Limit;
453   const SCEV *LatchStart = LatchCheck.IV->getStart();
454   const SCEV *LatchLimit = LatchCheck.Limit;
455 
456   // guardLimit - guardStart + latchStart - 1
457   const SCEV *RHS =
458       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
459                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
460   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
461       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
462     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
463     return None;
464   }
465   auto LimitCheckPred =
466       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
467 
468   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
469   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
470   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
471 
472   auto *LimitCheck =
473       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS);
474   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
475                                           GuardStart, GuardLimit);
476   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
477 }
478 
479 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
480     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
481     SCEVExpander &Expander, IRBuilder<> &Builder) {
482   auto *Ty = RangeCheck.IV->getType();
483   const SCEV *GuardStart = RangeCheck.IV->getStart();
484   const SCEV *GuardLimit = RangeCheck.Limit;
485   const SCEV *LatchLimit = LatchCheck.Limit;
486   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
487       !CanExpand(LatchLimit)) {
488     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
489     return None;
490   }
491   // The decrement of the latch check IV should be the same as the
492   // rangeCheckIV.
493   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
494   if (RangeCheck.IV != PostDecLatchCheckIV) {
495     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
496                       << *PostDecLatchCheckIV
497                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
498     return None;
499   }
500 
501   // Generate the widened condition for CountDownLoop:
502   // guardStart u< guardLimit &&
503   // latchLimit <pred> 1.
504   // See the header comment for reasoning of the checks.
505   auto LimitCheckPred =
506       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
507   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
508                                           GuardStart, GuardLimit);
509   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
510                                  SE->getOne(Ty));
511   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
512 }
513 
514 /// If ICI can be widened to a loop invariant condition emits the loop
515 /// invariant condition in the loop preheader and return it, otherwise
516 /// returns None.
517 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
518                                                        SCEVExpander &Expander,
519                                                        IRBuilder<> &Builder) {
520   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
521   LLVM_DEBUG(ICI->dump());
522 
523   // parseLoopStructure guarantees that the latch condition is:
524   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
525   // We are looking for the range checks of the form:
526   //   i u< guardLimit
527   auto RangeCheck = parseLoopICmp(ICI);
528   if (!RangeCheck) {
529     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
530     return None;
531   }
532   LLVM_DEBUG(dbgs() << "Guard check:\n");
533   LLVM_DEBUG(RangeCheck->dump());
534   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
535     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
536                       << RangeCheck->Pred << ")!\n");
537     return None;
538   }
539   auto *RangeCheckIV = RangeCheck->IV;
540   if (!RangeCheckIV->isAffine()) {
541     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
542     return None;
543   }
544   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
545   // We cannot just compare with latch IV step because the latch and range IVs
546   // may have different types.
547   if (!isSupportedStep(Step)) {
548     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
549     return None;
550   }
551   auto *Ty = RangeCheckIV->getType();
552   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
553   if (!CurrLatchCheckOpt) {
554     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
555                          "corresponding to range type: "
556                       << *Ty << "\n");
557     return None;
558   }
559 
560   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
561   // At this point, the range and latch step should have the same type, but need
562   // not have the same value (we support both 1 and -1 steps).
563   assert(Step->getType() ==
564              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
565          "Range and latch steps should be of same type!");
566   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
567     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
568     return None;
569   }
570 
571   if (Step->isOne())
572     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
573                                                Expander, Builder);
574   else {
575     assert(Step->isAllOnesValue() && "Step should be -1!");
576     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
577                                                Expander, Builder);
578   }
579 }
580 
581 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
582                                         Value *Condition,
583                                         SCEVExpander &Expander,
584                                         IRBuilder<> &Builder) {
585   unsigned NumWidened = 0;
586   // The guard condition is expected to be in form of:
587   //   cond1 && cond2 && cond3 ...
588   // Iterate over subconditions looking for icmp conditions which can be
589   // widened across loop iterations. Widening these conditions remember the
590   // resulting list of subconditions in Checks vector.
