1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/MemorySSA.h" 187 #include "llvm/Analysis/MemorySSAUpdater.h" 188 #include "llvm/Analysis/ScalarEvolution.h" 189 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 190 #include "llvm/IR/Function.h" 191 #include "llvm/IR/GlobalValue.h" 192 #include "llvm/IR/IntrinsicInst.h" 193 #include "llvm/IR/Module.h" 194 #include "llvm/IR/PatternMatch.h" 195 #include "llvm/InitializePasses.h" 196 #include "llvm/Pass.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Support/Debug.h" 199 #include "llvm/Transforms/Scalar.h" 200 #include "llvm/Transforms/Utils/GuardUtils.h" 201 #include "llvm/Transforms/Utils/Local.h" 202 #include "llvm/Transforms/Utils/LoopUtils.h" 203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 204 205 #define DEBUG_TYPE "loop-predication" 206 207 STATISTIC(TotalConsidered, "Number of guards considered"); 208 STATISTIC(TotalWidened, "Number of checks widened"); 209 210 using namespace llvm; 211 212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 213 cl::Hidden, cl::init(true)); 214 215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 216 cl::Hidden, cl::init(true)); 217 218 static cl::opt<bool> 219 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 220 cl::Hidden, cl::init(false)); 221 222 // This is the scale factor for the latch probability. We use this during 223 // profitability analysis to find other exiting blocks that have a much higher 224 // probability of exiting the loop instead of loop exiting via latch. 225 // This value should be greater than 1 for a sane profitability check. 226 static cl::opt<float> LatchExitProbabilityScale( 227 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 228 cl::desc("scale factor for the latch probability. Value should be greater " 229 "than 1. Lower values are ignored")); 230 231 static cl::opt<bool> PredicateWidenableBranchGuards( 232 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 233 cl::desc("Whether or not we should predicate guards " 234 "expressed as widenable branches to deoptimize blocks"), 235 cl::init(true)); 236 237 namespace { 238 /// Represents an induction variable check: 239 /// icmp Pred, <induction variable>, <loop invariant limit> 240 struct LoopICmp { 241 ICmpInst::Predicate Pred; 242 const SCEVAddRecExpr *IV; 243 const SCEV *Limit; 244 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 245 const SCEV *Limit) 246 : Pred(Pred), IV(IV), Limit(Limit) {} 247 LoopICmp() {} 248 void dump() { 249 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 250 << ", Limit = " << *Limit << "\n"; 251 } 252 }; 253 254 class LoopPredication { 255 AliasAnalysis *AA; 256 DominatorTree *DT; 257 ScalarEvolution *SE; 258 LoopInfo *LI; 259 BranchProbabilityInfo *BPI; 260 MemorySSAUpdater *MSSAU; 261 262 Loop *L; 263 const DataLayout *DL; 264 BasicBlock *Preheader; 265 LoopICmp LatchCheck; 266 267 bool isSupportedStep(const SCEV* Step); 268 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 269 Optional<LoopICmp> parseLoopLatchICmp(); 270 271 /// Return an insertion point suitable for inserting a safe to speculate 272 /// instruction whose only user will be 'User' which has operands 'Ops'. A 273 /// trivial result would be the at the User itself, but we try to return a 274 /// loop invariant location if possible. 275 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 276 /// Same as above, *except* that this uses the SCEV definition of invariant 277 /// which is that an expression *can be made* invariant via SCEVExpander. 278 /// Thus, this version is only suitable for finding an insert point to be be 279 /// passed to SCEVExpander! 280 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 281 282 /// Return true if the value is known to produce a single fixed value across 283 /// all iterations on which it executes. Note that this does not imply 284 /// speculation safety. That must be established separately. 285 bool isLoopInvariantValue(const SCEV* S); 286 287 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 288 ICmpInst::Predicate Pred, const SCEV *LHS, 289 const SCEV *RHS); 290 291 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 292 Instruction *Guard); 293 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 294 LoopICmp RangeCheck, 295 SCEVExpander &Expander, 296 Instruction *Guard); 297 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 298 LoopICmp RangeCheck, 299 SCEVExpander &Expander, 300 Instruction *Guard); 301 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 302 SCEVExpander &Expander, Instruction *Guard); 303 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 304 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 305 // If the loop always exits through another block in the loop, we should not 306 // predicate based on the latch check. For example, the latch check can be a 307 // very coarse grained check and there can be more fine grained exit checks 308 // within the loop. We identify such unprofitable loops through BPI. 309 bool isLoopProfitableToPredicate(); 310 311 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 312 313 public: 314 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, 315 LoopInfo *LI, BranchProbabilityInfo *BPI, 316 MemorySSAUpdater *MSSAU) 