xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 1b87882228b0371212753781a363d4addd1bafa7)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 #include <optional>
205 
206 #define DEBUG_TYPE "loop-predication"
207 
208 STATISTIC(TotalConsidered, "Number of guards considered");
209 STATISTIC(TotalWidened, "Number of checks widened");
210 
211 using namespace llvm;
212 
213 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214                                         cl::Hidden, cl::init(true));
215 
216 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217                                         cl::Hidden, cl::init(true));
218 
219 static cl::opt<bool>
220     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221                             cl::Hidden, cl::init(false));
222 
223 // This is the scale factor for the latch probability. We use this during
224 // profitability analysis to find other exiting blocks that have a much higher
225 // probability of exiting the loop instead of loop exiting via latch.
226 // This value should be greater than 1 for a sane profitability check.
227 static cl::opt<float> LatchExitProbabilityScale(
228     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
229     cl::desc("scale factor for the latch probability. Value should be greater "
230              "than 1. Lower values are ignored"));
231 
232 static cl::opt<bool> PredicateWidenableBranchGuards(
233     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
234     cl::desc("Whether or not we should predicate guards "
235              "expressed as widenable branches to deoptimize blocks"),
236     cl::init(true));
237 
238 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
239     "loop-predication-insert-assumes-of-predicated-guards-conditions",
240     cl::Hidden,
241     cl::desc("Whether or not we should insert assumes of conditions of "
242              "predicated guards"),
243     cl::init(true));
244 
245 namespace {
246 /// Represents an induction variable check:
247 ///   icmp Pred, <induction variable>, <loop invariant limit>
248 struct LoopICmp {
249   ICmpInst::Predicate Pred;
250   const SCEVAddRecExpr *IV;
251   const SCEV *Limit;
252   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
253            const SCEV *Limit)
254     : Pred(Pred), IV(IV), Limit(Limit) {}
255   LoopICmp() = default;
256   void dump() {
257     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
258            << ", Limit = " << *Limit << "\n";
259   }
260 };
261 
262 class LoopPredication {
263   AliasAnalysis *AA;
264   DominatorTree *DT;
265   ScalarEvolution *SE;
266   LoopInfo *LI;
267   MemorySSAUpdater *MSSAU;
268 
269   Loop *L;
270   const DataLayout *DL;
271   BasicBlock *Preheader;
272   LoopICmp LatchCheck;
273 
274   bool isSupportedStep(const SCEV* Step);
275   std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
276   std::optional<LoopICmp> parseLoopLatchICmp();
277 
278   /// Return an insertion point suitable for inserting a safe to speculate
279   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
280   /// trivial result would be the at the User itself, but we try to return a
281   /// loop invariant location if possible.
282   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
283   /// Same as above, *except* that this uses the SCEV definition of invariant
284   /// which is that an expression *can be made* invariant via SCEVExpander.
285   /// Thus, this version is only suitable for finding an insert point to be be
286   /// passed to SCEVExpander!
287   Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
288                             ArrayRef<const SCEV *> Ops);
289 
290   /// Return true if the value is known to produce a single fixed value across
291   /// all iterations on which it executes.  Note that this does not imply
292   /// speculation safety.  That must be established separately.
293   bool isLoopInvariantValue(const SCEV* S);
294 
295   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
296                      ICmpInst::Predicate Pred, const SCEV *LHS,
297                      const SCEV *RHS);
298 
299   std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
300                                              SCEVExpander &Expander,
301                                              Instruction *Guard);
302   std::optional<Value *>
303   widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
304                                       SCEVExpander &Expander,
305                                       Instruction *Guard);
306   std::optional<Value *>
307   widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
308                                       SCEVExpander &Expander,
309                                       Instruction *Guard);
310   void widenChecks(SmallVectorImpl<Value *> &Checks,
311                    SmallVectorImpl<Value *> &WidenedChecks,
312                    SCEVExpander &Expander, Instruction *Guard);
313   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
314   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
315   // If the loop always exits through another block in the loop, we should not
316   // predicate based on the latch check. For example, the latch check can be a
317   // very coarse grained check and there can be more fine grained exit checks
318   // within the loop.
