xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 241563647555e48cfa96146dd19d00e5aadbc518)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
188 #include "llvm/IR/Function.h"
189 #include "llvm/IR/GlobalValue.h"
190 #include "llvm/IR/IntrinsicInst.h"
191 #include "llvm/IR/Module.h"
192 #include "llvm/IR/PatternMatch.h"
193 #include "llvm/InitializePasses.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/CommandLine.h"
196 #include "llvm/Support/Debug.h"
197 #include "llvm/Transforms/Scalar.h"
198 #include "llvm/Transforms/Utils/GuardUtils.h"
199 #include "llvm/Transforms/Utils/Local.h"
200 #include "llvm/Transforms/Utils/LoopUtils.h"
201 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
202 
203 #define DEBUG_TYPE "loop-predication"
204 
205 STATISTIC(TotalConsidered, "Number of guards considered");
206 STATISTIC(TotalWidened, "Number of checks widened");
207 
208 using namespace llvm;
209 
210 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
211                                         cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
214                                         cl::Hidden, cl::init(true));
215 
216 static cl::opt<bool>
217     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
218                             cl::Hidden, cl::init(false));
219 
220 // This is the scale factor for the latch probability. We use this during
221 // profitability analysis to find other exiting blocks that have a much higher
222 // probability of exiting the loop instead of loop exiting via latch.
223 // This value should be greater than 1 for a sane profitability check.
224 static cl::opt<float> LatchExitProbabilityScale(
225     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
226     cl::desc("scale factor for the latch probability. Value should be greater "
227              "than 1. Lower values are ignored"));
228 
229 static cl::opt<bool> PredicateWidenableBranchGuards(
230     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
231     cl::desc("Whether or not we should predicate guards "
232              "expressed as widenable branches to deoptimize blocks"),
233     cl::init(true));
234 
235 namespace {
236 /// Represents an induction variable check:
237 ///   icmp Pred, <induction variable>, <loop invariant limit>
238 struct LoopICmp {
239   ICmpInst::Predicate Pred;
240   const SCEVAddRecExpr *IV;
241   const SCEV *Limit;
242   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
243            const SCEV *Limit)
244     : Pred(Pred), IV(IV), Limit(Limit) {}
245   LoopICmp() {}
246   void dump() {
247     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
248            << ", Limit = " << *Limit << "\n";
249   }
250 };
251 
252 class LoopPredication {
253   AliasAnalysis *AA;
254   DominatorTree *DT;
255   ScalarEvolution *SE;
256   LoopInfo *LI;
257   BranchProbabilityInfo *BPI;
258 
259   Loop *L;
260   const DataLayout *DL;
261   BasicBlock *Preheader;
262   LoopICmp LatchCheck;
263 
264   bool isSupportedStep(const SCEV* Step);
265   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
266   Optional<LoopICmp> parseLoopLatchICmp();
267 
268   /// Return an insertion point suitable for inserting a safe to speculate
269   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
270   /// trivial result would be the at the User itself, but we try to return a
271   /// loop invariant location if possible.
272   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
273   /// Same as above, *except* that this uses the SCEV definition of invariant
274   /// which is that an expression *can be made* invariant via SCEVExpander.
275   /// Thus, this version is only suitable for finding an insert point to be be
276   /// passed to SCEVExpander!
277   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
278 
279   /// Return true if the value is known to produce a single fixed value across
280   /// all iterations on which it executes.  Note that this does not imply
281   /// speculation safety.  That must be established separately.
282   bool isLoopInvariantValue(const SCEV* S);
283 
284   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
285                      ICmpInst::Predicate Pred, const SCEV *LHS,
286                      const SCEV *RHS);
287 
288   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
289                                         Instruction *Guard);
290   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
291                                                         LoopICmp RangeCheck,
292                                                         SCEVExpander &Expander,
293                                                         Instruction *Guard);
294   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
295                                                         LoopICmp RangeCheck,
296                                                         SCEVExpander &Expander,
297                                                         Instruction *Guard);
298   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
299                          SCEVExpander &Expander, Instruction *Guard);
300   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
301   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
302   // If the loop always exits through another block in the loop, we should not
303   // predicate based on the latch check. For example, the latch check can be a
304   // very coarse grained check and there can be more fine grained exit checks
305   // within the loop. We identify such unprofitable loops through BPI.
