xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision aab28666bcac4630e1b27704c9057c09032561f3)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LoopPredication pass tries to convert loop variant range checks to loop
11 // invariant by widening checks across loop iterations. For example, it will
12 // convert
13 //
14 //   for (i = 0; i < n; i++) {
15 //     guard(i < len);
16 //     ...
17 //   }
18 //
19 // to
20 //
21 //   for (i = 0; i < n; i++) {
22 //     guard(n - 1 < len);
23 //     ...
24 //   }
25 //
26 // After this transformation the condition of the guard is loop invariant, so
27 // loop-unswitch can later unswitch the loop by this condition which basically
28 // predicates the loop by the widened condition:
29 //
30 //   if (n - 1 < len)
31 //     for (i = 0; i < n; i++) {
32 //       ...
33 //     }
34 //   else
35 //     deoptimize
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopPredication.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/LoopPass.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpander.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 
55 #define DEBUG_TYPE "loop-predication"
56 
57 using namespace llvm;
58 
59 namespace {
60 class LoopPredication {
61   ScalarEvolution *SE;
62 
63   Loop *L;
64   const DataLayout *DL;
65   BasicBlock *Preheader;
66 
67   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
68                                         IRBuilder<> &Builder);
69   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
70 
71 public:
72   LoopPredication(ScalarEvolution *SE) : SE(SE){};
73   bool runOnLoop(Loop *L);
74 };
75 
76 class LoopPredicationLegacyPass : public LoopPass {
77 public:
78   static char ID;
79   LoopPredicationLegacyPass() : LoopPass(ID) {
80     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
81   }
82 
83   void getAnalysisUsage(AnalysisUsage &AU) const override {
84     getLoopAnalysisUsage(AU);
85   }
86 
87   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
88     if (skipLoop(L))
89       return false;
90     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
91     LoopPredication LP(SE);
92     return LP.runOnLoop(L);
93   }
94 };
95 
96 char LoopPredicationLegacyPass::ID = 0;
97 } // end namespace llvm
98 
99 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
100                       "Loop predication", false, false)
101 INITIALIZE_PASS_DEPENDENCY(LoopPass)
102 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
103                     "Loop predication", false, false)
104 
105 Pass *llvm::createLoopPredicationPass() {
106   return new LoopPredicationLegacyPass();
107 }
108 
109 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
110                                            LoopStandardAnalysisResults &AR,
111                                            LPMUpdater &U) {
112   LoopPredication LP(&AR.SE);
113   if (!LP.runOnLoop(&L))
114     return PreservedAnalyses::all();
115 
116   return getLoopPassPreservedAnalyses();
117 }
118 
119 /// If ICI can be widened to a loop invariant condition emits the loop
120 /// invariant condition in the loop preheader and return it, otherwise
121 /// returns None.
122 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
123                                                        SCEVExpander &Expander,
124                                                        IRBuilder<> &Builder) {
125   DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
126   DEBUG(ICI->dump());
127 
128   ICmpInst::Predicate Pred = ICI->getPredicate();
129   Value *LHS = ICI->getOperand(0);
130   Value *RHS = ICI->getOperand(1);
131   const SCEV *LHSS = SE->getSCEV(LHS);
132   if (isa<SCEVCouldNotCompute>(LHSS))
133     return None;
134   const SCEV *RHSS = SE->getSCEV(RHS);
135   if (isa<SCEVCouldNotCompute>(RHSS))
136     return None;
137 
138   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable index
139   if (SE->isLoopInvariant(LHSS, L)) {
140     std::swap(LHS, RHS);
141     std::swap(LHSS, RHSS);
142     Pred = ICmpInst::getSwappedPredicate(Pred);
143   }
144 
145   auto CanExpand = [this](const SCEV *S) {
146     return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
147   };
148   if (!CanExpand(RHSS))
149     return None;
150 
151   const SCEVAddRecExpr *IndexAR = dyn_cast<SCEVAddRecExpr>(LHSS);
152   if (!IndexAR || IndexAR->getLoop() != L)
153     return None;
154 
155   DEBUG(dbgs() << "IndexAR: ");
156   DEBUG(IndexAR->dump());
157 
158   bool IsIncreasing = false;
159   if (!SE->isMonotonicPredicate(IndexAR, Pred, IsIncreasing))
160     return None;
161 
162   // If the predicate is increasing the condition can change from false to true
163   // as the loop progresses, in this case take the value on the first iteration
164   // for the widened check. Otherwise the condition can change from true to
165   // false as the loop progresses, so take the value on the last iteration.
