xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 3c09ed006ab35dd8faac03311b14f0857b01949c)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/InitializePasses.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/CommandLine.h"
197 #include "llvm/Support/Debug.h"
198 #include "llvm/Transforms/Scalar.h"
199 #include "llvm/Transforms/Utils/GuardUtils.h"
200 #include "llvm/Transforms/Utils/Local.h"
201 #include "llvm/Transforms/Utils/LoopUtils.h"
202 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
203 #include <optional>
204 
205 #define DEBUG_TYPE "loop-predication"
206 
207 STATISTIC(TotalConsidered, "Number of guards considered");
208 STATISTIC(TotalWidened, "Number of checks widened");
209 
210 using namespace llvm;
211 
212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
213                                         cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
216                                         cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
220                             cl::Hidden, cl::init(false));
221 
222 // This is the scale factor for the latch probability. We use this during
223 // profitability analysis to find other exiting blocks that have a much higher
224 // probability of exiting the loop instead of loop exiting via latch.
225 // This value should be greater than 1 for a sane profitability check.
226 static cl::opt<float> LatchExitProbabilityScale(
227     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228     cl::desc("scale factor for the latch probability. Value should be greater "
229              "than 1. Lower values are ignored"));
230 
231 static cl::opt<bool> PredicateWidenableBranchGuards(
232     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233     cl::desc("Whether or not we should predicate guards "
234              "expressed as widenable branches to deoptimize blocks"),
235     cl::init(true));
236 
237 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
238     "loop-predication-insert-assumes-of-predicated-guards-conditions",
239     cl::Hidden,
240     cl::desc("Whether or not we should insert assumes of conditions of "
241              "predicated guards"),
242     cl::init(true));
243 
244 namespace {
245 /// Represents an induction variable check:
246 ///   icmp Pred, <induction variable>, <loop invariant limit>
247 struct LoopICmp {
248   ICmpInst::Predicate Pred;
249   const SCEVAddRecExpr *IV;
250   const SCEV *Limit;
251   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
252            const SCEV *Limit)
253     : Pred(Pred), IV(IV), Limit(Limit) {}
254   LoopICmp() = default;
255   void dump() {
256     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
257            << ", Limit = " << *Limit << "\n";
258   }
259 };
260 
261 class LoopPredication {
262   AliasAnalysis *AA;
263   DominatorTree *DT;
264   ScalarEvolution *SE;
265   LoopInfo *LI;
266   MemorySSAUpdater *MSSAU;
267 
268   Loop *L;
269   const DataLayout *DL;
270   BasicBlock *Preheader;
271   LoopICmp LatchCheck;
272 
273   bool isSupportedStep(const SCEV* Step);
274   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
275   Optional<LoopICmp> parseLoopLatchICmp();
276 
277   /// Return an insertion point suitable for inserting a safe to speculate
278   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
279   /// trivial result would be the at the User itself, but we try to return a
280   /// loop invariant location if possible.
281   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
282   /// Same as above, *except* that this uses the SCEV definition of invariant
283   /// which is that an expression *can be made* invariant via SCEVExpander.
284   /// Thus, this version is only suitable for finding an insert point to be be
285   /// passed to SCEVExpander!
286   Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
287                             ArrayRef<const SCEV *> Ops);
288 
289   /// Return true if the value is known to produce a single fixed value across
290   /// all iterations on which it executes.  Note that this does not imply
291   /// speculation safety.  That must be established separately.
292   bool isLoopInvariantValue(const SCEV* S);
293 
294   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
295                      ICmpInst::Predicate Pred, const SCEV *LHS,
296                      const SCEV *RHS);
297 
298   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
299                                         Instruction *Guard);
300   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
301                                                         LoopICmp RangeCheck,
302                                                         SCEVExpander &Expander,
303                                                         Instruction *Guard);
304   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
305                                                         LoopICmp RangeCheck,
306                                                         SCEVExpander &Expander,
307                                                         Instruction *Guard);
308   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
309                          SCEVExpander &Expander, Instruction *Guard);
310   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
311   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
312   // If the loop always exits through another block in the loop, we should not
313   // predicate based on the latch check. For example, the latch check can be a
314   // very coarse grained check and there can be more fine grained exit checks
315   // within the loop.