306   bool isLoopProfitableToPredicate();
307 
308   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
309 
310 public:
311   LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
312                   ScalarEvolution *SE, LoopInfo *LI,
313                   BranchProbabilityInfo *BPI)
314     : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
315   bool runOnLoop(Loop *L);
316 };
317 
318 class LoopPredicationLegacyPass : public LoopPass {
319 public:
320   static char ID;
321   LoopPredicationLegacyPass() : LoopPass(ID) {
322     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
323   }
324 
325   void getAnalysisUsage(AnalysisUsage &AU) const override {
326     AU.addRequired<BranchProbabilityInfoWrapperPass>();
327     getLoopAnalysisUsage(AU);
328   }
329 
330   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
331     if (skipLoop(L))
332       return false;
333     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
334     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
335     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
336     BranchProbabilityInfo &BPI =
337         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
338     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339     LoopPredication LP(AA, DT, SE, LI, &BPI);
340     return LP.runOnLoop(L);
341   }
342 };
343 
344 char LoopPredicationLegacyPass::ID = 0;
345 } // end namespace
346 
347 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
348                       "Loop predication", false, false)
349 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
350 INITIALIZE_PASS_DEPENDENCY(LoopPass)
351 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
352                     "Loop predication", false, false)
353 
354 Pass *llvm::createLoopPredicationPass() {
355   return new LoopPredicationLegacyPass();
356 }
357 
358 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
359                                            LoopStandardAnalysisResults &AR,
360                                            LPMUpdater &U) {
361   Function *F = L.getHeader()->getParent();
362   // For the new PM, we also can't use BranchProbabilityInfo as an analysis
363   // pass. Function analyses need to be preserved across loop transformations
364   // but BPI is not preserved, hence a newly built one is needed.
365   BranchProbabilityInfo BPI(*F, AR.LI, &AR.TLI);
366   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI);
367   if (!LP.runOnLoop(&L))
368     return PreservedAnalyses::all();
369 
370   return getLoopPassPreservedAnalyses();
371 }
372 
373 Optional<LoopICmp>
374 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
375   auto Pred = ICI->getPredicate();
376   auto *LHS = ICI->getOperand(0);
377   auto *RHS = ICI->getOperand(1);
378 
379   const SCEV *LHSS = SE->getSCEV(LHS);
380   if (isa<SCEVCouldNotCompute>(LHSS))
381     return None;
382   const SCEV *RHSS = SE->getSCEV(RHS);
383   if (isa<SCEVCouldNotCompute>(RHSS))
384     return None;
385 
386   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
387   if (SE->isLoopInvariant(LHSS, L)) {
388     std::swap(LHS, RHS);
389     std::swap(LHSS, RHSS);
390     Pred = ICmpInst::getSwappedPredicate(Pred);
391   }
392 
393   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
394   if (!AR || AR->getLoop() != L)
395     return None;
396 
397   return LoopICmp(Pred, AR, RHSS);
398 }
399 
400 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
401                                     Instruction *Guard,
402                                     ICmpInst::Predicate Pred, const SCEV *LHS,
403                                     const SCEV *RHS) {
404   Type *Ty = LHS->getType();
405   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
406 
407   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
408     IRBuilder<> Builder(Guard);
409     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
410       return Builder.getTrue();
411     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
412                                      LHS, RHS))
413       return Builder.getFalse();
414   }
415 
416   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
417   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
418   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
419   return Builder.CreateICmp(Pred, LHSV, RHSV);
420 }
421 
422 
423 // Returns true if its safe to truncate the IV to RangeCheckType.
424 // When the IV type is wider than the range operand type, we can still do loop
425 // predication, by generating SCEVs for the range and latch that are of the
426 // same type. We achieve this by generating a SCEV truncate expression for the
427 // latch IV. This is done iff truncation of the IV is a safe operation,
428 // without loss of information.
429 // Another way to achieve this is by generating a wider type SCEV for the
430 // range check operand, however, this needs a more involved check that
431 // operands do not overflow. This can lead to loss of information when the
432 // range operand is of the form: add i32 %offset, %iv. We need to prove that
433 // sext(x + y) is same as sext(x) + sext(y).
434 // This function returns true if we can safely represent the IV type in
435 // the RangeCheckType without loss of information.
436 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
437                                        ScalarEvolution &SE,
438                                        const LoopICmp LatchCheck,
439                                        Type *RangeCheckType) {
440   if (!EnableIVTruncation)
441     return false;
442   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
443              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
444          "Expected latch check IV type to be larger than range check operand "
445          "type!");
446   // The start and end values of the IV should be known. This is to guarantee
447   // that truncating the wide type will not lose information.
