1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // For now the transformation is limited to the following case: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The step of the IV used in the latch condition is 1. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 //===----------------------------------------------------------------------===// 156 157 #include "llvm/Transforms/Scalar/LoopPredication.h" 158 #include "llvm/Analysis/LoopInfo.h" 159 #include "llvm/Analysis/LoopPass.h" 160 #include "llvm/Analysis/ScalarEvolution.h" 161 #include "llvm/Analysis/ScalarEvolutionExpander.h" 162 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 163 #include "llvm/IR/Function.h" 164 #include "llvm/IR/GlobalValue.h" 165 #include "llvm/IR/IntrinsicInst.h" 166 #include "llvm/IR/Module.h" 167 #include "llvm/IR/PatternMatch.h" 168 #include "llvm/Pass.h" 169 #include "llvm/Support/Debug.h" 170 #include "llvm/Transforms/Scalar.h" 171 #include "llvm/Transforms/Utils/LoopUtils.h" 172 173 #define DEBUG_TYPE "loop-predication" 174 175 using namespace llvm; 176 177 namespace { 178 class LoopPredication { 179 /// Represents an induction variable check: 180 /// icmp Pred, <induction variable>, <loop invariant limit> 181 struct LoopICmp { 182 ICmpInst::Predicate Pred; 183 const SCEVAddRecExpr *IV; 184 const SCEV *Limit; 185 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 186 const SCEV *Limit) 187 : Pred(Pred), IV(IV), Limit(Limit) {} 188 LoopICmp() {} 189 }; 190 191 ScalarEvolution *SE; 192 193 Loop *L; 194 const DataLayout *DL; 195 BasicBlock *Preheader; 196 LoopICmp LatchCheck; 197 198 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 199 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 200 ICI->getOperand(1)); 201 } 202 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 203 Value *RHS); 204 205 Optional<LoopICmp> parseLoopLatchICmp(); 206 207 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 208 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 209 Instruction *InsertAt); 210 211 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 212 IRBuilder<> &Builder); 213 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 214 215 public: 216 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 217 bool runOnLoop(Loop *L); 218 }; 219 220 class LoopPredicationLegacyPass : public LoopPass { 221 public: 222 static char ID; 223 LoopPredicationLegacyPass() : LoopPass(ID) { 224 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 225 } 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 getLoopAnalysisUsage(AU); 229 } 230 231 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 232 if (skipLoop(L)) 233 return false; 234 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 235 LoopPredication LP(SE); 236 return LP.runOnLoop(L); 237 } 238 }; 239 240 char LoopPredicationLegacyPass::ID = 0; 241 } // end namespace llvm 242 243 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 244 "Loop predication", false, false) 245 INITIALIZE_PASS_DEPENDENCY(LoopPass) 246 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 247 "Loop predication", false, false) 248 249 Pass *llvm::createLoopPredicationPass() { 250 return new LoopPredicationLegacyPass(); 251 } 252 253 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 254 LoopStandardAnalysisResults &AR, 255 LPMUpdater &U) { 256 LoopPredication LP(&AR.SE); 257 if (!LP.runOnLoop(&L)) 258 return PreservedAnalyses::all(); 259 260 return getLoopPassPreservedAnalyses(); 261 } 262 263 Optional<LoopPredication::LoopICmp> 264 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 265 Value *RHS) { 266 const SCEV *LHSS = SE->getSCEV(LHS); 267 if (isa<SCEVCouldNotCompute>(LHSS)) 268 return None; 269 const SCEV *RHSS = SE->getSCEV(RHS); 270 if (isa<SCEVCouldNotCompute>(RHSS)) 271 return None; 272 273 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 274 if (SE->isLoopInvariant(LHSS, L)) { 275 std::swap(LHS, RHS); 276 std::swap(LHSS, RHSS); 277 Pred = ICmpInst::getSwappedPredicate(Pred); 278 } 279 280 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 281 if (!AR || AR->getLoop() != L) 282 return None; 283 284 return LoopICmp(Pred, AR, RHSS); 285 } 286 287 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 288 IRBuilder<> &Builder, 