1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/LoopUtils.h" 197 198 #define DEBUG_TYPE "loop-predication" 199 200 STATISTIC(TotalConsidered, "Number of guards considered"); 201 STATISTIC(TotalWidened, "Number of checks widened"); 202 203 using namespace llvm; 204 205 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 206 cl::Hidden, cl::init(true)); 207 208 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 209 cl::Hidden, cl::init(true)); 210 211 static cl::opt<bool> 212 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 213 cl::Hidden, cl::init(false)); 214 215 // This is the scale factor for the latch probability. We use this during 216 // profitability analysis to find other exiting blocks that have a much higher 217 // probability of exiting the loop instead of loop exiting via latch. 218 // This value should be greater than 1 for a sane profitability check. 219 static cl::opt<float> LatchExitProbabilityScale( 220 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 221 cl::desc("scale factor for the latch probability. Value should be greater " 222 "than 1. Lower values are ignored")); 223 224 namespace { 225 class LoopPredication { 226 /// Represents an induction variable check: 227 /// icmp Pred, <induction variable>, <loop invariant limit> 228 struct LoopICmp { 229 ICmpInst::Predicate Pred; 230 const SCEVAddRecExpr *IV; 231 const SCEV *Limit; 232 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 233 const SCEV *Limit) 234 : Pred(Pred), IV(IV), Limit(Limit) {} 235 LoopICmp() {} 236 void dump() { 237 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 238 << ", Limit = " << *Limit << "\n"; 239 } 240 }; 241 242 ScalarEvolution *SE; 243 BranchProbabilityInfo *BPI; 244 245 Loop *L; 246 const DataLayout *DL; 247 BasicBlock *Preheader; 248 LoopICmp LatchCheck; 249 250 bool isSupportedStep(const SCEV* Step); 251 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 252 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 253 ICI->getOperand(1)); 254 } 255 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 256 Value *RHS); 257 258 Optional<LoopICmp> parseLoopLatchICmp(); 259 260 bool CanExpand(const SCEV* S); 261 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 262 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 263 Instruction *InsertAt); 264 265 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 266 IRBuilder<> &Builder); 267 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 268 LoopICmp RangeCheck, 269 SCEVExpander &Expander, 270 IRBuilder<> &Builder); 271 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 272 LoopICmp RangeCheck, 273 SCEVExpander &Expander, 274 IRBuilder<> &Builder); 275 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 276 277 // If the loop always exits through another block in the loop, we should not 278 // predicate based on the latch check. For example, the latch check can be a 279 // very coarse grained check and there can be more fine grained exit checks 280 // within the loop. We identify such unprofitable loops through BPI. 281 bool isLoopProfitableToPredicate(); 282 283 // When the IV type is wider than the range operand type, we can still do loop 284 // predication, by generating SCEVs for the range and latch that are of the 285 // same type. We achieve this by generating a SCEV truncate expression for the 286 // latch IV. This is done iff truncation of the IV is a safe operation, 287 // without loss of information. 288 // Another way to achieve this is by generating a wider type SCEV for the 289 // range check operand, however, this needs a more involved check that 290 // operands do not overflow. This can lead to loss of information when the 291 // range operand is of the form: add i32 %offset, %iv. We need to prove that 292 // sext(x + y) is same as sext(x) + sext(y). 293 // This function returns true if we can safely represent the IV type in 294 // the RangeCheckType without loss of information. 