1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // When S = 1 (i.e. forward iterating loop), the transformation is supported 102 // when: 103 // * The loop has a single latch with the condition of the form: 104 // B(X) = latchStart + X <pred> latchLimit, 105 // where <pred> is u<, u<=, s<, or s<=. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 156 // when: 157 // * The loop has a single latch with the condition of the form: 158 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 159 // * The guard condition is of the form 160 // G(X) = X - 1 u< guardLimit 161 // 162 // For the ugt latch comparison case M is: 163 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 164 // 165 // The only way the antecedent can be true and the consequent can be false is if 166 // X == 1. 167 // If X == 1 then the second half of the antecedent is 168 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 169 // 170 // So the widened condition is: 171 // guardStart u< guardLimit && latchLimit u>= 1. 172 // Similarly for sgt condition the widened condition is: 173 // guardStart u< guardLimit && latchLimit s>= 1. 174 // For uge condition the widened condition is: 175 // guardStart u< guardLimit && latchLimit u> 1. 176 // For sge condition the widened condition is: 177 // guardStart u< guardLimit && latchLimit s> 1. 178 //===----------------------------------------------------------------------===// 179 180 #include "llvm/Transforms/Scalar/LoopPredication.h" 181 #include "llvm/ADT/Statistic.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/ScalarEvolution.h" 187 #include "llvm/Analysis/ScalarEvolutionExpander.h" 188 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 189 #include "llvm/IR/Function.h" 190 #include "llvm/IR/GlobalValue.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/Pass.h" 195 #include "llvm/Support/Debug.h" 196 #include "llvm/Transforms/Scalar.h" 197 #include "llvm/Transforms/Utils/LoopUtils.h" 198 199 #define DEBUG_TYPE "loop-predication" 200 201 STATISTIC(TotalConsidered, "Number of guards considered"); 202 STATISTIC(TotalWidened, "Number of checks widened"); 203 204 using namespace llvm; 205 206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> 213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 214 cl::Hidden, cl::init(false)); 215 216 // This is the scale factor for the latch probability. We use this during 217 // profitability analysis to find other exiting blocks that have a much higher 218 // probability of exiting the loop instead of loop exiting via latch. 219 // This value should be greater than 1 for a sane profitability check. 220 static cl::opt<float> LatchExitProbabilityScale( 221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 222 cl::desc("scale factor for the latch probability. Value should be greater " 223 "than 1. Lower values are ignored")); 224 225 namespace { 226 class LoopPredication { 227 /// Represents an induction variable check: 228 /// icmp Pred, <induction variable>, <loop invariant limit> 229 struct LoopICmp { 230 ICmpInst::Predicate Pred; 231 const SCEVAddRecExpr *IV; 232 const SCEV *Limit; 233 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 234 const SCEV *Limit) 235 : Pred(Pred), IV(IV), Limit(Limit) {} 236 LoopICmp() {} 237 void dump() { 238 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 239 << ", Limit = " << *Limit << "\n"; 240 } 241 }; 242 243 ScalarEvolution *SE; 244 BranchProbabilityInfo *BPI; 245 246 Loop *L; 247 const DataLayout *DL; 248 BasicBlock *Preheader; 249 LoopICmp LatchCheck; 250 251 bool isSupportedStep(const SCEV* Step); 252 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 253 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 254 ICI->getOperand(1)); 255 } 256 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 257 Value *RHS); 258 259 Optional<LoopICmp> parseLoopLatchICmp(); 260 261 bool CanExpand(const SCEV* S); 262 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 263 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 264 Instruction *InsertAt); 265 266 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 267 IRBuilder<> &Builder); 268 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 269 LoopICmp RangeCheck, 270 SCEVExpander &Expander, 271 IRBuilder<> &Builder); 272 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 273 LoopICmp RangeCheck, 274 SCEVExpander &Expander, 275 IRBuilder<> &Builder); 276 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 277 278 // If the loop always exits through another block in the loop, we should not 279 // predicate based on the latch check. For example, the latch check can be a 280 // very coarse grained check and there can be more fine grained exit checks 281 // within the loop. We identify such unprofitable loops through BPI. 282 bool isLoopProfitableToPredicate(); 283 284 // When the IV type is wider than the range operand type, we can still do loop 285 // predication, by generating SCEVs for the range and latch that are of the 286 // same type. We achieve this by generating a SCEV truncate expression for the 287 // latch IV. This is done iff truncation of the IV is a safe operation, 288 // without loss of information. 