xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 19afdf74bb91dca9dab9ef2bf1112c6748056c93)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Transforms/Scalar.h"
197 #include "llvm/Transforms/Utils/Local.h"
198 #include "llvm/Transforms/Utils/LoopUtils.h"
199 
200 #define DEBUG_TYPE "loop-predication"
201 
202 STATISTIC(TotalConsidered, "Number of guards considered");
203 STATISTIC(TotalWidened, "Number of checks widened");
204 
205 using namespace llvm;
206 
207 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208                                         cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211                                         cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool>
214     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215                             cl::Hidden, cl::init(false));
216 
217 // This is the scale factor for the latch probability. We use this during
218 // profitability analysis to find other exiting blocks that have a much higher
219 // probability of exiting the loop instead of loop exiting via latch.
220 // This value should be greater than 1 for a sane profitability check.
221 static cl::opt<float> LatchExitProbabilityScale(
222     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223     cl::desc("scale factor for the latch probability. Value should be greater "
224              "than 1. Lower values are ignored"));
225 
226 static cl::opt<bool> PredicateWidenableBranchGuards(
227     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228     cl::desc("Whether or not we should predicate guards "
229              "expressed as widenable branches to deoptimize blocks"),
230     cl::init(true));
231 
232 namespace {
233 /// Represents an induction variable check:
234 ///   icmp Pred, <induction variable>, <loop invariant limit>
235 struct LoopICmp {
236   ICmpInst::Predicate Pred;
237   const SCEVAddRecExpr *IV;
238   const SCEV *Limit;
239   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240            const SCEV *Limit)
241     : Pred(Pred), IV(IV), Limit(Limit) {}
242   LoopICmp() {}
243   void dump() {
244     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245            << ", Limit = " << *Limit << "\n";
246   }
247 };
248 
249 class LoopPredication {
250   AliasAnalysis *AA;
251   ScalarEvolution *SE;
252   BranchProbabilityInfo *BPI;
253 
254   Loop *L;
255   const DataLayout *DL;
256   BasicBlock *Preheader;
257   LoopICmp LatchCheck;
258 
259   bool isSupportedStep(const SCEV* Step);
260   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
261   Optional<LoopICmp> parseLoopLatchICmp();
262 
263   /// Return an insertion point suitable for inserting a safe to speculate
264   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
265   /// trivial result would be the at the User itself, but we try to return a
266   /// loop invariant location if possible.
267   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
268   /// Same as above, *except* that this uses the SCEV definition of invariant
269   /// which is that an expression *can be made* invariant via SCEVExpander.
270   /// Thus, this version is only suitable for finding an insert point to be be
271   /// passed to SCEVExpander!
272   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
273 
274   /// Return true if the value is known to produce a single fixed value across
275   /// all iterations on which it executes.  Note that this does not imply
276   /// speculation safety.  That must be established seperately.
277   bool isLoopInvariantValue(const SCEV* S);
278 
279   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
280                      ICmpInst::Predicate Pred, const SCEV *LHS,
281                      const SCEV *RHS);
282 
283   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
284                                         Instruction *Guard);
285   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286                                                         LoopICmp RangeCheck,
287                                                         SCEVExpander &Expander,
288                                                         Instruction *Guard);
289   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290                                                         LoopICmp RangeCheck,
291                                                         SCEVExpander &Expander,
292                                                         Instruction *Guard);
293   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
294                          SCEVExpander &Expander, Instruction *Guard);
295   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
296   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
297   // If the loop always exits through another block in the loop, we should not
298   // predicate based on the latch check. For example, the latch check can be a
299   // very coarse grained check and there can be more fine grained exit checks
300   // within the loop. We identify such unprofitable loops through BPI.
301   bool isLoopProfitableToPredicate();
302 
303   // When the IV type is wider than the range operand type, we can still do loop
304   // predication, by generating SCEVs for the range and latch that are of the
305   // same type. We achieve this by generating a SCEV truncate expression for the
306   // latch IV. This is done iff truncation of the IV is a safe operation,
307   // without loss of information.
308   // Another way to achieve this is by generating a wider type SCEV for the
309   // range check operand, however, this needs a more involved check that
310   // operands do not overflow. This can lead to loss of information when the
311   // range operand is of the form: add i32 %offset, %iv. We need to prove that
312   // sext(x + y) is same as sext(x) + sext(y).
313   // This function returns true if we can safely represent the IV type in
314   // the RangeCheckType without loss of information.
315   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
316   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
317   // so.