319   bool isLoopProfitableToPredicate();
320 
321   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
322 
323 public:
324   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
325                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
326       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
327   bool runOnLoop(Loop *L);
328 };
329 
330 class LoopPredicationLegacyPass : public LoopPass {
331 public:
332   static char ID;
333   LoopPredicationLegacyPass() : LoopPass(ID) {
334     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
335   }
336 
337   void getAnalysisUsage(AnalysisUsage &AU) const override {
338     AU.addRequired<BranchProbabilityInfoWrapperPass>();
339     getLoopAnalysisUsage(AU);
340     AU.addPreserved<MemorySSAWrapperPass>();
341   }
342 
343   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
344     if (skipLoop(L))
345       return false;
346     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
347     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
348     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
349     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
350     std::unique_ptr<MemorySSAUpdater> MSSAU;
351     if (MSSAWP)
352       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
353     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
354     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
355     return LP.runOnLoop(L);
356   }
357 };
358 
359 char LoopPredicationLegacyPass::ID = 0;
360 } // end namespace
361 
362 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
363                       "Loop predication", false, false)
364 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
365 INITIALIZE_PASS_DEPENDENCY(LoopPass)
366 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
367                     "Loop predication", false, false)
368 
369 Pass *llvm::createLoopPredicationPass() {
370   return new LoopPredicationLegacyPass();
371 }
372 
373 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
374                                            LoopStandardAnalysisResults &AR,
375                                            LPMUpdater &U) {
376   std::unique_ptr<MemorySSAUpdater> MSSAU;
377   if (AR.MSSA)
378     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
379   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
380                      MSSAU ? MSSAU.get() : nullptr);
381   if (!LP.runOnLoop(&L))
382     return PreservedAnalyses::all();
383 
384   auto PA = getLoopPassPreservedAnalyses();
385   if (AR.MSSA)
386     PA.preserve<MemorySSAAnalysis>();
387   return PA;
388 }
389 
390 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) {
391   auto Pred = ICI->getPredicate();
392   auto *LHS = ICI->getOperand(0);
393   auto *RHS = ICI->getOperand(1);
394 
395   const SCEV *LHSS = SE->getSCEV(LHS);
396   if (isa<SCEVCouldNotCompute>(LHSS))
397     return std::nullopt;
398   const SCEV *RHSS = SE->getSCEV(RHS);
399   if (isa<SCEVCouldNotCompute>(RHSS))
400     return std::nullopt;
401 
402   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
403   if (SE->isLoopInvariant(LHSS, L)) {
404     std::swap(LHS, RHS);
405     std::swap(LHSS, RHSS);
406     Pred = ICmpInst::getSwappedPredicate(Pred);
407   }
408 
409   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
410   if (!AR || AR->getLoop() != L)
411     return std::nullopt;
412 
413   return LoopICmp(Pred, AR, RHSS);
414 }
415 
416 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
417                                     Instruction *Guard,
418                                     ICmpInst::Predicate Pred, const SCEV *LHS,
419                                     const SCEV *RHS) {
420   Type *Ty = LHS->getType();
421   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
422 
423   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
424     IRBuilder<> Builder(Guard);
425     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
426       return Builder.getTrue();
427     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
428                                      LHS, RHS))
429       return Builder.getFalse();
430   }
431 
432   Value *LHSV =
433       Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
434   Value *RHSV =
435       Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
436   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
437   return Builder.CreateICmp(Pred, LHSV, RHSV);
438 }
439 
440 // Returns true if its safe to truncate the IV to RangeCheckType.
441 // When the IV type is wider than the range operand type, we can still do loop
442 // predication, by generating SCEVs for the range and latch that are of the
443 // same type. We achieve this by generating a SCEV truncate expression for the
444 // latch IV. This is done iff truncation of the IV is a safe operation,
445 // without loss of information.
446 // Another way to achieve this is by generating a wider type SCEV for the
447 // range check operand, however, this needs a more involved check that
448 // operands do not overflow. This can lead to loss of information when the
449 // range operand is of the form: add i32 %offset, %iv. We need to prove that
450 // sext(x + y) is same as sext(x) + sext(y).
451 // This function returns true if we can safely represent the IV type in
452 // the RangeCheckType without loss of information.
453 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
454                                        ScalarEvolution &SE,
455                                        const LoopICmp LatchCheck,
456                                        Type *RangeCheckType) {
457   if (!EnableIVTruncation)
458     return false;
459   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
460              DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
461          "Expected latch check IV type to be larger than range check operand "
462          "type!");
463   // The start and end values of the IV should be known. This is to guarantee
464   // that truncating the wide type will not lose information.
465   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
466   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
467   if (!Limit || !Start)
468     return false;
469   // This check makes sure that the IV does not change sign during loop
470   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
471   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
472   // IV wraps around, and the truncation of the IV would lose the range of
473   // iterations between 2^32 and 2^64.
474   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
475     return false;
476   // The active bits should be less than the bits in the RangeCheckType. This
477   // guarantees that truncating the latch check to RangeCheckType is a safe
478   // operation.
479   auto RangeCheckTypeBitSize =
480       DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
481   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
482          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
483 }
484 
485 
486 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
487 // the requested type if safe to do so.  May involve the use of a new IV.