289 // Another way to achieve this is by generating a wider type SCEV for the 290 // range check operand, however, this needs a more involved check that 291 // operands do not overflow. This can lead to loss of information when the 292 // range operand is of the form: add i32 %offset, %iv. We need to prove that 293 // sext(x + y) is same as sext(x) + sext(y). 294 // This function returns true if we can safely represent the IV type in 295 // the RangeCheckType without loss of information. 296 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 297 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 298 // so. 299 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 300 301 public: 302 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 303 : SE(SE), BPI(BPI){}; 304 bool runOnLoop(Loop *L); 305 }; 306 307 class LoopPredicationLegacyPass : public LoopPass { 308 public: 309 static char ID; 310 LoopPredicationLegacyPass() : LoopPass(ID) { 311 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 312 } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override { 315 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 316 getLoopAnalysisUsage(AU); 317 } 318 319 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 320 if (skipLoop(L)) 321 return false; 322 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 323 BranchProbabilityInfo &BPI = 324 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 325 LoopPredication LP(SE, &BPI); 326 return LP.runOnLoop(L); 327 } 328 }; 329 330 char LoopPredicationLegacyPass::ID = 0; 331 } // end namespace llvm 332 333 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 334 "Loop predication", false, false) 335 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 336 INITIALIZE_PASS_DEPENDENCY(LoopPass) 337 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 338 "Loop predication", false, false) 339 340 Pass *llvm::createLoopPredicationPass() { 341 return new LoopPredicationLegacyPass(); 342 } 343 344 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 345 LoopStandardAnalysisResults &AR, 346 LPMUpdater &U) { 347 const auto &FAM = 348 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 349 Function *F = L.getHeader()->getParent(); 350 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 351 LoopPredication LP(&AR.SE, BPI); 352 if (!LP.runOnLoop(&L)) 353 return PreservedAnalyses::all(); 354 355 return getLoopPassPreservedAnalyses(); 356 } 357 358 Optional<LoopPredication::LoopICmp> 359 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 360 Value *RHS) { 361 const SCEV *LHSS = SE->getSCEV(LHS); 362 if (isa<SCEVCouldNotCompute>(LHSS)) 363 return None; 364 const SCEV *RHSS = SE->getSCEV(RHS); 365 if (isa<SCEVCouldNotCompute>(RHSS)) 366 return None; 367 368 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 369 if (SE->isLoopInvariant(LHSS, L)) { 370 std::swap(LHS, RHS); 371 std::swap(LHSS, RHSS); 372 Pred = ICmpInst::getSwappedPredicate(Pred); 373 } 374 375 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 376 if (!AR || AR->getLoop() != L) 377 return None; 378 379 return LoopICmp(Pred, AR, RHSS); 380 } 381 382 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 383 IRBuilder<> &Builder, 384 ICmpInst::Predicate Pred, const SCEV *LHS, 385 const SCEV *RHS, Instruction *InsertAt) { 386 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 387 388 Type *Ty = LHS->getType(); 389 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 390 391 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 392 return Builder.getTrue(); 393 394 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 395 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 396 return Builder.CreateICmp(Pred, LHSV, RHSV); 397 } 398 399 Optional<LoopPredication::LoopICmp> 400 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 401 402 auto *LatchType = LatchCheck.IV->getType(); 403 if (RangeCheckType == LatchType) 404 return LatchCheck; 405 // For now, bail out if latch type is narrower than range type. 406 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 407 return None; 408 if (!isSafeToTruncateWideIVType(RangeCheckType)) 409 return None; 410 // We can now safely identify the truncated version of the IV and limit for 411 // RangeCheckType. 