316   bool isLoopProfitableToPredicate();
317 
318   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
319 
320 public:
321   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
322                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
323       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
324   bool runOnLoop(Loop *L);
325 };
326 
327 class LoopPredicationLegacyPass : public LoopPass {
328 public:
329   static char ID;
330   LoopPredicationLegacyPass() : LoopPass(ID) {
331     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
332   }
333 
334   void getAnalysisUsage(AnalysisUsage &AU) const override {
335     AU.addRequired<BranchProbabilityInfoWrapperPass>();
336     getLoopAnalysisUsage(AU);
337     AU.addPreserved<MemorySSAWrapperPass>();
338   }
339 
340   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
341     if (skipLoop(L))
342       return false;
343     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
344     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
345     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
346     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
347     std::unique_ptr<MemorySSAUpdater> MSSAU;
348     if (MSSAWP)
349       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
350     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
351     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
352     return LP.runOnLoop(L);
353   }
354 };
355 
356 char LoopPredicationLegacyPass::ID = 0;
357 } // end namespace
358 
359 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
360                       "Loop predication", false, false)
361 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
362 INITIALIZE_PASS_DEPENDENCY(LoopPass)
363 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
364                     "Loop predication", false, false)
365 
366 Pass *llvm::createLoopPredicationPass() {
367   return new LoopPredicationLegacyPass();
368 }
369 
370 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
371                                            LoopStandardAnalysisResults &AR,
372                                            LPMUpdater &U) {
373   std::unique_ptr<MemorySSAUpdater> MSSAU;
374   if (AR.MSSA)
375     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
376   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
377                      MSSAU ? MSSAU.get() : nullptr);
378   if (!LP.runOnLoop(&L))
379     return PreservedAnalyses::all();
380 
381   auto PA = getLoopPassPreservedAnalyses();
382   if (AR.MSSA)
383     PA.preserve<MemorySSAAnalysis>();
384   return PA;
385 }
386 
387 Optional<LoopICmp>
388 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
389   auto Pred = ICI->getPredicate();
390   auto *LHS = ICI->getOperand(0);
391   auto *RHS = ICI->getOperand(1);
392 
393   const SCEV *LHSS = SE->getSCEV(LHS);
394   if (isa<SCEVCouldNotCompute>(LHSS))
395     return std::nullopt;
396   const SCEV *RHSS = SE->getSCEV(RHS);
397   if (isa<SCEVCouldNotCompute>(RHSS))
398     return std::nullopt;
399 
400   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
401   if (SE->isLoopInvariant(LHSS, L)) {
402     std::swap(LHS, RHS);
403     std::swap(LHSS, RHSS);
404     Pred = ICmpInst::getSwappedPredicate(Pred);
405   }
406 
407   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
408   if (!AR || AR->getLoop() != L)
409     return std::nullopt;
410 
411   return LoopICmp(Pred, AR, RHSS);
412 }
413 
414 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
415                                     Instruction *Guard,
416                                     ICmpInst::Predicate Pred, const SCEV *LHS,
417                                     const SCEV *RHS) {
418   Type *Ty = LHS->getType();
419   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
420 
421   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
422     IRBuilder<> Builder(Guard);
423     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
424       return Builder.getTrue();
425     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
426                                      LHS, RHS))
427       return Builder.getFalse();
428   }
429 
430   Value *LHSV =
431       Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
432   Value *RHSV =
433       Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
434   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
435   return Builder.CreateICmp(Pred, LHSV, RHSV);
436 }
437 
438 // Returns true if its safe to truncate the IV to RangeCheckType.
439 // When the IV type is wider than the range operand type, we can still do loop
440 // predication, by generating SCEVs for the range and latch that are of the
441 // same type. We achieve this by generating a SCEV truncate expression for the
442 // latch IV. This is done iff truncation of the IV is a safe operation,
443 // without loss of information.
444 // Another way to achieve this is by generating a wider type SCEV for the
445 // range check operand, however, this needs a more involved check that
446 // operands do not overflow. This can lead to loss of information when the
447 // range operand is of the form: add i32 %offset, %iv. We need to prove that
448 // sext(x + y) is same as sext(x) + sext(y).
449 // This function returns true if we can safely represent the IV type in
450 // the RangeCheckType without loss of information.
451 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
452                                        ScalarEvolution &SE,
453                                        const LoopICmp LatchCheck,
454                                        Type *RangeCheckType) {
455   if (!EnableIVTruncation)
456     return false;
457   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
458              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
459          "Expected latch check IV type to be larger than range check operand "
460          "type!");
461   // The start and end values of the IV should be known. This is to guarantee
462   // that truncating the wide type will not lose information.
463   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
464   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
465   if (!Limit || !Start)
466     return false;
467   // This check makes sure that the IV does not change sign during loop
468   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
469   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
470   // IV wraps around, and the truncation of the IV would lose the range of
471   // iterations between 2^32 and 2^64.
472   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
473     return false;
474   // The active bits should be less than the bits in the RangeCheckType. This
475   // guarantees that truncating the latch check to RangeCheckType is a safe
476   // operation.
477   auto RangeCheckTypeBitSize =
478       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
479   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
480          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
481 }
482 
483 
484 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
485 // the requested type if safe to do so.  May involve the use of a new IV.
486 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
487                                                       ScalarEvolution &SE,
488                                                       const LoopICmp LatchCheck,
489                                                       Type *RangeCheckType) {
490 
491   auto *LatchType = LatchCheck.IV->getType();
492   if (RangeCheckType == LatchType)
493     return LatchCheck;
494   // For now, bail out if latch type is narrower than range type.