317 : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI), MSSAU(MSSAU){}; 318 bool runOnLoop(Loop *L); 319 }; 320 321 class LoopPredicationLegacyPass : public LoopPass { 322 public: 323 static char ID; 324 LoopPredicationLegacyPass() : LoopPass(ID) { 325 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 326 } 327 328 void getAnalysisUsage(AnalysisUsage &AU) const override { 329 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 330 getLoopAnalysisUsage(AU); 331 AU.addPreserved<MemorySSAWrapperPass>(); 332 } 333 334 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 335 if (skipLoop(L)) 336 return false; 337 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 338 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 339 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 340 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 341 std::unique_ptr<MemorySSAUpdater> MSSAU; 342 if (MSSAWP) 343 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA()); 344 BranchProbabilityInfo &BPI = 345 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 346 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 347 LoopPredication LP(AA, DT, SE, LI, &BPI, MSSAU ? MSSAU.get() : nullptr); 348 return LP.runOnLoop(L); 349 } 350 }; 351 352 char LoopPredicationLegacyPass::ID = 0; 353 } // end namespace 354 355 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 356 "Loop predication", false, false) 357 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 358 INITIALIZE_PASS_DEPENDENCY(LoopPass) 359 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 360 "Loop predication", false, false) 361 362 Pass *llvm::createLoopPredicationPass() { 363 return new LoopPredicationLegacyPass(); 364 } 365 366 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 367 LoopStandardAnalysisResults &AR, 368 LPMUpdater &U) { 369 std::unique_ptr<MemorySSAUpdater> MSSAU; 370 if (AR.MSSA) 371 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA); 372 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, AR.BPI, 373 MSSAU ? MSSAU.get() : nullptr); 374 if (!LP.runOnLoop(&L)) 375 return PreservedAnalyses::all(); 376 377 auto PA = getLoopPassPreservedAnalyses(); 378 if (AR.MSSA) 379 PA.preserve<MemorySSAAnalysis>(); 380 return PA; 381 } 382 383 Optional<LoopICmp> 384 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 385 auto Pred = ICI->getPredicate(); 386 auto *LHS = ICI->getOperand(0); 387 auto *RHS = ICI->getOperand(1); 388 389 const SCEV *LHSS = SE->getSCEV(LHS); 390 if (isa<SCEVCouldNotCompute>(LHSS)) 391 return None; 392 const SCEV *RHSS = SE->getSCEV(RHS); 393 if (isa<SCEVCouldNotCompute>(RHSS)) 394 return None; 395 396 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 397 if (SE->isLoopInvariant(LHSS, L)) { 398 std::swap(LHS, RHS); 399 std::swap(LHSS, RHSS); 400 Pred = ICmpInst::getSwappedPredicate(Pred); 401 } 402 403 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 404 if (!AR || AR->getLoop() != L) 405 return None; 406 407 return LoopICmp(Pred, AR, RHSS); 408 } 409 410 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 411 Instruction *Guard, 412 ICmpInst::Predicate Pred, const SCEV *LHS, 413 const SCEV *RHS) { 414 Type *Ty = LHS->getType(); 415 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 416 417 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 418 IRBuilder<> Builder(Guard); 419 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 420 return Builder.getTrue(); 421 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 422 LHS, RHS)) 423 return Builder.getFalse(); 424 } 425 426 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 427 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 428 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 429 return Builder.CreateICmp(Pred, LHSV, RHSV); 430 } 431 432 433 // Returns true if its safe to truncate the IV to RangeCheckType. 434 // When the IV type is wider than the range operand type, we can still do loop 435 // predication, by generating SCEVs for the range and latch that are of the 436 // same type. We achieve this by generating a SCEV truncate expression for the 437 // latch IV. This is done iff truncation of the IV is a safe operation, 438 // without loss of information. 439 // Another way to achieve this is by generating a wider type SCEV for the 440 // range check operand, however, this needs a more involved check that 441 // operands do not overflow. This can lead to loss of information when the 442 // range operand is of the form: add i32 %offset, %iv. We need to prove that 443 // sext(x + y) is same as sext(x) + sext(y). 444 // This function returns true if we can safely represent the IV type in 445 // the RangeCheckType without loss of information. 446 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 447 ScalarEvolution &SE, 448 const LoopICmp LatchCheck, 449 Type *RangeCheckType) { 450 if (!EnableIVTruncation) 451 return false; 452 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() > 453 DL.getTypeSizeInBits(RangeCheckType).getFixedSize() && 454 "Expected latch check IV type to be larger than range check operand " 455 "type!"); 456 // The start and end values of the IV should be known. This is to guarantee 457 // that truncating the wide type will not lose information. 