1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/ScalarEvolution.h" 187 #include "llvm/Analysis/ScalarEvolutionExpander.h" 188 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 189 #include "llvm/IR/Function.h" 190 #include "llvm/IR/GlobalValue.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/InitializePasses.h" 195 #include "llvm/Pass.h" 196 #include "llvm/Support/CommandLine.h" 197 #include "llvm/Support/Debug.h" 198 #include "llvm/Transforms/Scalar.h" 199 #include "llvm/Transforms/Utils/Local.h" 200 #include "llvm/Transforms/Utils/LoopUtils.h" 201 202 #define DEBUG_TYPE "loop-predication" 203 204 STATISTIC(TotalConsidered, "Number of guards considered"); 205 STATISTIC(TotalWidened, "Number of checks widened"); 206 207 using namespace llvm; 208 209 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 213 cl::Hidden, cl::init(true)); 214 215 static cl::opt<bool> 216 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 217 cl::Hidden, cl::init(false)); 218 219 // This is the scale factor for the latch probability. We use this during 220 // profitability analysis to find other exiting blocks that have a much higher 221 // probability of exiting the loop instead of loop exiting via latch. 222 // This value should be greater than 1 for a sane profitability check. 223 static cl::opt<float> LatchExitProbabilityScale( 224 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 225 cl::desc("scale factor for the latch probability. Value should be greater " 226 "than 1. Lower values are ignored")); 227 228 static cl::opt<bool> PredicateWidenableBranchGuards( 229 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 230 cl::desc("Whether or not we should predicate guards " 231 "expressed as widenable branches to deoptimize blocks"), 232 cl::init(true)); 233 234 namespace { 235 /// Represents an induction variable check: 236 /// icmp Pred, <induction variable>, <loop invariant limit> 237 struct LoopICmp { 238 ICmpInst::Predicate Pred; 239 const SCEVAddRecExpr *IV; 240 const SCEV *Limit; 241 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 242 const SCEV *Limit) 243 : Pred(Pred), IV(IV), Limit(Limit) {} 244 LoopICmp() {} 245 void dump() { 246 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 247 << ", Limit = " << *Limit << "\n"; 248 } 249 }; 250 251 class LoopPredication { 252 AliasAnalysis *AA; 253 DominatorTree *DT; 254 ScalarEvolution *SE; 255 LoopInfo *LI; 256 BranchProbabilityInfo *BPI; 257 258 Loop *L; 259 const DataLayout *DL; 260 BasicBlock *Preheader; 261 LoopICmp LatchCheck; 262 263 bool isSupportedStep(const SCEV* Step); 264 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 265 Optional<LoopICmp> parseLoopLatchICmp(); 266 267 /// Return an insertion point suitable for inserting a safe to speculate 268 /// instruction whose only user will be 'User' which has operands 'Ops'. A 269 /// trivial result would be the at the User itself, but we try to return a 270 /// loop invariant location if possible. 271 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 272 /// Same as above, *except* that this uses the SCEV definition of invariant 273 /// which is that an expression *can be made* invariant via SCEVExpander. 274 /// Thus, this version is only suitable for finding an insert point to be be 275 /// passed to SCEVExpander! 276 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 277 278 /// Return true if the value is known to produce a single fixed value across 279 /// all iterations on which it executes. Note that this does not imply 280 /// speculation safety. That must be established seperately. 281 bool isLoopInvariantValue(const SCEV* S); 282 283 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 284 ICmpInst::Predicate Pred, const SCEV *LHS, 285 const SCEV *RHS); 286 287 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 288 Instruction *Guard); 289 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 290 LoopICmp RangeCheck, 291 SCEVExpander &Expander, 292 Instruction *Guard); 293 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 294 LoopICmp RangeCheck, 295 SCEVExpander &Expander, 296 Instruction *Guard); 297 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 298 SCEVExpander &Expander, Instruction *Guard); 299 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 300 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 301 // If the loop always exits through another block in the loop, we should not 302 // predicate based on the latch check. For example, the latch check can be a 303 // very coarse grained check and there can be more fine grained exit checks 304 // within the loop. We identify such unprofitable loops through BPI. 305 bool isLoopProfitableToPredicate(); 306 307 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 308 309 public: 310 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, 311 ScalarEvolution *SE, LoopInfo *LI, 312 BranchProbabilityInfo *BPI) 313 : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {}; 314 bool runOnLoop(Loop *L); 315 }; 316 317 class LoopPredicationLegacyPass : public LoopPass { 318 public: 319 static char ID; 320 LoopPredicationLegacyPass() : LoopPass(ID) { 321 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 322 } 323 324 void getAnalysisUsage(AnalysisUsage &AU) const override { 325 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 326 getLoopAnalysisUsage(AU); 327 } 328 329 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 330 if (skipLoop(L)) 331 return false; 332 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 333 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 334 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 335 BranchProbabilityInfo &BPI = 336 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 337 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 338 LoopPredication LP(AA, DT, SE, LI, &BPI); 339 return LP.runOnLoop(L); 340 } 341 }; 342 343 char LoopPredicationLegacyPass::ID = 0; 344 } // end namespace llvm 345 346 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 347 "Loop predication", false, false) 348 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 349 INITIALIZE_PASS_DEPENDENCY(LoopPass) 350 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 351 "Loop predication", false, false) 352 353 Pass *llvm::createLoopPredicationPass() { 354 return new LoopPredicationLegacyPass(); 355 } 356 357 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 358 LoopStandardAnalysisResults &AR, 359 LPMUpdater &U) { 360 const auto &FAM = 361 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 362 Function *F = L.getHeader()->getParent(); 363 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 364 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, BPI); 365 if (!LP.runOnLoop(&L)) 366 return PreservedAnalyses::all(); 367 368 return getLoopPassPreservedAnalyses(); 369 } 370 371 Optional<LoopICmp> 372 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 373 auto Pred = ICI->getPredicate(); 374 auto *LHS = ICI->getOperand(0); 375 auto *RHS = ICI->getOperand(1); 376 377 const SCEV *LHSS = SE->getSCEV(LHS); 378 if (isa<SCEVCouldNotCompute>(LHSS)) 379 return None; 380 const SCEV *RHSS = SE->getSCEV(RHS); 381 if (isa<SCEVCouldNotCompute>(RHSS)) 382 return None; 383 384 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 385 if (SE->isLoopInvariant(LHSS, L)) { 386 std::swap(LHS, RHS); 387 std::swap(LHSS, RHSS); 388 Pred = ICmpInst::getSwappedPredicate(Pred); 389 } 390 391 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 392 if (!AR || AR->getLoop() != L) 393 return None; 394 395 return LoopICmp(Pred, AR, RHSS); 396 } 397 398 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 399 Instruction *Guard, 400 ICmpInst::Predicate Pred, const SCEV *LHS, 401 const SCEV *RHS) { 402 Type *Ty = LHS->getType(); 403 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 404 405 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 406 IRBuilder<> Builder(Guard); 407 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 408 return Builder.getTrue(); 409 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 410 LHS, RHS)) 411 return Builder.getFalse(); 412 } 413 414 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 415 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 416 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 417 return Builder.CreateICmp(Pred, LHSV, RHSV); 418 } 419 420 421 // Returns true if its safe to truncate the IV to RangeCheckType. 422 // When the IV type is wider than the range operand type, we can still do loop 423 // predication, by generating SCEVs for the range and latch that are of the 424 // same type. We achieve this by generating a SCEV truncate expression for the 425 // latch IV. This is done iff truncation of the IV is a safe operation, 426 // without loss of information. 427 // Another way to achieve this is by generating a wider type SCEV for the 428 // range check operand, however, this needs a more involved check that 429 // operands do not overflow. This can lead to loss of information when the 430 // range operand is of the form: add i32 %offset, %iv. We need to prove that 431 // sext(x + y) is same as sext(x) + sext(y). 432 // This function returns true if we can safely represent the IV type in 433 // the RangeCheckType without loss of information. 434 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 435 ScalarEvolution &SE, 436 const LoopICmp LatchCheck, 437 Type *RangeCheckType) { 438 if (!EnableIVTruncation) 439 return false; 440 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) > 441 DL.getTypeSizeInBits(RangeCheckType) && 442 "Expected latch check IV type to be larger than range check operand " 443 "type!"); 444 // The start and end values of the IV should be known. This is to guarantee 445 // that truncating the wide type will not lose information. 