448   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
449   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
450   if (!Limit || !Start)
451     return false;
452   // This check makes sure that the IV does not change sign during loop
453   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
454   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
455   // IV wraps around, and the truncation of the IV would lose the range of
456   // iterations between 2^32 and 2^64.
457   bool Increasing;
458   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
459     return false;
460   // The active bits should be less than the bits in the RangeCheckType. This
461   // guarantees that truncating the latch check to RangeCheckType is a safe
462   // operation.
463   auto RangeCheckTypeBitSize =
464       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
465   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
466          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
467 }
468 
469 
470 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
471 // the requested type if safe to do so.  May involve the use of a new IV.
472 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
473                                                  ScalarEvolution &SE,
474                                                  const LoopICmp LatchCheck,
475                                                  Type *RangeCheckType) {
476 
477   auto *LatchType = LatchCheck.IV->getType();
478   if (RangeCheckType == LatchType)
479     return LatchCheck;
480   // For now, bail out if latch type is narrower than range type.
481   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
482       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
483     return None;
484   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
485     return None;
486   // We can now safely identify the truncated version of the IV and limit for
487   // RangeCheckType.
488   LoopICmp NewLatchCheck;
489   NewLatchCheck.Pred = LatchCheck.Pred;
490   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
491       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
492   if (!NewLatchCheck.IV)
493     return None;
494   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
495   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
496                     << "can be represented as range check type:"
497                     << *RangeCheckType << "\n");
498   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
499   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
500   return NewLatchCheck;
501 }
502 
503 bool LoopPredication::isSupportedStep(const SCEV* Step) {
504   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
505 }
506 
507 Instruction *LoopPredication::findInsertPt(Instruction *Use,
508                                            ArrayRef<Value*> Ops) {
509   for (Value *Op : Ops)
510     if (!L->isLoopInvariant(Op))
511       return Use;
512   return Preheader->getTerminator();
513 }
514 
515 Instruction *LoopPredication::findInsertPt(Instruction *Use,
516                                            ArrayRef<const SCEV*> Ops) {
517   // Subtlety: SCEV considers things to be invariant if the value produced is
518   // the same across iterations.  This is not the same as being able to
519   // evaluate outside the loop, which is what we actually need here.
520   for (const SCEV *Op : Ops)
521     if (!SE->isLoopInvariant(Op, L) ||
522         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
523       return Use;
524   return Preheader->getTerminator();
525 }
526 
527 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
528   // Handling expressions which produce invariant results, but *haven't* yet
529   // been removed from the loop serves two important purposes.
530   // 1) Most importantly, it resolves a pass ordering cycle which would
531   // otherwise need us to iteration licm, loop-predication, and either
532   // loop-unswitch or loop-peeling to make progress on examples with lots of
533   // predicable range checks in a row.  (Since, in the general case,  we can't
534   // hoist the length checks until the dominating checks have been discharged
535   // as we can't prove doing so is safe.)
536   // 2) As a nice side effect, this exposes the value of peeling or unswitching
537   // much more obviously in the IR.  Otherwise, the cost modeling for other
538   // transforms would end up needing to duplicate all of this logic to model a
539   // check which becomes predictable based on a modeled peel or unswitch.
540   //
541   // The cost of doing so in the worst case is an extra fill from the stack  in
542   // the loop to materialize the loop invariant test value instead of checking
543   // against the original IV which is presumable in a register inside the loop.
544   // Such cases are presumably rare, and hint at missing oppurtunities for
545   // other passes.
546 
547   if (SE->isLoopInvariant(S, L))
548     // Note: This the SCEV variant, so the original Value* may be within the
549     // loop even though SCEV has proven it is loop invariant.
550     return true;
551 
552   // Handle a particular important case which SCEV doesn't yet know about which
553   // shows up in range checks on arrays with immutable lengths.
554   // TODO: This should be sunk inside SCEV.
555   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
556     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
557       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
558         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
559             LI->hasMetadata(LLVMContext::MD_invariant_load))
560           return true;
561   return false;
562 }
563 
564 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
565     LoopICmp LatchCheck, LoopICmp RangeCheck,
566     SCEVExpander &Expander, Instruction *Guard) {
567   auto *Ty = RangeCheck.IV->getType();
568   // Generate the widened condition for the forward loop:
569   //   guardStart u< guardLimit &&
570   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
571   // where <pred> depends on the latch condition predicate. See the file
572   // header comment for the reasoning.