488 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
489                                                       ScalarEvolution &SE,
490                                                       const LoopICmp LatchCheck,
491                                                       Type *RangeCheckType) {
492 
493   auto *LatchType = LatchCheck.IV->getType();
494   if (RangeCheckType == LatchType)
495     return LatchCheck;
496   // For now, bail out if latch type is narrower than range type.
497   if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
498       DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
499     return std::nullopt;
500   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
501     return std::nullopt;
502   // We can now safely identify the truncated version of the IV and limit for
503   // RangeCheckType.
504   LoopICmp NewLatchCheck;
505   NewLatchCheck.Pred = LatchCheck.Pred;
506   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
507       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
508   if (!NewLatchCheck.IV)
509     return std::nullopt;
510   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
511   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
512                     << "can be represented as range check type:"
513                     << *RangeCheckType << "\n");
514   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
515   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
516   return NewLatchCheck;
517 }
518 
519 bool LoopPredication::isSupportedStep(const SCEV* Step) {
520   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
521 }
522 
523 Instruction *LoopPredication::findInsertPt(Instruction *Use,
524                                            ArrayRef<Value*> Ops) {
525   for (Value *Op : Ops)
526     if (!L->isLoopInvariant(Op))
527       return Use;
528   return Preheader->getTerminator();
529 }
530 
531 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
532                                            Instruction *Use,
533                                            ArrayRef<const SCEV *> Ops) {
534   // Subtlety: SCEV considers things to be invariant if the value produced is
535   // the same across iterations.  This is not the same as being able to
536   // evaluate outside the loop, which is what we actually need here.
537   for (const SCEV *Op : Ops)
538     if (!SE->isLoopInvariant(Op, L) ||
539         !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
540       return Use;
541   return Preheader->getTerminator();
542 }
543 
544 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
545   // Handling expressions which produce invariant results, but *haven't* yet
546   // been removed from the loop serves two important purposes.
547   // 1) Most importantly, it resolves a pass ordering cycle which would
548   // otherwise need us to iteration licm, loop-predication, and either
549   // loop-unswitch or loop-peeling to make progress on examples with lots of
550   // predicable range checks in a row.  (Since, in the general case,  we can't
551   // hoist the length checks until the dominating checks have been discharged
552   // as we can't prove doing so is safe.)
553   // 2) As a nice side effect, this exposes the value of peeling or unswitching
554   // much more obviously in the IR.  Otherwise, the cost modeling for other
555   // transforms would end up needing to duplicate all of this logic to model a
556   // check which becomes predictable based on a modeled peel or unswitch.
557   //
558   // The cost of doing so in the worst case is an extra fill from the stack  in
559   // the loop to materialize the loop invariant test value instead of checking
560   // against the original IV which is presumable in a register inside the loop.
561   // Such cases are presumably rare, and hint at missing oppurtunities for
562   // other passes.
563 
564   if (SE->isLoopInvariant(S, L))
565     // Note: This the SCEV variant, so the original Value* may be within the
566     // loop even though SCEV has proven it is loop invariant.
567     return true;
568 
569   // Handle a particular important case which SCEV doesn't yet know about which
570   // shows up in range checks on arrays with immutable lengths.
571   // TODO: This should be sunk inside SCEV.
572   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
573     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
574       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
575         if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
576             LI->hasMetadata(LLVMContext::MD_invariant_load))
577           return true;
578   return false;
579 }
580 
581 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
582     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
583     Instruction *Guard) {
584   auto *Ty = RangeCheck.IV->getType();
585   // Generate the widened condition for the forward loop:
586   //   guardStart u< guardLimit &&
587   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
588   // where <pred> depends on the latch condition predicate. See the file
589   // header comment for the reasoning.
590   // guardLimit - guardStart + latchStart - 1
591   const SCEV *GuardStart = RangeCheck.IV->getStart();
592   const SCEV *GuardLimit = RangeCheck.Limit;
593   const SCEV *LatchStart = LatchCheck.IV->getStart();
594   const SCEV *LatchLimit = LatchCheck.Limit;
595   // Subtlety: We need all the values to be *invariant* across all iterations,
596   // but we only need to check expansion safety for those which *aren't*
597   // already guaranteed to dominate the guard.