446 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 447 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 448 if (!Limit || !Start) 449 return false; 450 // This check makes sure that the IV does not change sign during loop 451 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 452 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 453 // IV wraps around, and the truncation of the IV would lose the range of 454 // iterations between 2^32 and 2^64. 455 bool Increasing; 456 if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 457 return false; 458 // The active bits should be less than the bits in the RangeCheckType. This 459 // guarantees that truncating the latch check to RangeCheckType is a safe 460 // operation. 461 auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType); 462 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 463 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 464 } 465 466 467 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 468 // the requested type if safe to do so. May involve the use of a new IV. 469 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 470 ScalarEvolution &SE, 471 const LoopICmp LatchCheck, 472 Type *RangeCheckType) { 473 474 auto *LatchType = LatchCheck.IV->getType(); 475 if (RangeCheckType == LatchType) 476 return LatchCheck; 477 // For now, bail out if latch type is narrower than range type. 478 if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType)) 479 return None; 480 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 481 return None; 482 // We can now safely identify the truncated version of the IV and limit for 483 // RangeCheckType. 484 LoopICmp NewLatchCheck; 485 NewLatchCheck.Pred = LatchCheck.Pred; 486 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 487 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 488 if (!NewLatchCheck.IV) 489 return None; 490 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 491 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 492 << "can be represented as range check type:" 493 << *RangeCheckType << "\n"); 494 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 495 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 496 return NewLatchCheck; 497 } 498 499 bool LoopPredication::isSupportedStep(const SCEV* Step) { 500 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 501 } 502 503 Instruction *LoopPredication::findInsertPt(Instruction *Use, 504 ArrayRef<Value*> Ops) { 505 for (Value *Op : Ops) 506 if (!L->isLoopInvariant(Op)) 507 return Use; 508 return Preheader->getTerminator(); 509 } 510 511 Instruction *LoopPredication::findInsertPt(Instruction *Use, 512 ArrayRef<const SCEV*> Ops) { 513 // Subtlety: SCEV considers things to be invariant if the value produced is 514 // the same across iterations. This is not the same as being able to 515 // evaluate outside the loop, which is what we actually need here. 516 for (const SCEV *Op : Ops) 517 if (!SE->isLoopInvariant(Op, L) || 518 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) 519 return Use; 520 return Preheader->getTerminator(); 521 } 522 523 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 524 // Handling expressions which produce invariant results, but *haven't* yet 525 // been removed from the loop serves two important purposes. 526 // 1) Most importantly, it resolves a pass ordering cycle which would 527 // otherwise need us to iteration licm, loop-predication, and either 528 // loop-unswitch or loop-peeling to make progress on examples with lots of 529 // predicable range checks in a row. (Since, in the general case, we can't 530 // hoist the length checks until the dominating checks have been discharged 531 // as we can't prove doing so is safe.) 532 // 2) As a nice side effect, this exposes the value of peeling or unswitching 533 // much more obviously in the IR. Otherwise, the cost modeling for other 534 // transforms would end up needing to duplicate all of this logic to model a 535 // check which becomes predictable based on a modeled peel or unswitch. 536 // 537 // The cost of doing so in the worst case is an extra fill from the stack in 538 // the loop to materialize the loop invariant test value instead of checking 539 // against the original IV which is presumable in a register inside the loop. 540 // Such cases are presumably rare, and hint at missing oppurtunities for 541 // other passes. 542 543 if (SE->isLoopInvariant(S, L)) 544 // Note: This the SCEV variant, so the original Value* may be within the 545 // loop even though SCEV has proven it is loop invariant. 546 return true; 547 548 // Handle a particular important case which SCEV doesn't yet know about which 549 // shows up in range checks on arrays with immutable lengths. 