1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/MemorySSA.h" 187 #include "llvm/Analysis/MemorySSAUpdater.h" 188 #include "llvm/Analysis/ScalarEvolution.h" 189 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 190 #include "llvm/IR/Function.h" 191 #include "llvm/IR/GlobalValue.h" 192 #include "llvm/IR/IntrinsicInst.h" 193 #include "llvm/IR/Module.h" 194 #include "llvm/IR/PatternMatch.h" 195 #include "llvm/InitializePasses.h" 196 #include "llvm/Pass.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Support/Debug.h" 199 #include "llvm/Transforms/Scalar.h" 200 #include "llvm/Transforms/Utils/GuardUtils.h" 201 #include "llvm/Transforms/Utils/Local.h" 202 #include "llvm/Transforms/Utils/LoopUtils.h" 203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 204 205 #define DEBUG_TYPE "loop-predication" 206 207 STATISTIC(TotalConsidered, "Number of guards considered"); 208 STATISTIC(TotalWidened, "Number of checks widened"); 209 210 using namespace llvm; 211 212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 213 cl::Hidden, cl::init(true)); 214 215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 216 cl::Hidden, cl::init(true)); 217 218 static cl::opt<bool> 219 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 220 cl::Hidden, cl::init(false)); 221 222 // This is the scale factor for the latch probability. We use this during 223 // profitability analysis to find other exiting blocks that have a much higher 224 // probability of exiting the loop instead of loop exiting via latch. 225 // This value should be greater than 1 for a sane profitability check. 226 static cl::opt<float> LatchExitProbabilityScale( 227 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 228 cl::desc("scale factor for the latch probability. Value should be greater " 229 "than 1. Lower values are ignored")); 230 231 static cl::opt<bool> PredicateWidenableBranchGuards( 232 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 233 cl::desc("Whether or not we should predicate guards " 234 "expressed as widenable branches to deoptimize blocks"), 235 cl::init(true)); 236 237 namespace { 238 /// Represents an induction variable check: 239 /// icmp Pred, <induction variable>, <loop invariant limit> 240 struct LoopICmp { 241 ICmpInst::Predicate Pred; 242 const SCEVAddRecExpr *IV; 243 const SCEV *Limit; 244 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 245 const SCEV *Limit) 246 : Pred(Pred), IV(IV), Limit(Limit) {} 247 LoopICmp() {} 248 void dump() { 249 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 250 << ", Limit = " << *Limit << "\n"; 251 } 252 }; 253 254 class LoopPredication { 255 AliasAnalysis *AA; 256 DominatorTree *DT; 257 ScalarEvolution *SE; 258 LoopInfo *LI; 259 BranchProbabilityInfo *BPI; 260 MemorySSAUpdater *MSSAU; 261 262 Loop *L; 263 const DataLayout *DL; 264 BasicBlock *Preheader; 265 LoopICmp LatchCheck; 266 267 bool isSupportedStep(const SCEV* Step); 268 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 269 Optional<LoopICmp> parseLoopLatchICmp(); 270 271 /// Return an insertion point suitable for inserting a safe to speculate 272 /// instruction whose only user will be 'User' which has operands 'Ops'. A 273 /// trivial result would be the at the User itself, but we try to return a 274 /// loop invariant location if possible. 275 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 276 /// Same as above, *except* that this uses the SCEV definition of invariant 277 /// which is that an expression *can be made* invariant via SCEVExpander. 278 /// Thus, this version is only suitable for finding an insert point to be be 279 /// passed to SCEVExpander! 280 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 281 282 /// Return true if the value is known to produce a single fixed value across 283 /// all iterations on which it executes. Note that this does not imply 284 /// speculation safety. That must be established separately. 285 bool isLoopInvariantValue(const SCEV* S); 286 287 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 288 ICmpInst::Predicate Pred, const SCEV *LHS, 289 const SCEV *RHS); 290 291 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 292 Instruction *Guard); 293 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 294 LoopICmp RangeCheck, 295 SCEVExpander &Expander, 296 Instruction *Guard); 297 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 298 LoopICmp RangeCheck, 299 SCEVExpander &Expander, 300 Instruction *Guard); 301 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 302 SCEVExpander &Expander, Instruction *Guard); 303 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 304 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 305 // If the loop always exits through another block in the loop, we should not 306 // predicate based on the latch check. For example, the latch check can be a 307 // very coarse grained check and there can be more fine grained exit checks 308 // within the loop. We identify such unprofitable loops through BPI. 309 bool isLoopProfitableToPredicate(); 310 311 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 312 313 public: 314 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, 315 LoopInfo *LI, BranchProbabilityInfo *BPI, 316 MemorySSAUpdater *MSSAU) 317 : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI), MSSAU(MSSAU){}; 318 bool runOnLoop(Loop *L); 319 }; 320 321 class LoopPredicationLegacyPass : public LoopPass { 322 public: 323 static char ID; 324 LoopPredicationLegacyPass() : LoopPass(ID) { 325 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 326 } 327 328 void getAnalysisUsage(AnalysisUsage &AU) const override { 329 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 330 getLoopAnalysisUsage(AU); 331 AU.addPreserved<MemorySSAWrapperPass>(); 332 } 333 334 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 335 if (skipLoop(L)) 336 return false; 337 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 338 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 339 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 340 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 341 std::unique_ptr<MemorySSAUpdater> MSSAU; 342 if (MSSAWP) 343 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA()); 344 BranchProbabilityInfo &BPI = 345 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 346 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 347 LoopPredication LP(AA, DT, SE, LI, &BPI, MSSAU ? MSSAU.get() : nullptr); 348 return LP.runOnLoop(L); 349 } 350 }; 351 352 char LoopPredicationLegacyPass::ID = 0; 353 } // end namespace 354 355 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 356 "Loop predication", false, false) 357 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 358 INITIALIZE_PASS_DEPENDENCY(LoopPass) 359 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 360 "Loop predication", false, false) 361 362 Pass *llvm::createLoopPredicationPass() { 363 return new LoopPredicationLegacyPass(); 364 } 365 366 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 367 LoopStandardAnalysisResults &AR, 368 LPMUpdater &U) { 369 Function *F = L.getHeader()->getParent(); 370 std::unique_ptr<MemorySSAUpdater> MSSAU; 371 if (AR.MSSA) 372 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA); 373 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, AR.BPI, 374 MSSAU ? MSSAU.get() : nullptr); 375 if (!LP.runOnLoop(&L)) 376 return PreservedAnalyses::all(); 377 378 auto PA = getLoopPassPreservedAnalyses(); 379 if (AR.MSSA) 380 PA.preserve<MemorySSAAnalysis>(); 381 return PA; 382 } 383 384 Optional<LoopICmp> 385 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 386 auto Pred = ICI->getPredicate(); 387 auto *LHS = ICI->getOperand(0); 388 auto *RHS = ICI->getOperand(1); 389 390 const SCEV *LHSS = SE->getSCEV(LHS); 391 if (isa<SCEVCouldNotCompute>(LHSS)) 392 return None; 393 const SCEV *RHSS = SE->getSCEV(RHS); 394 if (isa<SCEVCouldNotCompute>(RHSS)) 395 return None; 396 397 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 398 if (SE->isLoopInvariant(LHSS, L)) { 399 std::swap(LHS, RHS); 400 std::swap(LHSS, RHSS); 401 Pred = ICmpInst::getSwappedPredicate(Pred); 402 } 403 404 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 405 if (!AR || AR->getLoop() != L) 406 return None; 407 408 return LoopICmp(Pred, AR, RHSS); 409 } 410 411 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 412 Instruction *Guard, 413 ICmpInst::Predicate Pred, const SCEV *LHS, 414 const SCEV *RHS) { 415 Type *Ty = LHS->getType(); 416 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 417 418 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 419 IRBuilder<> Builder(Guard); 420 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 421 return Builder.getTrue(); 422 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 423 LHS, RHS)) 424 return Builder.getFalse(); 425 } 426 427 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 428 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 429 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 430 return Builder.CreateICmp(Pred, LHSV, RHSV); 431 } 432 433 434 // Returns true if its safe to truncate the IV to RangeCheckType. 435 // When the IV type is wider than the range operand type, we can still do loop 436 // predication, by generating SCEVs for the range and latch that are of the 437 // same type. We achieve this by generating a SCEV truncate expression for the 438 // latch IV. This is done iff truncation of the IV is a safe operation, 439 // without loss of information. 440 // Another way to achieve this is by generating a wider type SCEV for the 441 // range check operand, however, this needs a more involved check that 442 // operands do not overflow. This can lead to loss of information when the 443 // range operand is of the form: add i32 %offset, %iv. We need to prove that 444 // sext(x + y) is same as sext(x) + sext(y). 445 // This function returns true if we can safely represent the IV type in 446 // the RangeCheckType without loss of information. 447 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 448 ScalarEvolution &SE, 449 const LoopICmp LatchCheck, 450 Type *RangeCheckType) { 451 if (!EnableIVTruncation) 452 return false; 453 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() > 454 DL.getTypeSizeInBits(RangeCheckType).getFixedSize() && 455 "Expected latch check IV type to be larger than range check operand " 456 "type!"); 457 // The start and end values of the IV should be known. This is to guarantee 458 // that truncating the wide type will not lose information. 