495   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
496       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
497     return std::nullopt;
498   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
499     return std::nullopt;
500   // We can now safely identify the truncated version of the IV and limit for
501   // RangeCheckType.
502   LoopICmp NewLatchCheck;
503   NewLatchCheck.Pred = LatchCheck.Pred;
504   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
505       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
506   if (!NewLatchCheck.IV)
507     return std::nullopt;
508   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
509   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
510                     << "can be represented as range check type:"
511                     << *RangeCheckType << "\n");
512   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
513   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
514   return NewLatchCheck;
515 }
516 
517 bool LoopPredication::isSupportedStep(const SCEV* Step) {
518   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
519 }
520 
521 Instruction *LoopPredication::findInsertPt(Instruction *Use,
522                                            ArrayRef<Value*> Ops) {
523   for (Value *Op : Ops)
524     if (!L->isLoopInvariant(Op))
525       return Use;
526   return Preheader->getTerminator();
527 }
528 
529 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
530                                            Instruction *Use,
531                                            ArrayRef<const SCEV *> Ops) {
532   // Subtlety: SCEV considers things to be invariant if the value produced is
533   // the same across iterations.  This is not the same as being able to
534   // evaluate outside the loop, which is what we actually need here.
535   for (const SCEV *Op : Ops)
536     if (!SE->isLoopInvariant(Op, L) ||
537         !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
538       return Use;
539   return Preheader->getTerminator();
540 }
541 
542 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
543   // Handling expressions which produce invariant results, but *haven't* yet
544   // been removed from the loop serves two important purposes.
545   // 1) Most importantly, it resolves a pass ordering cycle which would
546   // otherwise need us to iteration licm, loop-predication, and either
547   // loop-unswitch or loop-peeling to make progress on examples with lots of
548   // predicable range checks in a row.  (Since, in the general case,  we can't
549   // hoist the length checks until the dominating checks have been discharged
550   // as we can't prove doing so is safe.)
551   // 2) As a nice side effect, this exposes the value of peeling or unswitching
552   // much more obviously in the IR.  Otherwise, the cost modeling for other
553   // transforms would end up needing to duplicate all of this logic to model a
554   // check which becomes predictable based on a modeled peel or unswitch.
555   //
556   // The cost of doing so in the worst case is an extra fill from the stack  in
557   // the loop to materialize the loop invariant test value instead of checking
558   // against the original IV which is presumable in a register inside the loop.
559   // Such cases are presumably rare, and hint at missing oppurtunities for
560   // other passes.
561 
562   if (SE->isLoopInvariant(S, L))
563     // Note: This the SCEV variant, so the original Value* may be within the
564     // loop even though SCEV has proven it is loop invariant.
565     return true;
566 
567   // Handle a particular important case which SCEV doesn't yet know about which
568   // shows up in range checks on arrays with immutable lengths.
569   // TODO: This should be sunk inside SCEV.
570   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
571     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
572       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
573         if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
574             LI->hasMetadata(LLVMContext::MD_invariant_load))
575           return true;
576   return false;
577 }
578 
579 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
580     LoopICmp LatchCheck, LoopICmp RangeCheck,
581     SCEVExpander &Expander, Instruction *Guard) {
582   auto *Ty = RangeCheck.IV->getType();
583   // Generate the widened condition for the forward loop:
584   //   guardStart u< guardLimit &&
585   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
586   // where <pred> depends on the latch condition predicate. See the file
587   // header comment for the reasoning.
588   // guardLimit - guardStart + latchStart - 1
589   const SCEV *GuardStart = RangeCheck.IV->getStart();
590   const SCEV *GuardLimit = RangeCheck.Limit;
591   const SCEV *LatchStart = LatchCheck.IV->getStart();
592   const SCEV *LatchLimit = LatchCheck.Limit;
593   // Subtlety: We need all the values to be *invariant* across all iterations,
594   // but we only need to check expansion safety for those which *aren't*
595   // already guaranteed to dominate the guard.
596   if (!isLoopInvariantValue(GuardStart) ||
597       !isLoopInvariantValue(GuardLimit) ||
598       !isLoopInvariantValue(LatchStart) ||
599       !isLoopInvariantValue(LatchLimit)) {
600     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
601     return std::nullopt;
602   }
603   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
604       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
605     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
606     return std::nullopt;
607   }
608 
609   // guardLimit - guardStart + latchStart - 1
610   const SCEV *RHS =
611       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
612                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
613   auto LimitCheckPred =
614       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
615 
616   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
617   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
618   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
619 
620   auto *LimitCheck =
621       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
622   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
623                                           GuardStart, GuardLimit);
624   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
625   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
626 }
627 
628 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
629     LoopICmp LatchCheck, LoopICmp RangeCheck,
630     SCEVExpander &Expander, Instruction *Guard) {
631   auto *Ty = RangeCheck.IV->getType();
632   const SCEV *GuardStart = RangeCheck.IV->getStart();
633   const SCEV *GuardLimit = RangeCheck.Limit;
634   const SCEV *LatchStart = LatchCheck.IV->getStart();
635   const SCEV *LatchLimit = LatchCheck.Limit;
636   // Subtlety: We need all the values to be *invariant* across all iterations,
637   // but we only need to check expansion safety for those which *aren't*
638   // already guaranteed to dominate the guard.
