xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 7a47ee51a145a40332311330ef45b5d62d8ae023)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/InitializePasses.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/CommandLine.h"
197 #include "llvm/Support/Debug.h"
198 #include "llvm/Transforms/Scalar.h"
199 #include "llvm/Transforms/Utils/GuardUtils.h"
200 #include "llvm/Transforms/Utils/Local.h"
201 #include "llvm/Transforms/Utils/LoopUtils.h"
202 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
203 
204 #define DEBUG_TYPE "loop-predication"
205 
206 STATISTIC(TotalConsidered, "Number of guards considered");
207 STATISTIC(TotalWidened, "Number of checks widened");
208 
209 using namespace llvm;
210 
211 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
212                                         cl::Hidden, cl::init(true));
213 
214 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
215                                         cl::Hidden, cl::init(true));
216 
217 static cl::opt<bool>
218     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
219                             cl::Hidden, cl::init(false));
220 
221 // This is the scale factor for the latch probability. We use this during
222 // profitability analysis to find other exiting blocks that have a much higher
223 // probability of exiting the loop instead of loop exiting via latch.
224 // This value should be greater than 1 for a sane profitability check.
225 static cl::opt<float> LatchExitProbabilityScale(
226     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
227     cl::desc("scale factor for the latch probability. Value should be greater "
228              "than 1. Lower values are ignored"));
229 
230 static cl::opt<bool> PredicateWidenableBranchGuards(
231     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
232     cl::desc("Whether or not we should predicate guards "
233              "expressed as widenable branches to deoptimize blocks"),
234     cl::init(true));
235 
236 namespace {
237 /// Represents an induction variable check:
238 ///   icmp Pred, <induction variable>, <loop invariant limit>
239 struct LoopICmp {
240   ICmpInst::Predicate Pred;
241   const SCEVAddRecExpr *IV;
242   const SCEV *Limit;
243   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
244            const SCEV *Limit)
245     : Pred(Pred), IV(IV), Limit(Limit) {}
246   LoopICmp() = default;
247   void dump() {
248     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
249            << ", Limit = " << *Limit << "\n";
250   }
251 };
252 
253 class LoopPredication {
254   AliasAnalysis *AA;
255   DominatorTree *DT;
256   ScalarEvolution *SE;
257   LoopInfo *LI;
258   MemorySSAUpdater *MSSAU;
259 
260   Loop *L;
261   const DataLayout *DL;
262   BasicBlock *Preheader;
263   LoopICmp LatchCheck;
264 
265   bool isSupportedStep(const SCEV* Step);
266   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
267   Optional<LoopICmp> parseLoopLatchICmp();
268 
269   /// Return an insertion point suitable for inserting a safe to speculate
270   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
271   /// trivial result would be the at the User itself, but we try to return a
272   /// loop invariant location if possible.
273   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
274   /// Same as above, *except* that this uses the SCEV definition of invariant
275   /// which is that an expression *can be made* invariant via SCEVExpander.
276   /// Thus, this version is only suitable for finding an insert point to be be
277   /// passed to SCEVExpander!
278   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
279 
280   /// Return true if the value is known to produce a single fixed value across
281   /// all iterations on which it executes.  Note that this does not imply
282   /// speculation safety.  That must be established separately.
283   bool isLoopInvariantValue(const SCEV* S);
284 
285   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
286                      ICmpInst::Predicate Pred, const SCEV *LHS,
287                      const SCEV *RHS);
288 
289   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
290                                         Instruction *Guard);
291   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
292                                                         LoopICmp RangeCheck,
293                                                         SCEVExpander &Expander,
294                                                         Instruction *Guard);
295   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
296                                                         LoopICmp RangeCheck,
297                                                         SCEVExpander &Expander,
298                                                         Instruction *Guard);
299   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
300                          SCEVExpander &Expander, Instruction *Guard);
301   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
302   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
303   // If the loop always exits through another block in the loop, we should not
304   // predicate based on the latch check. For example, the latch check can be a
305   // very coarse grained check and there can be more fine grained exit checks
306   // within the loop.
