1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopPredication.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/LoopPass.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpander.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 55 #define DEBUG_TYPE "loop-predication" 56 57 using namespace llvm; 58 59 namespace { 60 class LoopPredication { 61 ScalarEvolution *SE; 62 63 Loop *L; 64 const DataLayout *DL; 65 BasicBlock *Preheader; 66 67 /// Represents an induction variable check: 68 /// icmp Pred, <induction variable>, <loop invariant limit> 69 struct LoopICmp { 70 ICmpInst::Predicate Pred; 71 const SCEVAddRecExpr *IV; 72 const SCEV *Limit; 73 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, const SCEV *Limit) 74 : Pred(Pred), IV(IV), Limit(Limit) {} 75 LoopICmp() {} 76 }; 77 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 78 79 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 80 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 81 Instruction *InsertAt); 82 83 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 84 IRBuilder<> &Builder); 85 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 86 87 public: 88 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 89 bool runOnLoop(Loop *L); 90 }; 91 92 class LoopPredicationLegacyPass : public LoopPass { 93 public: 94 static char ID; 95 LoopPredicationLegacyPass() : LoopPass(ID) { 96 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 97 } 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 getLoopAnalysisUsage(AU); 101 } 102 103 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 104 if (skipLoop(L)) 105 return false; 106 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 107 LoopPredication LP(SE); 108 return LP.runOnLoop(L); 109 } 110 }; 111 112 char LoopPredicationLegacyPass::ID = 0; 113 } // end namespace llvm 114 115 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 116 "Loop predication", false, false) 117 INITIALIZE_PASS_DEPENDENCY(LoopPass) 118 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 119 "Loop predication", false, false) 120 121 Pass *llvm::createLoopPredicationPass() { 122 return new LoopPredicationLegacyPass(); 123 } 124 125 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 126 LoopStandardAnalysisResults &AR, 127 LPMUpdater &U) { 128 LoopPredication LP(&AR.SE); 129 if (!LP.runOnLoop(&L)) 130 return PreservedAnalyses::all(); 131 132 return getLoopPassPreservedAnalyses(); 133 } 134 135 Optional<LoopPredication::LoopICmp> 136 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 137 ICmpInst::Predicate Pred = ICI->getPredicate(); 138 139 Value *LHS = ICI->getOperand(0); 140 Value *RHS = ICI->getOperand(1); 141 const SCEV *LHSS = SE->getSCEV(LHS); 142 if (isa<SCEVCouldNotCompute>(LHSS)) 143 return None; 144 const SCEV *RHSS = SE->getSCEV(RHS); 145 if (isa<SCEVCouldNotCompute>(RHSS)) 146 return None; 147 148 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 149 if (SE->isLoopInvariant(LHSS, L)) { 150 std::swap(LHS, RHS); 151 std::swap(LHSS, RHSS); 152 Pred = ICmpInst::getSwappedPredicate(Pred); 153 } 154 155 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 156 if (!AR || AR->getLoop() != L) 157 return None; 158 159 return LoopICmp(Pred, AR, RHSS); 160 } 161 162 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 163 IRBuilder<> &Builder, 164 ICmpInst::Predicate Pred, const SCEV *LHS, 165 const SCEV *RHS, Instruction *InsertAt) { 166 Type *Ty = LHS->getType(); 167 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 168 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 169 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 170 return Builder.CreateICmp(Pred, LHSV, RHSV); 171 } 172 173 /// If ICI can be widened to a loop invariant condition emits the loop 174 /// invariant condition in the loop preheader and return it, otherwise 175 /// returns None. 176 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 177 SCEVExpander &Expander, 178 IRBuilder<> &Builder) { 179 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 180 DEBUG(ICI->dump()); 181 182 auto RangeCheck = parseLoopICmp(ICI); 183 if (!RangeCheck) 184 return None; 185 186 ICmpInst::Predicate Pred = RangeCheck->Pred; 187 const