639   if (!isLoopInvariantValue(GuardStart) ||
640       !isLoopInvariantValue(GuardLimit) ||
641       !isLoopInvariantValue(LatchStart) ||
642       !isLoopInvariantValue(LatchLimit)) {
643     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
644     return std::nullopt;
645   }
646   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
647       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
648     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
649     return std::nullopt;
650   }
651   // The decrement of the latch check IV should be the same as the
652   // rangeCheckIV.
653   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
654   if (RangeCheck.IV != PostDecLatchCheckIV) {
655     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
656                       << *PostDecLatchCheckIV
657                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
658     return std::nullopt;
659   }
660 
661   // Generate the widened condition for CountDownLoop:
662   // guardStart u< guardLimit &&
663   // latchLimit <pred> 1.
664   // See the header comment for reasoning of the checks.
665   auto LimitCheckPred =
666       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
667   auto *FirstIterationCheck = expandCheck(Expander, Guard,
668                                           ICmpInst::ICMP_ULT,
669                                           GuardStart, GuardLimit);
670   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
671                                  SE->getOne(Ty));
672   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
673   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
674 }
675 
676 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
677                                LoopICmp& RC) {
678   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
679   // ULT/UGE form for ease of handling by our caller.
680   if (ICmpInst::isEquality(RC.Pred) &&
681       RC.IV->getStepRecurrence(*SE)->isOne() &&
682       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
683     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
684       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
685 }
686 
687 /// If ICI can be widened to a loop invariant condition emits the loop
688 /// invariant condition in the loop preheader and return it, otherwise
689 /// returns std::nullopt.
690 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
691                                                        SCEVExpander &Expander,
692                                                        Instruction *Guard) {
693   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
694   LLVM_DEBUG(ICI->dump());
695 
696   // parseLoopStructure guarantees that the latch condition is:
697   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
698   // We are looking for the range checks of the form:
699   //   i u< guardLimit
700   auto RangeCheck = parseLoopICmp(ICI);
701   if (!RangeCheck) {
702     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
703     return std::nullopt;
704   }
705   LLVM_DEBUG(dbgs() << "Guard check:\n");
706   LLVM_DEBUG(RangeCheck->dump());
707   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
708     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
709                       << RangeCheck->Pred << ")!\n");
710     return std::nullopt;
711   }
712   auto *RangeCheckIV = RangeCheck->IV;
713   if (!RangeCheckIV->isAffine()) {
714     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
715     return std::nullopt;
716   }
717   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
718   // We cannot just compare with latch IV step because the latch and range IVs
719   // may have different types.
720   if (!isSupportedStep(Step)) {
721     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
722     return std::nullopt;
723   }
724   auto *Ty = RangeCheckIV->getType();
725   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
726   if (!CurrLatchCheckOpt) {
727     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
728                          "corresponding to range type: "
729                       << *Ty << "\n");
730     return std::nullopt;
731   }
732 
733   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
734   // At this point, the range and latch step should have the same type, but need
735   // not have the same value (we support both 1 and -1 steps).
736   assert(Step->getType() ==
737              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
738          "Range and latch steps should be of same type!");
739   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
740     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
741     return std::nullopt;
742   }
743 
744   if (Step->isOne())
745     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
746                                                Expander, Guard);
747   else {
748     assert(Step->isAllOnesValue() && "Step should be -1!");
749     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
750                                                Expander, Guard);
751   }
752 }
753 
754 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
755                                         Value *Condition,
756                                         SCEVExpander &Expander,
757                                         Instruction *Guard) {
758   unsigned NumWidened = 0;
759   // The guard condition is expected to be in form of:
760   //   cond1 && cond2 && cond3 ...
761   // Iterate over subconditions looking for icmp conditions which can be
762   // widened across loop iterations. Widening these conditions remember the
763   // resulting list of subconditions in Checks vector.
764   SmallVector<Value *, 4> Worklist(1, Condition);
765   SmallPtrSet<Value *, 4> Visited;
766   Visited.insert(Condition);
767   Value *WideableCond = nullptr;
768   do {
769     Value *Condition = Worklist.pop_back_val();
770     Value *LHS, *RHS;
771     using namespace llvm::PatternMatch;
772     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
773       if (Visited.insert(LHS).second)
774         Worklist.push_back(LHS);
775       if (Visited.insert(RHS).second)
776         Worklist.push_back(RHS);
777       continue;
778     }
779 
780     if (match(Condition,
781               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
782       // Pick any, we don't care which
783       WideableCond = Condition;
784       continue;
785     }
786 
787     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
788       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
789                                                    Guard)) {
790         Checks.push_back(*NewRangeCheck);
791         NumWidened++;
792         continue;
793       }
794     }
795 
796     // Save the condition as is if we can't widen it
797     Checks.push_back(Condition);
798   } while (!Worklist.empty());
799   // At the moment, our matching logic for wideable conditions implicitly
800   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
801   // Note that if there were multiple calls to wideable condition in the
802   // traversal, we only need to keep one, and which one is arbitrary.