459 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 460 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 461 if (!Limit || !Start) 462 return false; 463 // This check makes sure that the IV does not change sign during loop 464 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 465 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 466 // IV wraps around, and the truncation of the IV would lose the range of 467 // iterations between 2^32 and 2^64. 468 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred)) 469 return false; 470 // The active bits should be less than the bits in the RangeCheckType. This 471 // guarantees that truncating the latch check to RangeCheckType is a safe 472 // operation. 473 auto RangeCheckTypeBitSize = 474 DL.getTypeSizeInBits(RangeCheckType).getFixedSize(); 475 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 476 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 477 } 478 479 480 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 481 // the requested type if safe to do so. May involve the use of a new IV. 482 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 483 ScalarEvolution &SE, 484 const LoopICmp LatchCheck, 485 Type *RangeCheckType) { 486 487 auto *LatchType = LatchCheck.IV->getType(); 488 if (RangeCheckType == LatchType) 489 return LatchCheck; 490 // For now, bail out if latch type is narrower than range type. 491 if (DL.getTypeSizeInBits(LatchType).getFixedSize() < 492 DL.getTypeSizeInBits(RangeCheckType).getFixedSize()) 493 return None; 494 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 495 return None; 496 // We can now safely identify the truncated version of the IV and limit for 497 // RangeCheckType. 498 LoopICmp NewLatchCheck; 499 NewLatchCheck.Pred = LatchCheck.Pred; 500 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 501 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 502 if (!NewLatchCheck.IV) 503 return None; 504 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 505 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 506 << "can be represented as range check type:" 507 << *RangeCheckType << "\n"); 508 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 509 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 510 return NewLatchCheck; 511 } 512 513 bool LoopPredication::isSupportedStep(const SCEV* Step) { 514 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 515 } 516 517 Instruction *LoopPredication::findInsertPt(Instruction *Use, 518 ArrayRef<Value*> Ops) { 519 for (Value *Op : Ops) 520 if (!L->isLoopInvariant(Op)) 521 return Use; 522 return Preheader->getTerminator(); 523 } 524 525 Instruction *LoopPredication::findInsertPt(Instruction *Use, 526 ArrayRef<const SCEV*> Ops) { 527 // Subtlety: SCEV considers things to be invariant if the value produced is 528 // the same across iterations. This is not the same as being able to 529 // evaluate outside the loop, which is what we actually need here. 530 for (const SCEV *Op : Ops) 531 if (!SE->isLoopInvariant(Op, L) || 532 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) 533 return Use; 534 return Preheader->getTerminator(); 535 } 536 537 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 538 // Handling expressions which produce invariant results, but *haven't* yet 539 // been removed from the loop serves two important purposes. 540 // 1) Most importantly, it resolves a pass ordering cycle which would 541 // otherwise need us to iteration licm, loop-predication, and either 542 // loop-unswitch or loop-peeling to make progress on examples with lots of 543 // predicable range checks in a row. (Since, in the general case, we can't 544 // hoist the length checks until the dominating checks have been discharged 545 // as we can't prove doing so is safe.) 546 // 2) As a nice side effect, this exposes the value of peeling or unswitching 547 // much more obviously in the IR. Otherwise, the cost modeling for other 548 // transforms would end up needing to duplicate all of this logic to model a 549 // check which becomes predictable based on a modeled peel or unswitch. 550 // 551 // The cost of doing so in the worst case is an extra fill from the stack in 552 // the loop to materialize the loop invariant test value instead of checking 553 // against the original IV which is presumable in a register inside the loop. 554 // Such cases are presumably rare, and hint at missing oppurtunities for 555 // other passes. 556 557 if (SE->isLoopInvariant(S, L)) 558 // Note: This the SCEV variant, so the original Value* may be within the 559 // loop even though SCEV has proven it is loop invariant. 560 return true; 561 562 // Handle a particular important case which SCEV doesn't yet know about which 563 // shows up in range checks on arrays with immutable lengths. 