598   if (!isLoopInvariantValue(GuardStart) ||
599       !isLoopInvariantValue(GuardLimit) ||
600       !isLoopInvariantValue(LatchStart) ||
601       !isLoopInvariantValue(LatchLimit)) {
602     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
603     return std::nullopt;
604   }
605   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
606       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
607     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
608     return std::nullopt;
609   }
610 
611   // guardLimit - guardStart + latchStart - 1
612   const SCEV *RHS =
613       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
614                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
615   auto LimitCheckPred =
616       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
617 
618   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
619   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
620   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
621 
622   auto *LimitCheck =
623       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
624   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
625                                           GuardStart, GuardLimit);
626   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
627   return Builder.CreateFreeze(
628       Builder.CreateAnd(FirstIterationCheck, LimitCheck));
629 }
630 
631 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
632     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
633     Instruction *Guard) {
634   auto *Ty = RangeCheck.IV->getType();
635   const SCEV *GuardStart = RangeCheck.IV->getStart();
636   const SCEV *GuardLimit = RangeCheck.Limit;
637   const SCEV *LatchStart = LatchCheck.IV->getStart();
638   const SCEV *LatchLimit = LatchCheck.Limit;
639   // Subtlety: We need all the values to be *invariant* across all iterations,
640   // but we only need to check expansion safety for those which *aren't*
641   // already guaranteed to dominate the guard.
642   if (!isLoopInvariantValue(GuardStart) ||
643       !isLoopInvariantValue(GuardLimit) ||
644       !isLoopInvariantValue(LatchStart) ||
645       !isLoopInvariantValue(LatchLimit)) {
646     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
647     return std::nullopt;
648   }
649   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
650       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
651     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
652     return std::nullopt;
653   }
654   // The decrement of the latch check IV should be the same as the
655   // rangeCheckIV.
656   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
657   if (RangeCheck.IV != PostDecLatchCheckIV) {
658     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
659                       << *PostDecLatchCheckIV
660                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
661     return std::nullopt;
662   }
663 
664   // Generate the widened condition for CountDownLoop:
665   // guardStart u< guardLimit &&
666   // latchLimit <pred> 1.
667   // See the header comment for reasoning of the checks.
668   auto LimitCheckPred =
669       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
670   auto *FirstIterationCheck = expandCheck(Expander, Guard,
671                                           ICmpInst::ICMP_ULT,
672                                           GuardStart, GuardLimit);
673   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
674                                  SE->getOne(Ty));
675   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
676   return Builder.CreateFreeze(
677       Builder.CreateAnd(FirstIterationCheck, LimitCheck));
678 }
679 
680 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
681                                LoopICmp& RC) {
682   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
683   // ULT/UGE form for ease of handling by our caller.
684   if (ICmpInst::isEquality(RC.Pred) &&
685       RC.IV->getStepRecurrence(*SE)->isOne() &&
686       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
687     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
688       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
689 }
690 
691 /// If ICI can be widened to a loop invariant condition emits the loop
692 /// invariant condition in the loop preheader and return it, otherwise
693 /// returns std::nullopt.
694 std::optional<Value *>
695 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
696                                      Instruction *Guard) {
697   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
698   LLVM_DEBUG(ICI->dump());
699 
700   // parseLoopStructure guarantees that the latch condition is:
701   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
702   // We are looking for the range checks of the form:
703   //   i u< guardLimit
704   auto RangeCheck = parseLoopICmp(ICI);
705   if (!RangeCheck) {
706     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
707     return std::nullopt;
708   }
709   LLVM_DEBUG(dbgs() << "Guard check:\n");
710   LLVM_DEBUG(RangeCheck->dump());
711   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
712     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
713                       << RangeCheck->Pred << ")!\n");
714     return std::nullopt;
715   }
716   auto *RangeCheckIV = RangeCheck->IV;
717   if (!RangeCheckIV->isAffine()) {
718     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
719     return std::nullopt;
720   }
721   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
722   // We cannot just compare with latch IV step because the latch and range IVs
723   // may have different types.
724   if (!isSupportedStep(Step)) {
725     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
726     return std::nullopt;
727   }
728   auto *Ty = RangeCheckIV->getType();
729   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
730   if (!CurrLatchCheckOpt) {
731     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
732                          "corresponding to range type: "
733                       << *Ty << "\n");
734     return std::nullopt;
735   }
736 
737   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
738   // At this point, the range and latch step should have the same type, but need
739   // not have the same value (we support both 1 and -1 steps).
