1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // For now the transformation is limited to the following case: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The step of the IV used in the latch condition is 1. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 //===----------------------------------------------------------------------===// 156 157 #include "llvm/Transforms/Scalar/LoopPredication.h" 158 #include "llvm/Analysis/LoopInfo.h" 159 #include "llvm/Analysis/LoopPass.h" 160 #include "llvm/Analysis/ScalarEvolution.h" 161 #include "llvm/Analysis/ScalarEvolutionExpander.h" 162 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 163 #include "llvm/IR/Function.h" 164 #include "llvm/IR/GlobalValue.h" 165 #include "llvm/IR/IntrinsicInst.h" 166 #include "llvm/IR/Module.h" 167 #include "llvm/IR/PatternMatch.h" 168 #include "llvm/Pass.h" 169 #include "llvm/Support/Debug.h" 170 #include "llvm/Transforms/Scalar.h" 171 #include "llvm/Transforms/Utils/LoopUtils.h" 172 173 #define DEBUG_TYPE "loop-predication" 174 175 using namespace llvm; 176 177 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 178 cl::Hidden, cl::init(true)); 179 180 namespace { 181 class LoopPredication { 182 /// Represents an induction variable check: 183 /// icmp Pred, <induction variable>, <loop invariant limit> 184 struct LoopICmp { 185 ICmpInst::Predicate Pred; 186 const SCEVAddRecExpr *IV; 187 const SCEV *Limit; 188 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 189 const SCEV *Limit) 190 : Pred(Pred), IV(IV), Limit(Limit) {} 191 LoopICmp() {} 192 }; 193 194 ScalarEvolution *SE; 195 196 Loop *L; 197 const DataLayout *DL; 198 BasicBlock *Preheader; 199 LoopICmp LatchCheck; 200 201 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 202 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 203 ICI->getOperand(1)); 204 } 205 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 206 Value *RHS); 207 208 Optional<LoopICmp> parseLoopLatchICmp(); 209 210 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 211 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 212 Instruction *InsertAt); 213 214 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 215 IRBuilder<> &Builder); 216 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 217 218 // When the IV type is wider than the range operand type, we can still do loop 219 // predication, by generating SCEVs for the range and latch that are of the 220 // same type. We achieve this by generating a SCEV truncate expression for the 221 // latch IV. This is done iff truncation of the IV is a safe operation, 222 // without loss of information. 223 // Another way to achieve this is by generating a wider type SCEV for the 224 // range check operand, however, this needs a more involved check that 225 // operands do not overflow. This can lead to loss of information when the 226 // range operand is of the form: add i32 %offset, %iv. We need to prove that 227 // sext(x + y) is same as sext(x) + sext(y). 228 // This function returns true if we can safely represent the IV type in 229 // the RangeCheckType without loss of information. 230 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 231 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 232 // so. 233 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 234 public: 235 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 236 bool runOnLoop(Loop *L); 237 }; 238 239 class LoopPredicationLegacyPass : public LoopPass { 240 public: 241 static char ID; 242 LoopPredicationLegacyPass() : LoopPass(ID) { 243 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 244 } 245 246 void getAnalysisUsage(AnalysisUsage &AU) const override { 247 getLoopAnalysisUsage(AU); 248 } 249 250 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 251 if (skipLoop(L)) 252 return false; 253 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 254 LoopPredication LP(SE); 255 return LP.runOnLoop(L); 256 } 257 }; 258 259 char LoopPredicationLegacyPass::ID = 0; 260 } // end namespace llvm 261 262 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 263 "Loop predication", false, false) 264 INITIALIZE_PASS_DEPENDENCY(LoopPass) 265 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 266 "Loop predication", false, false) 267 268 Pass *llvm::createLoopPredicationPass() { 269 return new LoopPredicationLegacyPass(); 270 } 271 272 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 273 LoopStandardAnalysisResults &AR, 274 LPMUpdater &U) { 275 LoopPredication LP(&AR.SE); 276 if (!LP.runOnLoop(&L)) 277 return PreservedAnalyses::all(); 278 279 return getLoopPassPreservedAnalyses(); 280 } 281 282 Optional<LoopPredication::LoopICmp> 283 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 284 Value *RHS) { 285 const SCEV *LHSS = SE->getSCEV(LHS); 286 if (isa<SCEVCouldNotCompute>(LHSS)) 287 return None; 288 const SCEV *RHSS = SE->getSCEV(RHS); 289 if (isa<SCEVCouldNotCompute>(RHSS)) 290 return None; 291 292 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 293 if (SE->isLoopInvariant(LHSS, L)) { 294 std::swap(LHS, RHS); 295 std::swap(LHSS, RHSS); 296 Pred = ICmpInst::getSwappedPredicate(Pred); 297 } 298 299 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 300 if (!AR || AR->getLoop() != L) 301 return None; 302 303 return LoopICmp(Pred, AR, RHSS); 304 } 305 306 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 307 IRBuilder<> &Builder, 308 ICmpInst::Predicate Pred, const SCEV *LHS, 309 const SCEV *RHS, Instruction *InsertAt) { 310 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 311 312 Type *Ty = LHS->getType(); 313 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 314 315 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 316 return Builder.getTrue(); 317 318 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 319 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 320 return Builder.CreateICmp(Pred, LHSV, RHSV); 321 } 322 323 Optional<LoopPredication::LoopICmp> 324 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 325 326 auto *LatchType = LatchCheck.IV->getType(); 327 if (RangeCheckType == LatchType) 328 return LatchCheck; 329 // For now, bail out if latch type is narrower than range type. 330 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 331 return None; 332 if (!isSafeToTruncateWideIVType(RangeCheckType)) 333 return None; 334 // We can now safely identify the truncated version of the IV and limit for 335 // RangeCheckType. 