573   // guardLimit - guardStart + latchStart - 1
574   const SCEV *GuardStart = RangeCheck.IV->getStart();
575   const SCEV *GuardLimit = RangeCheck.Limit;
576   const SCEV *LatchStart = LatchCheck.IV->getStart();
577   const SCEV *LatchLimit = LatchCheck.Limit;
578   // Subtlety: We need all the values to be *invariant* across all iterations,
579   // but we only need to check expansion safety for those which *aren't*
580   // already guaranteed to dominate the guard.
581   if (!isLoopInvariantValue(GuardStart) ||
582       !isLoopInvariantValue(GuardLimit) ||
583       !isLoopInvariantValue(LatchStart) ||
584       !isLoopInvariantValue(LatchLimit)) {
585     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
586     return None;
587   }
588   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
589       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
590     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
591     return None;
592   }
593 
594   // guardLimit - guardStart + latchStart - 1
595   const SCEV *RHS =
596       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
597                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
598   auto LimitCheckPred =
599       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
600 
601   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
602   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
603   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
604 
605   auto *LimitCheck =
606       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
607   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
608                                           GuardStart, GuardLimit);
609   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
610   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
611 }
612 
613 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
614     LoopICmp LatchCheck, LoopICmp RangeCheck,
615     SCEVExpander &Expander, Instruction *Guard) {
616   auto *Ty = RangeCheck.IV->getType();
617   const SCEV *GuardStart = RangeCheck.IV->getStart();
618   const SCEV *GuardLimit = RangeCheck.Limit;
619   const SCEV *LatchStart = LatchCheck.IV->getStart();
620   const SCEV *LatchLimit = LatchCheck.Limit;
621   // Subtlety: We need all the values to be *invariant* across all iterations,
622   // but we only need to check expansion safety for those which *aren't*
623   // already guaranteed to dominate the guard.
624   if (!isLoopInvariantValue(GuardStart) ||
625       !isLoopInvariantValue(GuardLimit) ||
626       !isLoopInvariantValue(LatchStart) ||
627       !isLoopInvariantValue(LatchLimit)) {
628     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
629     return None;
630   }
631   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
632       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
633     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
634     return None;
635   }
636   // The decrement of the latch check IV should be the same as the
637   // rangeCheckIV.
638   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
639   if (RangeCheck.IV != PostDecLatchCheckIV) {
640     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
641                       << *PostDecLatchCheckIV
642                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
643     return None;
644   }
645 
646   // Generate the widened condition for CountDownLoop:
647   // guardStart u< guardLimit &&
648   // latchLimit <pred> 1.
649   // See the header comment for reasoning of the checks.
650   auto LimitCheckPred =
651       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
652   auto *FirstIterationCheck = expandCheck(Expander, Guard,
653                                           ICmpInst::ICMP_ULT,
654                                           GuardStart, GuardLimit);
655   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
656                                  SE->getOne(Ty));
657   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
658   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
659 }
660 
661 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
662                                LoopICmp& RC) {
663   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
664   // ULT/UGE form for ease of handling by our caller.
665   if (ICmpInst::isEquality(RC.Pred) &&
666       RC.IV->getStepRecurrence(*SE)->isOne() &&
667       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
668     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
669       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
670 }
671 
672 
673 /// If ICI can be widened to a loop invariant condition emits the loop
674 /// invariant condition in the loop preheader and return it, otherwise
675 /// returns None.
676 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
677                                                        SCEVExpander &Expander,
678                                                        Instruction *Guard) {
679   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
680   LLVM_DEBUG(ICI->dump());
681 
682   // parseLoopStructure guarantees that the latch condition is:
683   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
684   // We are looking for the range checks of the form:
685   //   i u< guardLimit
686   auto RangeCheck = parseLoopICmp(ICI);
687   if (!RangeCheck) {
688     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
689     return None;
690   }
691   LLVM_DEBUG(dbgs() << "Guard check:\n");
692   LLVM_DEBUG(RangeCheck->dump());
693   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
694     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
695                       << RangeCheck->Pred << ")!\n");
696     return None;
697   }
698   auto *RangeCheckIV = RangeCheck->IV;
699   if (!RangeCheckIV->isAffine()) {
700     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
701     return None;
702   }
703   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
704   // We cannot just compare with latch IV step because the latch and range IVs
705   // may have different types.
