1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(Start)) { 57 // do { 58 // I = PHI(Start, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I.INC)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(Start)) { 69 // do { 70 // I = PHI(Start, I.INC) 71 // I.INC = I + Step 72 // guard(G(Start) && M); 73 // } while (B(I.INC)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(Start) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(Start) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(Start) && M => G(Start) 89 // 90 // Induction step. Assuming G(Start) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I + Step) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies 97 // G(I + Step). 98 // 99 // Note that we can use anything stronger than M, i.e. any condition which 100 // implies M. 101 // 102 // For now the transformation is limited to the following case: 103 // * The loop has a single latch with the condition of the form: 104 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 105 // * The step of the IV used in the latch condition is 1. 106 // * The IV of the latch condition is the same as the post increment IV of the 107 // guard condition. 108 // * The guard condition is 109 // i u< guardLimit. 110 // 111 // For the ult latch comparison case M is: 112 // forall X . X u< guardLimit && (X + 1) u< latchLimit => 113 // (X + 1) u< guardLimit 114 // 115 // This is true if latchLimit u<= guardLimit since then 116 // (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit. 117 // 118 // So for ult condition the widened condition is: 119 // i.start u< guardLimit && latchLimit u<= guardLimit 120 // Similarly for ule condition the widened condition is: 121 // i.start u< guardLimit && latchLimit u< guardLimit 122 // 123 // For the signed latch comparison case M is: 124 // forall X . X u< guardLimit && (X + 1) s< latchLimit => 125 // (X + 1) u< guardLimit 126 // 127 // The only way the antecedent can be true and the consequent can be false is 128 // if 129 // X == guardLimit - 1 130 // (and guardLimit is non-zero, but we won't use this latter fact). 131 // If X == guardLimit - 1 then the second half of the antecedent is 132 // guardLimit s< latchLimit 133 // and its negation is 134 // latchLimit s<= guardLimit. 135 // 136 // In other words, if latchLimit s<= guardLimit then: 137 // (the ranges below are written in ConstantRange notation, where [A, B) is the 138 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 139 // 140 // forall X . X u< guardLimit && (X + 1) s< latchLimit => (X + 1) u< guardLimit 141 // == forall X . X u< guardLimit && (X + 1) s< guardLimit => (X + 1) u< guardLimit 142 // == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) => (X + 1) in [0, guardLimit) 143 // == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) => X in [-1, guardLimit-1) 144 // == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1) 145 // == true 146 // 147 // So the widened condition is: 148 // i.start u< guardLimit && latchLimit s<= guardLimit 149 // Similarly for sle condition the widened condition is: 150 // i.start u< guardLimit && latchLimit s< guardLimit 151 // 152 //===----------------------------------------------------------------------===// 153 154 #include "llvm/Transforms/Scalar/LoopPredication.h" 155 #include "llvm/Analysis/LoopInfo.h" 156 #include "llvm/Analysis/LoopPass.h" 157 #include "llvm/Analysis/ScalarEvolution.h" 158 #include "llvm/Analysis/ScalarEvolutionExpander.h" 159 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 160 #include "llvm/IR/Function.h" 161 #include "llvm/IR/GlobalValue.h" 162 #include "llvm/IR/IntrinsicInst.h" 163 #include "llvm/IR/Module.h" 164 #include "llvm/IR/PatternMatch.h" 165 #include "llvm/Pass.h" 166 #include "llvm/Support/Debug.h" 167 #include "llvm/Transforms/Scalar.h" 168 #include "llvm/Transforms/Utils/LoopUtils.h" 169 170 #define DEBUG_TYPE "loop-predication" 171 172 using namespace llvm; 173 174 namespace { 175 class LoopPredication { 176 /// Represents an induction variable check: 177 /// icmp Pred, <induction variable>, <loop invariant limit> 178 struct LoopICmp { 179 ICmpInst::Predicate Pred; 180 const SCEVAddRecExpr *IV; 181 const SCEV *Limit; 182 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 183 const SCEV *Limit) 184 : Pred(Pred), IV(IV), Limit(Limit) {} 185 LoopICmp() {} 186 }; 187 188 ScalarEvolution *SE; 189 190 Loop *L; 191 const DataLayout *DL; 192 BasicBlock *Preheader; 193 LoopICmp LatchCheck; 194 195 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 196 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 197 ICI->getOperand(1)); 198 } 199 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 200 Value *RHS); 201 202 Optional<LoopICmp> parseLoopLatchICmp(); 203 204 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 205 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 206 Instruction *InsertAt); 207 208 