307   bool isLoopProfitableToPredicate();
308 
309   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
310 
311 public:
312   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
313                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
314       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
315   bool runOnLoop(Loop *L);
316 };
317 
318 class LoopPredicationLegacyPass : public LoopPass {
319 public:
320   static char ID;
321   LoopPredicationLegacyPass() : LoopPass(ID) {
322     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
323   }
324 
325   void getAnalysisUsage(AnalysisUsage &AU) const override {
326     AU.addRequired<BranchProbabilityInfoWrapperPass>();
327     getLoopAnalysisUsage(AU);
328     AU.addPreserved<MemorySSAWrapperPass>();
329   }
330 
331   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
332     if (skipLoop(L))
333       return false;
334     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
335     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
336     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
337     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
338     std::unique_ptr<MemorySSAUpdater> MSSAU;
339     if (MSSAWP)
340       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
341     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
342     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
343     return LP.runOnLoop(L);
344   }
345 };
346 
347 char LoopPredicationLegacyPass::ID = 0;
348 } // end namespace
349 
350 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
351                       "Loop predication", false, false)
352 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
353 INITIALIZE_PASS_DEPENDENCY(LoopPass)
354 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
355                     "Loop predication", false, false)
356 
357 Pass *llvm::createLoopPredicationPass() {
358   return new LoopPredicationLegacyPass();
359 }
360 
361 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
362                                            LoopStandardAnalysisResults &AR,
363                                            LPMUpdater &U) {
364   std::unique_ptr<MemorySSAUpdater> MSSAU;
365   if (AR.MSSA)
366     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
367   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
368                      MSSAU ? MSSAU.get() : nullptr);
369   if (!LP.runOnLoop(&L))
370     return PreservedAnalyses::all();
371 
372   auto PA = getLoopPassPreservedAnalyses();
373   if (AR.MSSA)
374     PA.preserve<MemorySSAAnalysis>();
375   return PA;
376 }
377 
378 Optional<LoopICmp>
379 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
380   auto Pred = ICI->getPredicate();
381   auto *LHS = ICI->getOperand(0);
382   auto *RHS = ICI->getOperand(1);
383 
384   const SCEV *LHSS = SE->getSCEV(LHS);
385   if (isa<SCEVCouldNotCompute>(LHSS))
386     return None;
387   const SCEV *RHSS = SE->getSCEV(RHS);
388   if (isa<SCEVCouldNotCompute>(RHSS))
389     return None;
390 
391   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
392   if (SE->isLoopInvariant(LHSS, L)) {
393     std::swap(LHS, RHS);
394     std::swap(LHSS, RHSS);
395     Pred = ICmpInst::getSwappedPredicate(Pred);
396   }
397 
398   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
399   if (!AR || AR->getLoop() != L)
400     return None;
401 
402   return LoopICmp(Pred, AR, RHSS);
403 }
404 
405 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
406                                     Instruction *Guard,
407                                     ICmpInst::Predicate Pred, const SCEV *LHS,
408                                     const SCEV *RHS) {
409   Type *Ty = LHS->getType();
410   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
411 
412   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
413     IRBuilder<> Builder(Guard);
414     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
415       return Builder.getTrue();
416     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
417                                      LHS, RHS))
418       return Builder.getFalse();
419   }
420 
421   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
422   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
423   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
424   return Builder.CreateICmp(Pred, LHSV, RHSV);
425 }
426 
427 
428 // Returns true if its safe to truncate the IV to RangeCheckType.
429 // When the IV type is wider than the range operand type, we can still do loop
430 // predication, by generating SCEVs for the range and latch that are of the
431 // same type. We achieve this by generating a SCEV truncate expression for the
432 // latch IV. This is done iff truncation of the IV is a safe operation,
433 // without loss of information.
434 // Another way to achieve this is by generating a wider type SCEV for the
435 // range check operand, however, this needs a more involved check that
436 // operands do not overflow. This can lead to loss of information when the
437 // range operand is of the form: add i32 %offset, %iv. We need to prove that
438 // sext(x + y) is same as sext(x) + sext(y).
439 // This function returns true if we can safely represent the IV type in
440 // the RangeCheckType without loss of information.
441 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
442                                        ScalarEvolution &SE,
443                                        const LoopICmp LatchCheck,
444                                        Type *RangeCheckType) {
445   if (!EnableIVTruncation)
446     return false;
447   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
448              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
449          "Expected latch check IV type to be larger than range check operand "
450          "type!");
451   // The start and end values of the IV should be known. This is to guarantee
452   // that truncating the wide type will not lose information.
453   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
454   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
455   if (!Limit || !Start)
456     return false;
457   // This check makes sure that the IV does not change sign during loop
458   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
459   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
460   // IV wraps around, and the truncation of the IV would lose the range of
461   // iterations between 2^32 and 2^64.
462   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
463     return false;
464   // The active bits should be less than the bits in the RangeCheckType. This
465   // guarantees that truncating the latch check to RangeCheckType is a safe
466   // operation.
467   auto RangeCheckTypeBitSize =
468       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
469   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
470          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
471 }
472 
473 
474 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
475 // the requested type if safe to do so.  May involve the use of a new IV.
476 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
477                                                  ScalarEvolution &SE,
478                                                  const LoopICmp LatchCheck,
479                                                  Type *RangeCheckType) {
480 
481   auto *LatchType = LatchCheck.IV->getType();
482   if (RangeCheckType == LatchType)
483     return LatchCheck;
484   // For now, bail out if latch type is narrower than range type.
