xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 889dc1e3a58cb9c2e38d49138f6e338242315de3)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LoopPredication pass tries to convert loop variant range checks to loop
11 // invariant by widening checks across loop iterations. For example, it will
12 // convert
13 //
14 //   for (i = 0; i < n; i++) {
15 //     guard(i < len);
16 //     ...
17 //   }
18 //
19 // to
20 //
21 //   for (i = 0; i < n; i++) {
22 //     guard(n - 1 < len);
23 //     ...
24 //   }
25 //
26 // After this transformation the condition of the guard is loop invariant, so
27 // loop-unswitch can later unswitch the loop by this condition which basically
28 // predicates the loop by the widened condition:
29 //
30 //   if (n - 1 < len)
31 //     for (i = 0; i < n; i++) {
32 //       ...
33 //     }
34 //   else
35 //     deoptimize
36 //
37 // It's tempting to rely on SCEV here, but it has proven to be problematic.
38 // Generally the facts SCEV provides about the increment step of add
39 // recurrences are true if the backedge of the loop is taken, which implicitly
40 // assumes that the guard doesn't fail. Using these facts to optimize the
41 // guard results in a circular logic where the guard is optimized under the
42 // assumption that it never fails.
43 //
44 // For example, in the loop below the induction variable will be marked as nuw
45 // basing on the guard. Basing on nuw the guard predicate will be considered
46 // monotonic. Given a monotonic condition it's tempting to replace the induction
47 // variable in the condition with its value on the last iteration. But this
48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 //
50 //   for (int i = b; i != e; i++)
51 //     guard(i u< len)
52 //
53 // One of the ways to reason about this problem is to use an inductive proof
54 // approach. Given the loop:
55 //
56 //   if (B(Start)) {
57 //     do {
58 //       I = PHI(Start, I.INC)
59 //       I.INC = I + Step
60 //       guard(G(I));
61 //     } while (B(I.INC));
62 //   }
63 //
64 // where B(x) and G(x) are predicates that map integers to booleans, we want a
65 // loop invariant expression M such the following program has the same semantics
66 // as the above:
67 //
68 //   if (B(Start)) {
69 //     do {
70 //       I = PHI(Start, I.INC)
71 //       I.INC = I + Step
72 //       guard(G(Start) && M);
73 //     } while (B(I.INC));
74 //   }
75 //
76 // One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step)
77 //
78 // Informal proof that the transformation above is correct:
79 //
80 //   By the definition of guards we can rewrite the guard condition to:
81 //     G(I) && G(Start) && M
82 //
83 //   Let's prove that for each iteration of the loop:
84 //     G(Start) && M => G(I)
85 //   And the condition above can be simplified to G(Start) && M.
86 //
87 //   Induction base.
88 //     G(Start) && M => G(Start)
89 //
90 //   Induction step. Assuming G(Start) && M => G(I) on the subsequent
91 //   iteration:
92 //
93 //     B(I + Step) is true because it's the backedge condition.
94 //     G(I) is true because the backedge is guarded by this condition.
95 //
96 //   So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies
97 //   G(I + Step).
98 //
99 // Note that we can use anything stronger than M, i.e. any condition which
100 // implies M.
101 //
102 // For now the transformation is limited to the following case:
103 //   * The loop has a single latch with either ult or slt icmp condition.
104 //   * The step of the IV used in the latch condition is 1.
105 //   * The IV of the latch condition is the same as the post increment IV of the
106 //   guard condition.
107 //   * The guard condition is ult.
108 //
109 // In this case the latch is of the from:
110 //   ++i u< latchLimit or ++i s< latchLimit
111 // and the guard is of the form:
112 //   i u< guardLimit
113 //
114 // For the unsigned latch comparison case M is:
115 //   forall X . X u< guardLimit && (X + 1) u< latchLimit =>
116 //      (X + 1) u< guardLimit
117 //
118 // This is true if latchLimit u<= guardLimit since then
119 //   (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit.