295 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 296 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 297 // so. 298 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 299 300 public: 301 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 302 : SE(SE), BPI(BPI){}; 303 bool runOnLoop(Loop *L); 304 }; 305 306 class LoopPredicationLegacyPass : public LoopPass { 307 public: 308 static char ID; 309 LoopPredicationLegacyPass() : LoopPass(ID) { 310 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 311 } 312 313 void getAnalysisUsage(AnalysisUsage &AU) const override { 314 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 315 getLoopAnalysisUsage(AU); 316 } 317 318 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 319 if (skipLoop(L)) 320 return false; 321 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 322 BranchProbabilityInfo &BPI = 323 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 324 LoopPredication LP(SE, &BPI); 325 return LP.runOnLoop(L); 326 } 327 }; 328 329 char LoopPredicationLegacyPass::ID = 0; 330 } // end namespace llvm 331 332 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 333 "Loop predication", false, false) 334 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 335 INITIALIZE_PASS_DEPENDENCY(LoopPass) 336 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 337 "Loop predication", false, false) 338 339 Pass *llvm::createLoopPredicationPass() { 340 return new LoopPredicationLegacyPass(); 341 } 342 343 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 344 LoopStandardAnalysisResults &AR, 345 LPMUpdater &U) { 346 const auto &FAM = 347 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 348 Function *F = L.getHeader()->getParent(); 349 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 350 LoopPredication LP(&AR.SE, BPI); 351 if (!LP.runOnLoop(&L)) 352 return PreservedAnalyses::all(); 353 354 return getLoopPassPreservedAnalyses(); 355 } 356 357 Optional<LoopPredication::LoopICmp> 358 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 359 Value *RHS) { 360 const SCEV *LHSS = SE->getSCEV(LHS); 361 if (isa<SCEVCouldNotCompute>(LHSS)) 362 return None; 363 const SCEV *RHSS = SE->getSCEV(RHS); 364 if (isa<SCEVCouldNotCompute>(RHSS)) 365 return None; 366 367 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 368 if (SE->isLoopInvariant(LHSS, L)) { 369 std::swap(LHS, RHS); 370 std::swap(LHSS, RHSS); 371 Pred = ICmpInst::getSwappedPredicate(Pred); 372 } 373 374 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 375 if (!AR || AR->getLoop() != L) 376 return None; 377 378 return LoopICmp(Pred, AR, RHSS); 379 } 380 381 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 382 IRBuilder<> &Builder, 383 ICmpInst::Predicate Pred, const SCEV *LHS, 384 const SCEV *RHS, Instruction *InsertAt) { 385 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 386 387 Type *Ty = LHS->getType(); 388 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 389 390 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 391 return Builder.getTrue(); 392 393 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 394 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 395 return Builder.CreateICmp(Pred, LHSV, RHSV); 396 } 397 398 Optional<LoopPredication::LoopICmp> 399 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 400 401 auto *LatchType = LatchCheck.IV->getType(); 402 if (RangeCheckType == LatchType) 403 return LatchCheck; 404 // For now, bail out if latch type is narrower than range type. 405 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 406 return None; 407 if (!isSafeToTruncateWideIVType(RangeCheckType)) 408 return None; 409 // We can now safely identify the truncated version of the IV and limit for 410 // RangeCheckType. 411 LoopICmp NewLatchCheck; 412 NewLatchCheck.Pred = LatchCheck.Pred; 413 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 414 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 415 if (!NewLatchCheck.IV) 416 return None; 417 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 418 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 419 << "can be represented as range check type:" 420 << *RangeCheckType << "\n"); 421 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 422 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 423 return NewLatchCheck; 424 } 425 426 bool LoopPredication::isSupportedStep(const SCEV* Step) { 427 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 428 } 429 430 bool LoopPredication::CanExpand(const SCEV* S) { 431 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 432 } 433 434 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 435 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 436 SCEVExpander &Expander, IRBuilder<> &Builder) { 437 auto *Ty = RangeCheck.IV->getType(); 438 // Generate the widened condition for the forward loop: 439 // guardStart u< guardLimit && 440 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 441 // where <pred> depends on the latch condition predicate. See the file 442 // header comment for the reasoning. 