458 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 459 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 460 if (!Limit || !Start) 461 return false; 462 // This check makes sure that the IV does not change sign during loop 463 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 464 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 465 // IV wraps around, and the truncation of the IV would lose the range of 466 // iterations between 2^32 and 2^64. 467 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred)) 468 return false; 469 // The active bits should be less than the bits in the RangeCheckType. This 470 // guarantees that truncating the latch check to RangeCheckType is a safe 471 // operation. 472 auto RangeCheckTypeBitSize = 473 DL.getTypeSizeInBits(RangeCheckType).getFixedSize(); 474 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 475 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 476 } 477 478 479 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 480 // the requested type if safe to do so. May involve the use of a new IV. 481 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 482 ScalarEvolution &SE, 483 const LoopICmp LatchCheck, 484 Type *RangeCheckType) { 485 486 auto *LatchType = LatchCheck.IV->getType(); 487 if (RangeCheckType == LatchType) 488 return LatchCheck; 489 // For now, bail out if latch type is narrower than range type. 490 if (DL.getTypeSizeInBits(LatchType).getFixedSize() < 491 DL.getTypeSizeInBits(RangeCheckType).getFixedSize()) 492 return None; 493 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 494 return None; 495 // We can now safely identify the truncated version of the IV and limit for 496 // RangeCheckType. 497 LoopICmp NewLatchCheck; 498 NewLatchCheck.Pred = LatchCheck.Pred; 499 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 500 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 501 if (!NewLatchCheck.IV) 502 return None; 503 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 504 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 505 << "can be represented as range check type:" 506 << *RangeCheckType << "\n"); 507 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 508 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 509 return NewLatchCheck; 510 } 511 512 bool LoopPredication::isSupportedStep(const SCEV* Step) { 513 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 514 } 515 516 Instruction *LoopPredication::findInsertPt(Instruction *Use, 517 ArrayRef<Value*> Ops) { 518 for (Value *Op : Ops) 519 if (!L->isLoopInvariant(Op)) 520 return Use; 521 return Preheader->getTerminator(); 522 } 523 524 Instruction *LoopPredication::findInsertPt(Instruction *Use, 525 ArrayRef<const SCEV*> Ops) { 526 // Subtlety: SCEV considers things to be invariant if the value produced is 527 // the same across iterations. This is not the same as being able to 528 // evaluate outside the loop, which is what we actually need here. 529 for (const SCEV *Op : Ops) 530 if (!SE->isLoopInvariant(Op, L) || 531 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) 532 return Use; 533 return Preheader->getTerminator(); 534 } 535 536 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 537 // Handling expressions which produce invariant results, but *haven't* yet 538 // been removed from the loop serves two important purposes. 539 // 1) Most importantly, it resolves a pass ordering cycle which would 540 // otherwise need us to iteration licm, loop-predication, and either 541 // loop-unswitch or loop-peeling to make progress on examples with lots of 542 // predicable range checks in a row. (Since, in the general case, we can't 543 // hoist the length checks until the dominating checks have been discharged 544 // as we can't prove doing so is safe.) 545 // 2) As a nice side effect, this exposes the value of peeling or unswitching 546 // much more obviously in the IR. Otherwise, the cost modeling for other 547 // transforms would end up needing to duplicate all of this logic to model a 548 // check which becomes predictable based on a modeled peel or unswitch. 549 // 550 // The cost of doing so in the worst case is an extra fill from the stack in 551 // the loop to materialize the loop invariant test value instead of checking 552 // against the original IV which is presumable in a register inside the loop. 553 // Such cases are presumably rare, and hint at missing oppurtunities for 554 // other passes. 555 556 if (SE->isLoopInvariant(S, L)) 557 // Note: This the SCEV variant, so the original Value* may be within the 558 // loop even though SCEV has proven it is loop invariant. 559 return true; 560 561 // Handle a particular important case which SCEV doesn't yet know about which 562 // shows up in range checks on arrays with immutable lengths. 563 // TODO: This should be sunk inside SCEV. 564 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 565 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 566 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 567 if (AA->pointsToConstantMemory(LI->getOperand(0)) || 568 LI->hasMetadata(LLVMContext::MD_invariant_load)) 569 return true; 570 return false; 571 } 572 573 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 574 LoopICmp LatchCheck, LoopICmp RangeCheck, 575 SCEVExpander &Expander, Instruction *Guard) { 576 auto *Ty = RangeCheck.IV->getType(); 577 // Generate the widened condition for the forward loop: 578 // guardStart u< guardLimit && 579 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 580 // where <pred> depends on the latch condition predicate. See the file 581 // header comment for the reasoning. 