485   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
486       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
487     return None;
488   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
489     return None;
490   // We can now safely identify the truncated version of the IV and limit for
491   // RangeCheckType.
492   LoopICmp NewLatchCheck;
493   NewLatchCheck.Pred = LatchCheck.Pred;
494   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
495       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
496   if (!NewLatchCheck.IV)
497     return None;
498   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
499   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
500                     << "can be represented as range check type:"
501                     << *RangeCheckType << "\n");
502   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
503   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
504   return NewLatchCheck;
505 }
506 
507 bool LoopPredication::isSupportedStep(const SCEV* Step) {
508   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
509 }
510 
511 Instruction *LoopPredication::findInsertPt(Instruction *Use,
512                                            ArrayRef<Value*> Ops) {
513   for (Value *Op : Ops)
514     if (!L->isLoopInvariant(Op))
515       return Use;
516   return Preheader->getTerminator();
517 }
518 
519 Instruction *LoopPredication::findInsertPt(Instruction *Use,
520                                            ArrayRef<const SCEV*> Ops) {
521   // Subtlety: SCEV considers things to be invariant if the value produced is
522   // the same across iterations.  This is not the same as being able to
523   // evaluate outside the loop, which is what we actually need here.
524   for (const SCEV *Op : Ops)
525     if (!SE->isLoopInvariant(Op, L) ||
526         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
527       return Use;
528   return Preheader->getTerminator();
529 }
530 
531 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
532   // Handling expressions which produce invariant results, but *haven't* yet
533   // been removed from the loop serves two important purposes.
534   // 1) Most importantly, it resolves a pass ordering cycle which would
535   // otherwise need us to iteration licm, loop-predication, and either
536   // loop-unswitch or loop-peeling to make progress on examples with lots of
537   // predicable range checks in a row.  (Since, in the general case,  we can't
538   // hoist the length checks until the dominating checks have been discharged
539   // as we can't prove doing so is safe.)
540   // 2) As a nice side effect, this exposes the value of peeling or unswitching
541   // much more obviously in the IR.  Otherwise, the cost modeling for other
542   // transforms would end up needing to duplicate all of this logic to model a
543   // check which becomes predictable based on a modeled peel or unswitch.
544   //
545   // The cost of doing so in the worst case is an extra fill from the stack  in
546   // the loop to materialize the loop invariant test value instead of checking
547   // against the original IV which is presumable in a register inside the loop.
548   // Such cases are presumably rare, and hint at missing oppurtunities for
549   // other passes.
550 
551   if (SE->isLoopInvariant(S, L))
552     // Note: This the SCEV variant, so the original Value* may be within the
553     // loop even though SCEV has proven it is loop invariant.
554     return true;
555 
556   // Handle a particular important case which SCEV doesn't yet know about which
557   // shows up in range checks on arrays with immutable lengths.
558   // TODO: This should be sunk inside SCEV.
559   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
560     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
561       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
562         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
563             LI->hasMetadata(LLVMContext::MD_invariant_load))
564           return true;
565   return false;
566 }
567 
568 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
569     LoopICmp LatchCheck, LoopICmp RangeCheck,
570     SCEVExpander &Expander, Instruction *Guard) {
571   auto *Ty = RangeCheck.IV->getType();
572   // Generate the widened condition for the forward loop:
573   //   guardStart u< guardLimit &&
574   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
575   // where <pred> depends on the latch condition predicate. See the file
576   // header comment for the reasoning.
577   // guardLimit - guardStart + latchStart - 1
578   const SCEV *GuardStart = RangeCheck.IV->getStart();
579   const SCEV *GuardLimit = RangeCheck.Limit;
580   const SCEV *LatchStart = LatchCheck.IV->getStart();
581   const SCEV *LatchLimit = LatchCheck.Limit;
582   // Subtlety: We need all the values to be *invariant* across all iterations,
583   // but we only need to check expansion safety for those which *aren't*
584   // already guaranteed to dominate the guard.
585   if (!isLoopInvariantValue(GuardStart) ||
586       !isLoopInvariantValue(GuardLimit) ||
587       !isLoopInvariantValue(LatchStart) ||
588       !isLoopInvariantValue(LatchLimit)) {
589     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
590     return None;
591   }
592   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
593       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
594     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
595     return None;
596   }
597 
598   // guardLimit - guardStart + latchStart - 1
599   const SCEV *RHS =
600       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
601                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
602   auto LimitCheckPred =
603       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
604 
605   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
606   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
607   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
608 
609   auto *LimitCheck =
610       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
611   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
612                                           GuardStart, GuardLimit);
613   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
614   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
615 }
616 
617 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
618     LoopICmp LatchCheck, LoopICmp RangeCheck,
619     SCEVExpander &Expander, Instruction *Guard) {
620   auto *Ty = RangeCheck.IV->getType();
621   const SCEV *GuardStart = RangeCheck.IV->getStart();
622   const SCEV *GuardLimit = RangeCheck.Limit;
623   const SCEV *LatchStart = LatchCheck.IV->getStart();
624   const SCEV *LatchLimit = LatchCheck.Limit;
625   // Subtlety: We need all the values to be *invariant* across all iterations,
626   // but we only need to check expansion safety for those which *aren't*
627   // already guaranteed to dominate the guard.