550 // TODO: This should be sunk inside SCEV. 551 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 552 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 553 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 554 if (AA->pointsToConstantMemory(LI->getOperand(0)) || 555 LI->hasMetadata(LLVMContext::MD_invariant_load)) 556 return true; 557 return false; 558 } 559 560 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 561 LoopICmp LatchCheck, LoopICmp RangeCheck, 562 SCEVExpander &Expander, Instruction *Guard) { 563 auto *Ty = RangeCheck.IV->getType(); 564 // Generate the widened condition for the forward loop: 565 // guardStart u< guardLimit && 566 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 567 // where <pred> depends on the latch condition predicate. See the file 568 // header comment for the reasoning. 569 // guardLimit - guardStart + latchStart - 1 570 const SCEV *GuardStart = RangeCheck.IV->getStart(); 571 const SCEV *GuardLimit = RangeCheck.Limit; 572 const SCEV *LatchStart = LatchCheck.IV->getStart(); 573 const SCEV *LatchLimit = LatchCheck.Limit; 574 // Subtlety: We need all the values to be *invariant* across all iterations, 575 // but we only need to check expansion safety for those which *aren't* 576 // already guaranteed to dominate the guard. 577 if (!isLoopInvariantValue(GuardStart) || 578 !isLoopInvariantValue(GuardLimit) || 579 !isLoopInvariantValue(LatchStart) || 580 !isLoopInvariantValue(LatchLimit)) { 581 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 582 return None; 583 } 584 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 585 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 586 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 587 return None; 588 } 589 590 // guardLimit - guardStart + latchStart - 1 591 const SCEV *RHS = 592 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 593 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 594 auto LimitCheckPred = 595 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 596 597 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 598 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 599 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 600 601 auto *LimitCheck = 602 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 603 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 604 GuardStart, GuardLimit); 605 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 606 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 607 } 608 609 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 610 LoopICmp LatchCheck, LoopICmp RangeCheck, 611 SCEVExpander &Expander, Instruction *Guard) { 612 auto *Ty = RangeCheck.IV->getType(); 613 const SCEV *GuardStart = RangeCheck.IV->getStart(); 614 const SCEV *GuardLimit = RangeCheck.Limit; 615 const SCEV *LatchStart = LatchCheck.IV->getStart(); 616 const SCEV *LatchLimit = LatchCheck.Limit; 617 // Subtlety: We need all the values to be *invariant* across all iterations, 618 // but we only need to check expansion safety for those which *aren't* 619 // already guaranteed to dominate the guard. 620 if (!isLoopInvariantValue(GuardStart) || 621 !isLoopInvariantValue(GuardLimit) || 622 !isLoopInvariantValue(LatchStart) || 623 !isLoopInvariantValue(LatchLimit)) { 624 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 625 return None; 626 } 627 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 628 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 629 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 630 return None; 631 } 632 // The decrement of the latch check IV should be the same as the 633 // rangeCheckIV. 634 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 635 if (RangeCheck.IV != PostDecLatchCheckIV) { 636 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 637 << *PostDecLatchCheckIV 638 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 639 return None; 640 } 641 642 // Generate the widened condition for CountDownLoop: 643 // guardStart u< guardLimit && 644 // latchLimit <pred> 1. 645 // See the header comment for reasoning of the checks. 646 auto LimitCheckPred = 647 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 648 auto *FirstIterationCheck = expandCheck(Expander, Guard, 649 ICmpInst::ICMP_ULT, 650 GuardStart, GuardLimit); 651 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 652 SE->getOne(Ty)); 653 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 654 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 655 } 656 657 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 658 LoopICmp& RC) { 659 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 660 // ULT/UGE form for ease of handling by our caller. 661 if (ICmpInst::isEquality(RC.Pred) && 662 RC.IV->getStepRecurrence(*SE)->isOne() && 663 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 664 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 665 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 666 } 667 668 669 /// If ICI can be widened to a loop invariant condition emits the loop 670 /// invariant condition in the loop preheader and return it, otherwise 671 /// returns None. 672 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 673 SCEVExpander &Expander, 674 Instruction *Guard) { 675 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 676 LLVM_DEBUG(ICI->dump()); 677 678 // parseLoopStructure guarantees that the latch condition is: 679 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 680 // We are looking for the range checks of the form: 681 // i u< guardLimit 682 auto RangeCheck = parseLoopICmp(ICI); 683 if (!RangeCheck) { 684 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 685 return None; 686 } 687 LLVM_DEBUG(dbgs() << "Guard check:\n"); 688 LLVM_DEBUG(RangeCheck->dump()); 689 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 690 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 691 << RangeCheck->Pred << ")!