582 // guardLimit - guardStart + latchStart - 1 583 const SCEV *GuardStart = RangeCheck.IV->getStart(); 584 const SCEV *GuardLimit = RangeCheck.Limit; 585 const SCEV *LatchStart = LatchCheck.IV->getStart(); 586 const SCEV *LatchLimit = LatchCheck.Limit; 587 // Subtlety: We need all the values to be *invariant* across all iterations, 588 // but we only need to check expansion safety for those which *aren't* 589 // already guaranteed to dominate the guard. 590 if (!isLoopInvariantValue(GuardStart) || 591 !isLoopInvariantValue(GuardLimit) || 592 !isLoopInvariantValue(LatchStart) || 593 !isLoopInvariantValue(LatchLimit)) { 594 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 595 return None; 596 } 597 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 598 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 599 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 600 return None; 601 } 602 603 // guardLimit - guardStart + latchStart - 1 604 const SCEV *RHS = 605 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 606 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 607 auto LimitCheckPred = 608 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 609 610 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 611 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 612 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 613 614 auto *LimitCheck = 615 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 616 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 617 GuardStart, GuardLimit); 618 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 619 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 620 } 621 622 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 623 LoopICmp LatchCheck, LoopICmp RangeCheck, 624 SCEVExpander &Expander, Instruction *Guard) { 625 auto *Ty = RangeCheck.IV->getType(); 626 const SCEV *GuardStart = RangeCheck.IV->getStart(); 627 const SCEV *GuardLimit = RangeCheck.Limit; 628 const SCEV *LatchStart = LatchCheck.IV->getStart(); 629 const SCEV *LatchLimit = LatchCheck.Limit; 630 // Subtlety: We need all the values to be *invariant* across all iterations, 631 // but we only need to check expansion safety for those which *aren't* 632 // already guaranteed to dominate the guard. 633 if (!isLoopInvariantValue(GuardStart) || 634 !isLoopInvariantValue(GuardLimit) || 635 !isLoopInvariantValue(LatchStart) || 636 !isLoopInvariantValue(LatchLimit)) { 637 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 638 return None; 639 } 640 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 641 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 642 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 643 return None; 644 } 645 // The decrement of the latch check IV should be the same as the 646 // rangeCheckIV. 647 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 648 if (RangeCheck.IV != PostDecLatchCheckIV) { 649 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 650 << *PostDecLatchCheckIV 651 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 652 return None; 653 } 654 655 // Generate the widened condition for CountDownLoop: 656 // guardStart u< guardLimit && 657 // latchLimit <pred> 1. 658 // See the header comment for reasoning of the checks. 659 auto LimitCheckPred = 660 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 661 auto *FirstIterationCheck = expandCheck(Expander, Guard, 662 ICmpInst::ICMP_ULT, 663 GuardStart, GuardLimit); 664 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 665 SE->getOne(Ty)); 666 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 667 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 668 } 669 670 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 671 LoopICmp& RC) { 672 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 673 // ULT/UGE form for ease of handling by our caller. 674 if (ICmpInst::isEquality(RC.Pred) && 675 RC.IV->getStepRecurrence(*SE)->isOne() && 676 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 677 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 678 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 679 } 680 681 682 /// If ICI can be widened to a loop invariant condition emits the loop 683 /// invariant condition in the loop preheader and return it, otherwise 684 /// returns None. 685 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 686 SCEVExpander &Expander, 687 Instruction *Guard) { 688 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 689 LLVM_DEBUG(ICI->dump()); 690 691 // parseLoopStructure guarantees that the latch condition is: 692 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 693 // We are looking for the range checks of the form: 694 // i u< guardLimit 695 auto RangeCheck = parseLoopICmp(ICI); 696 if (!RangeCheck) { 697 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 698 return None; 699 } 700 LLVM_DEBUG(dbgs() << "Guard check:\n"); 701 LLVM_DEBUG(RangeCheck->dump()); 702 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 703 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 704 << RangeCheck->Pred << ")!