628   if (!isLoopInvariantValue(GuardStart) ||
629       !isLoopInvariantValue(GuardLimit) ||
630       !isLoopInvariantValue(LatchStart) ||
631       !isLoopInvariantValue(LatchLimit)) {
632     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
633     return None;
634   }
635   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
636       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
637     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
638     return None;
639   }
640   // The decrement of the latch check IV should be the same as the
641   // rangeCheckIV.
642   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
643   if (RangeCheck.IV != PostDecLatchCheckIV) {
644     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
645                       << *PostDecLatchCheckIV
646                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
647     return None;
648   }
649 
650   // Generate the widened condition for CountDownLoop:
651   // guardStart u< guardLimit &&
652   // latchLimit <pred> 1.
653   // See the header comment for reasoning of the checks.
654   auto LimitCheckPred =
655       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
656   auto *FirstIterationCheck = expandCheck(Expander, Guard,
657                                           ICmpInst::ICMP_ULT,
658                                           GuardStart, GuardLimit);
659   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
660                                  SE->getOne(Ty));
661   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
662   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
663 }
664 
665 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
666                                LoopICmp& RC) {
667   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
668   // ULT/UGE form for ease of handling by our caller.
669   if (ICmpInst::isEquality(RC.Pred) &&
670       RC.IV->getStepRecurrence(*SE)->isOne() &&
671       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
672     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
673       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
674 }
675 
676 
677 /// If ICI can be widened to a loop invariant condition emits the loop
678 /// invariant condition in the loop preheader and return it, otherwise
679 /// returns None.
680 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
681                                                        SCEVExpander &Expander,
682                                                        Instruction *Guard) {
683   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
684   LLVM_DEBUG(ICI->dump());
685 
686   // parseLoopStructure guarantees that the latch condition is:
687   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
688   // We are looking for the range checks of the form:
689   //   i u< guardLimit
690   auto RangeCheck = parseLoopICmp(ICI);
691   if (!RangeCheck) {
692     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
693     return None;
694   }
695   LLVM_DEBUG(dbgs() << "Guard check:\n");
696   LLVM_DEBUG(RangeCheck->dump());
697   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
698     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
699                       << RangeCheck->Pred << ")!\n");
700     return None;
701   }
702   auto *RangeCheckIV = RangeCheck->IV;
703   if (!RangeCheckIV->isAffine()) {
704     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
705     return None;
706   }
707   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
708   // We cannot just compare with latch IV step because the latch and range IVs
709   // may have different types.
710   if (!isSupportedStep(Step)) {
711     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
712     return None;
713   }
714   auto *Ty = RangeCheckIV->getType();
715   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
716   if (!CurrLatchCheckOpt) {
717     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
718                          "corresponding to range type: "
719                       << *Ty << "\n");
720     return None;
721   }
722 
723   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
724   // At this point, the range and latch step should have the same type, but need
725   // not have the same value (we support both 1 and -1 steps).
726   assert(Step->getType() ==
727              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
728          "Range and latch steps should be of same type!");
729   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
730     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
731     return None;
732   }
733 
734   if (Step->isOne())
735     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
736                                                Expander, Guard);
737   else {
738     assert(Step->isAllOnesValue() && "Step should be -1!");
739     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
740                                                Expander, Guard);
741   }
742 }
743 
744 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
745                                         Value *Condition,
746                                         SCEVExpander &Expander,
747                                         Instruction *Guard) {
748   unsigned NumWidened = 0;
749   // The guard condition is expected to be in form of:
750   //   cond1 && cond2 && cond3 ...
751   // Iterate over subconditions looking for icmp conditions which can be
752   // widened across loop iterations. Widening these conditions remember the
753   // resulting list of subconditions in Checks vector.