564 // TODO: This should be sunk inside SCEV. 565 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 566 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 567 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 568 if (AA->pointsToConstantMemory(LI->getOperand(0)) || 569 LI->hasMetadata(LLVMContext::MD_invariant_load)) 570 return true; 571 return false; 572 } 573 574 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 575 LoopICmp LatchCheck, LoopICmp RangeCheck, 576 SCEVExpander &Expander, Instruction *Guard) { 577 auto *Ty = RangeCheck.IV->getType(); 578 // Generate the widened condition for the forward loop: 579 // guardStart u< guardLimit && 580 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 581 // where <pred> depends on the latch condition predicate. See the file 582 // header comment for the reasoning. 583 // guardLimit - guardStart + latchStart - 1 584 const SCEV *GuardStart = RangeCheck.IV->getStart(); 585 const SCEV *GuardLimit = RangeCheck.Limit; 586 const SCEV *LatchStart = LatchCheck.IV->getStart(); 587 const SCEV *LatchLimit = LatchCheck.Limit; 588 // Subtlety: We need all the values to be *invariant* across all iterations, 589 // but we only need to check expansion safety for those which *aren't* 590 // already guaranteed to dominate the guard. 591 if (!isLoopInvariantValue(GuardStart) || 592 !isLoopInvariantValue(GuardLimit) || 593 !isLoopInvariantValue(LatchStart) || 594 !isLoopInvariantValue(LatchLimit)) { 595 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 596 return None; 597 } 598 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 599 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 600 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 601 return None; 602 } 603 604 // guardLimit - guardStart + latchStart - 1 605 const SCEV *RHS = 606 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 607 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 608 auto LimitCheckPred = 609 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 610 611 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 612 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 613 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 614 615 auto *LimitCheck = 616 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 617 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 618 GuardStart, GuardLimit); 619 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 620 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 621 } 622 623 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 624 LoopICmp LatchCheck, LoopICmp RangeCheck, 625 SCEVExpander &Expander, Instruction *Guard) { 626 auto *Ty = RangeCheck.IV->getType(); 627 const SCEV *GuardStart = RangeCheck.IV->getStart(); 628 const SCEV *GuardLimit = RangeCheck.Limit; 629 const SCEV *LatchStart = LatchCheck.IV->getStart(); 630 const SCEV *LatchLimit = LatchCheck.Limit; 631 // Subtlety: We need all the values to be *invariant* across all iterations, 632 // but we only need to check expansion safety for those which *aren't* 633 // already guaranteed to dominate the guard. 634 if (!isLoopInvariantValue(GuardStart) || 635 !isLoopInvariantValue(GuardLimit) || 636 !isLoopInvariantValue(LatchStart) || 637 !isLoopInvariantValue(LatchLimit)) { 638 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 639 return None; 640 } 641 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 642 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 643 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 644 return None; 645 } 646 // The decrement of the latch check IV should be the same as the 647 // rangeCheckIV. 648 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 649 if (RangeCheck.IV != PostDecLatchCheckIV) { 650 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 651 << *PostDecLatchCheckIV 652 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 653 return None; 654 } 655 656 // Generate the widened condition for CountDownLoop: 657 // guardStart u< guardLimit && 658 // latchLimit <pred> 1. 659 // See the header comment for reasoning of the checks. 660 auto LimitCheckPred = 661 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 662 auto *FirstIterationCheck = expandCheck(Expander, Guard, 663 ICmpInst::ICMP_ULT, 664 GuardStart, GuardLimit); 665 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 666 SE->getOne(Ty)); 667 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 668 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 669 } 670 671 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 672 LoopICmp& RC) { 673 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 674 // ULT/UGE form for ease of handling by our caller. 675 if (ICmpInst::isEquality(RC.Pred) && 676 RC.IV->getStepRecurrence(*SE)->isOne() && 677 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 678 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 679 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 680 } 681 682 683 /// If ICI can be widened to a loop invariant condition emits the loop 684 /// invariant condition in the loop preheader and return it, otherwise 685 /// returns None. 686 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 687 SCEVExpander &Expander, 688 Instruction *Guard) { 689 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 690 LLVM_DEBUG(ICI->dump()); 691 692 // parseLoopStructure guarantees that the latch condition is: 693 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 694 // We are looking for the range checks of the form: 695 // i u< guardLimit 696 auto RangeCheck = parseLoopICmp(ICI); 697 if (!RangeCheck) { 698 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 699 return None; 700 } 701 LLVM_DEBUG(dbgs() << "Guard check:\n"); 702 LLVM_DEBUG(RangeCheck->dump()); 703 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 704 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 705 << RangeCheck->Pred << ")!