591   SmallVector<Value *, 4> Worklist(1, Condition);
592   SmallPtrSet<Value *, 4> Visited;
593   do {
594     Value *Condition = Worklist.pop_back_val();
595     if (!Visited.insert(Condition).second)
596       continue;
597 
598     Value *LHS, *RHS;
599     using namespace llvm::PatternMatch;
600     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
601       Worklist.push_back(LHS);
602       Worklist.push_back(RHS);
603       continue;
604     }
605 
606     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
607       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
608                                                    Builder)) {
609         Checks.push_back(NewRangeCheck.getValue());
610         NumWidened++;
611         continue;
612       }
613     }
614 
615     // Save the condition as is if we can't widen it
616     Checks.push_back(Condition);
617   } while (!Worklist.empty());
618   return NumWidened;
619 }
620 
621 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
622                                            SCEVExpander &Expander) {
623   LLVM_DEBUG(dbgs() << "Processing guard:\n");
624   LLVM_DEBUG(Guard->dump());
625 
626   TotalConsidered++;
627   SmallVector<Value *, 4> Checks;
628   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
629   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
630                                       Builder);
631   if (NumWidened == 0)
632     return false;
633 
634   TotalWidened += NumWidened;
635 
636   // Emit the new guard condition
637   Builder.SetInsertPoint(Guard);
638   Value *LastCheck = nullptr;
639   for (auto *Check : Checks)
640     if (!LastCheck)
641       LastCheck = Check;
642     else
643       LastCheck = Builder.CreateAnd(LastCheck, Check);
644   Guard->setOperand(0, LastCheck);
645 
646   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
647   return true;
648 }
649 
650 bool LoopPredication::widenWidenableBranchGuardConditions(
651     BranchInst *Guard, SCEVExpander &Expander) {
652   assert(isGuardAsWidenableBranch(Guard) && "Must be!");
653   LLVM_DEBUG(dbgs() << "Processing guard:\n");
654   LLVM_DEBUG(Guard->dump());
655 
656   TotalConsidered++;
657   SmallVector<Value *, 4> Checks;
658   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
659   Value *Condition = nullptr, *WidenableCondition = nullptr;
660   BasicBlock *GBB = nullptr, *DBB = nullptr;
661   parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB);
662   unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder);
663   if (NumWidened == 0)
664     return false;
665 
666   TotalWidened += NumWidened;
667 
668   // Emit the new guard condition
669   Builder.SetInsertPoint(Guard);
670   Value *LastCheck = nullptr;
671   for (auto *Check : Checks)
672     if (!LastCheck)
673       LastCheck = Check;
674     else
675       LastCheck = Builder.CreateAnd(LastCheck, Check);
676   // Make sure that the check contains widenable condition and therefore can be
677   // further widened.
678   LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition);
679   Guard->setOperand(0, LastCheck);
680   assert(isGuardAsWidenableBranch(Guard) &&
681          "Stopped being a guard after transform?");
682 
683   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
684   return true;
685 }
686 
687 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
688   using namespace PatternMatch;
689 
690   BasicBlock *LoopLatch = L->getLoopLatch();
691   if (!LoopLatch) {
692     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
693     return None;
694   }
695 
696   ICmpInst::Predicate Pred;
697   Value *LHS, *RHS;
698   BasicBlock *TrueDest, *FalseDest;
699 
700   if (!match(LoopLatch->getTerminator(),
701              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
702                   FalseDest))) {
703     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
704     return None;
705   }
706   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
707          "One of the latch's destinations must be the header");
708   if (TrueDest != L->getHeader())
709     Pred = ICmpInst::getInversePredicate(Pred);
710 
711   auto Result = parseLoopICmp(Pred, LHS, RHS);
712   if (!Result) {
713     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
714     return None;
715   }
716 
717   // Check affine first, so if it's not we don't try to compute the step
718   // recurrence.
719   if (!Result->IV->isAffine()) {
720     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
721     return None;
722   }
723 
724   auto *Step = Result->IV->getStepRecurrence(*SE);
725   if (!isSupportedStep(Step)) {
726     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
727     return None;
728   }
729 
730   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
731     if (Step->isOne()) {
732       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
733              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
734     } else {
735       assert(Step->isAllOnesValue() && "Step should be -1!");
736       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
737              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
738     }
739   };
740 
741   if (IsUnsupportedPredicate(Step, Result->Pred)) {
742     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
743                       << ")!\n");
744     return None;
745   }
746   return Result;
747 }
748 
749 // Returns true if its safe to truncate the IV to RangeCheckType.
750 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
751   if (!EnableIVTruncation)
752     return false;
753   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
754              DL->getTypeSizeInBits(RangeCheckType) &&
755          "Expected latch check IV type to be larger than range check operand "
756          "type!");
757   // The start and end values of the IV should be known. This is to guarantee
758   // that truncating the wide type will not lose information.
759   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
760   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
761   if (!Limit || !Start)
762     return false;
763   // This check makes sure that the IV does not change sign during loop
764   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
765   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
766   // IV wraps around, and the truncation of the IV would lose the range of
767   // iterations between 2^32 and 2^64.