754   SmallVector<Value *, 4> Worklist(1, Condition);
755   SmallPtrSet<Value *, 4> Visited;
756   Value *WideableCond = nullptr;
757   do {
758     Value *Condition = Worklist.pop_back_val();
759     if (!Visited.insert(Condition).second)
760       continue;
761 
762     Value *LHS, *RHS;
763     using namespace llvm::PatternMatch;
764     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
765       Worklist.push_back(LHS);
766       Worklist.push_back(RHS);
767       continue;
768     }
769 
770     if (match(Condition,
771               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
772       // Pick any, we don't care which
773       WideableCond = Condition;
774       continue;
775     }
776 
777     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
778       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
779                                                    Guard)) {
780         Checks.push_back(*NewRangeCheck);
781         NumWidened++;
782         continue;
783       }
784     }
785 
786     // Save the condition as is if we can't widen it
787     Checks.push_back(Condition);
788   } while (!Worklist.empty());
789   // At the moment, our matching logic for wideable conditions implicitly
790   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
791   // Note that if there were multiple calls to wideable condition in the
792   // traversal, we only need to keep one, and which one is arbitrary.
793   if (WideableCond)
794     Checks.push_back(WideableCond);
795   return NumWidened;
796 }
797 
798 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
799                                            SCEVExpander &Expander) {
800   LLVM_DEBUG(dbgs() << "Processing guard:\n");
801   LLVM_DEBUG(Guard->dump());
802 
803   TotalConsidered++;
804   SmallVector<Value *, 4> Checks;
805   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
806                                       Guard);
807   if (NumWidened == 0)
808     return false;
809 
810   TotalWidened += NumWidened;
811 
812   // Emit the new guard condition
813   IRBuilder<> Builder(findInsertPt(Guard, Checks));
814   Value *AllChecks = Builder.CreateAnd(Checks);
815   auto *OldCond = Guard->getOperand(0);
816   Guard->setOperand(0, AllChecks);
817   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
818 
819   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
820   return true;
821 }
822 
823 bool LoopPredication::widenWidenableBranchGuardConditions(
824     BranchInst *BI, SCEVExpander &Expander) {
825   assert(isGuardAsWidenableBranch(BI) && "Must be!");
826   LLVM_DEBUG(dbgs() << "Processing guard:\n");
827   LLVM_DEBUG(BI->dump());
828 
829   TotalConsidered++;
830   SmallVector<Value *, 4> Checks;
831   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
832                                       Expander, BI);
833   if (NumWidened == 0)
834     return false;
835 
836   TotalWidened += NumWidened;
837 
838   // Emit the new guard condition
839   IRBuilder<> Builder(findInsertPt(BI, Checks));
840   Value *AllChecks = Builder.CreateAnd(Checks);
841   auto *OldCond = BI->getCondition();
842   BI->setCondition(AllChecks);
843   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
844   assert(isGuardAsWidenableBranch(BI) &&
845          "Stopped being a guard after transform?");
846 
847   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
848   return true;
849 }
850 
851 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
852   using namespace PatternMatch;
853 
854   BasicBlock *LoopLatch = L->getLoopLatch();
855   if (!LoopLatch) {
856     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
857     return None;
858   }
859 
860   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
861   if (!BI || !BI->isConditional()) {
862     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
863     return None;
864   }
865   BasicBlock *TrueDest = BI->getSuccessor(0);
866   assert(
867       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
868       "One of the latch's destinations must be the header");
869 
870   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
871   if (!ICI) {
872     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
873     return None;
874   }
875   auto Result = parseLoopICmp(ICI);
876   if (!Result) {
877     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
878     return None;
879   }
880 
881   if (TrueDest != L->getHeader())
882     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
883 
884   // Check affine first, so if it's not we don't try to compute the step
885   // recurrence.
886   if (!Result->IV->isAffine()) {
887     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
888     return None;
889   }
890 
891   auto *Step = Result->IV->getStepRecurrence(*SE);
892   if (!isSupportedStep(Step)) {
893     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
894     return None;
895   }
896 
897   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
898     if (Step->isOne()) {
899       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
900              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
901     } else {
902       assert(Step->isAllOnesValue() && "Step should be -1!");
903       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
904              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
905     }
906   };
907 
908   normalizePredicate(SE, L, *Result);
909   if (IsUnsupportedPredicate(Step, Result->Pred)) {
910     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
911                       << ")!\n");
912     return None;
913   }
914 
915   return Result;
916 }
917 
918 
919 bool LoopPredication::isLoopProfitableToPredicate() {
920   if (SkipProfitabilityChecks)
921     return true;
922 
923   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
924   L->getExitEdges(ExitEdges);
925   // If there is only one exiting edge in the loop, it is always profitable to
926   // predicate the loop.
927   if (ExitEdges.size() == 1)
928     return true;
929 
930   // Calculate the exiting probabilities of all exiting edges from the loop,
931   // starting with the LatchExitProbability.
932   // Heuristic for profitability: If any of the exiting blocks' probability of
933   // exiting the loop is larger than exiting through the latch block, it's not
934   // profitable to predicate the loop.