443 // guardLimit - guardStart + latchStart - 1 444 const SCEV *GuardStart = RangeCheck.IV->getStart(); 445 const SCEV *GuardLimit = RangeCheck.Limit; 446 const SCEV *LatchStart = LatchCheck.IV->getStart(); 447 const SCEV *LatchLimit = LatchCheck.Limit; 448 449 // guardLimit - guardStart + latchStart - 1 450 const SCEV *RHS = 451 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 452 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 453 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 454 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 455 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 456 return None; 457 } 458 auto LimitCheckPred = 459 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 460 461 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 462 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 463 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 464 465 Instruction *InsertAt = Preheader->getTerminator(); 466 auto *LimitCheck = 467 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 468 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 469 GuardStart, GuardLimit, InsertAt); 470 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 471 } 472 473 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 474 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 475 SCEVExpander &Expander, IRBuilder<> &Builder) { 476 auto *Ty = RangeCheck.IV->getType(); 477 const SCEV *GuardStart = RangeCheck.IV->getStart(); 478 const SCEV *GuardLimit = RangeCheck.Limit; 479 const SCEV *LatchLimit = LatchCheck.Limit; 480 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 481 !CanExpand(LatchLimit)) { 482 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 483 return None; 484 } 485 // The decrement of the latch check IV should be the same as the 486 // rangeCheckIV. 487 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 488 if (RangeCheck.IV != PostDecLatchCheckIV) { 489 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 490 << *PostDecLatchCheckIV 491 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 492 return None; 493 } 494 495 // Generate the widened condition for CountDownLoop: 496 // guardStart u< guardLimit && 497 // latchLimit <pred> 1. 498 // See the header comment for reasoning of the checks. 499 Instruction *InsertAt = Preheader->getTerminator(); 500 auto LimitCheckPred = 501 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 502 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 503 GuardStart, GuardLimit, InsertAt); 504 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 505 SE->getOne(Ty), InsertAt); 506 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 507 } 508 509 /// If ICI can be widened to a loop invariant condition emits the loop 510 /// invariant condition in the loop preheader and return it, otherwise 511 /// returns None. 512 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 513 SCEVExpander &Expander, 514 IRBuilder<> &Builder) { 515 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 516 LLVM_DEBUG(ICI->dump()); 517 518 // parseLoopStructure guarantees that the latch condition is: 519 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 520 // We are looking for the range checks of the form: 521 // i u< guardLimit 522 auto RangeCheck = parseLoopICmp(ICI); 523 if (!RangeCheck) { 524 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 525 return None; 526 } 527 LLVM_DEBUG(dbgs() << "Guard check:\n"); 528 LLVM_DEBUG(RangeCheck->dump()); 529 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 530 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 531 << RangeCheck->Pred << ")!\n"); 532 return None; 533 } 534 auto *RangeCheckIV = RangeCheck->IV; 535 if (!RangeCheckIV->isAffine()) { 536 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 537 return None; 538 } 539 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 540 // We cannot just compare with latch IV step because the latch and range IVs 541 // may have different types. 542 if (!isSupportedStep(Step)) { 543 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 544 return None; 545 } 546 auto *Ty = RangeCheckIV->getType(); 547 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 548 if (!CurrLatchCheckOpt) { 549 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 550 "corresponding to range type: " 551 << *Ty << "\n"); 552 return None; 553 } 554 555 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 556 // At this point, the range and latch step should have the same type, but need 557 // not have the same value (we support both 1 and -1 steps). 