\n"); 705 return None; 706 } 707 auto *RangeCheckIV = RangeCheck->IV; 708 if (!RangeCheckIV->isAffine()) { 709 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 710 return None; 711 } 712 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 713 // We cannot just compare with latch IV step because the latch and range IVs 714 // may have different types. 715 if (!isSupportedStep(Step)) { 716 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 717 return None; 718 } 719 auto *Ty = RangeCheckIV->getType(); 720 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 721 if (!CurrLatchCheckOpt) { 722 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 723 "corresponding to range type: " 724 << *Ty << "\n"); 725 return None; 726 } 727 728 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 729 // At this point, the range and latch step should have the same type, but need 730 // not have the same value (we support both 1 and -1 steps). 731 assert(Step->getType() == 732 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 733 "Range and latch steps should be of same type!"); 734 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 735 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 736 return None; 737 } 738 739 if (Step->isOne()) 740 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 741 Expander, Guard); 742 else { 743 assert(Step->isAllOnesValue() && "Step should be -1!"); 744 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 745 Expander, Guard); 746 } 747 } 748 749 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 750 Value *Condition, 751 SCEVExpander &Expander, 752 Instruction *Guard) { 753 unsigned NumWidened = 0; 754 // The guard condition is expected to be in form of: 755 // cond1 && cond2 && cond3 ... 756 // Iterate over subconditions looking for icmp conditions which can be 757 // widened across loop iterations. Widening these conditions remember the 758 // resulting list of subconditions in Checks vector. 759 SmallVector<Value *, 4> Worklist(1, Condition); 760 SmallPtrSet<Value *, 4> Visited; 761 Value *WideableCond = nullptr; 762 do { 763 Value *Condition = Worklist.pop_back_val(); 764 if (!Visited.insert(Condition).second) 765 continue; 766 767 Value *LHS, *RHS; 768 using namespace llvm::PatternMatch; 769 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 770 Worklist.push_back(LHS); 771 Worklist.push_back(RHS); 772 continue; 773 } 774 775 if (match(Condition, 776 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 777 // Pick any, we don't care which 778 WideableCond = Condition; 779 continue; 780 } 781 782 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 783 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 784 Guard)) { 785 Checks.push_back(NewRangeCheck.getValue()); 786 NumWidened++; 787 continue; 788 } 789 } 790 791 // Save the condition as is if we can't widen it 792 Checks.push_back(Condition); 793 } while (!Worklist.empty()); 794 // At the moment, our matching logic for wideable conditions implicitly 795 // assumes we preserve the form: (br (and Cond, WC())). FIXME 796 // Note that if there were multiple calls to wideable condition in the 797 // traversal, we only need to keep one, and which one is arbitrary. 798 if (WideableCond) 799 Checks.push_back(WideableCond); 800 return NumWidened; 801 } 802 803 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 804 SCEVExpander &Expander) { 805 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 806 LLVM_DEBUG(Guard->dump()); 807 808 TotalConsidered++; 809 SmallVector<Value *, 4> Checks; 810 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 811 Guard); 812 if (NumWidened == 0) 813 return false; 814 815 TotalWidened += NumWidened; 816 817 // Emit the new guard condition 818 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 819 Value *AllChecks = Builder.CreateAnd(Checks); 820 auto *OldCond = Guard->getOperand(0); 821 Guard->setOperand(0, AllChecks); 822 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 823 824 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 825 return true; 826 } 827 828 bool LoopPredication::widenWidenableBranchGuardConditions( 829 BranchInst *BI, SCEVExpander &Expander) { 830 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 831 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 832 LLVM_DEBUG(BI->dump()); 833 834 TotalConsidered++; 835 SmallVector<Value *, 4> Checks; 836 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 837 Expander, BI); 838 if (NumWidened == 0) 839 return false; 840 841 TotalWidened += NumWidened; 842 843 // Emit the new guard condition 844 IRBuilder<> Builder(findInsertPt(BI, Checks)); 845 Value *AllChecks = Builder.CreateAnd(Checks); 846 auto *OldCond = BI->getCondition(); 847 BI->setCondition(AllChecks); 848 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 849 assert(isGuardAsWidenableBranch(BI) && 850 "Stopped being a guard after transform?"); 851 852 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 853 return true; 854 } 855 856 