xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 6f2d01376d2da4e73e0dc5d339f6e5b1646a9c25)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/GlobalValue.h"
192 #include "llvm/IR/IntrinsicInst.h"
193 #include "llvm/IR/Module.h"
194 #include "llvm/IR/PatternMatch.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 
205 #define DEBUG_TYPE "loop-predication"
206 
207 STATISTIC(TotalConsidered, "Number of guards considered");
208 STATISTIC(TotalWidened, "Number of checks widened");
209 
210 using namespace llvm;
211 
212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
213                                         cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
216                                         cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
220                             cl::Hidden, cl::init(false));
221 
222 // This is the scale factor for the latch probability. We use this during
223 // profitability analysis to find other exiting blocks that have a much higher
224 // probability of exiting the loop instead of loop exiting via latch.
225 // This value should be greater than 1 for a sane profitability check.
226 static cl::opt<float> LatchExitProbabilityScale(
227     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228     cl::desc("scale factor for the latch probability. Value should be greater "
229              "than 1. Lower values are ignored"));
230 
231 static cl::opt<bool> PredicateWidenableBranchGuards(
232     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233     cl::desc("Whether or not we should predicate guards "
234              "expressed as widenable branches to deoptimize blocks"),
235     cl::init(true));
236 
237 namespace {
238 /// Represents an induction variable check:
239 ///   icmp Pred, <induction variable>, <loop invariant limit>
240 struct LoopICmp {
241   ICmpInst::Predicate Pred;
242   const SCEVAddRecExpr *IV;
243   const SCEV *Limit;
244   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
245            const SCEV *Limit)
246     : Pred(Pred), IV(IV), Limit(Limit) {}
247   LoopICmp() {}
248   void dump() {
249     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
250            << ", Limit = " << *Limit << "\n";
251   }
252 };
253 
254 class LoopPredication {
255   AliasAnalysis *AA;
256   DominatorTree *DT;
257   ScalarEvolution *SE;
258   LoopInfo *LI;
259   BranchProbabilityInfo *BPI;
260   MemorySSAUpdater *MSSAU;
261 
262   Loop *L;
263   const DataLayout *DL;
264   BasicBlock *Preheader;
265   LoopICmp LatchCheck;
266 
267   bool isSupportedStep(const SCEV* Step);
268   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
269   Optional<LoopICmp> parseLoopLatchICmp();
270 
271   /// Return an insertion point suitable for inserting a safe to speculate
272   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
273   /// trivial result would be the at the User itself, but we try to return a
274   /// loop invariant location if possible.
275   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
276   /// Same as above, *except* that this uses the SCEV definition of invariant
277   /// which is that an expression *can be made* invariant via SCEVExpander.
278   /// Thus, this version is only suitable for finding an insert point to be be
279   /// passed to SCEVExpander!
280   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
281 
282   /// Return true if the value is known to produce a single fixed value across
283   /// all iterations on which it executes.  Note that this does not imply
284   /// speculation safety.  That must be established separately.
285   bool isLoopInvariantValue(const SCEV* S);
286 
287   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
288                      ICmpInst::Predicate Pred, const SCEV *LHS,
289                      const SCEV *RHS);
290 
291   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
292                                         Instruction *Guard);
293   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
294                                                         LoopICmp RangeCheck,
295                                                         SCEVExpander &Expander,
296                                                         Instruction *Guard);
297   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
298                                                         LoopICmp RangeCheck,
299                                                         SCEVExpander &Expander,
300                                                         Instruction *Guard);
301   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
302                          SCEVExpander &Expander, Instruction *Guard);
303   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
304   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
305   // If the loop always exits through another block in the loop, we should not
306   // predicate based on the latch check. For example, the latch check can be a
307   // very coarse grained check and there can be more fine grained exit checks
308   // within the loop. We identify such unprofitable loops through BPI.