\n"); 692 return None; 693 } 694 auto *RangeCheckIV = RangeCheck->IV; 695 if (!RangeCheckIV->isAffine()) { 696 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 697 return None; 698 } 699 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 700 // We cannot just compare with latch IV step because the latch and range IVs 701 // may have different types. 702 if (!isSupportedStep(Step)) { 703 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 704 return None; 705 } 706 auto *Ty = RangeCheckIV->getType(); 707 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 708 if (!CurrLatchCheckOpt) { 709 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 710 "corresponding to range type: " 711 << *Ty << "\n"); 712 return None; 713 } 714 715 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 716 // At this point, the range and latch step should have the same type, but need 717 // not have the same value (we support both 1 and -1 steps). 718 assert(Step->getType() == 719 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 720 "Range and latch steps should be of same type!"); 721 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 722 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 723 return None; 724 } 725 726 if (Step->isOne()) 727 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 728 Expander, Guard); 729 else { 730 assert(Step->isAllOnesValue() && "Step should be -1!"); 731 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 732 Expander, Guard); 733 } 734 } 735 736 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 737 Value *Condition, 738 SCEVExpander &Expander, 739 Instruction *Guard) { 740 unsigned NumWidened = 0; 741 // The guard condition is expected to be in form of: 742 // cond1 && cond2 && cond3 ... 743 // Iterate over subconditions looking for icmp conditions which can be 744 // widened across loop iterations. Widening these conditions remember the 745 // resulting list of subconditions in Checks vector. 746 SmallVector<Value *, 4> Worklist(1, Condition); 747 SmallPtrSet<Value *, 4> Visited; 748 Value *WideableCond = nullptr; 749 do { 750 Value *Condition = Worklist.pop_back_val(); 751 if (!Visited.insert(Condition).second) 752 continue; 753 754 Value *LHS, *RHS; 755 using namespace llvm::PatternMatch; 756 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 757 Worklist.push_back(LHS); 758 Worklist.push_back(RHS); 759 continue; 760 } 761 762 if (match(Condition, 763 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 764 // Pick any, we don't care which 765 WideableCond = Condition; 766 continue; 767 } 768 769 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 770 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 771 Guard)) { 772 Checks.push_back(NewRangeCheck.getValue()); 773 NumWidened++; 774 continue; 775 } 776 } 777 778 // Save the condition as is if we can't widen it 779 Checks.push_back(Condition); 780 } while (!Worklist.empty()); 781 // At the moment, our matching logic for wideable conditions implicitly 782 // assumes we preserve the form: (br (and Cond, WC())). FIXME 783 // Note that if there were multiple calls to wideable condition in the 784 // traversal, we only need to keep one, and which one is arbitrary. 785 if (WideableCond) 786 Checks.push_back(WideableCond); 787 return NumWidened; 788 } 789 790 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 791 SCEVExpander &Expander) { 792 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 793 LLVM_DEBUG(Guard->dump()); 794 795 TotalConsidered++; 796 SmallVector<Value *, 4> Checks; 797 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 798 Guard); 799 if (NumWidened == 0) 800 return false; 801 802 TotalWidened += NumWidened; 803 804 // Emit the new guard condition 805 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 806 Value *AllChecks = Builder.CreateAnd(Checks); 807 auto *OldCond = Guard->getOperand(0); 808 Guard->setOperand(0, AllChecks); 809 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 810 811 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 812 return true; 813 } 814 815 bool LoopPredication::widenWidenableBranchGuardConditions( 816 BranchInst *BI, SCEVExpander &Expander) { 817 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 818 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 819 LLVM_DEBUG(BI->dump()); 820 821 TotalConsidered++; 822 SmallVector<Value *, 4> Checks; 823 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 824 Expander, BI); 825 if (NumWidened == 0) 826 return false; 827 828 TotalWidened += NumWidened; 829 830 // Emit the new guard condition 831 IRBuilder<> Builder(findInsertPt(BI, Checks)); 832 Value *AllChecks = Builder.CreateAnd(Checks); 833 auto *OldCond = BI->getCondition(); 834 BI->setCondition(AllChecks); 835 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 836 assert(isGuardAsWidenableBranch(BI) && 837 "Stopped being a guard after transform?"); 838 839 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 840 return true; 841 } 842 843 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 844 using namespace PatternMatch; 845 846 BasicBlock *LoopLatch = L->getLoopLatch(); 847 if (!LoopLatch) { 848 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 849 return None; 850 } 851 852 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 853 if (!BI || !BI->isConditional()) { 854 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 855 return None; 856 } 857 BasicBlock *TrueDest = BI->getSuccessor(0); 858 assert( 859 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 860 "One of the latch's destinations must be the header"); 861 862 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 863 if (!ICI) { 864 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 865 return None; 866 } 867 auto Result = parseLoopICmp(ICI); 868 if (!Result) { 869 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 870 return None; 871 } 872 873 if (TrueDest != L->getHeader()) 874 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 875 876 // Check affine first, so if it's not we don't try to compute the step 877 // recurrence. 878 if (!Result->IV->isAffine()) { 879 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 880 return None; 881 } 882 883 auto *Step = Result->IV->getStepRecurrence(*SE); 884 if (!isSupportedStep(Step)) { 885 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 886 return None; 887 } 888 889 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 890 if (Step->isOne()) { 891 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 892 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 893 } else { 894 assert(Step->isAllOnesValue() && "Step should be -1!"); 895 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 896 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 897 } 898 }; 899 900 normalizePredicate(SE, L, *Result); 901 if (IsUnsupportedPredicate(Step, Result->Pred)) { 902 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 903 << ")!\n"); 904 return None; 905 } 906 907 return Result; 908 } 909 910 911 bool LoopPredication::isLoopProfitableToPredicate() { 912 if (SkipProfitabilityChecks || !BPI) 913 return true; 914 915 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 916 L->getExitEdges(ExitEdges); 917 // If there is only one exiting edge in the loop, it is always profitable to 918 // predicate the loop. 919 if (ExitEdges.size() == 1) 920 return true; 921 922 // Calculate the exiting probabilities of all exiting edges from the loop, 923 // starting with the LatchExitProbability. 924 // Heuristic for profitability: If any of the exiting blocks' probability of 925 // exiting the loop is larger than exiting through the latch block, it's not 926 // profitable to predicate the loop. 927 auto *LatchBlock = L->getLoopLatch(); 928 assert(LatchBlock && "Should have a single latch at this point!"); 929 auto *LatchTerm = LatchBlock->getTerminator(); 930 assert(LatchTerm->getNumSuccessors() == 2 && 931 "expected to be an exiting block with 2 succs!"); 932 unsigned LatchBrExitIdx = 933 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 934 BranchProbability LatchExitProbability = 935 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 936 937 // Protect against degenerate inputs provided by the user. Providing a value 938 // less than one, can invert the definition of profitable loop predication. 939 float ScaleFactor = LatchExitProbabilityScale; 940 if (ScaleFactor < 1) { 941 LLVM_DEBUG( 942 dbgs() 943 << "Ignored user setting for loop-predication-latch-probability-scale: " 944 << LatchExitProbabilityScale << "\n"); 945 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 946 ScaleFactor = 1.0; 947 } 948 const auto LatchProbabilityThreshold = 949 LatchExitProbability * ScaleFactor; 950 951 for (const auto &ExitEdge : ExitEdges) { 952 BranchProbability ExitingBlockProbability = 953 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 954 // Some exiting edge has higher probability than the latch exiting edge. 955 // No longer profitable to predicate. 956 if (ExitingBlockProbability > LatchProbabilityThreshold) 957 return false; 958 } 959 // Using BPI, we have concluded that the most probable way to exit from the 960 // loop is through the latch (or there's no profile information and all 961 // exits are equally likely). 