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 857 using namespace PatternMatch; 858 859 BasicBlock *LoopLatch = L->getLoopLatch(); 860 if (!LoopLatch) { 861 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 862 return None; 863 } 864 865 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 866 if (!BI || !BI->isConditional()) { 867 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 868 return None; 869 } 870 BasicBlock *TrueDest = BI->getSuccessor(0); 871 assert( 872 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 873 "One of the latch's destinations must be the header"); 874 875 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 876 if (!ICI) { 877 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 878 return None; 879 } 880 auto Result = parseLoopICmp(ICI); 881 if (!Result) { 882 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 883 return None; 884 } 885 886 if (TrueDest != L->getHeader()) 887 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 888 889 // Check affine first, so if it's not we don't try to compute the step 890 // recurrence. 891 if (!Result->IV->isAffine()) { 892 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 893 return None; 894 } 895 896 auto *Step = Result->IV->getStepRecurrence(*SE); 897 if (!isSupportedStep(Step)) { 898 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 899 return None; 900 } 901 902 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 903 if (Step->isOne()) { 904 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 905 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 906 } else { 907 assert(Step->isAllOnesValue() && "Step should be -1!"); 908 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 909 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 910 } 911 }; 912 913 normalizePredicate(SE, L, *Result); 914 if (IsUnsupportedPredicate(Step, Result->Pred)) { 915 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 916 << ")!\n"); 917 return None; 918 } 919 920 return Result; 921 } 922 923 924 bool LoopPredication::isLoopProfitableToPredicate() { 925 if (SkipProfitabilityChecks || !BPI) 926 return true; 927 928 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 929 L->getExitEdges(ExitEdges); 930 // If there is only one exiting edge in the loop, it is always profitable to 931 // predicate the loop. 932 if (ExitEdges.size() == 1) 933 return true; 934 935 // Calculate the exiting probabilities of all exiting edges from the loop, 936 // starting with the LatchExitProbability. 937 // Heuristic for profitability: If any of the exiting blocks' probability of 938 // exiting the loop is larger than exiting through the latch block, it's not 939 // profitable to predicate the loop. 940 auto *LatchBlock = L->getLoopLatch(); 941 assert(LatchBlock && "Should have a single latch at this point!"); 942 auto *LatchTerm = LatchBlock->getTerminator(); 943 assert(LatchTerm->getNumSuccessors() == 2 && 944 "expected to be an exiting block with 2 succs!"); 945 unsigned LatchBrExitIdx = 946 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 947 BranchProbability LatchExitProbability = 948 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 949 950 // Protect against degenerate inputs provided by the user. Providing a value 951 // less than one, can invert the definition of profitable loop predication. 952 float ScaleFactor = LatchExitProbabilityScale; 953 if (ScaleFactor < 1) { 954 LLVM_DEBUG( 955 dbgs() 956 << "Ignored user setting for loop-predication-latch-probability-scale: " 957 << LatchExitProbabilityScale << "\n"); 958 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 959 ScaleFactor = 1.0; 960 } 961 const auto LatchProbabilityThreshold = 962 LatchExitProbability * ScaleFactor; 963 964 for (const auto &ExitEdge : ExitEdges) { 965 BranchProbability ExitingBlockProbability = 966 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 967 // Some exiting edge has higher probability than the latch exiting edge. 968 // No longer profitable to predicate. 969 if (ExitingBlockProbability > LatchProbabilityThreshold) 970 return false; 971 } 972 // Using BPI, we have concluded that the most probable way to exit from the 973 // loop is through the latch (or there's no profile information and all 974 // exits are equally likely). 975 return true; 976 } 977 978 /// If we can (cheaply) find a widenable branch which controls entry into the 979 /// loop, return it. 980 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 981 // Walk back through any unconditional executed blocks and see if we can find 982 // a widenable condition which seems to control execution of this loop. Note 983 // that we predict that maythrow calls are likely untaken and thus that it's 984 // profitable to widen a branch before a maythrow call with a condition 985 // afterwards even though that may cause the slow path to run in a case where 986 // it wouldn't have otherwise. 