706   if (!isSupportedStep(Step)) {
707     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
708     return None;
709   }
710   auto *Ty = RangeCheckIV->getType();
711   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
712   if (!CurrLatchCheckOpt) {
713     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
714                          "corresponding to range type: "
715                       << *Ty << "\n");
716     return None;
717   }
718 
719   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
720   // At this point, the range and latch step should have the same type, but need
721   // not have the same value (we support both 1 and -1 steps).
722   assert(Step->getType() ==
723              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
724          "Range and latch steps should be of same type!");
725   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
726     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
727     return None;
728   }
729 
730   if (Step->isOne())
731     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
732                                                Expander, Guard);
733   else {
734     assert(Step->isAllOnesValue() && "Step should be -1!");
735     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
736                                                Expander, Guard);
737   }
738 }
739 
740 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
741                                         Value *Condition,
742                                         SCEVExpander &Expander,
743                                         Instruction *Guard) {
744   unsigned NumWidened = 0;
745   // The guard condition is expected to be in form of:
746   //   cond1 && cond2 && cond3 ...
747   // Iterate over subconditions looking for icmp conditions which can be
748   // widened across loop iterations. Widening these conditions remember the
749   // resulting list of subconditions in Checks vector.
750   SmallVector<Value *, 4> Worklist(1, Condition);
751   SmallPtrSet<Value *, 4> Visited;
752   Value *WideableCond = nullptr;
753   do {
754     Value *Condition = Worklist.pop_back_val();
755     if (!Visited.insert(Condition).second)
756       continue;
757 
758     Value *LHS, *RHS;
759     using namespace llvm::PatternMatch;
760     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
761       Worklist.push_back(LHS);
762       Worklist.push_back(RHS);
763       continue;
764     }
765 
766     if (match(Condition,
767               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
768       // Pick any, we don't care which
769       WideableCond = Condition;
770       continue;
771     }
772 
773     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
774       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
775                                                    Guard)) {
776         Checks.push_back(NewRangeCheck.getValue());
777         NumWidened++;
778         continue;
779       }
780     }
781 
782     // Save the condition as is if we can't widen it
783     Checks.push_back(Condition);
784   } while (!Worklist.empty());
785   // At the moment, our matching logic for wideable conditions implicitly
786   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
787   // Note that if there were multiple calls to wideable condition in the
788   // traversal, we only need to keep one, and which one is arbitrary.
789   if (WideableCond)
790     Checks.push_back(WideableCond);
791   return NumWidened;
792 }
793 
794 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
795                                            SCEVExpander &Expander) {
796   LLVM_DEBUG(dbgs() << "Processing guard:\n");
797   LLVM_DEBUG(Guard->dump());
798 
799   TotalConsidered++;
800   SmallVector<Value *, 4> Checks;
801   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
802                                       Guard);
803   if (NumWidened == 0)
804     return false;
805 
806   TotalWidened += NumWidened;
807 
808   // Emit the new guard condition
809   IRBuilder<> Builder(findInsertPt(Guard, Checks));
810   Value *AllChecks = Builder.CreateAnd(Checks);
811   auto *OldCond = Guard->getOperand(0);
812   Guard->setOperand(0, AllChecks);
813   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
814 
815   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
816   return true;
817 }
818 
819 bool LoopPredication::widenWidenableBranchGuardConditions(
820     BranchInst *BI, SCEVExpander &Expander) {
821   assert(isGuardAsWidenableBranch(BI) && "Must be!");
822   LLVM_DEBUG(dbgs() << "Processing guard:\n");
823   LLVM_DEBUG(BI->dump());
824 
825   TotalConsidered++;
826   SmallVector<Value *, 4> Checks;
827   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
828                                       Expander, BI);
829   if (NumWidened == 0)
830     return false;
831 
832   TotalWidened += NumWidened;
833 
834   // Emit the new guard condition
835   IRBuilder<> Builder(findInsertPt(BI, Checks));
836   Value *AllChecks = Builder.CreateAnd(Checks);
837   auto *OldCond = BI->getCondition();
838   BI->setCondition(AllChecks);
839   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
840   assert(isGuardAsWidenableBranch(BI) &&
841          "Stopped being a guard after transform?");
842 
843   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
844   return true;
845 }
846 
847 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
848   using namespace PatternMatch;
849 
850   BasicBlock *LoopLatch = L->getLoopLatch();
851   if (!LoopLatch) {
852     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
853     return None;
854   }
855 
856   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
857   if (!BI || !BI->isConditional()) {
858     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
859     return None;
860   }
861   BasicBlock *TrueDest = BI->getSuccessor(0);
862   assert(
863       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
864       "One of the latch's destinations must be the header");
865 
866   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
867   if (!ICI) {
868     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
869     return None;
870   }
871   auto Result = parseLoopICmp(ICI);
872   if (!Result) {
873     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
874     return None;
875   }
876 
877   if (TrueDest != L->getHeader())
878     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
879 
880   // Check affine first, so if it's not we don't try to compute the step
881   // recurrence.