935   auto *LatchBlock = L->getLoopLatch();
936   assert(LatchBlock && "Should have a single latch at this point!");
937   auto *LatchTerm = LatchBlock->getTerminator();
938   assert(LatchTerm->getNumSuccessors() == 2 &&
939          "expected to be an exiting block with 2 succs!");
940   unsigned LatchBrExitIdx =
941       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
942   // We compute branch probabilities without BPI. We do not rely on BPI since
943   // Loop predication is usually run in an LPM and BPI is only preserved
944   // lossily within loop pass managers, while BPI has an inherent notion of
945   // being complete for an entire function.
946 
947   // If the latch exits into a deoptimize or an unreachable block, do not
948   // predicate on that latch check.
949   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
950   if (isa<UnreachableInst>(LatchTerm) ||
951       LatchExitBlock->getTerminatingDeoptimizeCall())
952     return false;
953 
954   auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) {
955     if (!ProfileData || !ProfileData->getOperand(0))
956       return false;
957     if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0)))
958       if (!MDS->getString().equals("branch_weights"))
959         return false;
960     if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors())
961       return false;
962     return true;
963   };
964   MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof);
965   // Latch terminator has no valid profile data, so nothing to check
966   // profitability on.
967   if (!IsValidProfileData(LatchProfileData, LatchTerm))
968     return true;
969 
970   auto ComputeBranchProbability =
971       [&](const BasicBlock *ExitingBlock,
972           const BasicBlock *ExitBlock) -> BranchProbability {
973     auto *Term = ExitingBlock->getTerminator();
974     MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof);
975     unsigned NumSucc = Term->getNumSuccessors();
976     if (IsValidProfileData(ProfileData, Term)) {
977       uint64_t Numerator = 0, Denominator = 0, ProfVal = 0;
978       for (unsigned i = 0; i < NumSucc; i++) {
979         ConstantInt *CI =
980             mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1));
981         ProfVal = CI->getValue().getZExtValue();
982         if (Term->getSuccessor(i) == ExitBlock)
983           Numerator += ProfVal;
984         Denominator += ProfVal;
985       }
986       return BranchProbability::getBranchProbability(Numerator, Denominator);
987     } else {
988       assert(LatchBlock != ExitingBlock &&
989              "Latch term should always have profile data!");
990       // No profile data, so we choose the weight as 1/num_of_succ(Src)
991       return BranchProbability::getBranchProbability(1, NumSucc);
992     }
993   };
994 
995   BranchProbability LatchExitProbability =
996       ComputeBranchProbability(LatchBlock, LatchExitBlock);
997 
998   // Protect against degenerate inputs provided by the user. Providing a value
999   // less than one, can invert the definition of profitable loop predication.
1000   float ScaleFactor = LatchExitProbabilityScale;
1001   if (ScaleFactor < 1) {
1002     LLVM_DEBUG(
1003         dbgs()
1004         << "Ignored user setting for loop-predication-latch-probability-scale: "
1005         << LatchExitProbabilityScale << "\n");
1006     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1007     ScaleFactor = 1.0;
1008   }
1009   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1010 
1011   for (const auto &ExitEdge : ExitEdges) {
1012     BranchProbability ExitingBlockProbability =
1013         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1014     // Some exiting edge has higher probability than the latch exiting edge.
1015     // No longer profitable to predicate.
1016     if (ExitingBlockProbability > LatchProbabilityThreshold)
1017       return false;
1018   }
1019 
1020   // We have concluded that the most probable way to exit from the
1021   // loop is through the latch (or there's no profile information and all
1022   // exits are equally likely).
1023   return true;
1024 }
1025 
1026 /// If we can (cheaply) find a widenable branch which controls entry into the
1027 /// loop, return it.
1028 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1029   // Walk back through any unconditional executed blocks and see if we can find
1030   // a widenable condition which seems to control execution of this loop.  Note
1031   // that we predict that maythrow calls are likely untaken and thus that it's
1032   // profitable to widen a branch before a maythrow call with a condition
1033   // afterwards even though that may cause the slow path to run in a case where
1034   // it wouldn't have otherwise.
1035   BasicBlock *BB = L->getLoopPreheader();
1036   if (!BB)
1037     return nullptr;
1038   do {
1039     if (BasicBlock *Pred = BB->getSinglePredecessor())
1040       if (BB == Pred->getSingleSuccessor()) {
1041         BB = Pred;
1042         continue;
1043       }
1044     break;
1045   } while (true);
1046 
1047   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1048     auto *Term = Pred->getTerminator();
1049 
1050     Value *Cond, *WC;
1051     BasicBlock *IfTrueBB, *IfFalseBB;
1052     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1053         IfTrueBB == BB)
1054       return cast<BranchInst>(Term);
1055   }
1056   return nullptr;
1057 }
1058 
1059 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1060 /// on the actual exit count.  If there are not at least two analyzeable exits,
1061 /// returns SCEVCouldNotCompute.