803   if (WideableCond)
804     Checks.push_back(WideableCond);
805   return NumWidened;
806 }
807 
808 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
809                                            SCEVExpander &Expander) {
810   LLVM_DEBUG(dbgs() << "Processing guard:\n");
811   LLVM_DEBUG(Guard->dump());
812 
813   TotalConsidered++;
814   SmallVector<Value *, 4> Checks;
815   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
816                                       Guard);
817   if (NumWidened == 0)
818     return false;
819 
820   TotalWidened += NumWidened;
821 
822   // Emit the new guard condition
823   IRBuilder<> Builder(findInsertPt(Guard, Checks));
824   Value *AllChecks = Builder.CreateAnd(Checks);
825   auto *OldCond = Guard->getOperand(0);
826   Guard->setOperand(0, AllChecks);
827   if (InsertAssumesOfPredicatedGuardsConditions) {
828     Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
829     Builder.CreateAssumption(OldCond);
830   }
831   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
832 
833   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
834   return true;
835 }
836 
837 bool LoopPredication::widenWidenableBranchGuardConditions(
838     BranchInst *BI, SCEVExpander &Expander) {
839   assert(isGuardAsWidenableBranch(BI) && "Must be!");
840   LLVM_DEBUG(dbgs() << "Processing guard:\n");
841   LLVM_DEBUG(BI->dump());
842 
843   Value *Cond, *WC;
844   BasicBlock *IfTrueBB, *IfFalseBB;
845   bool Parsed = parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB);
846   assert(Parsed && "Must be able to parse widenable branch");
847   (void)Parsed;
848 
849   TotalConsidered++;
850   SmallVector<Value *, 4> Checks;
851   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
852                                       Expander, BI);
853   if (NumWidened == 0)
854     return false;
855 
856   TotalWidened += NumWidened;
857 
858   // Emit the new guard condition
859   IRBuilder<> Builder(findInsertPt(BI, Checks));
860   Value *AllChecks = Builder.CreateAnd(Checks);
861   auto *OldCond = BI->getCondition();
862   BI->setCondition(AllChecks);
863   if (InsertAssumesOfPredicatedGuardsConditions) {
864     Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
865     Builder.CreateAssumption(Cond);
866   }
867   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
868   assert(isGuardAsWidenableBranch(BI) &&
869          "Stopped being a guard after transform?");
870 
871   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
872   return true;
873 }
874 
875 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
876   using namespace PatternMatch;
877 
878   BasicBlock *LoopLatch = L->getLoopLatch();
879   if (!LoopLatch) {
880     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
881     return std::nullopt;
882   }
883 
884   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
885   if (!BI || !BI->isConditional()) {
886     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
887     return std::nullopt;
888   }
889   BasicBlock *TrueDest = BI->getSuccessor(0);
890   assert(
891       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
892       "One of the latch's destinations must be the header");
893 
894   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
895   if (!ICI) {
896     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
897     return std::nullopt;
898   }
899   auto Result = parseLoopICmp(ICI);
900   if (!Result) {
901     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
902     return std::nullopt;
903   }
904 
905   if (TrueDest != L->getHeader())
906     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
907 
908   // Check affine first, so if it's not we don't try to compute the step
909   // recurrence.
910   if (!Result->IV->isAffine()) {
911     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
912     return std::nullopt;
913   }
914 
915   auto *Step = Result->IV->getStepRecurrence(*SE);
916   if (!isSupportedStep(Step)) {
917     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
918     return std::nullopt;
919   }
920 
921   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
922     if (Step->isOne()) {
923       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
924              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
925     } else {
926       assert(Step->isAllOnesValue() && "Step should be -1!");
927       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
928              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
929     }
930   };
931 
932   normalizePredicate(SE, L, *Result);
933   if (IsUnsupportedPredicate(Step, Result->Pred)) {
934     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
935                       << ")!\n");
936     return std::nullopt;
937   }
938 
939   return Result;
940 }
941 
942 
943 bool LoopPredication::isLoopProfitableToPredicate() {
944   if (SkipProfitabilityChecks)
945     return true;
946 
947   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
948   L->getExitEdges(ExitEdges);
949   // If there is only one exiting edge in the loop, it is always profitable to
950   // predicate the loop.
951   if (ExitEdges.size() == 1)
952     return true;
953 
954   // Calculate the exiting probabilities of all exiting edges from the loop,
955   // starting with the LatchExitProbability.