882   if (!Result->IV->isAffine()) {
883     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
884     return None;
885   }
886 
887   auto *Step = Result->IV->getStepRecurrence(*SE);
888   if (!isSupportedStep(Step)) {
889     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
890     return None;
891   }
892 
893   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
894     if (Step->isOne()) {
895       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
896              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
897     } else {
898       assert(Step->isAllOnesValue() && "Step should be -1!");
899       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
900              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
901     }
902   };
903 
904   normalizePredicate(SE, L, *Result);
905   if (IsUnsupportedPredicate(Step, Result->Pred)) {
906     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
907                       << ")!\n");
908     return None;
909   }
910 
911   return Result;
912 }
913 
914 
915 bool LoopPredication::isLoopProfitableToPredicate() {
916   if (SkipProfitabilityChecks || !BPI)
917     return true;
918 
919   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
920   L->getExitEdges(ExitEdges);
921   // If there is only one exiting edge in the loop, it is always profitable to
922   // predicate the loop.
923   if (ExitEdges.size() == 1)
924     return true;
925 
926   // Calculate the exiting probabilities of all exiting edges from the loop,
927   // starting with the LatchExitProbability.
928   // Heuristic for profitability: If any of the exiting blocks' probability of
929   // exiting the loop is larger than exiting through the latch block, it's not
930   // profitable to predicate the loop.
931   auto *LatchBlock = L->getLoopLatch();
932   assert(LatchBlock && "Should have a single latch at this point!");
933   auto *LatchTerm = LatchBlock->getTerminator();
934   assert(LatchTerm->getNumSuccessors() == 2 &&
935          "expected to be an exiting block with 2 succs!");
936   unsigned LatchBrExitIdx =
937       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
938   BranchProbability LatchExitProbability =
939       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
940 
941   // Protect against degenerate inputs provided by the user. Providing a value
942   // less than one, can invert the definition of profitable loop predication.
943   float ScaleFactor = LatchExitProbabilityScale;
944   if (ScaleFactor < 1) {
945     LLVM_DEBUG(
946         dbgs()
947         << "Ignored user setting for loop-predication-latch-probability-scale: "
948         << LatchExitProbabilityScale << "\n");
949     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
950     ScaleFactor = 1.0;
951   }
952   const auto LatchProbabilityThreshold =
953       LatchExitProbability * ScaleFactor;
954 
955   for (const auto &ExitEdge : ExitEdges) {
956     BranchProbability ExitingBlockProbability =
957         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
958     // Some exiting edge has higher probability than the latch exiting edge.
959     // No longer profitable to predicate.
960     if (ExitingBlockProbability > LatchProbabilityThreshold)
961       return false;
962   }
963   // Using BPI, we have concluded that the most probable way to exit from the
964   // loop is through the latch (or there's no profile information and all
965   // exits are equally likely).
966   return true;
967 }
968 
969 /// If we can (cheaply) find a widenable branch which controls entry into the
970 /// loop, return it.
971 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
972   // Walk back through any unconditional executed blocks and see if we can find
973   // a widenable condition which seems to control execution of this loop.  Note
974   // that we predict that maythrow calls are likely untaken and thus that it's
975   // profitable to widen a branch before a maythrow call with a condition
976   // afterwards even though that may cause the slow path to run in a case where
977   // it wouldn't have otherwise.
978   BasicBlock *BB = L->getLoopPreheader();
979   if (!BB)
980     return nullptr;
981   do {
982     if (BasicBlock *Pred = BB->getSinglePredecessor())
983       if (BB == Pred->getSingleSuccessor()) {
984         BB = Pred;
985         continue;
986       }
987     break;
988   } while (true);
989 
990   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
991     auto *Term = Pred->getTerminator();
992 
993     Value *Cond, *WC;
994     BasicBlock *IfTrueBB, *IfFalseBB;
995     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
996         IfTrueBB == BB)
997       return cast<BranchInst>(Term);
998   }
999   return nullptr;
1000 }
1001 
1002 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1003 /// on the actual exit count.  If there are not at least two analyzeable exits,
1004 /// returns SCEVCouldNotCompute.