1062 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1063                                                        DominatorTree &DT,
1064                                                        Loop *L) {
1065   SmallVector<BasicBlock *, 16> ExitingBlocks;
1066   L->getExitingBlocks(ExitingBlocks);
1067 
1068   SmallVector<const SCEV *, 4> ExitCounts;
1069   for (BasicBlock *ExitingBB : ExitingBlocks) {
1070     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1071     if (isa<SCEVCouldNotCompute>(ExitCount))
1072       continue;
1073     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1074            "We should only have known counts for exiting blocks that "
1075            "dominate latch!");
1076     ExitCounts.push_back(ExitCount);
1077   }
1078   if (ExitCounts.size() < 2)
1079     return SE.getCouldNotCompute();
1080   return SE.getUMinFromMismatchedTypes(ExitCounts);
1081 }
1082 
1083 /// This implements an analogous, but entirely distinct transform from the main
1084 /// loop predication transform.  This one is phrased in terms of using a
1085 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1086 /// following loop.  This is close in spirit to the IndVarSimplify transform
1087 /// of the same name, but is materially different widening loosens legality
1088 /// sharply.
1089 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1090   // The transformation performed here aims to widen a widenable condition
1091   // above the loop such that all analyzeable exit leading to deopt are dead.
1092   // It assumes that the latch is the dominant exit for profitability and that
1093   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1094   // semantics of widenable expressions for legality. (i.e. being able to fall
1095   // down the widenable path spuriously allows us to ignore exit order,
1096   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1097   // which restrict the applicability of the non-WC based version of this
1098   // transform in IndVarSimplify.)
1099   //
1100   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1101   // imply flags on the expression being hoisted and inserting new uses (flags
1102   // are only correct for current uses).  The result is that we may be
1103   // inserting a branch on the value which can be either poison or undef.  In
1104   // this case, the branch can legally go either way; we just need to avoid
1105   // introducing UB.  This is achieved through the use of the freeze
1106   // instruction.
1107 
1108   SmallVector<BasicBlock *, 16> ExitingBlocks;
1109   L->getExitingBlocks(ExitingBlocks);
1110 
1111   if (ExitingBlocks.empty())
1112     return false; // Nothing to do.
1113 
1114   auto *Latch = L->getLoopLatch();
1115   if (!Latch)
1116     return false;
1117 
1118   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1119   if (!WidenableBR)
1120     return false;
1121 
1122   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1123   if (isa<SCEVCouldNotCompute>(LatchEC))
1124     return false; // profitability - want hot exit in analyzeable set
1125 
1126   // At this point, we have found an analyzeable latch, and a widenable
1127   // condition above the loop.  If we have a widenable exit within the loop
1128   // (for which we can't compute exit counts), drop the ability to further
1129   // widen so that we gain ability to analyze it's exit count and perform this
1130   // transform.  TODO: It'd be nice to know for sure the exit became
1131   // analyzeable after dropping widenability.
1132   bool ChangedLoop = false;
1133 
1134   for (auto *ExitingBB : ExitingBlocks) {
1135     if (LI->getLoopFor(ExitingBB) != L)
1136       continue;
1137 
1138     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1139     if (!BI)
1140       continue;
1141 
1142     Use *Cond, *WC;
1143     BasicBlock *IfTrueBB, *IfFalseBB;
1144     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1145         L->contains(IfTrueBB)) {
1146       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1147       ChangedLoop = true;
1148     }
1149   }
1150   if (ChangedLoop)
1151     SE->forgetLoop(L);
1152 
1153   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1154   // important for profitability.  We may have a loop which hasn't been fully
1155   // canonicalized just yet.  If the exit we chose to widen is provably never
1156   // taken, we want the widened form to *also* be provably never taken.  We
1157   // can't guarantee this as a current unanalyzeable exit may later become
1158   // analyzeable, but we can at least avoid the obvious cases.
1159   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1160   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1161       !SE->isLoopInvariant(MinEC, L) ||
1162       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1163     return ChangedLoop;
1164 
1165   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1166   // that it can only have one transitive use at the moment, and thus moving
1167   // that use to just before the branch and inserting code before it and then
1168   // modifying the operand is legal.
1169   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1170   // Here we unconditionally modify the IR, so after this point we should return
1171   // only `true`!
1172   IP->moveBefore(WidenableBR);
1173   if (MSSAU)
1174     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1175        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1176                           MemorySSA::BeforeTerminator);
1177   Rewriter.setInsertPoint(IP);
1178   IRBuilder<> B(IP);
1179 
1180   bool InvalidateLoop = false;
1181   Value *MinECV = nullptr; // lazily generated if needed
1182   for (BasicBlock *ExitingBB : ExitingBlocks) {
1183     // If our exiting block exits multiple loops, we can only rewrite the
1184     // innermost one.  Otherwise, we're changing how many times the innermost
1185     // loop runs before it exits.