740   assert(Step->getType() ==
741              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
742          "Range and latch steps should be of same type!");
743   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
744     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
745     return std::nullopt;
746   }
747 
748   if (Step->isOne())
749     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
750                                                Expander, Guard);
751   else {
752     assert(Step->isAllOnesValue() && "Step should be -1!");
753     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
754                                                Expander, Guard);
755   }
756 }
757 
758 void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks,
759                                   SmallVectorImpl<Value *> &WidenedChecks,
760                                   SCEVExpander &Expander, Instruction *Guard) {
761   for (auto &Check : Checks)
762     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Check))
763       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) {
764         WidenedChecks.push_back(Check);
765         Check = *NewRangeCheck;
766       }
767 }
768 
769 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
770                                            SCEVExpander &Expander) {
771   LLVM_DEBUG(dbgs() << "Processing guard:\n");
772   LLVM_DEBUG(Guard->dump());
773 
774   TotalConsidered++;
775   SmallVector<Value *, 4> Checks;
776   SmallVector<Value *> WidenedChecks;
777   parseWidenableGuard(Guard, Checks);
778   widenChecks(Checks, WidenedChecks, Expander, Guard);
779   if (WidenedChecks.empty())
780     return false;
781 
782   TotalWidened += WidenedChecks.size();
783 
784   // Emit the new guard condition
785   IRBuilder<> Builder(findInsertPt(Guard, Checks));
786   Value *AllChecks = Builder.CreateAnd(Checks);
787   auto *OldCond = Guard->getOperand(0);
788   Guard->setOperand(0, AllChecks);
789   if (InsertAssumesOfPredicatedGuardsConditions) {
790     Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
791     Builder.CreateAssumption(OldCond);
792   }
793   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
794 
795   LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
796   return true;
797 }
798 
799 bool LoopPredication::widenWidenableBranchGuardConditions(
800     BranchInst *BI, SCEVExpander &Expander) {
801   assert(isGuardAsWidenableBranch(BI) && "Must be!");
802   LLVM_DEBUG(dbgs() << "Processing guard:\n");
803   LLVM_DEBUG(BI->dump());
804 
805   Value *Cond, *WC;
806   BasicBlock *IfTrueBB, *IfFalseBB;
807   bool Parsed = parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB);
808   assert(Parsed && "Must be able to parse widenable branch");
809   (void)Parsed;
810 
811   TotalConsidered++;
812   SmallVector<Value *, 4> Checks;
813   SmallVector<Value *> WidenedChecks;
814   parseWidenableGuard(BI, Checks);
815   // At the moment, our matching logic for wideable conditions implicitly
816   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
817   Checks.push_back(WC);
818   widenChecks(Checks, WidenedChecks, Expander, BI);
819   if (WidenedChecks.empty())
820     return false;
821 
822   TotalWidened += WidenedChecks.size();
823 
824   // Emit the new guard condition
825   IRBuilder<> Builder(findInsertPt(BI, Checks));
826   Value *AllChecks = Builder.CreateAnd(Checks);
827   auto *OldCond = BI->getCondition();
828   BI->setCondition(AllChecks);
829   if (InsertAssumesOfPredicatedGuardsConditions) {
830     Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
831     // If this block has other predecessors, we might not be able to use Cond.
832     // In this case, create a Phi where every other input is `true` and input
833     // from guard block is Cond.
834     Value *AssumeCond = Builder.CreateAnd(WidenedChecks);
835     if (!IfTrueBB->getUniquePredecessor()) {
836       auto *GuardBB = BI->getParent();
837       auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB),
838                                    "assume.cond");
839       for (auto *Pred : predecessors(IfTrueBB))
840         PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred);
841       AssumeCond = PN;
842     }
843     Builder.CreateAssumption(AssumeCond);
844   }
845   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
846   assert(isGuardAsWidenableBranch(BI) &&
847          "Stopped being a guard after transform?");
848 
849   LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
850   return true;
851 }
852 
853 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
854   using namespace PatternMatch;
855 
856   BasicBlock *LoopLatch = L->getLoopLatch();
857   if (!LoopLatch) {
858     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
859     return std::nullopt;
860   }
861 
862   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
863   if (!BI || !BI->isConditional()) {
864     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
865     return std::nullopt;
866   }
867   BasicBlock *TrueDest = BI->getSuccessor(0);
868   assert(
869       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
870       "One of the latch's destinations must be the header");
871 
872   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
873   if (!ICI) {
874     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
875     return std::nullopt;
876   }
877   auto Result = parseLoopICmp(ICI);
878   if (!Result) {
879     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
880     return std::nullopt;
881   }
882 
883   if (TrueDest != L->getHeader())
884     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
885 
886   // Check affine first, so if it's not we don't try to compute the step
887   // recurrence.
888   if (!Result->IV->isAffine()) {
889     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
890     return std::nullopt;
891   }
892 
893   auto *Step = Result->IV->getStepRecurrence(*SE);
894   if (!isSupportedStep(Step)) {
895     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
896     return std::nullopt;
897   }
898 
899   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
900     if (Step->isOne()) {
901       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
902              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
903     } else {
904       assert(Step->isAllOnesValue() && "Step should be -1!");
905       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
906              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
907     }
908   };
909 
910   normalizePredicate(SE, L, *Result);
911   if (IsUnsupportedPredicate(Step, Result->Pred)) {
912     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
913                       << ")!\n");
914     return std::nullopt;
915   }
916 
917   return Result;
918 }
919 
920 bool LoopPredication::isLoopProfitableToPredicate() {
921   if (SkipProfitabilityChecks)
922     return true;
923 
924   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
925   L->getExitEdges(ExitEdges);
926   // If there is only one exiting edge in the loop, it is always profitable to
927   // predicate the loop.