987 BasicBlock *BB = L->getLoopPreheader(); 988 if (!BB) 989 return nullptr; 990 do { 991 if (BasicBlock *Pred = BB->getSinglePredecessor()) 992 if (BB == Pred->getSingleSuccessor()) { 993 BB = Pred; 994 continue; 995 } 996 break; 997 } while (true); 998 999 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1000 auto *Term = Pred->getTerminator(); 1001 1002 Value *Cond, *WC; 1003 BasicBlock *IfTrueBB, *IfFalseBB; 1004 if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) && 1005 IfTrueBB == BB) 1006 return cast<BranchInst>(Term); 1007 } 1008 return nullptr; 1009 } 1010 1011 /// Return the minimum of all analyzeable exit counts. This is an upper bound 1012 /// on the actual exit count. If there are not at least two analyzeable exits, 1013 /// returns SCEVCouldNotCompute. 1014 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1015 DominatorTree &DT, 1016 Loop *L) { 1017 SmallVector<BasicBlock *, 16> ExitingBlocks; 1018 L->getExitingBlocks(ExitingBlocks); 1019 1020 SmallVector<const SCEV *, 4> ExitCounts; 1021 for (BasicBlock *ExitingBB : ExitingBlocks) { 1022 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1023 if (isa<SCEVCouldNotCompute>(ExitCount)) 1024 continue; 1025 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1026 "We should only have known counts for exiting blocks that " 1027 "dominate latch!"); 1028 ExitCounts.push_back(ExitCount); 1029 } 1030 if (ExitCounts.size() < 2) 1031 return SE.getCouldNotCompute(); 1032 return SE.getUMinFromMismatchedTypes(ExitCounts); 1033 } 1034 1035 /// This implements an analogous, but entirely distinct transform from the main 1036 /// loop predication transform. This one is phrased in terms of using a 1037 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1038 /// following loop. This is close in spirit to the IndVarSimplify transform 1039 /// of the same name, but is materially different widening loosens legality 1040 /// sharply. 1041 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1042 // The transformation performed here aims to widen a widenable condition 1043 // above the loop such that all analyzeable exit leading to deopt are dead. 1044 // It assumes that the latch is the dominant exit for profitability and that 1045 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1046 // semantics of widenable expressions for legality. (i.e. being able to fall 1047 // down the widenable path spuriously allows us to ignore exit order, 1048 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1049 // which restrict the applicability of the non-WC based version of this 1050 // transform in IndVarSimplify.) 1051 // 1052 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1053 // imply flags on the expression being hoisted and inserting new uses (flags 1054 // are only correct for current uses). The result is that we may be 1055 // inserting a branch on the value which can be either poison or undef. In 1056 // this case, the branch can legally go either way; we just need to avoid 1057 // introducing UB. This is achieved through the use of the freeze 1058 // instruction. 1059 1060 SmallVector<BasicBlock *, 16> ExitingBlocks; 1061 L->getExitingBlocks(ExitingBlocks); 1062 1063 if (ExitingBlocks.empty()) 1064 return false; // Nothing to do. 1065 1066 auto *Latch = L->getLoopLatch(); 1067 if (!Latch) 1068 return false; 1069 1070 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1071 if (!WidenableBR) 1072 return false; 1073 1074 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1075 if (isa<SCEVCouldNotCompute>(LatchEC)) 1076 return false; // profitability - want hot exit in analyzeable set 1077 1078 // At this point, we have found an analyzeable latch, and a widenable 1079 // condition above the loop. If we have a widenable exit within the loop 1080 // (for which we can't compute exit counts), drop the ability to further 1081 // widen so that we gain ability to analyze it's exit count and perform this 1082 // transform. TODO: It'd be nice to know for sure the exit became 1083 // analyzeable after dropping widenability. 1084 bool ChangedLoop = false; 1085 1086 for (auto *ExitingBB : ExitingBlocks) { 1087 if (LI->getLoopFor(ExitingBB) != L) 1088 continue; 1089 1090 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1091 if (!BI) 1092 continue; 1093 1094 Use *Cond, *WC; 1095 BasicBlock *IfTrueBB, *IfFalseBB; 1096 if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) && 1097 L->contains(IfTrueBB)) { 1098 WC->set(ConstantInt::getTrue(IfTrueBB->getContext())); 1099 ChangedLoop = true; 1100 } 1101 } 1102 if (ChangedLoop) 1103 SE->forgetLoop(L); 1104 1105 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1106 // important for profitability. We may have a loop which hasn't been fully 1107 // canonicalized just yet. If the exit we chose to widen is provably never 1108 // taken, we want the widened form to *also* be provably never taken. We 1109 // can't guarantee this as a current unanalyzeable exit may later become 1110 // analyzeable, but we can at least avoid the obvious cases. 1111 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1112 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1113 !SE->isLoopInvariant(MinEC, L) || 1114 !isSafeToExpandAt(MinEC, WidenableBR, *SE)) 1115 return ChangedLoop; 1116 1117 // Subtlety: We need to avoid inserting additional uses of the WC. We know 1118 // that it can only have one transitive use at the moment, and thus moving 1119 // that use to just before the branch and inserting code before it and then 1120 // modifying the operand is legal. 