956   // Heuristic for profitability: If any of the exiting blocks' probability of
957   // exiting the loop is larger than exiting through the latch block, it's not
958   // profitable to predicate the loop.
959   auto *LatchBlock = L->getLoopLatch();
960   assert(LatchBlock && "Should have a single latch at this point!");
961   auto *LatchTerm = LatchBlock->getTerminator();
962   assert(LatchTerm->getNumSuccessors() == 2 &&
963          "expected to be an exiting block with 2 succs!");
964   unsigned LatchBrExitIdx =
965       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
966   // We compute branch probabilities without BPI. We do not rely on BPI since
967   // Loop predication is usually run in an LPM and BPI is only preserved
968   // lossily within loop pass managers, while BPI has an inherent notion of
969   // being complete for an entire function.
970 
971   // If the latch exits into a deoptimize or an unreachable block, do not
972   // predicate on that latch check.
973   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
974   if (isa<UnreachableInst>(LatchTerm) ||
975       LatchExitBlock->getTerminatingDeoptimizeCall())
976     return false;
977 
978   auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) {
979     if (!ProfileData || !ProfileData->getOperand(0))
980       return false;
981     if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0)))
982       if (!MDS->getString().equals("branch_weights"))
983         return false;
984     if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors())
985       return false;
986     return true;
987   };
988   MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof);
989   // Latch terminator has no valid profile data, so nothing to check
990   // profitability on.
991   if (!IsValidProfileData(LatchProfileData, LatchTerm))
992     return true;
993 
994   auto ComputeBranchProbability =
995       [&](const BasicBlock *ExitingBlock,
996           const BasicBlock *ExitBlock) -> BranchProbability {
997     auto *Term = ExitingBlock->getTerminator();
998     MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof);
999     unsigned NumSucc = Term->getNumSuccessors();
1000     if (IsValidProfileData(ProfileData, Term)) {
1001       uint64_t Numerator = 0, Denominator = 0, ProfVal = 0;
1002       for (unsigned i = 0; i < NumSucc; i++) {
1003         ConstantInt *CI =
1004             mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1));
1005         ProfVal = CI->getValue().getZExtValue();
1006         if (Term->getSuccessor(i) == ExitBlock)
1007           Numerator += ProfVal;
1008         Denominator += ProfVal;
1009       }
1010       return BranchProbability::getBranchProbability(Numerator, Denominator);
1011     } else {
1012       assert(LatchBlock != ExitingBlock &&
1013              "Latch term should always have profile data!");
1014       // No profile data, so we choose the weight as 1/num_of_succ(Src)
1015       return BranchProbability::getBranchProbability(1, NumSucc);
1016     }
1017   };
1018 
1019   BranchProbability LatchExitProbability =
1020       ComputeBranchProbability(LatchBlock, LatchExitBlock);
1021 
1022   // Protect against degenerate inputs provided by the user. Providing a value
1023   // less than one, can invert the definition of profitable loop predication.
1024   float ScaleFactor = LatchExitProbabilityScale;
1025   if (ScaleFactor < 1) {
1026     LLVM_DEBUG(
1027         dbgs()
1028         << "Ignored user setting for loop-predication-latch-probability-scale: "
1029         << LatchExitProbabilityScale << "\n");
1030     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1031     ScaleFactor = 1.0;
1032   }
1033   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1034 
1035   for (const auto &ExitEdge : ExitEdges) {
1036     BranchProbability ExitingBlockProbability =
1037         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1038     // Some exiting edge has higher probability than the latch exiting edge.
1039     // No longer profitable to predicate.
1040     if (ExitingBlockProbability > LatchProbabilityThreshold)
1041       return false;
1042   }
1043 
1044   // We have concluded that the most probable way to exit from the
1045   // loop is through the latch (or there's no profile information and all
1046   // exits are equally likely).
1047   return true;
1048 }
1049 
1050 /// If we can (cheaply) find a widenable branch which controls entry into the
1051 /// loop, return it.
1052 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1053   // Walk back through any unconditional executed blocks and see if we can find
1054   // a widenable condition which seems to control execution of this loop.  Note
1055   // that we predict that maythrow calls are likely untaken and thus that it's
1056   // profitable to widen a branch before a maythrow call with a condition
1057   // afterwards even though that may cause the slow path to run in a case where
1058   // it wouldn't have otherwise.
1059   BasicBlock *BB = L->getLoopPreheader();
1060   if (!BB)
1061     return nullptr;
1062   do {
1063     if (BasicBlock *Pred = BB->getSinglePredecessor())
1064       if (BB == Pred->getSingleSuccessor()) {
1065         BB = Pred;
1066         continue;
1067       }
1068     break;
1069   } while (true);
1070 
1071   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1072     auto *Term = Pred->getTerminator();
1073 
1074     Value *Cond, *WC;
1075     BasicBlock *IfTrueBB, *IfFalseBB;
1076     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1077         IfTrueBB == BB)
1078       return cast<BranchInst>(Term);
1079   }
1080   return nullptr;
1081 }
1082 
1083 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1084 /// on the actual exit count.  If there are not at least two analyzeable exits,
1085 /// returns SCEVCouldNotCompute.