309   bool isLoopProfitableToPredicate();
310 
311   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
312 
313 public:
314   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
315                   LoopInfo *LI, BranchProbabilityInfo *BPI,
316                   MemorySSAUpdater *MSSAU)
317       : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI), MSSAU(MSSAU){};
318   bool runOnLoop(Loop *L);
319 };
320 
321 class LoopPredicationLegacyPass : public LoopPass {
322 public:
323   static char ID;
324   LoopPredicationLegacyPass() : LoopPass(ID) {
325     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
326   }
327 
328   void getAnalysisUsage(AnalysisUsage &AU) const override {
329     AU.addRequired<BranchProbabilityInfoWrapperPass>();
330     getLoopAnalysisUsage(AU);
331     AU.addPreserved<MemorySSAWrapperPass>();
332   }
333 
334   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
335     if (skipLoop(L))
336       return false;
337     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
338     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
339     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
340     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
341     std::unique_ptr<MemorySSAUpdater> MSSAU;
342     if (MSSAWP)
343       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
344     BranchProbabilityInfo &BPI =
345         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
346     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
347     LoopPredication LP(AA, DT, SE, LI, &BPI, MSSAU ? MSSAU.get() : nullptr);
348     return LP.runOnLoop(L);
349   }
350 };
351 
352 char LoopPredicationLegacyPass::ID = 0;
353 } // end namespace
354 
355 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
356                       "Loop predication", false, false)
357 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
358 INITIALIZE_PASS_DEPENDENCY(LoopPass)
359 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
360                     "Loop predication", false, false)
361 
362 Pass *llvm::createLoopPredicationPass() {
363   return new LoopPredicationLegacyPass();
364 }
365 
366 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
367                                            LoopStandardAnalysisResults &AR,
368                                            LPMUpdater &U) {
369   std::unique_ptr<MemorySSAUpdater> MSSAU;
370   if (AR.MSSA)
371     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
372   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, AR.BPI,
373                      MSSAU ? MSSAU.get() : nullptr);
374   if (!LP.runOnLoop(&L))
375     return PreservedAnalyses::all();
376 
377   auto PA = getLoopPassPreservedAnalyses();
378   if (AR.MSSA)
379     PA.preserve<MemorySSAAnalysis>();
380   return PA;
381 }
382 
383 Optional<LoopICmp>
384 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
385   auto Pred = ICI->getPredicate();
386   auto *LHS = ICI->getOperand(0);
387   auto *RHS = ICI->getOperand(1);
388 
389   const SCEV *LHSS = SE->getSCEV(LHS);
390   if (isa<SCEVCouldNotCompute>(LHSS))
391     return None;
392   const SCEV *RHSS = SE->getSCEV(RHS);
393   if (isa<SCEVCouldNotCompute>(RHSS))
394     return None;
395 
396   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
397   if (SE->isLoopInvariant(LHSS, L)) {
398     std::swap(LHS, RHS);
399     std::swap(LHSS, RHSS);
400     Pred = ICmpInst::getSwappedPredicate(Pred);
401   }
402 
403   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
404   if (!AR || AR->getLoop() != L)
405     return None;
406 
407   return LoopICmp(Pred, AR, RHSS);
408 }
409 
410 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
411                                     Instruction *Guard,
412                                     ICmpInst::Predicate Pred, const SCEV *LHS,
413                                     const SCEV *RHS) {
414   Type *Ty = LHS->getType();
415   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
416 
417   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
418     IRBuilder<> Builder(Guard);
419     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
420       return Builder.getTrue();
421     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
422                                      LHS, RHS))
423       return Builder.getFalse();
424   }
425 
426   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
427   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
428   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
429   return Builder.CreateICmp(Pred, LHSV, RHSV);
430 }
431 
432 
433 // Returns true if its safe to truncate the IV to RangeCheckType.
434 // When the IV type is wider than the range operand type, we can still do loop
435 // predication, by generating SCEVs for the range and latch that are of the
436 // same type. We achieve this by generating a SCEV truncate expression for the
437 // latch IV. This is done iff truncation of the IV is a safe operation,
438 // without loss of information.
439 // Another way to achieve this is by generating a wider type SCEV for the
440 // range check operand, however, this needs a more involved check that
441 // operands do not overflow. This can lead to loss of information when the
442 // range operand is of the form: add i32 %offset, %iv. We need to prove that
443 // sext(x + y) is same as sext(x) + sext(y).
444 // This function returns true if we can safely represent the IV type in
445 // the RangeCheckType without loss of information.
446 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
447                                        ScalarEvolution &SE,
448                                        const LoopICmp LatchCheck,
449                                        Type *RangeCheckType) {
450   if (!EnableIVTruncation)
451     return false;
452   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
453              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
454          "Expected latch check IV type to be larger than range check operand "
455          "type!");
456   // The start and end values of the IV should be known. This is to guarantee
457   // that truncating the wide type will not lose information.
458   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
459   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
460   if (!Limit || !Start)
461     return false;
462   // This check makes sure that the IV does not change sign during loop
463   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
464   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
465   // IV wraps around, and the truncation of the IV would lose the range of
466   // iterations between 2^32 and 2^64.