962 return true; 963 } 964 965 /// If we can (cheaply) find a widenable branch which controls entry into the 966 /// loop, return it. 967 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 968 // Walk back through any unconditional executed blocks and see if we can find 969 // a widenable condition which seems to control execution of this loop. Note 970 // that we predict that maythrow calls are likely untaken and thus that it's 971 // profitable to widen a branch before a maythrow call with a condition 972 // afterwards even though that may cause the slow path to run in a case where 973 // it wouldn't have otherwise. 974 BasicBlock *BB = L->getLoopPreheader(); 975 if (!BB) 976 return nullptr; 977 do { 978 if (BasicBlock *Pred = BB->getSinglePredecessor()) 979 if (BB == Pred->getSingleSuccessor()) { 980 BB = Pred; 981 continue; 982 } 983 break; 984 } while (true); 985 986 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 987 auto *Term = Pred->getTerminator(); 988 989 Value *Cond, *WC; 990 BasicBlock *IfTrueBB, *IfFalseBB; 991 if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) && 992 IfTrueBB == BB) 993 return cast<BranchInst>(Term); 994 } 995 return nullptr; 996 } 997 998 /// Return the minimum of all analyzeable exit counts. This is an upper bound 999 /// on the actual exit count. If there are not at least two analyzeable exits, 1000 /// returns SCEVCouldNotCompute. 1001 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1002 DominatorTree &DT, 1003 Loop *L) { 1004 SmallVector<BasicBlock *, 16> ExitingBlocks; 1005 L->getExitingBlocks(ExitingBlocks); 1006 1007 SmallVector<const SCEV *, 4> ExitCounts; 1008 for (BasicBlock *ExitingBB : ExitingBlocks) { 1009 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1010 if (isa<SCEVCouldNotCompute>(ExitCount)) 1011 continue; 1012 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1013 "We should only have known counts for exiting blocks that " 1014 "dominate latch!"); 1015 ExitCounts.push_back(ExitCount); 1016 } 1017 if (ExitCounts.size() < 2) 1018 return SE.getCouldNotCompute(); 1019 return SE.getUMinFromMismatchedTypes(ExitCounts); 1020 } 1021 1022 /// This implements an analogous, but entirely distinct transform from the main 1023 /// loop predication transform. This one is phrased in terms of using a 1024 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1025 /// following loop. This is close in spirit to the IndVarSimplify transform 1026 /// of the same name, but is materially different widening loosens legality 1027 /// sharply. 1028 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1029 // The transformation performed here aims to widen a widenable condition 1030 // above the loop such that all analyzeable exit leading to deopt are dead. 1031 // It assumes that the latch is the dominant exit for profitability and that 1032 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1033 // semantics of widenable expressions for legality. (i.e. being able to fall 1034 // down the widenable path spuriously allows us to ignore exit order, 1035 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1036 // which restrict the applicability of the non-WC based version of this 1037 // transform in IndVarSimplify.) 1038 // 1039 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1040 // imply flags on the expression being hoisted and inserting new uses (flags 1041 // are only correct for current uses). The result is that we may be 1042 // inserting a branch on the value which can be either poison or undef. In 1043 // this case, the branch can legally go either way; we just need to avoid 1044 // introducing UB. This is achieved through the use of the freeze 1045 // instruction. 1046 1047 SmallVector<BasicBlock *, 16> ExitingBlocks; 1048 L->getExitingBlocks(ExitingBlocks); 1049 1050 if (ExitingBlocks.empty()) 1051 return false; // Nothing to do. 1052 1053 auto *Latch = L->getLoopLatch(); 1054 if (!Latch) 1055 return false; 1056 1057 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1058 if (!WidenableBR) 1059 return false; 1060 1061 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1062 if (isa<SCEVCouldNotCompute>(LatchEC)) 1063 return false; // profitability - want hot exit in analyzeable set 1064 1065 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1066 // important for profitability. We may have a loop which hasn't been fully 1067 // canonicalized just yet. If the exit we chose to widen is provably never 1068 // taken, we want the widened form to *also* be provably never taken. We 1069 // can't guarantee this as a current unanalyzeable exit may later become 1070 // analyzeable, but we can at least avoid the obvious cases. 1071 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1072 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1073 !SE->isLoopInvariant(MinEC, L) || 1074 !isSafeToExpandAt(MinEC, WidenableBR, *SE)) 1075 return false; 1076 1077 // Subtlety: We need to avoid inserting additional uses of the WC. We know 1078 // that it can only have one transitive use at the moment, and thus moving 1079 // that use to just before the branch and inserting code before it and then 1080 // modifying the operand is legal. 