558 assert(Step->getType() == 559 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 560 "Range and latch steps should be of same type!"); 561 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 562 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 563 return None; 564 } 565 566 if (Step->isOne()) 567 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 568 Expander, Builder); 569 else { 570 assert(Step->isAllOnesValue() && "Step should be -1!"); 571 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 572 Expander, Builder); 573 } 574 } 575 576 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 577 SCEVExpander &Expander) { 578 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 579 LLVM_DEBUG(Guard->dump()); 580 581 TotalConsidered++; 582 583 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 584 585 // The guard condition is expected to be in form of: 586 // cond1 && cond2 && cond3 ... 587 // Iterate over subconditions looking for icmp conditions which can be 588 // widened across loop iterations. Widening these conditions remember the 589 // resulting list of subconditions in Checks vector. 590 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 591 SmallPtrSet<Value *, 4> Visited; 592 593 SmallVector<Value *, 4> Checks; 594 595 unsigned NumWidened = 0; 596 do { 597 Value *Condition = Worklist.pop_back_val(); 598 if (!Visited.insert(Condition).second) 599 continue; 600 601 Value *LHS, *RHS; 602 using namespace llvm::PatternMatch; 603 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 604 Worklist.push_back(LHS); 605 Worklist.push_back(RHS); 606 continue; 607 } 608 609 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 610 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 611 Checks.push_back(NewRangeCheck.getValue()); 612 NumWidened++; 613 continue; 614 } 615 } 616 617 // Save the condition as is if we can't widen it 618 Checks.push_back(Condition); 619 } while (Worklist.size() != 0); 620 621 if (NumWidened == 0) 622 return false; 623 624 TotalWidened += NumWidened; 625 626 // Emit the new guard condition 627 Builder.SetInsertPoint(Guard); 628 Value *LastCheck = nullptr; 629 for (auto *Check : Checks) 630 if (!LastCheck) 631 LastCheck = Check; 632 else 633 LastCheck = Builder.CreateAnd(LastCheck, Check); 634 Guard->setOperand(0, LastCheck); 635 636 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 637 return true; 638 } 639 640 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 641 using namespace PatternMatch; 642 643 BasicBlock *LoopLatch = L->getLoopLatch(); 644 if (!LoopLatch) { 645 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 646 return None; 647 } 648 649 ICmpInst::Predicate Pred; 650 Value *LHS, *RHS; 651 BasicBlock *TrueDest, *FalseDest; 652 653 if (!match(LoopLatch->getTerminator(), 654 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 655 FalseDest))) { 656 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 657 return None; 658 } 659 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 660 "One of the latch's destinations must be the header"); 661 if (TrueDest != L->getHeader()) 662 Pred = ICmpInst::getInversePredicate(Pred); 663 664 auto Result = parseLoopICmp(Pred, LHS, RHS); 665 if (!Result) { 666 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 667 return None; 668 } 669 670 // Check affine first, so if it's not we don't try to compute the step 671 // recurrence. 672 if (!Result->IV->isAffine()) { 673 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 674 return None; 675 } 676 677 auto *Step = Result->IV->getStepRecurrence(*SE); 678 if (!isSupportedStep(Step)) { 679 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 680 return None; 681 } 682 683 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 684 if (Step->isOne()) { 685 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 686 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 687 } else { 688 assert(Step->isAllOnesValue() && "Step should be -1!"); 689 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 690 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 691 } 692 }; 693 694 if (IsUnsupportedPredicate(Step, Result->Pred)) { 695 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 696 << ")!\n"); 697 return None; 698 } 699 return Result; 700 } 701 702 // Returns true if its safe to truncate the IV to RangeCheckType. 703 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 704 if (!EnableIVTruncation) 705 return false; 706 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 707 DL->getTypeSizeInBits(RangeCheckType) && 708 "Expected latch check IV type to be larger than range check operand " 709 "type!"); 710 // The start and end values of the IV should be known. This is to guarantee 711 // that truncating the wide type will not lose information. 