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 209 IRBuilder<> &Builder); 210 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 211 212 public: 213 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 214 bool runOnLoop(Loop *L); 215 }; 216 217 class LoopPredicationLegacyPass : public LoopPass { 218 public: 219 static char ID; 220 LoopPredicationLegacyPass() : LoopPass(ID) { 221 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 222 } 223 224 void getAnalysisUsage(AnalysisUsage &AU) const override { 225 getLoopAnalysisUsage(AU); 226 } 227 228 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 229 if (skipLoop(L)) 230 return false; 231 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 232 LoopPredication LP(SE); 233 return LP.runOnLoop(L); 234 } 235 }; 236 237 char LoopPredicationLegacyPass::ID = 0; 238 } // end namespace llvm 239 240 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 241 "Loop predication", false, false) 242 INITIALIZE_PASS_DEPENDENCY(LoopPass) 243 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 244 "Loop predication", false, false) 245 246 Pass *llvm::createLoopPredicationPass() { 247 return new LoopPredicationLegacyPass(); 248 } 249 250 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 251 LoopStandardAnalysisResults &AR, 252 LPMUpdater &U) { 253 LoopPredication LP(&AR.SE); 254 if (!LP.runOnLoop(&L)) 255 return PreservedAnalyses::all(); 256 257 return getLoopPassPreservedAnalyses(); 258 } 259 260 Optional<LoopPredication::LoopICmp> 261 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 262 Value *RHS) { 263 const SCEV *LHSS = SE->getSCEV(LHS); 264 if (isa<SCEVCouldNotCompute>(LHSS)) 265 return None; 266 const SCEV *RHSS = SE->getSCEV(RHS); 267 if (isa<SCEVCouldNotCompute>(RHSS)) 268 return None; 269 270 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 271 if (SE->isLoopInvariant(LHSS, L)) { 272 std::swap(LHS, RHS); 273 std::swap(LHSS, RHSS); 274 Pred = ICmpInst::getSwappedPredicate(Pred); 275 } 276 277 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 278 if (!AR || AR->getLoop() != L) 279 return None; 280 281 return LoopICmp(Pred, AR, RHSS); 282 } 283 284 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 285 IRBuilder<> &Builder, 286 ICmpInst::Predicate Pred, const SCEV *LHS, 287 const SCEV *RHS, Instruction *InsertAt) { 288 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 289 290 Type *Ty = LHS->getType(); 291 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 292 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 293 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 294 return Builder.CreateICmp(Pred, LHSV, RHSV); 295 } 296 297 /// If ICI can be widened to a loop invariant condition emits the loop 298 /// invariant condition in the loop preheader and return it, otherwise 299 /// returns None. 300 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 301 SCEVExpander &Expander, 302 IRBuilder<> &Builder) { 303 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 304 DEBUG(ICI->dump()); 305 306 // parseLoopStructure guarantees that the latch condition is: 307 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 308 // We are looking for the range checks of the form: 309 // i u< guardLimit 310 auto RangeCheck = parseLoopICmp(ICI); 311 if (!RangeCheck) { 312 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 313 return None; 314 } 315 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 316 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred 317 << ")!\n"); 318 return None; 319 } 320 auto *RangeCheckIV = RangeCheck->IV; 321 auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE); 322 if (LatchCheck.IV != PostIncRangeCheckIV) { 323 DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV 324 << ") is not the same as latch IV (" << *LatchCheck.IV 325 << ")!\n"); 326 return None; 327 } 328 assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one"); 329 const SCEV *Start = RangeCheckIV->getStart(); 330 331 // Generate the widened condition: 332 // i.start u< guardLimit && latchLimit <pred> guardLimit 333 // where <pred> depends on the latch condition predicate. See the file 334 // header comment for the reasoning. 335 ICmpInst::Predicate LimitCheckPred; 336 switch (LatchCheck.Pred) { 337 case ICmpInst::ICMP_ULT: 338 LimitCheckPred = ICmpInst::ICMP_ULE; 339 break; 340 case ICmpInst::ICMP_ULE: 341 LimitCheckPred = ICmpInst::ICMP_ULT; 342 break; 343 case ICmpInst::ICMP_SLT: 344 LimitCheckPred = ICmpInst::ICMP_SLE; 345 break; 346 case ICmpInst::ICMP_SLE: 347 LimitCheckPred = ICmpInst::ICMP_SLT; 348 break; 349 default: 350 llvm_unreachable("Unsupported loop latch!"); 351 } 352 353 auto CanExpand = [this](const SCEV *S) { 354 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 355 }; 356 if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) || 357 !CanExpand(RangeCheck->Limit)) 358 return None; 359 360 Instruction *InsertAt = Preheader->getTerminator(); 361 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred, 362 Start, RangeCheck->Limit, InsertAt); 363 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, 364 LatchCheck.Limit, RangeCheck->Limit, InsertAt); 365 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 366 } 367 368 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 369 SCEVExpander &Expander) { 370 DEBUG(dbgs() << "Processing guard:\n"); 371 DEBUG(Guard->dump()); 372 373 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 374 375 // The guard condition is expected to be in form of: 376 // cond1 && cond2 && cond3 ... 