336 LoopICmp NewLatchCheck; 337 NewLatchCheck.Pred = LatchCheck.Pred; 338 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 339 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 340 if (!NewLatchCheck.IV) 341 return None; 342 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 343 DEBUG(dbgs() << "IV of type: " << *LatchType 344 << "can be represented as range check type:" << *RangeCheckType 345 << "\n"); 346 DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 347 DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 348 return NewLatchCheck; 349 } 350 351 /// If ICI can be widened to a loop invariant condition emits the loop 352 /// invariant condition in the loop preheader and return it, otherwise 353 /// returns None. 354 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 355 SCEVExpander &Expander, 356 IRBuilder<> &Builder) { 357 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 358 DEBUG(ICI->dump()); 359 360 // parseLoopStructure guarantees that the latch condition is: 361 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 362 // We are looking for the range checks of the form: 363 // i u< guardLimit 364 auto RangeCheck = parseLoopICmp(ICI); 365 if (!RangeCheck) { 366 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 367 return None; 368 } 369 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 370 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred 371 << ")!\n"); 372 return None; 373 } 374 auto *RangeCheckIV = RangeCheck->IV; 375 if (!RangeCheckIV->isAffine()) { 376 DEBUG(dbgs() << "Range check IV is not affine!\n"); 377 return None; 378 } 379 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 380 // We cannot just compare with latch IV step because the latch and range IVs 381 // may have different types. 382 if (!Step->isOne()) { 383 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 384 return None; 385 } 386 auto *Ty = RangeCheckIV->getType(); 387 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 388 if (!CurrLatchCheckOpt) { 389 DEBUG(dbgs() << "Failed to generate a loop latch check " 390 "corresponding to range type: " 391 << *Ty << "\n"); 392 return None; 393 } 394 395 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 396 // At this point the range check step and latch step should have the same 397 // value and type. 398 assert(Step == CurrLatchCheck.IV->getStepRecurrence(*SE) && 399 "Range and latch should have same step recurrence!"); 400 // Generate the widened condition: 401 // guardStart u< guardLimit && 402 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 403 // where <pred> depends on the latch condition predicate. See the file 404 // header comment for the reasoning. 405 const SCEV *GuardStart = RangeCheckIV->getStart(); 406 const SCEV *GuardLimit = RangeCheck->Limit; 407 const SCEV *LatchStart = CurrLatchCheck.IV->getStart(); 408 const SCEV *LatchLimit = CurrLatchCheck.Limit; 409 410 // guardLimit - guardStart + latchStart - 1 411 const SCEV *RHS = 412 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 413 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 414 415 ICmpInst::Predicate LimitCheckPred; 416 switch (CurrLatchCheck.Pred) { 417 case ICmpInst::ICMP_ULT: 418 LimitCheckPred = ICmpInst::ICMP_ULE; 419 break; 420 case ICmpInst::ICMP_ULE: 421 LimitCheckPred = ICmpInst::ICMP_ULT; 422 break; 423 case ICmpInst::ICMP_SLT: 424 LimitCheckPred = ICmpInst::ICMP_SLE; 425 break; 426 case ICmpInst::ICMP_SLE: 427 LimitCheckPred = ICmpInst::ICMP_SLT; 428 break; 429 default: 430 llvm_unreachable("Unsupported loop latch!"); 431 } 432 433 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 434 DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 435 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 436 437 auto CanExpand = [this](const SCEV *S) { 438 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 439 }; 440 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 441 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 442 DEBUG(dbgs() << "Can't expand limit check!\n"); 443 return None; 444 } 445 446 Instruction *InsertAt = Preheader->getTerminator(); 447 auto *LimitCheck = 448 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 449 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred, 450 GuardStart, GuardLimit, InsertAt); 451 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 452 } 453 454 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 455 SCEVExpander &Expander) { 456 DEBUG(dbgs() << "Processing guard:\n"); 457 DEBUG(Guard->dump()); 458 459 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 460 461 // The guard condition is expected to be in form of: 462 // cond1 && cond2 && cond3 ... 463 // Iterate over subconditions looking for for icmp conditions which can be 464 // widened across loop iterations. Widening these conditions remember the 465 // resulting list of subconditions in Checks vector. 