928   if (ExitEdges.size() == 1)
929     return true;
930 
931   // Calculate the exiting probabilities of all exiting edges from the loop,
932   // starting with the LatchExitProbability.
933   // Heuristic for profitability: If any of the exiting blocks' probability of
934   // exiting the loop is larger than exiting through the latch block, it's not
935   // profitable to predicate the loop.
936   auto *LatchBlock = L->getLoopLatch();
937   assert(LatchBlock && "Should have a single latch at this point!");
938   auto *LatchTerm = LatchBlock->getTerminator();
939   assert(LatchTerm->getNumSuccessors() == 2 &&
940          "expected to be an exiting block with 2 succs!");
941   unsigned LatchBrExitIdx =
942       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
943   // We compute branch probabilities without BPI. We do not rely on BPI since
944   // Loop predication is usually run in an LPM and BPI is only preserved
945   // lossily within loop pass managers, while BPI has an inherent notion of
946   // being complete for an entire function.
947 
948   // If the latch exits into a deoptimize or an unreachable block, do not
949   // predicate on that latch check.
950   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
951   if (isa<UnreachableInst>(LatchTerm) ||
952       LatchExitBlock->getTerminatingDeoptimizeCall())
953     return false;
954 
955   // Latch terminator has no valid profile data, so nothing to check
956   // profitability on.
957   if (!hasValidBranchWeightMD(*LatchTerm))
958     return true;
959 
960   auto ComputeBranchProbability =
961       [&](const BasicBlock *ExitingBlock,
962           const BasicBlock *ExitBlock) -> BranchProbability {
963     auto *Term = ExitingBlock->getTerminator();
964     unsigned NumSucc = Term->getNumSuccessors();
965     if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) {
966       SmallVector<uint32_t> Weights;
967       extractBranchWeights(ProfileData, Weights);
968       uint64_t Numerator = 0, Denominator = 0;
969       for (auto [i, Weight] : llvm::enumerate(Weights)) {
970         if (Term->getSuccessor(i) == ExitBlock)
971           Numerator += Weight;
972         Denominator += Weight;
973       }
974       return BranchProbability::getBranchProbability(Numerator, Denominator);
975     } else {
976       assert(LatchBlock != ExitingBlock &&
977              "Latch term should always have profile data!");
978       // No profile data, so we choose the weight as 1/num_of_succ(Src)
979       return BranchProbability::getBranchProbability(1, NumSucc);
980     }
981   };
982 
983   BranchProbability LatchExitProbability =
984       ComputeBranchProbability(LatchBlock, LatchExitBlock);
985 
986   // Protect against degenerate inputs provided by the user. Providing a value
987   // less than one, can invert the definition of profitable loop predication.
988   float ScaleFactor = LatchExitProbabilityScale;
989   if (ScaleFactor < 1) {
990     LLVM_DEBUG(
991         dbgs()
992         << "Ignored user setting for loop-predication-latch-probability-scale: "
993         << LatchExitProbabilityScale << "\n");
994     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
995     ScaleFactor = 1.0;
996   }
997   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
998 
999   for (const auto &ExitEdge : ExitEdges) {
1000     BranchProbability ExitingBlockProbability =
1001         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1002     // Some exiting edge has higher probability than the latch exiting edge.
1003     // No longer profitable to predicate.
1004     if (ExitingBlockProbability > LatchProbabilityThreshold)
1005       return false;
1006   }
1007 
1008   // We have concluded that the most probable way to exit from the
1009   // loop is through the latch (or there's no profile information and all
1010   // exits are equally likely).
1011   return true;
1012 }
1013 
1014 /// If we can (cheaply) find a widenable branch which controls entry into the
1015 /// loop, return it.
1016 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1017   // Walk back through any unconditional executed blocks and see if we can find
1018   // a widenable condition which seems to control execution of this loop.  Note
1019   // that we predict that maythrow calls are likely untaken and thus that it's
1020   // profitable to widen a branch before a maythrow call with a condition
1021   // afterwards even though that may cause the slow path to run in a case where
1022   // it wouldn't have otherwise.
1023   BasicBlock *BB = L->getLoopPreheader();
1024   if (!BB)
1025     return nullptr;
1026   do {
1027     if (BasicBlock *Pred = BB->getSinglePredecessor())
1028       if (BB == Pred->getSingleSuccessor()) {
1029         BB = Pred;
1030         continue;
1031       }
1032     break;
1033   } while (true);
1034 
1035   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1036     auto *Term = Pred->getTerminator();
1037 
1038     Value *Cond, *WC;
1039     BasicBlock *IfTrueBB, *IfFalseBB;
1040     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1041         IfTrueBB == BB)
1042       return cast<BranchInst>(Term);
1043   }
1044   return nullptr;
1045 }
1046 
1047 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1048 /// on the actual exit count.  If there are not at least two analyzeable exits,
1049 /// returns SCEVCouldNotCompute.