120 //
121 // So the widened condition is:
122 //   i.start u< guardLimit && latchLimit u<= guardLimit
123 //
124 // For the signed latch comparison case M is:
125 //   forall X . X u< guardLimit && (X + 1) s< latchLimit =>
126 //      (X + 1) u< guardLimit
127 //
128 // The only way the antecedent can be true and the consequent can be false is
129 // if
130 //   X == guardLimit - 1
131 // (and guardLimit is non-zero, but we won't use this latter fact).
132 // If X == guardLimit - 1 then the second half of the antecedent is
133 //   guardLimit s< latchLimit
134 // and its negation is
135 //   latchLimit s<= guardLimit.
136 //
137 // In other words, if latchLimit s<= guardLimit then:
138 // (the ranges below are written in ConstantRange notation, where [A, B) is the
139 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
140 //
141 //    forall X . X u< guardLimit && (X + 1) s< latchLimit =>  (X + 1) u< guardLimit
142 // == forall X . X u< guardLimit && (X + 1) s< guardLimit =>  (X + 1) u< guardLimit
143 // == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) =>  (X + 1) in [0, guardLimit)
144 // == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) =>  X in [-1, guardLimit-1)
145 // == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1)
146 // == true
147 //
148 // So the widened condition is:
149 //   i.start u< guardLimit && latchLimit s<= guardLimit
150 //
151 //===----------------------------------------------------------------------===//
152 
153 #include "llvm/Transforms/Scalar/LoopPredication.h"
154 #include "llvm/Analysis/LoopInfo.h"
155 #include "llvm/Analysis/LoopPass.h"
156 #include "llvm/Analysis/ScalarEvolution.h"
157 #include "llvm/Analysis/ScalarEvolutionExpander.h"
158 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
159 #include "llvm/IR/Function.h"
160 #include "llvm/IR/GlobalValue.h"
161 #include "llvm/IR/IntrinsicInst.h"
162 #include "llvm/IR/Module.h"
163 #include "llvm/IR/PatternMatch.h"
164 #include "llvm/Pass.h"
165 #include "llvm/Support/Debug.h"
166 #include "llvm/Transforms/Scalar.h"
167 #include "llvm/Transforms/Utils/LoopUtils.h"
168 
169 #define DEBUG_TYPE "loop-predication"
170 
171 using namespace llvm;
172 
173 namespace {
174 class LoopPredication {
175   /// Represents an induction variable check:
176   ///   icmp Pred, <induction variable>, <loop invariant limit>
177   struct LoopICmp {
178     ICmpInst::Predicate Pred;
179     const SCEVAddRecExpr *IV;
180     const SCEV *Limit;
181     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
182              const SCEV *Limit)
183         : Pred(Pred), IV(IV), Limit(Limit) {}
184     LoopICmp() {}
185   };
186 
187   ScalarEvolution *SE;
188 
189   Loop *L;
190   const DataLayout *DL;
191   BasicBlock *Preheader;
192   LoopICmp LatchCheck;
193 
194   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
195     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
196                          ICI->getOperand(1));
197   }
198   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
199                                    Value *RHS);
200 
201   Optional<LoopICmp> parseLoopLatchICmp();
202 
203   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
204                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
205                      Instruction *InsertAt);
206 
207   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
208                                         IRBuilder<> &Builder);
209   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
210 
211 public:
212   LoopPredication(ScalarEvolution *SE) : SE(SE){};
213   bool runOnLoop(Loop *L);
214 };
215 
216 class LoopPredicationLegacyPass : public LoopPass {
217 public:
218   static char ID;
219   LoopPredicationLegacyPass() : LoopPass(ID) {
220     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
221   }
222 
223   void getAnalysisUsage(AnalysisUsage &AU) const override {
224     getLoopAnalysisUsage(AU);
225   }
226 
227   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
228     if (skipLoop(L))
229       return false;
230     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
231     LoopPredication LP(SE);
232     return LP.runOnLoop(L);
233   }
234 };
235 
236 char LoopPredicationLegacyPass::ID = 0;
237 } // end namespace llvm
238 
239 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
240                       "Loop predication", false, false)
241 INITIALIZE_PASS_DEPENDENCY(LoopPass)
242 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
243                     "Loop predication", false, false)
244 
245 Pass *llvm::createLoopPredicationPass() {
246   return new LoopPredicationLegacyPass();
247 }
248 
249 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
250                                            LoopStandardAnalysisResults &AR,
251                                            LPMUpdater &U) {