467   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
468     return false;
469   // The active bits should be less than the bits in the RangeCheckType. This
470   // guarantees that truncating the latch check to RangeCheckType is a safe
471   // operation.
472   auto RangeCheckTypeBitSize =
473       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
474   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
475          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
476 }
477 
478 
479 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
480 // the requested type if safe to do so.  May involve the use of a new IV.
481 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
482                                                  ScalarEvolution &SE,
483                                                  const LoopICmp LatchCheck,
484                                                  Type *RangeCheckType) {
485 
486   auto *LatchType = LatchCheck.IV->getType();
487   if (RangeCheckType == LatchType)
488     return LatchCheck;
489   // For now, bail out if latch type is narrower than range type.
490   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
491       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
492     return None;
493   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
494     return None;
495   // We can now safely identify the truncated version of the IV and limit for
496   // RangeCheckType.
497   LoopICmp NewLatchCheck;
498   NewLatchCheck.Pred = LatchCheck.Pred;
499   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
500       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
501   if (!NewLatchCheck.IV)
502     return None;
503   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
504   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
505                     << "can be represented as range check type:"
506                     << *RangeCheckType << "\n");
507   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
508   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
509   return NewLatchCheck;
510 }
511 
512 bool LoopPredication::isSupportedStep(const SCEV* Step) {
513   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
514 }
515 
516 Instruction *LoopPredication::findInsertPt(Instruction *Use,
517                                            ArrayRef<Value*> Ops) {
518   for (Value *Op : Ops)
519     if (!L->isLoopInvariant(Op))
520       return Use;
521   return Preheader->getTerminator();
522 }
523 
524 Instruction *LoopPredication::findInsertPt(Instruction *Use,
525                                            ArrayRef<const SCEV*> Ops) {
526   // Subtlety: SCEV considers things to be invariant if the value produced is
527   // the same across iterations.  This is not the same as being able to
528   // evaluate outside the loop, which is what we actually need here.
529   for (const SCEV *Op : Ops)
530     if (!SE->isLoopInvariant(Op, L) ||
531         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
532       return Use;
533   return Preheader->getTerminator();
534 }
535 
536 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
537   // Handling expressions which produce invariant results, but *haven't* yet
538   // been removed from the loop serves two important purposes.
539   // 1) Most importantly, it resolves a pass ordering cycle which would
540   // otherwise need us to iteration licm, loop-predication, and either
541   // loop-unswitch or loop-peeling to make progress on examples with lots of
542   // predicable range checks in a row.  (Since, in the general case,  we can't
543   // hoist the length checks until the dominating checks have been discharged
544   // as we can't prove doing so is safe.)
545   // 2) As a nice side effect, this exposes the value of peeling or unswitching
546   // much more obviously in the IR.  Otherwise, the cost modeling for other
547   // transforms would end up needing to duplicate all of this logic to model a
548   // check which becomes predictable based on a modeled peel or unswitch.
549   //
550   // The cost of doing so in the worst case is an extra fill from the stack  in
551   // the loop to materialize the loop invariant test value instead of checking
552   // against the original IV which is presumable in a register inside the loop.
553   // Such cases are presumably rare, and hint at missing oppurtunities for
554   // other passes.
555 
556   if (SE->isLoopInvariant(S, L))
557     // Note: This the SCEV variant, so the original Value* may be within the
558     // loop even though SCEV has proven it is loop invariant.
559     return true;
560 
561   // Handle a particular important case which SCEV doesn't yet know about which
562   // shows up in range checks on arrays with immutable lengths.
563   // TODO: This should be sunk inside SCEV.
564   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
565     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
566       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
567         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
568             LI->hasMetadata(LLVMContext::MD_invariant_load))
569           return true;
570   return false;
571 }
572 
573 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
574     LoopICmp LatchCheck, LoopICmp RangeCheck,
575     SCEVExpander &Expander, Instruction *Guard) {
576   auto *Ty = RangeCheck.IV->getType();
577   // Generate the widened condition for the forward loop:
578   //   guardStart u< guardLimit &&
579   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
580   // where <pred> depends on the latch condition predicate. See the file
581   // header comment for the reasoning.
582   // guardLimit - guardStart + latchStart - 1
583   const SCEV *GuardStart = RangeCheck.IV->getStart();
584   const SCEV *GuardLimit = RangeCheck.Limit;
585   const SCEV *LatchStart = LatchCheck.IV->getStart();
586   const SCEV *LatchLimit = LatchCheck.Limit;
587   // Subtlety: We need all the values to be *invariant* across all iterations,
588   // but we only need to check expansion safety for those which *aren't*
589   // already guaranteed to dominate the guard.