\n"); 706 return None; 707 } 708 auto *RangeCheckIV = RangeCheck->IV; 709 if (!RangeCheckIV->isAffine()) { 710 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 711 return None; 712 } 713 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 714 // We cannot just compare with latch IV step because the latch and range IVs 715 // may have different types. 716 if (!isSupportedStep(Step)) { 717 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 718 return None; 719 } 720 auto *Ty = RangeCheckIV->getType(); 721 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 722 if (!CurrLatchCheckOpt) { 723 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 724 "corresponding to range type: " 725 << *Ty << "\n"); 726 return None; 727 } 728 729 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 730 // At this point, the range and latch step should have the same type, but need 731 // not have the same value (we support both 1 and -1 steps). 732 assert(Step->getType() == 733 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 734 "Range and latch steps should be of same type!"); 735 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 736 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 737 return None; 738 } 739 740 if (Step->isOne()) 741 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 742 Expander, Guard); 743 else { 744 assert(Step->isAllOnesValue() && "Step should be -1!"); 745 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 746 Expander, Guard); 747 } 748 } 749 750 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 751 Value *Condition, 752 SCEVExpander &Expander, 753 Instruction *Guard) { 754 unsigned NumWidened = 0; 755 // The guard condition is expected to be in form of: 756 // cond1 && cond2 && cond3 ... 757 // Iterate over subconditions looking for icmp conditions which can be 758 // widened across loop iterations. Widening these conditions remember the 759 // resulting list of subconditions in Checks vector. 760 SmallVector<Value *, 4> Worklist(1, Condition); 761 SmallPtrSet<Value *, 4> Visited; 762 Value *WideableCond = nullptr; 763 do { 764 Value *Condition = Worklist.pop_back_val(); 765 if (!Visited.insert(Condition).second) 766 continue; 767 768 Value *LHS, *RHS; 769 using namespace llvm::PatternMatch; 770 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 771 Worklist.push_back(LHS); 772 Worklist.push_back(RHS); 773 continue; 774 } 775 776 if (match(Condition, 777 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 778 // Pick any, we don't care which 779 WideableCond = Condition; 780 continue; 781 } 782 783 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 784 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 785 Guard)) { 786 Checks.push_back(NewRangeCheck.getValue()); 787 NumWidened++; 788 continue; 789 } 790 } 791 792 // Save the condition as is if we can't widen it 793 Checks.push_back(Condition); 794 } while (!Worklist.empty()); 795 // At the moment, our matching logic for wideable conditions implicitly 796 // assumes we preserve the form: (br (and Cond, WC())). FIXME 797 // Note that if there were multiple calls to wideable condition in the 798 // traversal, we only need to keep one, and which one is arbitrary. 799 if (WideableCond) 800 Checks.push_back(WideableCond); 801 return NumWidened; 802 } 803 804 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 805 SCEVExpander &Expander) { 806 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 807 LLVM_DEBUG(Guard->dump()); 808 809 TotalConsidered++; 810 SmallVector<Value *, 4> Checks; 811 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 812 Guard); 813 if (NumWidened == 0) 814 return false; 815 816 TotalWidened += NumWidened; 817 818 // Emit the new guard condition 819 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 820 Value *AllChecks = Builder.CreateAnd(Checks); 821 auto *OldCond = Guard->getOperand(0); 822 Guard->setOperand(0, AllChecks); 823 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 824 825 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 826 return true; 827 } 828 829 bool LoopPredication::widenWidenableBranchGuardConditions( 830 BranchInst *BI, SCEVExpander &Expander) { 831 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 832 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 833 LLVM_DEBUG(BI->dump()); 834 835 TotalConsidered++; 836 SmallVector<Value *, 4> Checks; 837 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 838 Expander, BI); 839 if (NumWidened == 0) 840 return false; 841 842 TotalWidened += NumWidened; 843 844 // Emit the new guard condition 845 IRBuilder<> Builder(findInsertPt(BI, Checks)); 846 Value *AllChecks = Builder.CreateAnd(Checks); 847 auto *OldCond = BI->getCondition(); 848 BI->setCondition(AllChecks); 849 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 850 assert(isGuardAsWidenableBranch(BI) && 851 "Stopped being a guard after transform?"); 852 853 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 854 return true; 855 } 856 857 