412 LoopICmp NewLatchCheck; 413 NewLatchCheck.Pred = LatchCheck.Pred; 414 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 415 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 416 if (!NewLatchCheck.IV) 417 return None; 418 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 419 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 420 << "can be represented as range check type:" 421 << *RangeCheckType << "\n"); 422 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 423 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 424 return NewLatchCheck; 425 } 426 427 bool LoopPredication::isSupportedStep(const SCEV* Step) { 428 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 429 } 430 431 bool LoopPredication::CanExpand(const SCEV* S) { 432 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 433 } 434 435 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 436 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 437 SCEVExpander &Expander, IRBuilder<> &Builder) { 438 auto *Ty = RangeCheck.IV->getType(); 439 // Generate the widened condition for the forward loop: 440 // guardStart u< guardLimit && 441 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 442 // where <pred> depends on the latch condition predicate. See the file 443 // header comment for the reasoning. 444 // guardLimit - guardStart + latchStart - 1 445 const SCEV *GuardStart = RangeCheck.IV->getStart(); 446 const SCEV *GuardLimit = RangeCheck.Limit; 447 const SCEV *LatchStart = LatchCheck.IV->getStart(); 448 const SCEV *LatchLimit = LatchCheck.Limit; 449 450 // guardLimit - guardStart + latchStart - 1 451 const SCEV *RHS = 452 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 453 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 454 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 455 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 456 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 457 return None; 458 } 459 auto LimitCheckPred = 460 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 461 462 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 463 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 464 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 465 466 Instruction *InsertAt = Preheader->getTerminator(); 467 auto *LimitCheck = 468 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 469 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 470 GuardStart, GuardLimit, InsertAt); 471 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 472 } 473 474 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 475 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 476 SCEVExpander &Expander, IRBuilder<> &Builder) { 477 auto *Ty = RangeCheck.IV->getType(); 478 const SCEV *GuardStart = RangeCheck.IV->getStart(); 479 const SCEV *GuardLimit = RangeCheck.Limit; 480 const SCEV *LatchLimit = LatchCheck.Limit; 481 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 482 !CanExpand(LatchLimit)) { 483 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 484 return None; 485 } 486 // The decrement of the latch check IV should be the same as the 487 // rangeCheckIV. 488 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 489 if (RangeCheck.IV != PostDecLatchCheckIV) { 490 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 491 << *PostDecLatchCheckIV 492 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 493 return None; 494 } 495 496 // Generate the widened condition for CountDownLoop: 497 // guardStart u< guardLimit && 498 // latchLimit <pred> 1. 499 // See the header comment for reasoning of the checks. 500 Instruction *InsertAt = Preheader->getTerminator(); 501 auto LimitCheckPred = 502 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 503 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 504 GuardStart, GuardLimit, InsertAt); 505 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 506 SE->getOne(Ty), InsertAt); 507 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 508 } 509 510 /// If ICI can be widened to a loop invariant condition emits the loop 511 /// invariant condition in the loop preheader and return it, otherwise 512 /// returns None. 513 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 514 SCEVExpander &Expander, 515 IRBuilder<> &Builder) { 516 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 517 LLVM_DEBUG(ICI->dump()); 518 519 // parseLoopStructure guarantees that the latch condition is: 520 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 521 // We are looking for the range checks of the form: 522 // i u< guardLimit 523 auto RangeCheck = parseLoopICmp(ICI); 524 if (!RangeCheck) { 525 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 526 return None; 527 } 528 LLVM_DEBUG(dbgs() << "Guard check:\n"); 529 LLVM_DEBUG(RangeCheck->dump()); 530 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 531 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 532 << RangeCheck->Pred << ")!\n"); 533 return None; 534 } 535 auto *RangeCheckIV = RangeCheck->IV; 536 if (!RangeCheckIV->isAffine()) { 537 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 538 return None; 539 } 540 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 541 // We cannot just compare with latch IV step because the latch and range IVs 542 // may have different types. 