590   if (!isLoopInvariantValue(GuardStart) ||
591       !isLoopInvariantValue(GuardLimit) ||
592       !isLoopInvariantValue(LatchStart) ||
593       !isLoopInvariantValue(LatchLimit)) {
594     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
595     return None;
596   }
597   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
598       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
599     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
600     return None;
601   }
602 
603   // guardLimit - guardStart + latchStart - 1
604   const SCEV *RHS =
605       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
606                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
607   auto LimitCheckPred =
608       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
609 
610   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
611   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
612   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
613 
614   auto *LimitCheck =
615       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
616   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
617                                           GuardStart, GuardLimit);
618   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
619   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
620 }
621 
622 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
623     LoopICmp LatchCheck, LoopICmp RangeCheck,
624     SCEVExpander &Expander, Instruction *Guard) {
625   auto *Ty = RangeCheck.IV->getType();
626   const SCEV *GuardStart = RangeCheck.IV->getStart();
627   const SCEV *GuardLimit = RangeCheck.Limit;
628   const SCEV *LatchStart = LatchCheck.IV->getStart();
629   const SCEV *LatchLimit = LatchCheck.Limit;
630   // Subtlety: We need all the values to be *invariant* across all iterations,
631   // but we only need to check expansion safety for those which *aren't*
632   // already guaranteed to dominate the guard.
633   if (!isLoopInvariantValue(GuardStart) ||
634       !isLoopInvariantValue(GuardLimit) ||
635       !isLoopInvariantValue(LatchStart) ||
636       !isLoopInvariantValue(LatchLimit)) {
637     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
638     return None;
639   }
640   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
641       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
642     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
643     return None;
644   }
645   // The decrement of the latch check IV should be the same as the
646   // rangeCheckIV.
647   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
648   if (RangeCheck.IV != PostDecLatchCheckIV) {
649     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
650                       << *PostDecLatchCheckIV
651                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
652     return None;
653   }
654 
655   // Generate the widened condition for CountDownLoop:
656   // guardStart u< guardLimit &&
657   // latchLimit <pred> 1.
658   // See the header comment for reasoning of the checks.
659   auto LimitCheckPred =
660       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
661   auto *FirstIterationCheck = expandCheck(Expander, Guard,
662                                           ICmpInst::ICMP_ULT,
663                                           GuardStart, GuardLimit);
664   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
665                                  SE->getOne(Ty));
666   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
667   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
668 }
669 
670 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
671                                LoopICmp& RC) {
672   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
673   // ULT/UGE form for ease of handling by our caller.
674   if (ICmpInst::isEquality(RC.Pred) &&
675       RC.IV->getStepRecurrence(*SE)->isOne() &&
676       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
677     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
678       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
679 }
680 
681 
682 /// If ICI can be widened to a loop invariant condition emits the loop
683 /// invariant condition in the loop preheader and return it, otherwise
684 /// returns None.
685 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
686                                                        SCEVExpander &Expander,
687                                                        Instruction *Guard) {
688   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
689   LLVM_DEBUG(ICI->dump());
690 
691   // parseLoopStructure guarantees that the latch condition is:
692   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
693   // We are looking for the range checks of the form:
694   //   i u< guardLimit
695   auto RangeCheck = parseLoopICmp(ICI);
696   if (!RangeCheck) {
697     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
698     return None;
699   }
700   LLVM_DEBUG(dbgs() << "Guard check:\n");
701   LLVM_DEBUG(RangeCheck->dump());
702   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
703     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
704                       << RangeCheck->Pred << ")!\n");
705     return None;
706   }
707   auto *RangeCheckIV = RangeCheck->IV;
708   if (!RangeCheckIV->isAffine()) {
709     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
710     return None;
711   }
712   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
713   // We cannot just compare with latch IV step because the latch and range IVs
714   // may have different types.
715   if (!isSupportedStep(Step)) {
716     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
717     return None;
718   }
719   auto *Ty = RangeCheckIV->getType();
720   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
721   if (!CurrLatchCheckOpt) {
722     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
723                          "corresponding to range type: "
724                       << *Ty << "\n");
725     return None;
726   }
727 
728   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
729   // At this point, the range and latch step should have the same type, but need
730   // not have the same value (we support both 1 and -1 steps).