1121 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1122 // Here we unconditionally modify the IR, so after this point we should return 1123 // only `true`! 1124 IP->moveBefore(WidenableBR); 1125 if (MSSAU) 1126 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP)) 1127 MSSAU->moveToPlace(MUD, WidenableBR->getParent(), 1128 MemorySSA::BeforeTerminator); 1129 Rewriter.setInsertPoint(IP); 1130 IRBuilder<> B(IP); 1131 1132 bool InvalidateLoop = false; 1133 Value *MinECV = nullptr; // lazily generated if needed 1134 for (BasicBlock *ExitingBB : ExitingBlocks) { 1135 // If our exiting block exits multiple loops, we can only rewrite the 1136 // innermost one. Otherwise, we're changing how many times the innermost 1137 // loop runs before it exits. 1138 if (LI->getLoopFor(ExitingBB) != L) 1139 continue; 1140 1141 // Can't rewrite non-branch yet. 1142 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1143 if (!BI) 1144 continue; 1145 1146 // If already constant, nothing to do. 1147 if (isa<Constant>(BI->getCondition())) 1148 continue; 1149 1150 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1151 if (isa<SCEVCouldNotCompute>(ExitCount) || 1152 ExitCount->getType()->isPointerTy() || 1153 !isSafeToExpandAt(ExitCount, WidenableBR, *SE)) 1154 continue; 1155 1156 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1157 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1158 if (!ExitBB->getPostdominatingDeoptimizeCall()) 1159 continue; 1160 1161 /// Here we can be fairly sure that executing this exit will most likely 1162 /// lead to executing llvm.experimental.deoptimize. 1163 /// This is a profitability heuristic, not a legality constraint. 1164 1165 // If we found a widenable exit condition, do two things: 1166 // 1) fold the widened exit test into the widenable condition 1167 // 2) fold the branch to untaken - avoids infinite looping 1168 1169 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1170 if (!MinECV) 1171 MinECV = Rewriter.expandCodeFor(MinEC); 1172 Value *RHS = MinECV; 1173 if (ECV->getType() != RHS->getType()) { 1174 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1175 ECV = B.CreateZExt(ECV, WiderTy); 1176 RHS = B.CreateZExt(RHS, WiderTy); 1177 } 1178 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1179 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1180 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1181 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1182 // context. 1183 NewCond = B.CreateFreeze(NewCond); 1184 1185 widenWidenableBranch(WidenableBR, NewCond); 1186 1187 Value *OldCond = BI->getCondition(); 1188 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1189 InvalidateLoop = true; 1190 } 1191 1192 if (InvalidateLoop) 1193 // We just mutated a bunch of loop exits changing there exit counts 1194 // widely. We need to force recomputation of the exit counts given these 1195 // changes. Note that all of the inserted exits are never taken, and 1196 // should be removed next time the CFG is modified. 1197 SE->forgetLoop(L); 1198 1199 // Always return `true` since we have moved the WidenableBR's condition. 1200 return true; 1201 } 1202 1203 bool LoopPredication::runOnLoop(Loop *Loop) { 1204 L = Loop; 1205 1206 LLVM_DEBUG(dbgs() << "Analyzing "); 1207 LLVM_DEBUG(L->dump()); 1208 1209 Module *M = L->getHeader()->getModule(); 1210 1211 // There is nothing to do if the module doesn't use guards 1212 auto *GuardDecl = 1213 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1214 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1215 auto *WCDecl = M->getFunction( 1216 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1217 bool HasWidenableConditions = 1218 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1219 if (!HasIntrinsicGuards && !HasWidenableConditions) 1220 return false; 1221 1222 DL = &M->getDataLayout(); 1223 1224 Preheader = L->getLoopPreheader(); 1225 if (!Preheader) 1226 return false; 1227 1228 auto LatchCheckOpt = parseLoopLatchICmp(); 1229 if (!LatchCheckOpt) 1230 return false; 1231 LatchCheck = *LatchCheckOpt; 1232 1233 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1234 LLVM_DEBUG(LatchCheck.dump()); 1235 1236 if (!isLoopProfitableToPredicate()) { 1237 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1238 return false; 1239 } 1240 // Collect all the guards into a vector and process later, so as not 1241 // to invalidate the instruction iterator. 1242 SmallVector<IntrinsicInst *, 4> Guards; 1243 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1244 for (const auto BB : L->blocks()) { 1245 for (auto &I : *BB) 1246 if (isGuard(&I)) 1247 Guards.push_back(cast<IntrinsicInst>(&I)); 1248 if (PredicateWidenableBranchGuards && 1249 isGuardAsWidenableBranch(BB->getTerminator())) 1250 GuardsAsWidenableBranches.push_back( 1251 cast<BranchInst>(BB->getTerminator())); 1252 } 1253 1254 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1255 bool Changed = false; 1256 for (auto *Guard : Guards) 1257 Changed |= widenGuardConditions(Guard, Expander); 1258 for (auto *Guard : GuardsAsWidenableBranches) 1259 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1260 Changed |= predicateLoopExits(L, Expander); 1261 1262 if (MSSAU && VerifyMemorySSA) 1263 MSSAU->getMemorySSA()->verifyMemorySSA(); 1264 return Changed; 1265 } 1266