252   LoopPredication LP(&AR.SE);
253   if (!LP.runOnLoop(&L))
254     return PreservedAnalyses::all();
255 
256   return getLoopPassPreservedAnalyses();
257 }
258 
259 Optional<LoopPredication::LoopICmp>
260 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
261                                Value *RHS) {
262   const SCEV *LHSS = SE->getSCEV(LHS);
263   if (isa<SCEVCouldNotCompute>(LHSS))
264     return None;
265   const SCEV *RHSS = SE->getSCEV(RHS);
266   if (isa<SCEVCouldNotCompute>(RHSS))
267     return None;
268 
269   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
270   if (SE->isLoopInvariant(LHSS, L)) {
271     std::swap(LHS, RHS);
272     std::swap(LHSS, RHSS);
273     Pred = ICmpInst::getSwappedPredicate(Pred);
274   }
275 
276   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
277   if (!AR || AR->getLoop() != L)
278     return None;
279 
280   return LoopICmp(Pred, AR, RHSS);
281 }
282 
283 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
284                                     IRBuilder<> &Builder,
285                                     ICmpInst::Predicate Pred, const SCEV *LHS,
286                                     const SCEV *RHS, Instruction *InsertAt) {
287   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
288 
289   Type *Ty = LHS->getType();
290   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
291   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
292   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
293   return Builder.CreateICmp(Pred, LHSV, RHSV);
294 }
295 
296 /// If ICI can be widened to a loop invariant condition emits the loop
297 /// invariant condition in the loop preheader and return it, otherwise
298 /// returns None.
299 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
300                                                        SCEVExpander &Expander,
301                                                        IRBuilder<> &Builder) {
302   DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
303   DEBUG(ICI->dump());
304 
305   // parseLoopStructure guarantees that the latch condition is:
306   //   ++i u< latchLimit or ++i s< latchLimit
307   // We are looking for the range checks of the form:
308   //   i u< guardLimit
309   auto RangeCheck = parseLoopICmp(ICI);
310   if (!RangeCheck) {
311     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
312     return None;
313   }
314   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
315     DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
316                  << ")!\n");
317     return None;
318   }
319   auto *RangeCheckIV = RangeCheck->IV;
320   auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE);
321   if (LatchCheck.IV != PostIncRangeCheckIV) {
322     DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV
323                  << ") is not the same as latch IV (" << *LatchCheck.IV
324                  << ")!\n");
325     return None;
326   }
327   assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one");
328   const SCEV *Start = RangeCheckIV->getStart();
329 
330   // Generate the widened condition. See the file header comment for reasoning.
331   // If the latch condition is unsigned:
332   //   i.start u< guardLimit && latchLimit u<= guardLimit
333   // If the latch condition is signed:
334   //   i.start u< guardLimit && latchLimit s<= guardLimit
335 
336   auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred)
337                                            ? ICmpInst::ICMP_SLE
338                                            : ICmpInst::ICMP_ULE;
339 
340   auto CanExpand = [this](const SCEV *S) {
341     return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
342   };
343   if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) ||
344       !CanExpand(RangeCheck->Limit))
345     return None;
346 
347   Instruction *InsertAt = Preheader->getTerminator();
348   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred,
349                                           Start, RangeCheck->Limit, InsertAt);
350   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred,
351                                  LatchCheck.Limit, RangeCheck->Limit, InsertAt);
352   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
353 }
354 
355 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
356                                            SCEVExpander &Expander) {
357   DEBUG(dbgs() << "Processing guard:\n");
358   DEBUG(Guard->dump());
359 
360   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
361 
362   // The guard condition is expected to be in form of:
363   //   cond1 && cond2 && cond3 ...
364   // Iterate over subconditions looking for for icmp conditions which can be
365   // widened across loop iterations. Widening these conditions remember the
366   // resulting list of subconditions in Checks vector.