731   assert(Step->getType() ==
732              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
733          "Range and latch steps should be of same type!");
734   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
735     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
736     return None;
737   }
738 
739   if (Step->isOne())
740     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
741                                                Expander, Guard);
742   else {
743     assert(Step->isAllOnesValue() && "Step should be -1!");
744     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
745                                                Expander, Guard);
746   }
747 }
748 
749 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
750                                         Value *Condition,
751                                         SCEVExpander &Expander,
752                                         Instruction *Guard) {
753   unsigned NumWidened = 0;
754   // The guard condition is expected to be in form of:
755   //   cond1 && cond2 && cond3 ...
756   // Iterate over subconditions looking for icmp conditions which can be
757   // widened across loop iterations. Widening these conditions remember the
758   // resulting list of subconditions in Checks vector.
759   SmallVector<Value *, 4> Worklist(1, Condition);
760   SmallPtrSet<Value *, 4> Visited;
761   Value *WideableCond = nullptr;
762   do {
763     Value *Condition = Worklist.pop_back_val();
764     if (!Visited.insert(Condition).second)
765       continue;
766 
767     Value *LHS, *RHS;
768     using namespace llvm::PatternMatch;
769     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
770       Worklist.push_back(LHS);
771       Worklist.push_back(RHS);
772       continue;
773     }
774 
775     if (match(Condition,
776               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
777       // Pick any, we don't care which
778       WideableCond = Condition;
779       continue;
780     }
781 
782     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
783       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
784                                                    Guard)) {
785         Checks.push_back(NewRangeCheck.getValue());
786         NumWidened++;
787         continue;
788       }
789     }
790 
791     // Save the condition as is if we can't widen it
792     Checks.push_back(Condition);
793   } while (!Worklist.empty());
794   // At the moment, our matching logic for wideable conditions implicitly
795   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
796   // Note that if there were multiple calls to wideable condition in the
797   // traversal, we only need to keep one, and which one is arbitrary.
798   if (WideableCond)
799     Checks.push_back(WideableCond);
800   return NumWidened;
801 }
802 
803 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
804                                            SCEVExpander &Expander) {
805   LLVM_DEBUG(dbgs() << "Processing guard:\n");
806   LLVM_DEBUG(Guard->dump());
807 
808   TotalConsidered++;
809   SmallVector<Value *, 4> Checks;
810   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
811                                       Guard);
812   if (NumWidened == 0)
813     return false;
814 
815   TotalWidened += NumWidened;
816 
817   // Emit the new guard condition
818   IRBuilder<> Builder(findInsertPt(Guard, Checks));
819   Value *AllChecks = Builder.CreateAnd(Checks);
820   auto *OldCond = Guard->getOperand(0);
821   Guard->setOperand(0, AllChecks);
822   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
823 
824   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
825   return true;
826 }
827 
828 bool LoopPredication::widenWidenableBranchGuardConditions(
829     BranchInst *BI, SCEVExpander &Expander) {
830   assert(isGuardAsWidenableBranch(BI) && "Must be!");
831   LLVM_DEBUG(dbgs() << "Processing guard:\n");
832   LLVM_DEBUG(BI->dump());
833 
834   TotalConsidered++;
835   SmallVector<Value *, 4> Checks;
836   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
837                                       Expander, BI);
838   if (NumWidened == 0)
839     return false;
840 
841   TotalWidened += NumWidened;
842 
843   // Emit the new guard condition
844   IRBuilder<> Builder(findInsertPt(BI, Checks));
845   Value *AllChecks = Builder.CreateAnd(Checks);
846   auto *OldCond = BI->getCondition();
847   BI->setCondition(AllChecks);
848   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
849   assert(isGuardAsWidenableBranch(BI) &&
850          "Stopped being a guard after transform?");
851 
852   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
853   return true;
854 }
855 
856 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
857   using namespace PatternMatch;
858 
859   BasicBlock *LoopLatch = L->getLoopLatch();
860   if (!LoopLatch) {
861     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
862     return None;
863   }
864 
865   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
866   if (!BI || !BI->isConditional()) {
867     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
868     return None;
869   }
870   BasicBlock *TrueDest = BI->getSuccessor(0);
871   assert(
872       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
873       "One of the latch's destinations must be the header");
874 
875   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
876   if (!ICI) {
877     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
878     return None;
879   }
880   auto Result = parseLoopICmp(ICI);
881   if (!Result) {
882     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
883     return None;
884   }
885 
886   if (TrueDest != L->getHeader())
887     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
888 
889   // Check affine first, so if it's not we don't try to compute the step
890   // recurrence.