768   bool Increasing;
769   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
770     return false;
771   // The active bits should be less than the bits in the RangeCheckType. This
772   // guarantees that truncating the latch check to RangeCheckType is a safe
773   // operation.
774   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
775   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
776          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
777 }
778 
779 bool LoopPredication::isLoopProfitableToPredicate() {
780   if (SkipProfitabilityChecks || !BPI)
781     return true;
782 
783   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
784   L->getExitEdges(ExitEdges);
785   // If there is only one exiting edge in the loop, it is always profitable to
786   // predicate the loop.
787   if (ExitEdges.size() == 1)
788     return true;
789 
790   // Calculate the exiting probabilities of all exiting edges from the loop,
791   // starting with the LatchExitProbability.
792   // Heuristic for profitability: If any of the exiting blocks' probability of
793   // exiting the loop is larger than exiting through the latch block, it's not
794   // profitable to predicate the loop.
795   auto *LatchBlock = L->getLoopLatch();
796   assert(LatchBlock && "Should have a single latch at this point!");
797   auto *LatchTerm = LatchBlock->getTerminator();
798   assert(LatchTerm->getNumSuccessors() == 2 &&
799          "expected to be an exiting block with 2 succs!");
800   unsigned LatchBrExitIdx =
801       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
802   BranchProbability LatchExitProbability =
803       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
804 
805   // Protect against degenerate inputs provided by the user. Providing a value
806   // less than one, can invert the definition of profitable loop predication.
807   float ScaleFactor = LatchExitProbabilityScale;
808   if (ScaleFactor < 1) {
809     LLVM_DEBUG(
810         dbgs()
811         << "Ignored user setting for loop-predication-latch-probability-scale: "
812         << LatchExitProbabilityScale << "\n");
813     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
814     ScaleFactor = 1.0;
815   }
816   const auto LatchProbabilityThreshold =
817       LatchExitProbability * ScaleFactor;
818 
819   for (const auto &ExitEdge : ExitEdges) {
820     BranchProbability ExitingBlockProbability =
821         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
822     // Some exiting edge has higher probability than the latch exiting edge.
823     // No longer profitable to predicate.
824     if (ExitingBlockProbability > LatchProbabilityThreshold)
825       return false;
826   }
827   // Using BPI, we have concluded that the most probable way to exit from the
828   // loop is through the latch (or there's no profile information and all
829   // exits are equally likely).
830   return true;
831 }
832 
833 bool LoopPredication::runOnLoop(Loop *Loop) {
834   L = Loop;
835 
836   LLVM_DEBUG(dbgs() << "Analyzing ");
837   LLVM_DEBUG(L->dump());
838 
839   Module *M = L->getHeader()->getModule();
840 
841   // There is nothing to do if the module doesn't use guards
842   auto *GuardDecl =
843       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
844   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
845   auto *WCDecl = M->getFunction(
846       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
847   bool HasWidenableConditions =
848       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
849   if (!HasIntrinsicGuards && !HasWidenableConditions)
850     return false;
851 
852   DL = &M->getDataLayout();
853 
854   Preheader = L->getLoopPreheader();
855   if (!Preheader)
856     return false;
857 
858   auto LatchCheckOpt = parseLoopLatchICmp();
859   if (!LatchCheckOpt)
860     return false;
861   LatchCheck = *LatchCheckOpt;
862 
863   LLVM_DEBUG(dbgs() << "Latch check:\n");
864   LLVM_DEBUG(LatchCheck.dump());
865 
866   if (!isLoopProfitableToPredicate()) {
867     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
868     return false;
869   }
870   // Collect all the guards into a vector and process later, so as not
871   // to invalidate the instruction iterator.
872   SmallVector<IntrinsicInst *, 4> Guards;
873   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
874   for (const auto BB : L->blocks()) {
875     for (auto &I : *BB)
876       if (isGuard(&I))
877         Guards.push_back(cast<IntrinsicInst>(&I));
878     if (PredicateWidenableBranchGuards &&
879         isGuardAsWidenableBranch(BB->getTerminator()))
880       GuardsAsWidenableBranches.push_back(
881           cast<BranchInst>(BB->getTerminator()));
882   }
883 
884   if (Guards.empty() && GuardsAsWidenableBranches.empty())
885     return false;
886 
887   SCEVExpander Expander(*SE, *DL, "loop-predication");
888 
889   bool Changed = false;
890   for (auto *Guard : Guards)
891     Changed |= widenGuardConditions(Guard, Expander);
892   for (auto *Guard : GuardsAsWidenableBranches)
893     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
894 
895   return Changed;
896 }
897