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 858 using namespace PatternMatch; 859 860 BasicBlock *LoopLatch = L->getLoopLatch(); 861 if (!LoopLatch) { 862 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 863 return None; 864 } 865 866 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 867 if (!BI || !BI->isConditional()) { 868 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 869 return None; 870 } 871 BasicBlock *TrueDest = BI->getSuccessor(0); 872 assert( 873 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 874 "One of the latch's destinations must be the header"); 875 876 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 877 if (!ICI) { 878 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 879 return None; 880 } 881 auto Result = parseLoopICmp(ICI); 882 if (!Result) { 883 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 884 return None; 885 } 886 887 if (TrueDest != L->getHeader()) 888 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 889 890 // Check affine first, so if it's not we don't try to compute the step 891 // recurrence. 892 if (!Result->IV->isAffine()) { 893 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 894 return None; 895 } 896 897 auto *Step = Result->IV->getStepRecurrence(*SE); 898 if (!isSupportedStep(Step)) { 899 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 900 return None; 901 } 902 903 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 904 if (Step->isOne()) { 905 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 906 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 907 } else { 908 assert(Step->isAllOnesValue() && "Step should be -1!"); 909 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 910 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 911 } 912 }; 913 914 normalizePredicate(SE, L, *Result); 915 if (IsUnsupportedPredicate(Step, Result->Pred)) { 916 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 917 << ")!\n"); 918 return None; 919 } 920 921 return Result; 922 } 923 924 925 bool LoopPredication::isLoopProfitableToPredicate() { 926 if (SkipProfitabilityChecks || !BPI) 927 return true; 928 929 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 930 L->getExitEdges(ExitEdges); 931 // If there is only one exiting edge in the loop, it is always profitable to 932 // predicate the loop. 933 if (ExitEdges.size() == 1) 934 return true; 935 936 // Calculate the exiting probabilities of all exiting edges from the loop, 937 // starting with the LatchExitProbability. 938 // Heuristic for profitability: If any of the exiting blocks' probability of 939 // exiting the loop is larger than exiting through the latch block, it's not 940 // profitable to predicate the loop. 941 auto *LatchBlock = L->getLoopLatch(); 942 assert(LatchBlock && "Should have a single latch at this point!"); 943 auto *LatchTerm = LatchBlock->getTerminator(); 944 assert(LatchTerm->getNumSuccessors() == 2 && 945 "expected to be an exiting block with 2 succs!"); 946 unsigned LatchBrExitIdx = 947 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 948 BranchProbability LatchExitProbability = 949 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 950 951 // Protect against degenerate inputs provided by the user. Providing a value 952 // less than one, can invert the definition of profitable loop predication. 953 float ScaleFactor = LatchExitProbabilityScale; 954 if (ScaleFactor < 1) { 955 LLVM_DEBUG( 956 dbgs() 957 << "Ignored user setting for loop-predication-latch-probability-scale: " 958 << LatchExitProbabilityScale << "\n"); 959 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 960 ScaleFactor = 1.0; 961 } 962 const auto LatchProbabilityThreshold = 963 LatchExitProbability * ScaleFactor; 964 965 for (const auto &ExitEdge : ExitEdges) { 966 BranchProbability ExitingBlockProbability = 967 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 968 // Some exiting edge has higher probability than the latch exiting edge. 969 // No longer profitable to predicate. 970 if (ExitingBlockProbability > LatchProbabilityThreshold) 971 return false; 972 } 973 // Using BPI, we have concluded that the most probable way to exit from the 974 // loop is through the latch (or there's no profile information and all 975 // exits are equally likely). 976 return true; 977 } 978 979 /// If we can (cheaply) find a widenable branch which controls entry into the 980 /// loop, return it. 981 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 982 // Walk back through any unconditional executed blocks and see if we can find 983 // a widenable condition which seems to control execution of this loop. Note 984 // that we predict that maythrow calls are likely untaken and thus that it's 985 // profitable to widen a branch before a maythrow call with a condition 986 // afterwards even though that may cause the slow path to run in a case where 987 // it wouldn't have otherwise. 