466 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 467 SmallPtrSet<Value *, 4> Visited; 468 469 SmallVector<Value *, 4> Checks; 470 471 unsigned NumWidened = 0; 472 do { 473 Value *Condition = Worklist.pop_back_val(); 474 if (!Visited.insert(Condition).second) 475 continue; 476 477 Value *LHS, *RHS; 478 using namespace llvm::PatternMatch; 479 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 480 Worklist.push_back(LHS); 481 Worklist.push_back(RHS); 482 continue; 483 } 484 485 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 486 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 487 Checks.push_back(NewRangeCheck.getValue()); 488 NumWidened++; 489 continue; 490 } 491 } 492 493 // Save the condition as is if we can't widen it 494 Checks.push_back(Condition); 495 } while (Worklist.size() != 0); 496 497 if (NumWidened == 0) 498 return false; 499 500 // Emit the new guard condition 501 Builder.SetInsertPoint(Guard); 502 Value *LastCheck = nullptr; 503 for (auto *Check : Checks) 504 if (!LastCheck) 505 LastCheck = Check; 506 else 507 LastCheck = Builder.CreateAnd(LastCheck, Check); 508 Guard->setOperand(0, LastCheck); 509 510 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 511 return true; 512 } 513 514 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 515 using namespace PatternMatch; 516 517 BasicBlock *LoopLatch = L->getLoopLatch(); 518 if (!LoopLatch) { 519 DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 520 return None; 521 } 522 523 ICmpInst::Predicate Pred; 524 Value *LHS, *RHS; 525 BasicBlock *TrueDest, *FalseDest; 526 527 if (!match(LoopLatch->getTerminator(), 528 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 529 FalseDest))) { 530 DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 531 return None; 532 } 533 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 534 "One of the latch's destinations must be the header"); 535 if (TrueDest != L->getHeader()) 536 Pred = ICmpInst::getInversePredicate(Pred); 537 538 auto Result = parseLoopICmp(Pred, LHS, RHS); 539 if (!Result) { 540 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 541 return None; 542 } 543 544 if (Result->Pred != ICmpInst::ICMP_ULT && 545 Result->Pred != ICmpInst::ICMP_SLT && 546 Result->Pred != ICmpInst::ICMP_ULE && 547 Result->Pred != ICmpInst::ICMP_SLE) { 548 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 549 << ")!\n"); 550 return None; 551 } 552 553 // Check affine first, so if it's not we don't try to compute the step 554 // recurrence. 555 if (!Result->IV->isAffine()) { 556 DEBUG(dbgs() << "The induction variable is not affine!\n"); 557 return None; 558 } 559 560 auto *Step = Result->IV->getStepRecurrence(*SE); 561 if (!Step->isOne()) { 562 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 563 return None; 564 } 565 566 return Result; 567 } 568 569 // Returns true if its safe to truncate the IV to RangeCheckType. 570 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 571 if (!EnableIVTruncation) 572 return false; 573 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 574 DL->getTypeSizeInBits(RangeCheckType) && 575 "Expected latch check IV type to be larger than range check operand " 576 "type!"); 577 // The start and end values of the IV should be known. This is to guarantee 578 // that truncating the wide type will not lose information. 579 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 580 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 581 if (!Limit || !Start) 582 return false; 583 // This check makes sure that the IV does not change sign during loop 584 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 585 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 586 // IV wraps around, and the truncation of the IV would lose the range of 587 // iterations between 2^32 and 2^64. 588 bool Increasing; 589 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 590 return false; 591 // The active bits should be less than the bits in the RangeCheckType. This 592 // guarantees that truncating the latch check to RangeCheckType is a safe 593 // operation. 594 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 595 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 596 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 597 } 598 599 bool LoopPredication::runOnLoop(Loop *Loop) { 600 L = Loop; 601 602 DEBUG(dbgs() << "Analyzing "); 603 DEBUG(L->dump()); 604 605 Module *M = L->getHeader()->getModule(); 606 607 // There is nothing to do if the module doesn't use guards 608 auto *GuardDecl = 609 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 610 if (!GuardDecl || GuardDecl->use_empty()) 611 return false; 612 613 DL = &M->getDataLayout(); 614 615 Preheader = L->getLoopPreheader(); 616 if (!Preheader) 617 return false; 618 619 auto LatchCheckOpt = parseLoopLatchICmp(); 620 if (!LatchCheckOpt) 621 return false; 622 LatchCheck = *LatchCheckOpt; 623 624 // Collect all the guards into a vector and process later, so as not 625 // to invalidate the instruction iterator. 626 SmallVector<IntrinsicInst *, 4> Guards; 627 for (const auto BB : L->blocks()) 628 for (auto &I : *BB) 629 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 630 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 631 Guards.push_back(II); 632 633 if (Guards.empty()) 634 return false; 635 636 SCEVExpander Expander(*SE, *DL, "loop-predication"); 637 638 bool Changed = false; 639 for (auto *Guard : Guards) 640 Changed |= widenGuardConditions(Guard, Expander); 641 642 return Changed; 643 } 644