SCEVAddRecExpr *IndexAR = RangeCheck->IV; 188 const SCEV *RHSS = RangeCheck->Limit; 189 190 auto CanExpand = [this](const SCEV *S) { 191 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 192 }; 193 if (!CanExpand(RHSS)) 194 return None; 195 196 DEBUG(dbgs() << "IndexAR: "); 197 DEBUG(IndexAR->dump()); 198 199 bool IsIncreasing = false; 200 if (!SE->isMonotonicPredicate(IndexAR, Pred, IsIncreasing)) 201 return None; 202 203 // If the predicate is increasing the condition can change from false to true 204 // as the loop progresses, in this case take the value on the first iteration 205 // for the widened check. Otherwise the condition can change from true to 206 // false as the loop progresses, so take the value on the last iteration. 207 const SCEV *NewLHSS = IsIncreasing 208 ? IndexAR->getStart() 209 : SE->getSCEVAtScope(IndexAR, L->getParentLoop()); 210 if (NewLHSS == IndexAR) { 211 DEBUG(dbgs() << "Can't compute NewLHSS!\n"); 212 return None; 213 } 214 215 DEBUG(dbgs() << "NewLHSS: "); 216 DEBUG(NewLHSS->dump()); 217 218 if (!CanExpand(NewLHSS)) 219 return None; 220 221 DEBUG(dbgs() << "NewLHSS is loop invariant and safe to expand. Expand!\n"); 222 223 Instruction *InsertAt = Preheader->getTerminator(); 224 return expandCheck(Expander, Builder, Pred, NewLHSS, RHSS, InsertAt); 225 } 226 227 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 228 SCEVExpander &Expander) { 229 DEBUG(dbgs() << "Processing guard:\n"); 230 DEBUG(Guard->dump()); 231 232 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 233 234 // The guard condition is expected to be in form of: 235 // cond1 && cond2 && cond3 ... 236 // Iterate over subconditions looking for for icmp conditions which can be 237 // widened across loop iterations. Widening these conditions remember the 238 // resulting list of subconditions in Checks vector. 239 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 240 SmallPtrSet<Value *, 4> Visited; 241 242 SmallVector<Value *, 4> Checks; 243 244 unsigned NumWidened = 0; 245 do { 246 Value *Condition = Worklist.pop_back_val(); 247 if (!Visited.insert(Condition).second) 248 continue; 249 250 Value *LHS, *RHS; 251 using namespace llvm::PatternMatch; 252 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 253 Worklist.push_back(LHS); 254 Worklist.push_back(RHS); 255 continue; 256 } 257 258 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 259 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 260 Checks.push_back(NewRangeCheck.getValue()); 261 NumWidened++; 262 continue; 263 } 264 } 265 266 // Save the condition as is if we can't widen it 267 Checks.push_back(Condition); 268 } while (Worklist.size() != 0); 269 270 if (NumWidened == 0) 271 return false; 272 273 // Emit the new guard condition 274 Builder.SetInsertPoint(Guard); 275 Value *LastCheck = nullptr; 276 for (auto *Check : Checks) 277 if (!LastCheck) 278 LastCheck = Check; 279 else 280 LastCheck = Builder.CreateAnd(LastCheck, Check); 281 Guard->setOperand(0, LastCheck); 282 283 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 284 return true; 285 } 286 287 bool LoopPredication::runOnLoop(Loop *Loop) { 288 L = Loop; 289 290 DEBUG(dbgs() << "Analyzing "); 291 DEBUG(L->dump()); 292 293 Module *M = L->getHeader()->getModule(); 294 295 // There is nothing to do if the module doesn't use guards 296 auto *GuardDecl = 297 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 298 if (!GuardDecl || GuardDecl->use_empty()) 299 return false; 300 301 DL = &M->getDataLayout(); 302 303 Preheader = L->getLoopPreheader(); 304 if (!Preheader) 305 return false; 306 307 // Collect all the guards into a vector and process later, so as not 308 // to invalidate the instruction iterator. 309 SmallVector<IntrinsicInst *, 4> Guards; 310 for (const auto BB : L->blocks()) 311 for (auto &I : *BB) 312 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 313 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 314 Guards.push_back(II); 315 316 if (Guards.empty()) 317 return false; 318 319 SCEVExpander Expander(*SE, *DL, "loop-predication"); 320 321 bool Changed = false; 322 for (auto *Guard : Guards) 323 Changed |= widenGuardConditions(Guard, Expander); 324 325 return Changed; 326 } 327