988 BasicBlock *BB = L->getLoopPreheader(); 989 if (!BB) 990 return nullptr; 991 do { 992 if (BasicBlock *Pred = BB->getSinglePredecessor()) 993 if (BB == Pred->getSingleSuccessor()) { 994 BB = Pred; 995 continue; 996 } 997 break; 998 } while (true); 999 1000 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1001 auto *Term = Pred->getTerminator(); 1002 1003 Value *Cond, *WC; 1004 BasicBlock *IfTrueBB, *IfFalseBB; 1005 if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) && 1006 IfTrueBB == BB) 1007 return cast<BranchInst>(Term); 1008 } 1009 return nullptr; 1010 } 1011 1012 /// Return the minimum of all analyzeable exit counts. This is an upper bound 1013 /// on the actual exit count. If there are not at least two analyzeable exits, 1014 /// returns SCEVCouldNotCompute. 1015 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1016 DominatorTree &DT, 1017 Loop *L) { 1018 SmallVector<BasicBlock *, 16> ExitingBlocks; 1019 L->getExitingBlocks(ExitingBlocks); 1020 1021 SmallVector<const SCEV *, 4> ExitCounts; 1022 for (BasicBlock *ExitingBB : ExitingBlocks) { 1023 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1024 if (isa<SCEVCouldNotCompute>(ExitCount)) 1025 continue; 1026 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1027 "We should only have known counts for exiting blocks that " 1028 "dominate latch!"); 1029 ExitCounts.push_back(ExitCount); 1030 } 1031 if (ExitCounts.size() < 2) 1032 return SE.getCouldNotCompute(); 1033 return SE.getUMinFromMismatchedTypes(ExitCounts); 1034 } 1035 1036 /// This implements an analogous, but entirely distinct transform from the main 1037 /// loop predication transform. This one is phrased in terms of using a 1038 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1039 /// following loop. This is close in spirit to the IndVarSimplify transform 1040 /// of the same name, but is materially different widening loosens legality 1041 /// sharply. 1042 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1043 // The transformation performed here aims to widen a widenable condition 1044 // above the loop such that all analyzeable exit leading to deopt are dead. 1045 // It assumes that the latch is the dominant exit for profitability and that 1046 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1047 // semantics of widenable expressions for legality. (i.e. being able to fall 1048 // down the widenable path spuriously allows us to ignore exit order, 1049 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1050 // which restrict the applicability of the non-WC based version of this 1051 // transform in IndVarSimplify.) 1052 // 1053 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1054 // imply flags on the expression being hoisted and inserting new uses (flags 1055 // are only correct for current uses). The result is that we may be 1056 // inserting a branch on the value which can be either poison or undef. In 1057 // this case, the branch can legally go either way; we just need to avoid 1058 // introducing UB. This is achieved through the use of the freeze 1059 // instruction. 1060 1061 SmallVector<BasicBlock *, 16> ExitingBlocks; 1062 L->getExitingBlocks(ExitingBlocks); 1063 1064 if (ExitingBlocks.empty()) 1065 return false; // Nothing to do. 1066 1067 auto *Latch = L->getLoopLatch(); 1068 if (!Latch) 1069 return false; 1070 1071 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1072 if (!WidenableBR) 1073 return false; 1074 1075 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1076 if (isa<SCEVCouldNotCompute>(LatchEC)) 1077 return false; // profitability - want hot exit in analyzeable set 1078 1079 // At this point, we have found an analyzeable latch, and a widenable 1080 // condition above the loop. If we have a widenable exit within the loop 1081 // (for which we can't compute exit counts), drop the ability to further 1082 // widen so that we gain ability to analyze it's exit count and perform this 1083 // transform. TODO: It'd be nice to know for sure the exit became 1084 // analyzeable after dropping widenability. 1085 bool ChangedLoop = false; 1086 1087 for (auto *ExitingBB : ExitingBlocks) { 1088 if (LI->getLoopFor(ExitingBB) != L) 1089 continue; 1090 1091 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1092 if (!BI) 1093 continue; 1094 1095 Use *Cond, *WC; 1096 BasicBlock *IfTrueBB, *IfFalseBB; 1097 if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) && 1098 L->contains(IfTrueBB)) { 1099 WC->set(ConstantInt::getTrue(IfTrueBB->getContext())); 1100 ChangedLoop = true; 1101 } 1102 } 1103 if (ChangedLoop) 1104 SE->forgetLoop(L); 1105 1106 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1107 // important for profitability. We may have a loop which hasn't been fully 1108 // canonicalized just yet. If the exit we chose to widen is provably never 1109 // taken, we want the widened form to *also* be provably never taken. We 1110 // can't guarantee this as a current unanalyzeable exit may later become 1111 // analyzeable, but we can at least avoid the obvious cases. 1112 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1113 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1114 !SE->isLoopInvariant(MinEC, L) || 1115 !isSafeToExpandAt(MinEC, WidenableBR, *SE)) 1116 return ChangedLoop; 1117 1118 // Subtlety: We need to avoid inserting additional uses of the WC. We know 1119 // that it can only have one transitive use at the moment, and thus moving 1120 // that use to just before the branch and inserting code before it and then 1121 // modifying the operand is legal. 