166   const SCEV *NewLHSS = IsIncreasing
167                             ? IndexAR->getStart()
168                             : SE->getSCEVAtScope(IndexAR, L->getParentLoop());
169   if (NewLHSS == IndexAR) {
170     DEBUG(dbgs() << "Can't compute NewLHSS!\n");
171     return None;
172   }
173 
174   DEBUG(dbgs() << "NewLHSS: ");
175   DEBUG(NewLHSS->dump());
176 
177   if (!CanExpand(NewLHSS))
178     return None;
179 
180   DEBUG(dbgs() << "NewLHSS is loop invariant and safe to expand. Expand!\n");
181 
182   Type *Ty = LHS->getType();
183   Instruction *InsertAt = Preheader->getTerminator();
184   assert(Ty == RHS->getType() && "icmp operands have different types?");
185   Value *NewLHS = Expander.expandCodeFor(NewLHSS, Ty, InsertAt);
186   Value *NewRHS = Expander.expandCodeFor(RHSS, Ty, InsertAt);
187   return Builder.CreateICmp(Pred, NewLHS, NewRHS);
188 }
189 
190 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
191                                            SCEVExpander &Expander) {
192   DEBUG(dbgs() << "Processing guard:\n");
193   DEBUG(Guard->dump());
194 
195   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
196 
197   // The guard condition is expected to be in form of:
198   //   cond1 && cond2 && cond3 ...
199   // Iterate over subconditions looking for for icmp conditions which can be
200   // widened across loop iterations. Widening these conditions remember the
201   // resulting list of subconditions in Checks vector.
202   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
203   SmallPtrSet<Value *, 4> Visited;
204 
205   SmallVector<Value *, 4> Checks;
206 
207   unsigned NumWidened = 0;
208   do {
209     Value *Condition = Worklist.pop_back_val();
210     if (!Visited.insert(Condition).second)
211       continue;
212 
213     Value *LHS, *RHS;
214     using namespace llvm::PatternMatch;
215     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
216       Worklist.push_back(LHS);
217       Worklist.push_back(RHS);
218       continue;
219     }
220 
221     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
222       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
223         Checks.push_back(NewRangeCheck.getValue());
224         NumWidened++;
225         continue;
226       }
227     }
228 
229     // Save the condition as is if we can't widen it
230     Checks.push_back(Condition);
231   } while (Worklist.size() != 0);
232 
233   if (NumWidened == 0)
234     return false;
235 
236   // Emit the new guard condition
237   Builder.SetInsertPoint(Guard);
238   Value *LastCheck = nullptr;
239   for (auto *Check : Checks)
240     if (!LastCheck)
241       LastCheck = Check;
242     else
243       LastCheck = Builder.CreateAnd(LastCheck, Check);
244   Guard->setOperand(0, LastCheck);
245 
246   DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
247   return true;
248 }
249 
250 bool LoopPredication::runOnLoop(Loop *Loop) {
251   L = Loop;
252 
253   DEBUG(dbgs() << "Analyzing ");
254   DEBUG(L->dump());
255 
256   Module *M = L->getHeader()->getModule();
257 
258   // There is nothing to do if the module doesn't use guards
259   auto *GuardDecl =
260       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
261   if (!GuardDecl || GuardDecl->use_empty())
262     return false;
263 
264   DL = &M->getDataLayout();
265 
266   Preheader = L->getLoopPreheader();
267   if (!Preheader)
268     return false;
269 
270   // Collect all the guards into a vector and process later, so as not
271   // to invalidate the instruction iterator.
272   SmallVector<IntrinsicInst *, 4> Guards;
273   for (const auto BB : L->blocks())
274     for (auto &I : *BB)
275       if (auto *II = dyn_cast<IntrinsicInst>(&I))
276         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
277           Guards.push_back(II);
278 
279   if (Guards.empty())
280     return false;
281 
282   SCEVExpander Expander(*SE, *DL, "loop-predication");
283 
284   bool Changed = false;
285   for (auto *Guard : Guards)
286     Changed |= widenGuardConditions(Guard, Expander);
287 
288   return Changed;
289 }
290