1005 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1006                                                        DominatorTree &DT,
1007                                                        Loop *L) {
1008   SmallVector<BasicBlock *, 16> ExitingBlocks;
1009   L->getExitingBlocks(ExitingBlocks);
1010 
1011   SmallVector<const SCEV *, 4> ExitCounts;
1012   for (BasicBlock *ExitingBB : ExitingBlocks) {
1013     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1014     if (isa<SCEVCouldNotCompute>(ExitCount))
1015       continue;
1016     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1017            "We should only have known counts for exiting blocks that "
1018            "dominate latch!");
1019     ExitCounts.push_back(ExitCount);
1020   }
1021   if (ExitCounts.size() < 2)
1022     return SE.getCouldNotCompute();
1023   return SE.getUMinFromMismatchedTypes(ExitCounts);
1024 }
1025 
1026 /// This implements an analogous, but entirely distinct transform from the main
1027 /// loop predication transform.  This one is phrased in terms of using a
1028 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1029 /// following loop.  This is close in spirit to the IndVarSimplify transform
1030 /// of the same name, but is materially different widening loosens legality
1031 /// sharply.
1032 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1033   // The transformation performed here aims to widen a widenable condition
1034   // above the loop such that all analyzeable exit leading to deopt are dead.
1035   // It assumes that the latch is the dominant exit for profitability and that
1036   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1037   // semantics of widenable expressions for legality. (i.e. being able to fall
1038   // down the widenable path spuriously allows us to ignore exit order,
1039   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1040   // which restrict the applicability of the non-WC based version of this
1041   // transform in IndVarSimplify.)
1042   //
1043   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1044   // imply flags on the expression being hoisted and inserting new uses (flags
1045   // are only correct for current uses).  The result is that we may be
1046   // inserting a branch on the value which can be either poison or undef.  In
1047   // this case, the branch can legally go either way; we just need to avoid
1048   // introducing UB.  This is achieved through the use of the freeze
1049   // instruction.
1050 
1051   SmallVector<BasicBlock *, 16> ExitingBlocks;
1052   L->getExitingBlocks(ExitingBlocks);
1053 
1054   if (ExitingBlocks.empty())
1055     return false; // Nothing to do.
1056 
1057   auto *Latch = L->getLoopLatch();
1058   if (!Latch)
1059     return false;
1060 
1061   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1062   if (!WidenableBR)
1063     return false;
1064 
1065   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1066   if (isa<SCEVCouldNotCompute>(LatchEC))
1067     return false; // profitability - want hot exit in analyzeable set
1068 
1069   // At this point, we have found an analyzeable latch, and a widenable
1070   // condition above the loop.  If we have a widenable exit within the loop
1071   // (for which we can't compute exit counts), drop the ability to further
1072   // widen so that we gain ability to analyze it's exit count and perform this
1073   // transform.  TODO: It'd be nice to know for sure the exit became
1074   // analyzeable after dropping widenability.
1075   {
1076     bool Invalidate = false;
1077 
1078     for (auto *ExitingBB : ExitingBlocks) {
1079       if (LI->getLoopFor(ExitingBB) != L)
1080         continue;
1081 
1082       auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1083       if (!BI)
1084         continue;
1085 
1086       Use *Cond, *WC;
1087       BasicBlock *IfTrueBB, *IfFalseBB;
1088       if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1089           L->contains(IfTrueBB)) {
1090         WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1091         Invalidate = true;
1092       }
1093     }
1094     if (Invalidate)
1095       SE->forgetLoop(L);
1096   }
1097 
1098   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1099   // important for profitability.  We may have a loop which hasn't been fully
1100   // canonicalized just yet.  If the exit we chose to widen is provably never
1101   // taken, we want the widened form to *also* be provably never taken.  We
1102   // can't guarantee this as a current unanalyzeable exit may later become
1103   // analyzeable, but we can at least avoid the obvious cases.
1104   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1105   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1106       !SE->isLoopInvariant(MinEC, L) ||
1107       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1108     return false;
1109 
1110   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1111   // that it can only have one transitive use at the moment, and thus moving
1112   // that use to just before the branch and inserting code before it and then
1113   // modifying the operand is legal.
1114   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1115   IP->moveBefore(WidenableBR);
1116   Rewriter.setInsertPoint(IP);
1117   IRBuilder<> B(IP);
1118 
1119   bool Changed = false;
1120   Value *MinECV = nullptr; // lazily generated if needed
1121   for (BasicBlock *ExitingBB : ExitingBlocks) {
1122     // If our exiting block exits multiple loops, we can only rewrite the
1123     // innermost one.  Otherwise, we're changing how many times the innermost
1124     // loop runs before it exits.