543 if (!isSupportedStep(Step)) { 544 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 545 return None; 546 } 547 auto *Ty = RangeCheckIV->getType(); 548 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 549 if (!CurrLatchCheckOpt) { 550 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 551 "corresponding to range type: " 552 << *Ty << "\n"); 553 return None; 554 } 555 556 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 557 // At this point, the range and latch step should have the same type, but need 558 // not have the same value (we support both 1 and -1 steps). 559 assert(Step->getType() == 560 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 561 "Range and latch steps should be of same type!"); 562 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 563 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 564 return None; 565 } 566 567 if (Step->isOne()) 568 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 569 Expander, Builder); 570 else { 571 assert(Step->isAllOnesValue() && "Step should be -1!"); 572 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 573 Expander, Builder); 574 } 575 } 576 577 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 578 SCEVExpander &Expander) { 579 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 580 LLVM_DEBUG(Guard->dump()); 581 582 TotalConsidered++; 583 584 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 585 586 // The guard condition is expected to be in form of: 587 // cond1 && cond2 && cond3 ... 588 // Iterate over subconditions looking for icmp conditions which can be 589 // widened across loop iterations. Widening these conditions remember the 590 // resulting list of subconditions in Checks vector. 591 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 592 SmallPtrSet<Value *, 4> Visited; 593 594 SmallVector<Value *, 4> Checks; 595 596 unsigned NumWidened = 0; 597 do { 598 Value *Condition = Worklist.pop_back_val(); 599 if (!Visited.insert(Condition).second) 600 continue; 601 602 Value *LHS, *RHS; 603 using namespace llvm::PatternMatch; 604 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 605 Worklist.push_back(LHS); 606 Worklist.push_back(RHS); 607 continue; 608 } 609 610 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 611 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 612 Checks.push_back(NewRangeCheck.getValue()); 613 NumWidened++; 614 continue; 615 } 616 } 617 618 // Save the condition as is if we can't widen it 619 Checks.push_back(Condition); 620 } while (Worklist.size() != 0); 621 622 if (NumWidened == 0) 623 return false; 624 625 TotalWidened += NumWidened; 626 627 // Emit the new guard condition 628 Builder.SetInsertPoint(Guard); 629 Value *LastCheck = nullptr; 630 for (auto *Check : Checks) 631 if (!LastCheck) 632 LastCheck = Check; 633 else 634 LastCheck = Builder.CreateAnd(LastCheck, Check); 635 Guard->setOperand(0, LastCheck); 636 637 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 638 return true; 639 } 640 641 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 642 using namespace PatternMatch; 643 644 BasicBlock *LoopLatch = L->getLoopLatch(); 645 if (!LoopLatch) { 646 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 647 return None; 648 } 649 650 ICmpInst::Predicate Pred; 651 Value *LHS, *RHS; 652 BasicBlock *TrueDest, *FalseDest; 653 654 if (!match(LoopLatch->getTerminator(), 655 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 656 FalseDest))) { 657 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 658 return None; 659 } 660 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 661 "One of the latch's destinations must be the header"); 662 if (TrueDest != L->getHeader()) 663 Pred = ICmpInst::getInversePredicate(Pred); 664 665 auto Result = parseLoopICmp(Pred, LHS, RHS); 666 if (!Result) { 667 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 668 return None; 669 } 670 671 // Check affine first, so if it's not we don't try to compute the step 672 // recurrence. 673 if (!Result->IV->isAffine()) { 674 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 675 return None; 676 } 677 678 auto *Step = Result->IV->getStepRecurrence(*SE); 679 if (!isSupportedStep(Step)) { 680 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 681 return None; 682 } 683 684 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 685 if (Step->isOne()) { 686 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 687 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 688 } else { 689 assert(Step->isAllOnesValue() && "Step should be -1!"); 690 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 691 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 692 } 693 }; 694 695 if (IsUnsupportedPredicate(Step, Result->Pred)) { 696 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 697 << ")!\n"); 698 return None; 699 } 700 return Result; 701 } 702 703 // Returns true if its safe to truncate the IV to RangeCheckType. 