1186     if (LI->getLoopFor(ExitingBB) != L)
1187       continue;
1188 
1189     // Can't rewrite non-branch yet.
1190     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1191     if (!BI)
1192       continue;
1193 
1194     // If already constant, nothing to do.
1195     if (isa<Constant>(BI->getCondition()))
1196       continue;
1197 
1198     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1199     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1200         ExitCount->getType()->isPointerTy() ||
1201         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1202       continue;
1203 
1204     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1205     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1206     if (!ExitBB->getPostdominatingDeoptimizeCall())
1207       continue;
1208 
1209     /// Here we can be fairly sure that executing this exit will most likely
1210     /// lead to executing llvm.experimental.deoptimize.
1211     /// This is a profitability heuristic, not a legality constraint.
1212 
1213     // If we found a widenable exit condition, do two things:
1214     // 1) fold the widened exit test into the widenable condition
1215     // 2) fold the branch to untaken - avoids infinite looping
1216 
1217     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1218     if (!MinECV)
1219       MinECV = Rewriter.expandCodeFor(MinEC);
1220     Value *RHS = MinECV;
1221     if (ECV->getType() != RHS->getType()) {
1222       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1223       ECV = B.CreateZExt(ECV, WiderTy);
1224       RHS = B.CreateZExt(RHS, WiderTy);
1225     }
1226     assert(!Latch || DT->dominates(ExitingBB, Latch));
1227     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1228     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1229     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1230     // context.
1231     NewCond = B.CreateFreeze(NewCond);
1232 
1233     widenWidenableBranch(WidenableBR, NewCond);
1234 
1235     Value *OldCond = BI->getCondition();
1236     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1237     InvalidateLoop = true;
1238   }
1239 
1240   if (InvalidateLoop)
1241     // We just mutated a bunch of loop exits changing there exit counts
1242     // widely.  We need to force recomputation of the exit counts given these
1243     // changes.  Note that all of the inserted exits are never taken, and
1244     // should be removed next time the CFG is modified.
1245     SE->forgetLoop(L);
1246 
1247   // Always return `true` since we have moved the WidenableBR's condition.
1248   return true;
1249 }
1250 
1251 bool LoopPredication::runOnLoop(Loop *Loop) {
1252   L = Loop;
1253 
1254   LLVM_DEBUG(dbgs() << "Analyzing ");
1255   LLVM_DEBUG(L->dump());
1256 
1257   Module *M = L->getHeader()->getModule();
1258 
1259   // There is nothing to do if the module doesn't use guards
1260   auto *GuardDecl =
1261       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1262   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1263   auto *WCDecl = M->getFunction(
1264       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1265   bool HasWidenableConditions =
1266       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1267   if (!HasIntrinsicGuards && !HasWidenableConditions)
1268     return false;
1269 
1270   DL = &M->getDataLayout();
1271 
1272   Preheader = L->getLoopPreheader();
1273   if (!Preheader)
1274     return false;
1275 
1276   auto LatchCheckOpt = parseLoopLatchICmp();
1277   if (!LatchCheckOpt)
1278     return false;
1279   LatchCheck = *LatchCheckOpt;
1280 
1281   LLVM_DEBUG(dbgs() << "Latch check:\n");
1282   LLVM_DEBUG(LatchCheck.dump());
1283 
1284   if (!isLoopProfitableToPredicate()) {
1285     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1286     return false;
1287   }
1288   // Collect all the guards into a vector and process later, so as not
1289   // to invalidate the instruction iterator.
1290   SmallVector<IntrinsicInst *, 4> Guards;
1291   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1292   for (const auto BB : L->blocks()) {
1293     for (auto &I : *BB)
1294       if (isGuard(&I))
1295         Guards.push_back(cast<IntrinsicInst>(&I));
1296     if (PredicateWidenableBranchGuards &&
1297         isGuardAsWidenableBranch(BB->getTerminator()))
1298       GuardsAsWidenableBranches.push_back(
1299           cast<BranchInst>(BB->getTerminator()));
1300   }
1301 
1302   SCEVExpander Expander(*SE, *DL, "loop-predication");
1303   bool Changed = false;
1304   for (auto *Guard : Guards)
1305     Changed |= widenGuardConditions(Guard, Expander);
1306   for (auto *Guard : GuardsAsWidenableBranches)
1307     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1308   Changed |= predicateLoopExits(L, Expander);
1309 
1310   if (MSSAU && VerifyMemorySSA)
1311     MSSAU->getMemorySSA()->verifyMemorySSA();
1312   return Changed;
1313 }
1314