1122 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1123 // Here we unconditionally modify the IR, so after this point we should return 1124 // only `true`! 1125 IP->moveBefore(WidenableBR); 1126 if (MSSAU) 1127 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP)) 1128 MSSAU->moveToPlace(MUD, WidenableBR->getParent(), 1129 MemorySSA::BeforeTerminator); 1130 Rewriter.setInsertPoint(IP); 1131 IRBuilder<> B(IP); 1132 1133 bool InvalidateLoop = false; 1134 Value *MinECV = nullptr; // lazily generated if needed 1135 for (BasicBlock *ExitingBB : ExitingBlocks) { 1136 // If our exiting block exits multiple loops, we can only rewrite the 1137 // innermost one. Otherwise, we're changing how many times the innermost 1138 // loop runs before it exits. 1139 if (LI->getLoopFor(ExitingBB) != L) 1140 continue; 1141 1142 // Can't rewrite non-branch yet. 1143 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1144 if (!BI) 1145 continue; 1146 1147 // If already constant, nothing to do. 1148 if (isa<Constant>(BI->getCondition())) 1149 continue; 1150 1151 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1152 if (isa<SCEVCouldNotCompute>(ExitCount) || 1153 ExitCount->getType()->isPointerTy() || 1154 !isSafeToExpandAt(ExitCount, WidenableBR, *SE)) 1155 continue; 1156 1157 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1158 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1159 if (!ExitBB->getPostdominatingDeoptimizeCall()) 1160 continue; 1161 1162 /// Here we can be fairly sure that executing this exit will most likely 1163 /// lead to executing llvm.experimental.deoptimize. 1164 /// This is a profitability heuristic, not a legality constraint. 1165 1166 // If we found a widenable exit condition, do two things: 1167 // 1) fold the widened exit test into the widenable condition 1168 // 2) fold the branch to untaken - avoids infinite looping 1169 1170 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1171 if (!MinECV) 1172 MinECV = Rewriter.expandCodeFor(MinEC); 1173 Value *RHS = MinECV; 1174 if (ECV->getType() != RHS->getType()) { 1175 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1176 ECV = B.CreateZExt(ECV, WiderTy); 1177 RHS = B.CreateZExt(RHS, WiderTy); 1178 } 1179 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1180 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1181 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1182 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1183 // context. 1184 NewCond = B.CreateFreeze(NewCond); 1185 1186 widenWidenableBranch(WidenableBR, NewCond); 1187 1188 Value *OldCond = BI->getCondition(); 1189 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1190 InvalidateLoop = true; 1191 } 1192 1193 if (InvalidateLoop) 1194 // We just mutated a bunch of loop exits changing there exit counts 1195 // widely. We need to force recomputation of the exit counts given these 1196 // changes. Note that all of the inserted exits are never taken, and 1197 // should be removed next time the CFG is modified. 1198 SE->forgetLoop(L); 1199 1200 // Always return `true` since we have moved the WidenableBR's condition. 1201 return true; 1202 } 1203 1204 bool LoopPredication::runOnLoop(Loop *Loop) { 1205 L = Loop; 1206 1207 LLVM_DEBUG(dbgs() << "Analyzing "); 1208 LLVM_DEBUG(L->dump()); 1209 1210 Module *M = L->getHeader()->getModule(); 1211 1212 // There is nothing to do if the module doesn't use guards 1213 auto *GuardDecl = 1214 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1215 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1216 auto *WCDecl = M->getFunction( 1217 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1218 bool HasWidenableConditions = 1219 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1220 if (!HasIntrinsicGuards && !HasWidenableConditions) 1221 return false; 1222 1223 DL = &M->getDataLayout(); 1224 1225 Preheader = L->getLoopPreheader(); 1226 if (!Preheader) 1227 return false; 1228 1229 auto LatchCheckOpt = parseLoopLatchICmp(); 1230 if (!LatchCheckOpt) 1231 return false; 1232 LatchCheck = *LatchCheckOpt; 1233 1234 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1235 LLVM_DEBUG(LatchCheck.dump()); 1236 1237 if (!isLoopProfitableToPredicate()) { 1238 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1239 return false; 1240 } 1241 // Collect all the guards into a vector and process later, so as not 1242 // to invalidate the instruction iterator. 1243 SmallVector<IntrinsicInst *, 4> Guards; 1244 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1245 for (const auto BB : L->blocks()) { 1246 for (auto &I : *BB) 1247 if (isGuard(&I)) 1248 Guards.push_back(cast<IntrinsicInst>(&I)); 1249 if (PredicateWidenableBranchGuards && 1250 isGuardAsWidenableBranch(BB->getTerminator())) 1251 GuardsAsWidenableBranches.push_back( 1252 cast<BranchInst>(BB->getTerminator())); 1253 } 1254 1255 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1256 bool Changed = false; 1257 for (auto *Guard : Guards) 1258 Changed |= widenGuardConditions(Guard, Expander); 1259 for (auto *Guard : GuardsAsWidenableBranches) 1260 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1261 Changed |= predicateLoopExits(L, Expander); 1262 1263 if (MSSAU && VerifyMemorySSA) 1264 MSSAU->getMemorySSA()->verifyMemorySSA(); 1265 return Changed; 1266 } 1267