704 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 705 if (!EnableIVTruncation) 706 return false; 707 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 708 DL->getTypeSizeInBits(RangeCheckType) && 709 "Expected latch check IV type to be larger than range check operand " 710 "type!"); 711 // The start and end values of the IV should be known. This is to guarantee 712 // that truncating the wide type will not lose information. 713 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 714 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 715 if (!Limit || !Start) 716 return false; 717 // This check makes sure that the IV does not change sign during loop 718 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 719 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 720 // IV wraps around, and the truncation of the IV would lose the range of 721 // iterations between 2^32 and 2^64. 722 bool Increasing; 723 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 724 return false; 725 // The active bits should be less than the bits in the RangeCheckType. This 726 // guarantees that truncating the latch check to RangeCheckType is a safe 727 // operation. 728 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 729 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 730 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 731 } 732 733 bool LoopPredication::isLoopProfitableToPredicate() { 734 if (SkipProfitabilityChecks || !BPI) 735 return true; 736 737 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 738 L->getExitEdges(ExitEdges); 739 // If there is only one exiting edge in the loop, it is always profitable to 740 // predicate the loop. 741 if (ExitEdges.size() == 1) 742 return true; 743 744 // Calculate the exiting probabilities of all exiting edges from the loop, 745 // starting with the LatchExitProbability. 746 // Heuristic for profitability: If any of the exiting blocks' probability of 747 // exiting the loop is larger than exiting through the latch block, it's not 748 // profitable to predicate the loop. 749 auto *LatchBlock = L->getLoopLatch(); 750 assert(LatchBlock && "Should have a single latch at this point!"); 751 auto *LatchTerm = LatchBlock->getTerminator(); 752 assert(LatchTerm->getNumSuccessors() == 2 && 753 "expected to be an exiting block with 2 succs!"); 754 unsigned LatchBrExitIdx = 755 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 756 BranchProbability LatchExitProbability = 757 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 758 759 // Protect against degenerate inputs provided by the user. Providing a value 760 // less than one, can invert the definition of profitable loop predication. 761 float ScaleFactor = LatchExitProbabilityScale; 762 if (ScaleFactor < 1) { 763 LLVM_DEBUG( 764 dbgs() 765 << "Ignored user setting for loop-predication-latch-probability-scale: " 766 << LatchExitProbabilityScale << "\n"); 767 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 768 ScaleFactor = 1.0; 769 } 770 const auto LatchProbabilityThreshold = 771 LatchExitProbability * ScaleFactor; 772 773 for (const auto &ExitEdge : ExitEdges) { 774 BranchProbability ExitingBlockProbability = 775 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 776 // Some exiting edge has higher probability than the latch exiting edge. 777 // No longer profitable to predicate. 778 if (ExitingBlockProbability > LatchProbabilityThreshold) 779 return false; 780 } 781 // Using BPI, we have concluded that the most probable way to exit from the 782 // loop is through the latch (or there's no profile information and all 783 // exits are equally likely). 784 return true; 785 } 786 787 bool LoopPredication::runOnLoop(Loop *Loop) { 788 L = Loop; 789 790 LLVM_DEBUG(dbgs() << "Analyzing "); 791 LLVM_DEBUG(L->dump()); 792 793 Module *M = L->getHeader()->getModule(); 794 795 // There is nothing to do if the module doesn't use guards 796 auto *GuardDecl = 797 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 798 if (!GuardDecl || GuardDecl->use_empty()) 799 return false; 800 801 DL = &M->getDataLayout(); 802 803 Preheader = L->getLoopPreheader(); 804 if (!Preheader) 805 return false; 806 807 auto LatchCheckOpt = parseLoopLatchICmp(); 808 if (!LatchCheckOpt) 809 return false; 810 LatchCheck = *LatchCheckOpt; 811 812 LLVM_DEBUG(dbgs() << "Latch check:\n"); 813 LLVM_DEBUG(LatchCheck.dump()); 814 815 if (!isLoopProfitableToPredicate()) { 816 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 817 return false; 818 } 819 // Collect all the guards into a vector and process later, so as not 820 // to invalidate the instruction iterator. 821 SmallVector<IntrinsicInst *, 4> Guards; 822 for (const auto BB : L->blocks()) 823 for (auto &I : *BB) 824 if (isGuard(&I)) 825 Guards.push_back(cast<IntrinsicInst>(&I)); 826 827 if (Guards.empty()) 828 return false; 829 830 SCEVExpander Expander(*SE, *DL, "loop-predication"); 831 832 bool Changed = false; 833 for (auto *Guard : Guards) 834 Changed |= widenGuardConditions(Guard, Expander); 835 836 return Changed; 837 } 838