1050 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1051                                                        DominatorTree &DT,
1052                                                        Loop *L) {
1053   SmallVector<BasicBlock *, 16> ExitingBlocks;
1054   L->getExitingBlocks(ExitingBlocks);
1055 
1056   SmallVector<const SCEV *, 4> ExitCounts;
1057   for (BasicBlock *ExitingBB : ExitingBlocks) {
1058     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1059     if (isa<SCEVCouldNotCompute>(ExitCount))
1060       continue;
1061     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1062            "We should only have known counts for exiting blocks that "
1063            "dominate latch!");
1064     ExitCounts.push_back(ExitCount);
1065   }
1066   if (ExitCounts.size() < 2)
1067     return SE.getCouldNotCompute();
1068   return SE.getUMinFromMismatchedTypes(ExitCounts);
1069 }
1070 
1071 /// This implements an analogous, but entirely distinct transform from the main
1072 /// loop predication transform.  This one is phrased in terms of using a
1073 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1074 /// following loop.  This is close in spirit to the IndVarSimplify transform
1075 /// of the same name, but is materially different widening loosens legality
1076 /// sharply.
1077 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1078   // The transformation performed here aims to widen a widenable condition
1079   // above the loop such that all analyzeable exit leading to deopt are dead.
1080   // It assumes that the latch is the dominant exit for profitability and that
1081   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1082   // semantics of widenable expressions for legality. (i.e. being able to fall
1083   // down the widenable path spuriously allows us to ignore exit order,
1084   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1085   // which restrict the applicability of the non-WC based version of this
1086   // transform in IndVarSimplify.)
1087   //
1088   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1089   // imply flags on the expression being hoisted and inserting new uses (flags
1090   // are only correct for current uses).  The result is that we may be
1091   // inserting a branch on the value which can be either poison or undef.  In
1092   // this case, the branch can legally go either way; we just need to avoid
1093   // introducing UB.  This is achieved through the use of the freeze
1094   // instruction.
1095 
1096   SmallVector<BasicBlock *, 16> ExitingBlocks;
1097   L->getExitingBlocks(ExitingBlocks);
1098 
1099   if (ExitingBlocks.empty())
1100     return false; // Nothing to do.
1101 
1102   auto *Latch = L->getLoopLatch();
1103   if (!Latch)
1104     return false;
1105 
1106   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1107   if (!WidenableBR)
1108     return false;
1109 
1110   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1111   if (isa<SCEVCouldNotCompute>(LatchEC))
1112     return false; // profitability - want hot exit in analyzeable set
1113 
1114   // At this point, we have found an analyzeable latch, and a widenable
1115   // condition above the loop.  If we have a widenable exit within the loop
1116   // (for which we can't compute exit counts), drop the ability to further
1117   // widen so that we gain ability to analyze it's exit count and perform this
1118   // transform.  TODO: It'd be nice to know for sure the exit became
1119   // analyzeable after dropping widenability.
1120   bool ChangedLoop = false;
1121 
1122   for (auto *ExitingBB : ExitingBlocks) {
1123     if (LI->getLoopFor(ExitingBB) != L)
1124       continue;
1125 
1126     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1127     if (!BI)
1128       continue;
1129 
1130     Use *Cond, *WC;
1131     BasicBlock *IfTrueBB, *IfFalseBB;
1132     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1133         L->contains(IfTrueBB)) {
1134       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1135       ChangedLoop = true;
1136     }
1137   }
1138   if (ChangedLoop)
1139     SE->forgetLoop(L);
1140 
1141   // The insertion point for the widening should be at the widenably call, not
1142   // at the WidenableBR. If we do this at the widenableBR, we can incorrectly
1143   // change a loop-invariant condition to a loop-varying one.
1144   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1145 
1146   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1147   // important for profitability.  We may have a loop which hasn't been fully
1148   // canonicalized just yet.  If the exit we chose to widen is provably never
1149   // taken, we want the widened form to *also* be provably never taken.  We
1150   // can't guarantee this as a current unanalyzeable exit may later become
1151   // analyzeable, but we can at least avoid the obvious cases.
1152   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1153   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1154       !SE->isLoopInvariant(MinEC, L) ||
1155       !Rewriter.isSafeToExpandAt(MinEC, IP))
1156     return ChangedLoop;
1157 
1158   Rewriter.setInsertPoint(IP);
1159   IRBuilder<> B(IP);
1160 
1161   bool InvalidateLoop = false;
1162   Value *MinECV = nullptr; // lazily generated if needed
1163   for (BasicBlock *ExitingBB : ExitingBlocks) {
1164     // If our exiting block exits multiple loops, we can only rewrite the
1165     // innermost one.  Otherwise, we're changing how many times the innermost
1166     // loop runs before it exits.