1086 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1087                                                        DominatorTree &DT,
1088                                                        Loop *L) {
1089   SmallVector<BasicBlock *, 16> ExitingBlocks;
1090   L->getExitingBlocks(ExitingBlocks);
1091 
1092   SmallVector<const SCEV *, 4> ExitCounts;
1093   for (BasicBlock *ExitingBB : ExitingBlocks) {
1094     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1095     if (isa<SCEVCouldNotCompute>(ExitCount))
1096       continue;
1097     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1098            "We should only have known counts for exiting blocks that "
1099            "dominate latch!");
1100     ExitCounts.push_back(ExitCount);
1101   }
1102   if (ExitCounts.size() < 2)
1103     return SE.getCouldNotCompute();
1104   return SE.getUMinFromMismatchedTypes(ExitCounts);
1105 }
1106 
1107 /// This implements an analogous, but entirely distinct transform from the main
1108 /// loop predication transform.  This one is phrased in terms of using a
1109 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1110 /// following loop.  This is close in spirit to the IndVarSimplify transform
1111 /// of the same name, but is materially different widening loosens legality
1112 /// sharply.
1113 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1114   // The transformation performed here aims to widen a widenable condition
1115   // above the loop such that all analyzeable exit leading to deopt are dead.
1116   // It assumes that the latch is the dominant exit for profitability and that
1117   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1118   // semantics of widenable expressions for legality. (i.e. being able to fall
1119   // down the widenable path spuriously allows us to ignore exit order,
1120   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1121   // which restrict the applicability of the non-WC based version of this
1122   // transform in IndVarSimplify.)
1123   //
1124   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1125   // imply flags on the expression being hoisted and inserting new uses (flags
1126   // are only correct for current uses).  The result is that we may be
1127   // inserting a branch on the value which can be either poison or undef.  In
1128   // this case, the branch can legally go either way; we just need to avoid
1129   // introducing UB.  This is achieved through the use of the freeze
1130   // instruction.
1131 
1132   SmallVector<BasicBlock *, 16> ExitingBlocks;
1133   L->getExitingBlocks(ExitingBlocks);
1134 
1135   if (ExitingBlocks.empty())
1136     return false; // Nothing to do.
1137 
1138   auto *Latch = L->getLoopLatch();
1139   if (!Latch)
1140     return false;
1141 
1142   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1143   if (!WidenableBR)
1144     return false;
1145 
1146   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1147   if (isa<SCEVCouldNotCompute>(LatchEC))
1148     return false; // profitability - want hot exit in analyzeable set
1149 
1150   // At this point, we have found an analyzeable latch, and a widenable
1151   // condition above the loop.  If we have a widenable exit within the loop
1152   // (for which we can't compute exit counts), drop the ability to further
1153   // widen so that we gain ability to analyze it's exit count and perform this
1154   // transform.  TODO: It'd be nice to know for sure the exit became
1155   // analyzeable after dropping widenability.
1156   bool ChangedLoop = false;
1157 
1158   for (auto *ExitingBB : ExitingBlocks) {
1159     if (LI->getLoopFor(ExitingBB) != L)
1160       continue;
1161 
1162     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1163     if (!BI)
1164       continue;
1165 
1166     Use *Cond, *WC;
1167     BasicBlock *IfTrueBB, *IfFalseBB;
1168     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1169         L->contains(IfTrueBB)) {
1170       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1171       ChangedLoop = true;
1172     }
1173   }
1174   if (ChangedLoop)
1175     SE->forgetLoop(L);
1176 
1177   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1178   // important for profitability.  We may have a loop which hasn't been fully
1179   // canonicalized just yet.  If the exit we chose to widen is provably never
1180   // taken, we want the widened form to *also* be provably never taken.  We
1181   // can't guarantee this as a current unanalyzeable exit may later become
1182   // analyzeable, but we can at least avoid the obvious cases.
1183   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1184   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1185       !SE->isLoopInvariant(MinEC, L) ||
1186       !Rewriter.isSafeToExpandAt(MinEC, WidenableBR))
1187     return ChangedLoop;
1188 
1189   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1190   // that it can only have one transitive use at the moment, and thus moving
1191   // that use to just before the branch and inserting code before it and then
1192   // modifying the operand is legal.
1193   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1194   // Here we unconditionally modify the IR, so after this point we should return
1195   // only `true`!