891   if (!Result->IV->isAffine()) {
892     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
893     return None;
894   }
895 
896   auto *Step = Result->IV->getStepRecurrence(*SE);
897   if (!isSupportedStep(Step)) {
898     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
899     return None;
900   }
901 
902   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
903     if (Step->isOne()) {
904       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
905              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
906     } else {
907       assert(Step->isAllOnesValue() && "Step should be -1!");
908       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
909              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
910     }
911   };
912 
913   normalizePredicate(SE, L, *Result);
914   if (IsUnsupportedPredicate(Step, Result->Pred)) {
915     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
916                       << ")!\n");
917     return None;
918   }
919 
920   return Result;
921 }
922 
923 
924 bool LoopPredication::isLoopProfitableToPredicate() {
925   if (SkipProfitabilityChecks || !BPI)
926     return true;
927 
928   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
929   L->getExitEdges(ExitEdges);
930   // If there is only one exiting edge in the loop, it is always profitable to
931   // predicate the loop.
932   if (ExitEdges.size() == 1)
933     return true;
934 
935   // Calculate the exiting probabilities of all exiting edges from the loop,
936   // starting with the LatchExitProbability.
937   // Heuristic for profitability: If any of the exiting blocks' probability of
938   // exiting the loop is larger than exiting through the latch block, it's not
939   // profitable to predicate the loop.
940   auto *LatchBlock = L->getLoopLatch();
941   assert(LatchBlock && "Should have a single latch at this point!");
942   auto *LatchTerm = LatchBlock->getTerminator();
943   assert(LatchTerm->getNumSuccessors() == 2 &&
944          "expected to be an exiting block with 2 succs!");
945   unsigned LatchBrExitIdx =
946       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
947   BranchProbability LatchExitProbability =
948       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
949 
950   // Protect against degenerate inputs provided by the user. Providing a value
951   // less than one, can invert the definition of profitable loop predication.
952   float ScaleFactor = LatchExitProbabilityScale;
953   if (ScaleFactor < 1) {
954     LLVM_DEBUG(
955         dbgs()
956         << "Ignored user setting for loop-predication-latch-probability-scale: "
957         << LatchExitProbabilityScale << "\n");
958     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
959     ScaleFactor = 1.0;
960   }
961   const auto LatchProbabilityThreshold =
962       LatchExitProbability * ScaleFactor;
963 
964   for (const auto &ExitEdge : ExitEdges) {
965     BranchProbability ExitingBlockProbability =
966         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
967     // Some exiting edge has higher probability than the latch exiting edge.
968     // No longer profitable to predicate.
969     if (ExitingBlockProbability > LatchProbabilityThreshold)
970       return false;
971   }
972   // Using BPI, we have concluded that the most probable way to exit from the
973   // loop is through the latch (or there's no profile information and all
974   // exits are equally likely).
975   return true;
976 }
977 
978 /// If we can (cheaply) find a widenable branch which controls entry into the
979 /// loop, return it.
980 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
981   // Walk back through any unconditional executed blocks and see if we can find
982   // a widenable condition which seems to control execution of this loop.  Note
983   // that we predict that maythrow calls are likely untaken and thus that it's
984   // profitable to widen a branch before a maythrow call with a condition
985   // afterwards even though that may cause the slow path to run in a case where
986   // it wouldn't have otherwise.
987   BasicBlock *BB = L->getLoopPreheader();
988   if (!BB)
989     return nullptr;
990   do {
991     if (BasicBlock *Pred = BB->getSinglePredecessor())
992       if (BB == Pred->getSingleSuccessor()) {
993         BB = Pred;
994         continue;
995       }
996     break;
997   } while (true);
998 
999   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1000     auto *Term = Pred->getTerminator();
1001 
1002     Value *Cond, *WC;
1003     BasicBlock *IfTrueBB, *IfFalseBB;
1004     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1005         IfTrueBB == BB)
1006       return cast<BranchInst>(Term);
1007   }
1008   return nullptr;
1009 }
1010 
1011 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1012 /// on the actual exit count.  If there are not at least two analyzeable exits,
1013 /// returns SCEVCouldNotCompute.