289 ICmpInst::Predicate Pred, const SCEV *LHS, 290 const SCEV *RHS, Instruction *InsertAt) { 291 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 292 293 Type *Ty = LHS->getType(); 294 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 295 296 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 297 return Builder.getTrue(); 298 299 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 300 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 301 return Builder.CreateICmp(Pred, LHSV, RHSV); 302 } 303 304 /// If ICI can be widened to a loop invariant condition emits the loop 305 /// invariant condition in the loop preheader and return it, otherwise 306 /// returns None. 307 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 308 SCEVExpander &Expander, 309 IRBuilder<> &Builder) { 310 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 311 DEBUG(ICI->dump()); 312 313 // parseLoopStructure guarantees that the latch condition is: 314 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 315 // We are looking for the range checks of the form: 316 // i u< guardLimit 317 auto RangeCheck = parseLoopICmp(ICI); 318 if (!RangeCheck) { 319 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 320 return None; 321 } 322 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 323 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred 324 << ")!\n"); 325 return None; 326 } 327 auto *RangeCheckIV = RangeCheck->IV; 328 auto *Ty = RangeCheckIV->getType(); 329 if (Ty != LatchCheck.IV->getType()) { 330 DEBUG(dbgs() << "Type mismatch between range check and latch IVs!\n"); 331 return None; 332 } 333 if (!RangeCheckIV->isAffine()) { 334 DEBUG(dbgs() << "Range check IV is not affine!\n"); 335 return None; 336 } 337 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 338 if (Step != LatchCheck.IV->getStepRecurrence(*SE)) { 339 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 340 return None; 341 } 342 assert(Step->isOne() && "must be one"); 343 344 // Generate the widened condition: 345 // guardStart u< guardLimit && 346 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 347 // where <pred> depends on the latch condition predicate. See the file 348 // header comment for the reasoning. 349 const SCEV *GuardStart = RangeCheckIV->getStart(); 350 const SCEV *GuardLimit = RangeCheck->Limit; 351 const SCEV *LatchStart = LatchCheck.IV->getStart(); 352 const SCEV *LatchLimit = LatchCheck.Limit; 353 354 // guardLimit - guardStart + latchStart - 1 355 const SCEV *RHS = 356 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 357 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 358 359 ICmpInst::Predicate LimitCheckPred; 360 switch (LatchCheck.Pred) { 361 case ICmpInst::ICMP_ULT: 362 LimitCheckPred = ICmpInst::ICMP_ULE; 363 break; 364 case ICmpInst::ICMP_ULE: 365 LimitCheckPred = ICmpInst::ICMP_ULT; 366 break; 367 case ICmpInst::ICMP_SLT: 368 LimitCheckPred = ICmpInst::ICMP_SLE; 369 break; 370 case ICmpInst::ICMP_SLE: 371 LimitCheckPred = ICmpInst::ICMP_SLT; 372 break; 373 default: 374 llvm_unreachable("Unsupported loop latch!"); 375 } 376 377 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 378 DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 379 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 380 381 auto CanExpand = [this](const SCEV *S) { 382 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 383 }; 384 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 385 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 386 DEBUG(dbgs() << "Can't expand limit check!\n"); 387 return None; 388 } 389 390 Instruction *InsertAt = Preheader->getTerminator(); 391 auto *LimitCheck = 392 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 393 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred, 394 GuardStart, GuardLimit, InsertAt); 395 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 396 } 397 398 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 399 SCEVExpander &Expander) { 400 DEBUG(dbgs() << "Processing guard:\n"); 401 DEBUG(Guard->dump()); 402 403 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 404 405 // The guard condition is expected to be in form of: 406 // cond1 && cond2 && cond3 ... 