1081 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1082 IP->moveBefore(WidenableBR); 1083 Rewriter.setInsertPoint(IP); 1084 IRBuilder<> B(IP); 1085 1086 bool Changed = false; 1087 Value *MinECV = nullptr; // lazily generated if needed 1088 for (BasicBlock *ExitingBB : ExitingBlocks) { 1089 // If our exiting block exits multiple loops, we can only rewrite the 1090 // innermost one. Otherwise, we're changing how many times the innermost 1091 // loop runs before it exits. 1092 if (LI->getLoopFor(ExitingBB) != L) 1093 continue; 1094 1095 // Can't rewrite non-branch yet. 1096 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1097 if (!BI) 1098 continue; 1099 1100 // If already constant, nothing to do. 1101 if (isa<Constant>(BI->getCondition())) 1102 continue; 1103 1104 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1105 if (isa<SCEVCouldNotCompute>(ExitCount) || 1106 ExitCount->getType()->isPointerTy() || 1107 !isSafeToExpandAt(ExitCount, WidenableBR, *SE)) 1108 continue; 1109 1110 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1111 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1112 if (!ExitBB->getTerminatingDeoptimizeCall()) 1113 // Profitability: indicator of rarely/never taken exit 1114 continue; 1115 1116 // If we found a widenable exit condition, do two things: 1117 // 1) fold the widened exit test into the widenable condition 1118 // 2) fold the branch to untaken - avoids infinite looping 1119 1120 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1121 if (!MinECV) 1122 MinECV = Rewriter.expandCodeFor(MinEC); 1123 Value *RHS = MinECV; 1124 if (ECV->getType() != RHS->getType()) { 1125 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1126 ECV = B.CreateZExt(ECV, WiderTy); 1127 RHS = B.CreateZExt(RHS, WiderTy); 1128 } 1129 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1130 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1131 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1132 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1133 // context. 1134 NewCond = B.CreateFreeze(NewCond); 1135 1136 Value *Cond, *WC; 1137 BasicBlock *IfTrueBB, *IfFalseBB; 1138 bool Success = 1139 parseWidenableBranch(WidenableBR, Cond, WC, IfTrueBB, IfFalseBB); 1140 assert(Success && "implied from above"); 1141 (void)Success; 1142 Instruction *WCAnd = cast<Instruction>(WidenableBR->getCondition()); 1143 WCAnd->setOperand(0, B.CreateAnd(NewCond, Cond)); 1144 1145 Value *OldCond = BI->getCondition(); 1146 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1147 Changed = true; 1148 } 1149 1150 if (Changed) 1151 // We just mutated a bunch of loop exits changing there exit counts 1152 // widely. We need to force recomputation of the exit counts given these 1153 // changes. Note that all of the inserted exits are never taken, and 1154 // should be removed next time the CFG is modified. 1155 SE->forgetLoop(L); 1156 return Changed; 1157 } 1158 1159 bool LoopPredication::runOnLoop(Loop *Loop) { 1160 L = Loop; 1161 1162 LLVM_DEBUG(dbgs() << "Analyzing "); 1163 LLVM_DEBUG(L->dump()); 1164 1165 Module *M = L->getHeader()->getModule(); 1166 1167 // There is nothing to do if the module doesn't use guards 1168 auto *GuardDecl = 1169 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1170 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1171 auto *WCDecl = M->getFunction( 1172 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1173 bool HasWidenableConditions = 1174 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1175 if (!HasIntrinsicGuards && !HasWidenableConditions) 1176 return false; 1177 1178 DL = &M->getDataLayout(); 1179 1180 Preheader = L->getLoopPreheader(); 1181 if (!Preheader) 1182 return false; 1183 1184 auto LatchCheckOpt = parseLoopLatchICmp(); 1185 if (!LatchCheckOpt) 1186 return false; 1187 LatchCheck = *LatchCheckOpt; 1188 1189 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1190 LLVM_DEBUG(LatchCheck.dump()); 1191 1192 if (!isLoopProfitableToPredicate()) { 1193 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1194 return false; 1195 } 1196 // Collect all the guards into a vector and process later, so as not 1197 // to invalidate the instruction iterator. 1198 SmallVector<IntrinsicInst *, 4> Guards; 1199 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1200 for (const auto BB : L->blocks()) { 1201 for (auto &I : *BB) 1202 if (isGuard(&I)) 1203 Guards.push_back(cast<IntrinsicInst>(&I)); 1204 if (PredicateWidenableBranchGuards && 1205 isGuardAsWidenableBranch(BB->getTerminator())) 1206 GuardsAsWidenableBranches.push_back( 1207 cast<BranchInst>(BB->getTerminator())); 1208 } 1209 1210 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1211 bool Changed = false; 1212 for (auto *Guard : Guards) 1213 Changed |= widenGuardConditions(Guard, Expander); 1214 for (auto *Guard : GuardsAsWidenableBranches) 1215 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1216 Changed |= predicateLoopExits(L, Expander); 1217 return Changed; 1218 } 1219