1167     if (LI->getLoopFor(ExitingBB) != L)
1168       continue;
1169 
1170     // Can't rewrite non-branch yet.
1171     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1172     if (!BI)
1173       continue;
1174 
1175     // If already constant, nothing to do.
1176     if (isa<Constant>(BI->getCondition()))
1177       continue;
1178 
1179     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1180     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1181         ExitCount->getType()->isPointerTy() ||
1182         !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1183       continue;
1184 
1185     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1186     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1187     if (!ExitBB->getPostdominatingDeoptimizeCall())
1188       continue;
1189 
1190     /// Here we can be fairly sure that executing this exit will most likely
1191     /// lead to executing llvm.experimental.deoptimize.
1192     /// This is a profitability heuristic, not a legality constraint.
1193 
1194     // If we found a widenable exit condition, do two things:
1195     // 1) fold the widened exit test into the widenable condition
1196     // 2) fold the branch to untaken - avoids infinite looping
1197 
1198     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1199     if (!MinECV)
1200       MinECV = Rewriter.expandCodeFor(MinEC);
1201     Value *RHS = MinECV;
1202     if (ECV->getType() != RHS->getType()) {
1203       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1204       ECV = B.CreateZExt(ECV, WiderTy);
1205       RHS = B.CreateZExt(RHS, WiderTy);
1206     }
1207     assert(!Latch || DT->dominates(ExitingBB, Latch));
1208     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1209     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1210     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1211     // context.
1212     NewCond = B.CreateFreeze(NewCond);
1213 
1214     widenWidenableBranch(WidenableBR, NewCond);
1215 
1216     Value *OldCond = BI->getCondition();
1217     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1218     InvalidateLoop = true;
1219   }
1220 
1221   if (InvalidateLoop)
1222     // We just mutated a bunch of loop exits changing there exit counts
1223     // widely.  We need to force recomputation of the exit counts given these
1224     // changes.  Note that all of the inserted exits are never taken, and
1225     // should be removed next time the CFG is modified.
1226     SE->forgetLoop(L);
1227 
1228   // Always return `true` since we have moved the WidenableBR's condition.
1229   return true;
1230 }
1231 
1232 bool LoopPredication::runOnLoop(Loop *Loop) {
1233   L = Loop;
1234 
1235   LLVM_DEBUG(dbgs() << "Analyzing ");
1236   LLVM_DEBUG(L->dump());
1237 
1238   Module *M = L->getHeader()->getModule();
1239 
1240   // There is nothing to do if the module doesn't use guards
1241   auto *GuardDecl =
1242       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1243   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1244   auto *WCDecl = M->getFunction(
1245       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1246   bool HasWidenableConditions =
1247       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1248   if (!HasIntrinsicGuards && !HasWidenableConditions)
1249     return false;
1250 
1251   DL = &M->getDataLayout();
1252 
1253   Preheader = L->getLoopPreheader();
1254   if (!Preheader)
1255     return false;
1256 
1257   auto LatchCheckOpt = parseLoopLatchICmp();
1258   if (!LatchCheckOpt)
1259     return false;
1260   LatchCheck = *LatchCheckOpt;
1261 
1262   LLVM_DEBUG(dbgs() << "Latch check:\n");
1263   LLVM_DEBUG(LatchCheck.dump());
1264 
1265   if (!isLoopProfitableToPredicate()) {
1266     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1267     return false;
1268   }
1269   // Collect all the guards into a vector and process later, so as not
1270   // to invalidate the instruction iterator.
1271   SmallVector<IntrinsicInst *, 4> Guards;
1272   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1273   for (const auto BB : L->blocks()) {
1274     for (auto &I : *BB)
1275       if (isGuard(&I))
1276         Guards.push_back(cast<IntrinsicInst>(&I));
1277     if (PredicateWidenableBranchGuards &&
1278         isGuardAsWidenableBranch(BB->getTerminator()))
1279       GuardsAsWidenableBranches.push_back(
1280           cast<BranchInst>(BB->getTerminator()));
1281   }
1282 
1283   SCEVExpander Expander(*SE, *DL, "loop-predication");
1284   bool Changed = false;
1285   for (auto *Guard : Guards)
1286     Changed |= widenGuardConditions(Guard, Expander);
1287   for (auto *Guard : GuardsAsWidenableBranches)
1288     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1289   Changed |= predicateLoopExits(L, Expander);
1290 
1291   if (MSSAU && VerifyMemorySSA)
1292     MSSAU->getMemorySSA()->verifyMemorySSA();
1293   return Changed;
1294 }
1295