318   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
319 
320 public:
321   LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
322                   BranchProbabilityInfo *BPI)
323     : AA(AA), SE(SE), BPI(BPI){};
324   bool runOnLoop(Loop *L);
325 };
326 
327 class LoopPredicationLegacyPass : public LoopPass {
328 public:
329   static char ID;
330   LoopPredicationLegacyPass() : LoopPass(ID) {
331     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
332   }
333 
334   void getAnalysisUsage(AnalysisUsage &AU) const override {
335     AU.addRequired<BranchProbabilityInfoWrapperPass>();
336     getLoopAnalysisUsage(AU);
337   }
338 
339   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
340     if (skipLoop(L))
341       return false;
342     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
343     BranchProbabilityInfo &BPI =
344         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
345     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
346     LoopPredication LP(AA, SE, &BPI);
347     return LP.runOnLoop(L);
348   }
349 };
350 
351 char LoopPredicationLegacyPass::ID = 0;
352 } // end namespace llvm
353 
354 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
355                       "Loop predication", false, false)
356 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
357 INITIALIZE_PASS_DEPENDENCY(LoopPass)
358 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
359                     "Loop predication", false, false)
360 
361 Pass *llvm::createLoopPredicationPass() {
362   return new LoopPredicationLegacyPass();
363 }
364 
365 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
366                                            LoopStandardAnalysisResults &AR,
367                                            LPMUpdater &U) {
368   const auto &FAM =
369       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
370   Function *F = L.getHeader()->getParent();
371   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
372   LoopPredication LP(&AR.AA, &AR.SE, BPI);
373   if (!LP.runOnLoop(&L))
374     return PreservedAnalyses::all();
375 
376   return getLoopPassPreservedAnalyses();
377 }
378 
379 Optional<LoopICmp>
380 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
381   auto Pred = ICI->getPredicate();
382   auto *LHS = ICI->getOperand(0);
383   auto *RHS = ICI->getOperand(1);
384 
385   const SCEV *LHSS = SE->getSCEV(LHS);
386   if (isa<SCEVCouldNotCompute>(LHSS))
387     return None;
388   const SCEV *RHSS = SE->getSCEV(RHS);
389   if (isa<SCEVCouldNotCompute>(RHSS))
390     return None;
391 
392   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
393   if (SE->isLoopInvariant(LHSS, L)) {
394     std::swap(LHS, RHS);
395     std::swap(LHSS, RHSS);
396     Pred = ICmpInst::getSwappedPredicate(Pred);
397   }
398 
399   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
400   if (!AR || AR->getLoop() != L)
401     return None;
402 
403   return LoopICmp(Pred, AR, RHSS);
404 }
405 
406 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
407                                     Instruction *Guard,
408                                     ICmpInst::Predicate Pred, const SCEV *LHS,
409                                     const SCEV *RHS) {
410   Type *Ty = LHS->getType();
411   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
412 
413   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
414     IRBuilder<> Builder(Guard);
415     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
416       return Builder.getTrue();
417     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
418                                      LHS, RHS))
419       return Builder.getFalse();
420   }
421 
422   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
423   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
424   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
425   return Builder.CreateICmp(Pred, LHSV, RHSV);
426 }
427 
428 Optional<LoopICmp>
429 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
430 
431   auto *LatchType = LatchCheck.IV->getType();
432   if (RangeCheckType == LatchType)
433     return LatchCheck;
434   // For now, bail out if latch type is narrower than range type.
435   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
436     return None;
437   if (!isSafeToTruncateWideIVType(RangeCheckType))
438     return None;
439   // We can now safely identify the truncated version of the IV and limit for
440   // RangeCheckType.
441   LoopICmp NewLatchCheck;
442   NewLatchCheck.Pred = LatchCheck.Pred;
443   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
444       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
445   if (!NewLatchCheck.IV)
446     return None;
447   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
448   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
449                     << "can be represented as range check type:"
450                     << *RangeCheckType << "\n");
451   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
452   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
453   return NewLatchCheck;
454 }
455 
456 bool LoopPredication::isSupportedStep(const SCEV* Step) {
457   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
458 }
459 
460 Instruction *LoopPredication::findInsertPt(Instruction *Use,
461                                            ArrayRef<Value*> Ops) {
462   for (Value *Op : Ops)
463     if (!L->isLoopInvariant(Op))
464       return Use;
465   return Preheader->getTerminator();
466 }
467 
468 Instruction *LoopPredication::findInsertPt(Instruction *Use,
469                                            ArrayRef<const SCEV*> Ops) {
470   // Subtlety: SCEV considers things to be invariant if the value produced is
471   // the same across iterations.  This is not the same as being able to
472   // evaluate outside the loop, which is what we actually need here.
473   for (const SCEV *Op : Ops)
474     if (!SE->isLoopInvariant(Op, L) ||
475         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
476       return Use;
477   return Preheader->getTerminator();
478 }
479 
480 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
481   // Handling expressions which produce invariant results, but *haven't* yet
482   // been removed from the loop serves two important purposes.
483   // 1) Most importantly, it resolves a pass ordering cycle which would
484   // otherwise need us to iteration licm, loop-predication, and either
485   // loop-unswitch or loop-peeling to make progress on examples with lots of
486   // predicable range checks in a row.  (Since, in the general case,  we can't
487   // hoist the length checks until the dominating checks have been discharged
488   // as we can't prove doing so is safe.)
489   // 2) As a nice side effect, this exposes the value of peeling or unswitching
490   // much more obviously in the IR.  Otherwise, the cost modeling for other
491   // transforms would end up needing to duplicate all of this logic to model a
492   // check which becomes predictable based on a modeled peel or unswitch.