367   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
368   SmallPtrSet<Value *, 4> Visited;
369 
370   SmallVector<Value *, 4> Checks;
371 
372   unsigned NumWidened = 0;
373   do {
374     Value *Condition = Worklist.pop_back_val();
375     if (!Visited.insert(Condition).second)
376       continue;
377 
378     Value *LHS, *RHS;
379     using namespace llvm::PatternMatch;
380     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
381       Worklist.push_back(LHS);
382       Worklist.push_back(RHS);
383       continue;
384     }
385 
386     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
387       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
388         Checks.push_back(NewRangeCheck.getValue());
389         NumWidened++;
390         continue;
391       }
392     }
393 
394     // Save the condition as is if we can't widen it
395     Checks.push_back(Condition);
396   } while (Worklist.size() != 0);
397 
398   if (NumWidened == 0)
399     return false;
400 
401   // Emit the new guard condition
402   Builder.SetInsertPoint(Guard);
403   Value *LastCheck = nullptr;
404   for (auto *Check : Checks)
405     if (!LastCheck)
406       LastCheck = Check;
407     else
408       LastCheck = Builder.CreateAnd(LastCheck, Check);
409   Guard->setOperand(0, LastCheck);
410 
411   DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
412   return true;
413 }
414 
415 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
416   using namespace PatternMatch;
417 
418   BasicBlock *LoopLatch = L->getLoopLatch();
419   if (!LoopLatch) {
420     DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
421     return None;
422   }
423 
424   ICmpInst::Predicate Pred;
425   Value *LHS, *RHS;
426   BasicBlock *TrueDest, *FalseDest;
427 
428   if (!match(LoopLatch->getTerminator(),
429              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
430                   FalseDest))) {
431     DEBUG(dbgs() << "Failed to match the latch terminator!\n");
432     return None;
433   }
434   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
435          "One of the latch's destinations must be the header");
436   if (TrueDest != L->getHeader())
437     Pred = ICmpInst::getInversePredicate(Pred);
438 
439   auto Result = parseLoopICmp(Pred, LHS, RHS);
440   if (!Result) {
441     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
442     return None;
443   }
444 
445   if (Result->Pred != ICmpInst::ICMP_ULT &&
446       Result->Pred != ICmpInst::ICMP_SLT) {
447     DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
448                  << ")!\n");
449     return None;
450   }
451 
452   // Check affine first, so if it's not we don't try to compute the step
453   // recurrence.
454   if (!Result->IV->isAffine()) {
455     DEBUG(dbgs() << "The induction variable is not affine!\n");
456     return None;
457   }
458 
459   auto *Step = Result->IV->getStepRecurrence(*SE);
460   if (!Step->isOne()) {
461     DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
462     return None;
463   }
464 
465   return Result;
466 }
467 
468 bool LoopPredication::runOnLoop(Loop *Loop) {
469   L = Loop;
470 
471   DEBUG(dbgs() << "Analyzing ");
472   DEBUG(L->dump());
473 
474   Module *M = L->getHeader()->getModule();
475 
476   // There is nothing to do if the module doesn't use guards
477   auto *GuardDecl =
478       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
479   if (!GuardDecl || GuardDecl->use_empty())
480     return false;
481 
482   DL = &M->getDataLayout();
483 
484   Preheader = L->getLoopPreheader();
485   if (!Preheader)
486     return false;
487 
488   auto LatchCheckOpt = parseLoopLatchICmp();
489   if (!LatchCheckOpt)
490     return false;
491   LatchCheck = *LatchCheckOpt;
492 
493   // Collect all the guards into a vector and process later, so as not
494   // to invalidate the instruction iterator.
495   SmallVector<IntrinsicInst *, 4> Guards;
496   for (const auto BB : L->blocks())
497     for (auto &I : *BB)
498       if (auto *II = dyn_cast<IntrinsicInst>(&I))
499         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
500           Guards.push_back(II);
501 
502   if (Guards.empty())
503     return false;
504 
505   SCEVExpander Expander(*SE, *DL, "loop-predication");
506 
507   bool Changed = false;
508   for (auto *Guard : Guards)
509     Changed |= widenGuardConditions(Guard, Expander);
510 
511   return Changed;
512 }
513