1125     if (LI->getLoopFor(ExitingBB) != L)
1126       continue;
1127 
1128     // Can't rewrite non-branch yet.
1129     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1130     if (!BI)
1131       continue;
1132 
1133     // If already constant, nothing to do.
1134     if (isa<Constant>(BI->getCondition()))
1135       continue;
1136 
1137     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1138     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1139         ExitCount->getType()->isPointerTy() ||
1140         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1141       continue;
1142 
1143     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1144     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1145     if (!ExitBB->getPostdominatingDeoptimizeCall())
1146       continue;
1147 
1148     /// Here we can be fairly sure that executing this exit will most likely
1149     /// lead to executing llvm.experimental.deoptimize.
1150     /// This is a profitability heuristic, not a legality constraint.
1151 
1152     // If we found a widenable exit condition, do two things:
1153     // 1) fold the widened exit test into the widenable condition
1154     // 2) fold the branch to untaken - avoids infinite looping
1155 
1156     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1157     if (!MinECV)
1158       MinECV = Rewriter.expandCodeFor(MinEC);
1159     Value *RHS = MinECV;
1160     if (ECV->getType() != RHS->getType()) {
1161       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1162       ECV = B.CreateZExt(ECV, WiderTy);
1163       RHS = B.CreateZExt(RHS, WiderTy);
1164     }
1165     assert(!Latch || DT->dominates(ExitingBB, Latch));
1166     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1167     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1168     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1169     // context.
1170     NewCond = B.CreateFreeze(NewCond);
1171 
1172     widenWidenableBranch(WidenableBR, NewCond);
1173 
1174     Value *OldCond = BI->getCondition();
1175     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1176     Changed = true;
1177   }
1178 
1179   if (Changed)
1180     // We just mutated a bunch of loop exits changing there exit counts
1181     // widely.  We need to force recomputation of the exit counts given these
1182     // changes.  Note that all of the inserted exits are never taken, and
1183     // should be removed next time the CFG is modified.
1184     SE->forgetLoop(L);
1185   return Changed;
1186 }
1187 
1188 bool LoopPredication::runOnLoop(Loop *Loop) {
1189   L = Loop;
1190 
1191   LLVM_DEBUG(dbgs() << "Analyzing ");
1192   LLVM_DEBUG(L->dump());
1193 
1194   Module *M = L->getHeader()->getModule();
1195 
1196   // There is nothing to do if the module doesn't use guards
1197   auto *GuardDecl =
1198       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1199   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1200   auto *WCDecl = M->getFunction(
1201       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1202   bool HasWidenableConditions =
1203       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1204   if (!HasIntrinsicGuards && !HasWidenableConditions)
1205     return false;
1206 
1207   DL = &M->getDataLayout();
1208 
1209   Preheader = L->getLoopPreheader();
1210   if (!Preheader)
1211     return false;
1212 
1213   auto LatchCheckOpt = parseLoopLatchICmp();
1214   if (!LatchCheckOpt)
1215     return false;
1216   LatchCheck = *LatchCheckOpt;
1217 
1218   LLVM_DEBUG(dbgs() << "Latch check:\n");
1219   LLVM_DEBUG(LatchCheck.dump());
1220 
1221   if (!isLoopProfitableToPredicate()) {
1222     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1223     return false;
1224   }
1225   // Collect all the guards into a vector and process later, so as not
1226   // to invalidate the instruction iterator.
1227   SmallVector<IntrinsicInst *, 4> Guards;
1228   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1229   for (const auto BB : L->blocks()) {
1230     for (auto &I : *BB)
1231       if (isGuard(&I))
1232         Guards.push_back(cast<IntrinsicInst>(&I));
1233     if (PredicateWidenableBranchGuards &&
1234         isGuardAsWidenableBranch(BB->getTerminator()))
1235       GuardsAsWidenableBranches.push_back(
1236           cast<BranchInst>(BB->getTerminator()));
1237   }
1238 
1239   SCEVExpander Expander(*SE, *DL, "loop-predication");
1240   bool Changed = false;
1241   for (auto *Guard : Guards)
1242     Changed |= widenGuardConditions(Guard, Expander);
1243   for (auto *Guard : GuardsAsWidenableBranches)
1244     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1245   Changed |= predicateLoopExits(L, Expander);
1246   return Changed;
1247 }
1248