377 // Iterate over subconditions looking for for icmp conditions which can be 378 // widened across loop iterations. Widening these conditions remember the 379 // resulting list of subconditions in Checks vector. 380 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 381 SmallPtrSet<Value *, 4> Visited; 382 383 SmallVector<Value *, 4> Checks; 384 385 unsigned NumWidened = 0; 386 do { 387 Value *Condition = Worklist.pop_back_val(); 388 if (!Visited.insert(Condition).second) 389 continue; 390 391 Value *LHS, *RHS; 392 using namespace llvm::PatternMatch; 393 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 394 Worklist.push_back(LHS); 395 Worklist.push_back(RHS); 396 continue; 397 } 398 399 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 400 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 401 Checks.push_back(NewRangeCheck.getValue()); 402 NumWidened++; 403 continue; 404 } 405 } 406 407 // Save the condition as is if we can't widen it 408 Checks.push_back(Condition); 409 } while (Worklist.size() != 0); 410 411 if (NumWidened == 0) 412 return false; 413 414 // Emit the new guard condition 415 Builder.SetInsertPoint(Guard); 416 Value *LastCheck = nullptr; 417 for (auto *Check : Checks) 418 if (!LastCheck) 419 LastCheck = Check; 420 else 421 LastCheck = Builder.CreateAnd(LastCheck, Check); 422 Guard->setOperand(0, LastCheck); 423 424 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 425 return true; 426 } 427 428 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 429 using namespace PatternMatch; 430 431 BasicBlock *LoopLatch = L->getLoopLatch(); 432 if (!LoopLatch) { 433 DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 434 return None; 435 } 436 437 ICmpInst::Predicate Pred; 438 Value *LHS, *RHS; 439 BasicBlock *TrueDest, *FalseDest; 440 441 if (!match(LoopLatch->getTerminator(), 442 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 443 FalseDest))) { 444 DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 445 return None; 446 } 447 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 448 "One of the latch's destinations must be the header"); 449 if (TrueDest != L->getHeader()) 450 Pred = ICmpInst::getInversePredicate(Pred); 451 452 auto Result = parseLoopICmp(Pred, LHS, RHS); 453 if (!Result) { 454 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 455 return None; 456 } 457 458 if (Result->Pred != ICmpInst::ICMP_ULT && 459 Result->Pred != ICmpInst::ICMP_SLT && 460 Result->Pred != ICmpInst::ICMP_ULE && 461 Result->Pred != ICmpInst::ICMP_SLE) { 462 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 463 << ")!\n"); 464 return None; 465 } 466 467 // Check affine first, so if it's not we don't try to compute the step 468 // recurrence. 469 if (!Result->IV->isAffine()) { 470 DEBUG(dbgs() << "The induction variable is not affine!\n"); 471 return None; 472 } 473 474 auto *Step = Result->IV->getStepRecurrence(*SE); 475 if (!Step->isOne()) { 476 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 477 return None; 478 } 479 480 return Result; 481 } 482 483 bool LoopPredication::runOnLoop(Loop *Loop) { 484 L = Loop; 485 486 DEBUG(dbgs() << "Analyzing "); 487 DEBUG(L->dump()); 488 489 Module *M = L->getHeader()->getModule(); 490 491 // There is nothing to do if the module doesn't use guards 492 auto *GuardDecl = 493 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 494 if (!GuardDecl || GuardDecl->use_empty()) 495 return false; 496 497 DL = &M->getDataLayout(); 498 499 Preheader = L->getLoopPreheader(); 500 if (!Preheader) 501 return false; 502 503 auto LatchCheckOpt = parseLoopLatchICmp(); 504 if (!LatchCheckOpt) 505 return false; 506 LatchCheck = *LatchCheckOpt; 507 508 // Collect all the guards into a vector and process later, so as not 509 // to invalidate the instruction iterator. 510 SmallVector<IntrinsicInst *, 4> Guards; 511 for (const auto BB : L->blocks()) 512 for (auto &I : *BB) 513 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 514 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 515 Guards.push_back(II); 516 517 if (Guards.empty()) 518 return false; 519 520 SCEVExpander Expander(*SE, *DL, "loop-predication"); 521 522 bool Changed = false; 523 for (auto *Guard : Guards) 524 Changed |= widenGuardConditions(Guard, Expander); 525 526 return Changed; 527 } 528