1014 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1015                                                        DominatorTree &DT,
1016                                                        Loop *L) {
1017   SmallVector<BasicBlock *, 16> ExitingBlocks;
1018   L->getExitingBlocks(ExitingBlocks);
1019 
1020   SmallVector<const SCEV *, 4> ExitCounts;
1021   for (BasicBlock *ExitingBB : ExitingBlocks) {
1022     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1023     if (isa<SCEVCouldNotCompute>(ExitCount))
1024       continue;
1025     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1026            "We should only have known counts for exiting blocks that "
1027            "dominate latch!");
1028     ExitCounts.push_back(ExitCount);
1029   }
1030   if (ExitCounts.size() < 2)
1031     return SE.getCouldNotCompute();
1032   return SE.getUMinFromMismatchedTypes(ExitCounts);
1033 }
1034 
1035 /// This implements an analogous, but entirely distinct transform from the main
1036 /// loop predication transform.  This one is phrased in terms of using a
1037 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1038 /// following loop.  This is close in spirit to the IndVarSimplify transform
1039 /// of the same name, but is materially different widening loosens legality
1040 /// sharply.
1041 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1042   // The transformation performed here aims to widen a widenable condition
1043   // above the loop such that all analyzeable exit leading to deopt are dead.
1044   // It assumes that the latch is the dominant exit for profitability and that
1045   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1046   // semantics of widenable expressions for legality. (i.e. being able to fall
1047   // down the widenable path spuriously allows us to ignore exit order,
1048   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1049   // which restrict the applicability of the non-WC based version of this
1050   // transform in IndVarSimplify.)
1051   //
1052   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1053   // imply flags on the expression being hoisted and inserting new uses (flags
1054   // are only correct for current uses).  The result is that we may be
1055   // inserting a branch on the value which can be either poison or undef.  In
1056   // this case, the branch can legally go either way; we just need to avoid
1057   // introducing UB.  This is achieved through the use of the freeze
1058   // instruction.
1059 
1060   SmallVector<BasicBlock *, 16> ExitingBlocks;
1061   L->getExitingBlocks(ExitingBlocks);
1062 
1063   if (ExitingBlocks.empty())
1064     return false; // Nothing to do.
1065 
1066   auto *Latch = L->getLoopLatch();
1067   if (!Latch)
1068     return false;
1069 
1070   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1071   if (!WidenableBR)
1072     return false;
1073 
1074   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1075   if (isa<SCEVCouldNotCompute>(LatchEC))
1076     return false; // profitability - want hot exit in analyzeable set
1077 
1078   // At this point, we have found an analyzeable latch, and a widenable
1079   // condition above the loop.  If we have a widenable exit within the loop
1080   // (for which we can't compute exit counts), drop the ability to further
1081   // widen so that we gain ability to analyze it's exit count and perform this
1082   // transform.  TODO: It'd be nice to know for sure the exit became
1083   // analyzeable after dropping widenability.
1084   bool ChangedLoop = false;
1085 
1086   for (auto *ExitingBB : ExitingBlocks) {
1087     if (LI->getLoopFor(ExitingBB) != L)
1088       continue;
1089 
1090     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1091     if (!BI)
1092       continue;
1093 
1094     Use *Cond, *WC;
1095     BasicBlock *IfTrueBB, *IfFalseBB;
1096     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1097         L->contains(IfTrueBB)) {
1098       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1099       ChangedLoop = true;
1100     }
1101   }
1102   if (ChangedLoop)
1103     SE->forgetLoop(L);
1104 
1105   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1106   // important for profitability.  We may have a loop which hasn't been fully
1107   // canonicalized just yet.  If the exit we chose to widen is provably never
1108   // taken, we want the widened form to *also* be provably never taken.  We
1109   // can't guarantee this as a current unanalyzeable exit may later become
1110   // analyzeable, but we can at least avoid the obvious cases.
1111   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1112   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1113       !SE->isLoopInvariant(MinEC, L) ||
1114       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1115     return ChangedLoop;
1116 
1117   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1118   // that it can only have one transitive use at the moment, and thus moving
1119   // that use to just before the branch and inserting code before it and then
1120   // modifying the operand is legal.
1121   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1122   // Here we unconditionally modify the IR, so after this point we should return
1123   // only `true`!
1124   IP->moveBefore(WidenableBR);
1125   if (MSSAU)
1126     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1127        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1128                           MemorySSA::BeforeTerminator);
1129   Rewriter.setInsertPoint(IP);
1130   IRBuilder<> B(IP);
1131 
1132   bool InvalidateLoop = false;
1133   Value *MinECV = nullptr; // lazily generated if needed
1134   for (BasicBlock *ExitingBB : ExitingBlocks) {
1135     // If our exiting block exits multiple loops, we can only rewrite the
1136     // innermost one.  Otherwise, we're changing how many times the innermost
1137     // loop runs before it exits.