1196   IP->moveBefore(WidenableBR);
1197   if (MSSAU)
1198     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1199        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1200                           MemorySSA::BeforeTerminator);
1201   Rewriter.setInsertPoint(IP);
1202   IRBuilder<> B(IP);
1203 
1204   bool InvalidateLoop = false;
1205   Value *MinECV = nullptr; // lazily generated if needed
1206   for (BasicBlock *ExitingBB : ExitingBlocks) {
1207     // If our exiting block exits multiple loops, we can only rewrite the
1208     // innermost one.  Otherwise, we're changing how many times the innermost
1209     // loop runs before it exits.
1210     if (LI->getLoopFor(ExitingBB) != L)
1211       continue;
1212 
1213     // Can't rewrite non-branch yet.
1214     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1215     if (!BI)
1216       continue;
1217 
1218     // If already constant, nothing to do.
1219     if (isa<Constant>(BI->getCondition()))
1220       continue;
1221 
1222     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1223     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1224         ExitCount->getType()->isPointerTy() ||
1225         !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1226       continue;
1227 
1228     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1229     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1230     if (!ExitBB->getPostdominatingDeoptimizeCall())
1231       continue;
1232 
1233     /// Here we can be fairly sure that executing this exit will most likely
1234     /// lead to executing llvm.experimental.deoptimize.
1235     /// This is a profitability heuristic, not a legality constraint.
1236 
1237     // If we found a widenable exit condition, do two things:
1238     // 1) fold the widened exit test into the widenable condition
1239     // 2) fold the branch to untaken - avoids infinite looping
1240 
1241     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1242     if (!MinECV)
1243       MinECV = Rewriter.expandCodeFor(MinEC);
1244     Value *RHS = MinECV;
1245     if (ECV->getType() != RHS->getType()) {
1246       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1247       ECV = B.CreateZExt(ECV, WiderTy);
1248       RHS = B.CreateZExt(RHS, WiderTy);
1249     }
1250     assert(!Latch || DT->dominates(ExitingBB, Latch));
1251     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1252     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1253     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1254     // context.
1255     NewCond = B.CreateFreeze(NewCond);
1256 
1257     widenWidenableBranch(WidenableBR, NewCond);
1258 
1259     Value *OldCond = BI->getCondition();
1260     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1261     InvalidateLoop = true;
1262   }
1263 
1264   if (InvalidateLoop)
1265     // We just mutated a bunch of loop exits changing there exit counts
1266     // widely.  We need to force recomputation of the exit counts given these
1267     // changes.  Note that all of the inserted exits are never taken, and
1268     // should be removed next time the CFG is modified.
1269     SE->forgetLoop(L);
1270 
1271   // Always return `true` since we have moved the WidenableBR's condition.
1272   return true;
1273 }
1274 
1275 bool LoopPredication::runOnLoop(Loop *Loop) {
1276   L = Loop;
1277 
1278   LLVM_DEBUG(dbgs() << "Analyzing ");
1279   LLVM_DEBUG(L->dump());
1280 
1281   Module *M = L->getHeader()->getModule();
1282 
1283   // There is nothing to do if the module doesn't use guards
1284   auto *GuardDecl =
1285       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1286   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1287   auto *WCDecl = M->getFunction(
1288       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1289   bool HasWidenableConditions =
1290       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1291   if (!HasIntrinsicGuards && !HasWidenableConditions)
1292     return false;
1293 
1294   DL = &M->getDataLayout();
1295 
1296   Preheader = L->getLoopPreheader();
1297   if (!Preheader)
1298     return false;
1299 
1300   auto LatchCheckOpt = parseLoopLatchICmp();
1301   if (!LatchCheckOpt)
1302     return false;
1303   LatchCheck = *LatchCheckOpt;
1304 
1305   LLVM_DEBUG(dbgs() << "Latch check:\n");
1306   LLVM_DEBUG(LatchCheck.dump());
1307 
1308   if (!isLoopProfitableToPredicate()) {
1309     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1310     return false;
1311   }
1312   // Collect all the guards into a vector and process later, so as not
1313   // to invalidate the instruction iterator.
1314   SmallVector<IntrinsicInst *, 4> Guards;
1315   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1316   for (const auto BB : L->blocks()) {
1317     for (auto &I : *BB)
1318       if (isGuard(&I))
1319         Guards.push_back(cast<IntrinsicInst>(&I));
1320     if (PredicateWidenableBranchGuards &&
1321         isGuardAsWidenableBranch(BB->getTerminator()))
1322       GuardsAsWidenableBranches.push_back(
1323           cast<BranchInst>(BB->getTerminator()));
1324   }
1325 
1326   SCEVExpander Expander(*SE, *DL, "loop-predication");
1327   bool Changed = false;
1328   for (auto *Guard : Guards)
1329     Changed |= widenGuardConditions(Guard, Expander);
1330   for (auto *Guard : GuardsAsWidenableBranches)
1331     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1332   Changed |= predicateLoopExits(L, Expander);
1333 
1334   if (MSSAU && VerifyMemorySSA)
1335     MSSAU->getMemorySSA()->verifyMemorySSA();
1336   return Changed;
1337 }
1338