407 // Iterate over subconditions looking for for icmp conditions which can be 408 // widened across loop iterations. Widening these conditions remember the 409 // resulting list of subconditions in Checks vector. 410 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 411 SmallPtrSet<Value *, 4> Visited; 412 413 SmallVector<Value *, 4> Checks; 414 415 unsigned NumWidened = 0; 416 do { 417 Value *Condition = Worklist.pop_back_val(); 418 if (!Visited.insert(Condition).second) 419 continue; 420 421 Value *LHS, *RHS; 422 using namespace llvm::PatternMatch; 423 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 424 Worklist.push_back(LHS); 425 Worklist.push_back(RHS); 426 continue; 427 } 428 429 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 430 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 431 Checks.push_back(NewRangeCheck.getValue()); 432 NumWidened++; 433 continue; 434 } 435 } 436 437 // Save the condition as is if we can't widen it 438 Checks.push_back(Condition); 439 } while (Worklist.size() != 0); 440 441 if (NumWidened == 0) 442 return false; 443 444 // Emit the new guard condition 445 Builder.SetInsertPoint(Guard); 446 Value *LastCheck = nullptr; 447 for (auto *Check : Checks) 448 if (!LastCheck) 449 LastCheck = Check; 450 else 451 LastCheck = Builder.CreateAnd(LastCheck, Check); 452 Guard->setOperand(0, LastCheck); 453 454 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 455 return true; 456 } 457 458 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 459 using namespace PatternMatch; 460 461 BasicBlock *LoopLatch = L->getLoopLatch(); 462 if (!LoopLatch) { 463 DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 464 return None; 465 } 466 467 ICmpInst::Predicate Pred; 468 Value *LHS, *RHS; 469 BasicBlock *TrueDest, *FalseDest; 470 471 if (!match(LoopLatch->getTerminator(), 472 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 473 FalseDest))) { 474 DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 475 return None; 476 } 477 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 478 "One of the latch's destinations must be the header"); 479 if (TrueDest != L->getHeader()) 480 Pred = ICmpInst::getInversePredicate(Pred); 481 482 auto Result = parseLoopICmp(Pred, LHS, RHS); 483 if (!Result) { 484 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 485 return None; 486 } 487 488 if (Result->Pred != ICmpInst::ICMP_ULT && 489 Result->Pred != ICmpInst::ICMP_SLT && 490 Result->Pred != ICmpInst::ICMP_ULE && 491 Result->Pred != ICmpInst::ICMP_SLE) { 492 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 493 << ")!\n"); 494 return None; 495 } 496 497 // Check affine first, so if it's not we don't try to compute the step 498 // recurrence. 499 if (!Result->IV->isAffine()) { 500 DEBUG(dbgs() << "The induction variable is not affine!\n"); 501 return None; 502 } 503 504 auto *Step = Result->IV->getStepRecurrence(*SE); 505 if (!Step->isOne()) { 506 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 507 return None; 508 } 509 510 return Result; 511 } 512 513 bool LoopPredication::runOnLoop(Loop *Loop) { 514 L = Loop; 515 516 DEBUG(dbgs() << "Analyzing "); 517 DEBUG(L->dump()); 518 519 Module *M = L->getHeader()->getModule(); 520 521 // There is nothing to do if the module doesn't use guards 522 auto *GuardDecl = 523 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 524 if (!GuardDecl || GuardDecl->use_empty()) 525 return false; 526 527 DL = &M->getDataLayout(); 528 529 Preheader = L->getLoopPreheader(); 530 if (!Preheader) 531 return false; 532 533 auto LatchCheckOpt = parseLoopLatchICmp(); 534 if (!LatchCheckOpt) 535 return false; 536 LatchCheck = *LatchCheckOpt; 537 538 // Collect all the guards into a vector and process later, so as not 539 // to invalidate the instruction iterator. 540 SmallVector<IntrinsicInst *, 4> Guards; 541 for (const auto BB : L->blocks()) 542 for (auto &I : *BB) 543 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 544 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 545 Guards.push_back(II); 546 547 if (Guards.empty()) 548 return false; 549 550 SCEVExpander Expander(*SE, *DL, "loop-predication"); 551 552 bool Changed = false; 553 for (auto *Guard : Guards) 554 Changed |= widenGuardConditions(Guard, Expander); 555 556 return Changed; 557 } 558