1138     if (LI->getLoopFor(ExitingBB) != L)
1139       continue;
1140 
1141     // Can't rewrite non-branch yet.
1142     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1143     if (!BI)
1144       continue;
1145 
1146     // If already constant, nothing to do.
1147     if (isa<Constant>(BI->getCondition()))
1148       continue;
1149 
1150     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1151     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1152         ExitCount->getType()->isPointerTy() ||
1153         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1154       continue;
1155 
1156     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1157     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1158     if (!ExitBB->getPostdominatingDeoptimizeCall())
1159       continue;
1160 
1161     /// Here we can be fairly sure that executing this exit will most likely
1162     /// lead to executing llvm.experimental.deoptimize.
1163     /// This is a profitability heuristic, not a legality constraint.
1164 
1165     // If we found a widenable exit condition, do two things:
1166     // 1) fold the widened exit test into the widenable condition
1167     // 2) fold the branch to untaken - avoids infinite looping
1168 
1169     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1170     if (!MinECV)
1171       MinECV = Rewriter.expandCodeFor(MinEC);
1172     Value *RHS = MinECV;
1173     if (ECV->getType() != RHS->getType()) {
1174       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1175       ECV = B.CreateZExt(ECV, WiderTy);
1176       RHS = B.CreateZExt(RHS, WiderTy);
1177     }
1178     assert(!Latch || DT->dominates(ExitingBB, Latch));
1179     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1180     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1181     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1182     // context.
1183     NewCond = B.CreateFreeze(NewCond);
1184 
1185     widenWidenableBranch(WidenableBR, NewCond);
1186 
1187     Value *OldCond = BI->getCondition();
1188     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1189     InvalidateLoop = true;
1190   }
1191 
1192   if (InvalidateLoop)
1193     // We just mutated a bunch of loop exits changing there exit counts
1194     // widely.  We need to force recomputation of the exit counts given these
1195     // changes.  Note that all of the inserted exits are never taken, and
1196     // should be removed next time the CFG is modified.
1197     SE->forgetLoop(L);
1198 
1199   // Always return `true` since we have moved the WidenableBR's condition.
1200   return true;
1201 }
1202 
1203 bool LoopPredication::runOnLoop(Loop *Loop) {
1204   L = Loop;
1205 
1206   LLVM_DEBUG(dbgs() << "Analyzing ");
1207   LLVM_DEBUG(L->dump());
1208 
1209   Module *M = L->getHeader()->getModule();
1210 
1211   // There is nothing to do if the module doesn't use guards
1212   auto *GuardDecl =
1213       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1214   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1215   auto *WCDecl = M->getFunction(
1216       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1217   bool HasWidenableConditions =
1218       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1219   if (!HasIntrinsicGuards && !HasWidenableConditions)
1220     return false;
1221 
1222   DL = &M->getDataLayout();
1223 
1224   Preheader = L->getLoopPreheader();
1225   if (!Preheader)
1226     return false;
1227 
1228   auto LatchCheckOpt = parseLoopLatchICmp();
1229   if (!LatchCheckOpt)
1230     return false;
1231   LatchCheck = *LatchCheckOpt;
1232 
1233   LLVM_DEBUG(dbgs() << "Latch check:\n");
1234   LLVM_DEBUG(LatchCheck.dump());
1235 
1236   if (!isLoopProfitableToPredicate()) {
1237     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1238     return false;
1239   }
1240   // Collect all the guards into a vector and process later, so as not
1241   // to invalidate the instruction iterator.
1242   SmallVector<IntrinsicInst *, 4> Guards;
1243   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1244   for (const auto BB : L->blocks()) {
1245     for (auto &I : *BB)
1246       if (isGuard(&I))
1247         Guards.push_back(cast<IntrinsicInst>(&I));
1248     if (PredicateWidenableBranchGuards &&
1249         isGuardAsWidenableBranch(BB->getTerminator()))
1250       GuardsAsWidenableBranches.push_back(
1251           cast<BranchInst>(BB->getTerminator()));
1252   }
1253 
1254   SCEVExpander Expander(*SE, *DL, "loop-predication");
1255   bool Changed = false;
1256   for (auto *Guard : Guards)
1257     Changed |= widenGuardConditions(Guard, Expander);
1258   for (auto *Guard : GuardsAsWidenableBranches)
1259     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1260   Changed |= predicateLoopExits(L, Expander);
1261 
1262   if (MSSAU && VerifyMemorySSA)
1263     MSSAU->getMemorySSA()->verifyMemorySSA();
1264   return Changed;
1265 }
1266