712 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 713 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 714 if (!Limit || !Start) 715 return false; 716 // This check makes sure that the IV does not change sign during loop 717 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 718 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 719 // IV wraps around, and the truncation of the IV would lose the range of 720 // iterations between 2^32 and 2^64. 721 bool Increasing; 722 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 723 return false; 724 // The active bits should be less than the bits in the RangeCheckType. This 725 // guarantees that truncating the latch check to RangeCheckType is a safe 726 // operation. 727 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 728 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 729 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 730 } 731 732 bool LoopPredication::isLoopProfitableToPredicate() { 733 if (SkipProfitabilityChecks || !BPI) 734 return true; 735 736 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 737 L->getExitEdges(ExitEdges); 738 // If there is only one exiting edge in the loop, it is always profitable to 739 // predicate the loop. 740 if (ExitEdges.size() == 1) 741 return true; 742 743 // Calculate the exiting probabilities of all exiting edges from the loop, 744 // starting with the LatchExitProbability. 745 // Heuristic for profitability: If any of the exiting blocks' probability of 746 // exiting the loop is larger than exiting through the latch block, it's not 747 // profitable to predicate the loop. 748 auto *LatchBlock = L->getLoopLatch(); 749 assert(LatchBlock && "Should have a single latch at this point!"); 750 auto *LatchTerm = LatchBlock->getTerminator(); 751 assert(LatchTerm->getNumSuccessors() == 2 && 752 "expected to be an exiting block with 2 succs!"); 753 unsigned LatchBrExitIdx = 754 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 755 BranchProbability LatchExitProbability = 756 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 757 758 // Protect against degenerate inputs provided by the user. Providing a value 759 // less than one, can invert the definition of profitable loop predication. 760 float ScaleFactor = LatchExitProbabilityScale; 761 if (ScaleFactor < 1) { 762 LLVM_DEBUG( 763 dbgs() 764 << "Ignored user setting for loop-predication-latch-probability-scale: " 765 << LatchExitProbabilityScale << "\n"); 766 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 767 ScaleFactor = 1.0; 768 } 769 const auto LatchProbabilityThreshold = 770 LatchExitProbability * ScaleFactor; 771 772 for (const auto &ExitEdge : ExitEdges) { 773 BranchProbability ExitingBlockProbability = 774 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 775 // Some exiting edge has higher probability than the latch exiting edge. 776 // No longer profitable to predicate. 777 if (ExitingBlockProbability > LatchProbabilityThreshold) 778 return false; 779 } 780 // Using BPI, we have concluded that the most probable way to exit from the 781 // loop is through the latch (or there's no profile information and all 782 // exits are equally likely). 783 return true; 784 } 785 786 bool LoopPredication::runOnLoop(Loop *Loop) { 787 L = Loop; 788 789 LLVM_DEBUG(dbgs() << "Analyzing "); 790 LLVM_DEBUG(L->dump()); 791 792 Module *M = L->getHeader()->getModule(); 793 794 // There is nothing to do if the module doesn't use guards 795 auto *GuardDecl = 796 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 797 if (!GuardDecl || GuardDecl->use_empty()) 798 return false; 799 800 DL = &M->getDataLayout(); 801 802 Preheader = L->getLoopPreheader(); 803 if (!Preheader) 804 return false; 805 806 auto LatchCheckOpt = parseLoopLatchICmp(); 807 if (!LatchCheckOpt) 808 return false; 809 LatchCheck = *LatchCheckOpt; 810 811 LLVM_DEBUG(dbgs() << "Latch check:\n"); 812 LLVM_DEBUG(LatchCheck.dump()); 813 814 if (!isLoopProfitableToPredicate()) { 815 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 816 return false; 817 } 818 // Collect all the guards into a vector and process later, so as not 819 // to invalidate the instruction iterator. 820 SmallVector<IntrinsicInst *, 4> Guards; 821 for (const auto BB : L->blocks()) 822 for (auto &I : *BB) 823 if (isGuard(&I)) 824 Guards.push_back(cast<IntrinsicInst>(&I)); 825 826 if (Guards.empty()) 827 return false; 828 829 SCEVExpander Expander(*SE, *DL, "loop-predication"); 830 831 bool Changed = false; 832 for (auto *Guard : Guards) 833 Changed |= widenGuardConditions(Guard, Expander); 834 835 return Changed; 836 } 837