493   //
494   // The cost of doing so in the worst case is an extra fill from the stack  in
495   // the loop to materialize the loop invariant test value instead of checking
496   // against the original IV which is presumable in a register inside the loop.
497   // Such cases are presumably rare, and hint at missing oppurtunities for
498   // other passes.
499 
500   if (SE->isLoopInvariant(S, L))
501     // Note: This the SCEV variant, so the original Value* may be within the
502     // loop even though SCEV has proven it is loop invariant.
503     return true;
504 
505   // Handle a particular important case which SCEV doesn't yet know about which
506   // shows up in range checks on arrays with immutable lengths.
507   // TODO: This should be sunk inside SCEV.
508   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
509     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
510       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
511         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
512             LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
513           return true;
514   return false;
515 }
516 
517 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
518     LoopICmp LatchCheck, LoopICmp RangeCheck,
519     SCEVExpander &Expander, Instruction *Guard) {
520   auto *Ty = RangeCheck.IV->getType();
521   // Generate the widened condition for the forward loop:
522   //   guardStart u< guardLimit &&
523   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
524   // where <pred> depends on the latch condition predicate. See the file
525   // header comment for the reasoning.
526   // guardLimit - guardStart + latchStart - 1
527   const SCEV *GuardStart = RangeCheck.IV->getStart();
528   const SCEV *GuardLimit = RangeCheck.Limit;
529   const SCEV *LatchStart = LatchCheck.IV->getStart();
530   const SCEV *LatchLimit = LatchCheck.Limit;
531   // Subtlety: We need all the values to be *invariant* across all iterations,
532   // but we only need to check expansion safety for those which *aren't*
533   // already guaranteed to dominate the guard.
534   if (!isLoopInvariantValue(GuardStart) ||
535       !isLoopInvariantValue(GuardLimit) ||
536       !isLoopInvariantValue(LatchStart) ||
537       !isLoopInvariantValue(LatchLimit)) {
538     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
539     return None;
540   }
541   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
542       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
543     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
544     return None;
545   }
546 
547   // guardLimit - guardStart + latchStart - 1
548   const SCEV *RHS =
549       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
550                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
551   auto LimitCheckPred =
552       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
553 
554   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
555   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
556   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
557 
558   auto *LimitCheck =
559       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
560   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
561                                           GuardStart, GuardLimit);
562   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
563   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
564 }
565 
566 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
567     LoopICmp LatchCheck, LoopICmp RangeCheck,
568     SCEVExpander &Expander, Instruction *Guard) {
569   auto *Ty = RangeCheck.IV->getType();
570   const SCEV *GuardStart = RangeCheck.IV->getStart();
571   const SCEV *GuardLimit = RangeCheck.Limit;
572   const SCEV *LatchStart = LatchCheck.IV->getStart();
573   const SCEV *LatchLimit = LatchCheck.Limit;
574   // Subtlety: We need all the values to be *invariant* across all iterations,
575   // but we only need to check expansion safety for those which *aren't*
576   // already guaranteed to dominate the guard.
577   if (!isLoopInvariantValue(GuardStart) ||
578       !isLoopInvariantValue(GuardLimit) ||
579       !isLoopInvariantValue(LatchStart) ||
580       !isLoopInvariantValue(LatchLimit)) {
581     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
582     return None;
583   }
584   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
585       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
586     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
587     return None;
588   }
589   // The decrement of the latch check IV should be the same as the
590   // rangeCheckIV.
591   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
592   if (RangeCheck.IV != PostDecLatchCheckIV) {
593     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
594                       << *PostDecLatchCheckIV
595                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
596     return None;
597   }
598 
599   // Generate the widened condition for CountDownLoop:
600   // guardStart u< guardLimit &&
601   // latchLimit <pred> 1.
602   // See the header comment for reasoning of the checks.
603   auto LimitCheckPred =
604       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
605   auto *FirstIterationCheck = expandCheck(Expander, Guard,
606                                           ICmpInst::ICMP_ULT,
607                                           GuardStart, GuardLimit);
608   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
609                                  SE->getOne(Ty));
610   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
611   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
612 }
613 
614 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
615                                LoopICmp& RC) {
616   // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form.
617   // Normalize back to the ULT/SLT form for ease of handling.
618   if (RC.Pred == ICmpInst::ICMP_NE &&
619       RC.IV->getStepRecurrence(*SE)->isOne() &&
620       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
621     RC.Pred = ICmpInst::ICMP_ULT;
622 }
623 
624 
625 /// If ICI can be widened to a loop invariant condition emits the loop
626 /// invariant condition in the loop preheader and return it, otherwise
627 /// returns None.
628 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
629                                                        SCEVExpander &Expander,
630                                                        Instruction *Guard) {
631   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
632   LLVM_DEBUG(ICI->dump());
633 
634   // parseLoopStructure guarantees that the latch condition is:
635   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
636   // We are looking for the range checks of the form:
637   //   i u< guardLimit
638   auto RangeCheck = parseLoopICmp(ICI);
639   if (!RangeCheck) {
640     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
641     return None;
642   }
643   LLVM_DEBUG(dbgs() << "Guard check:\n");
644   LLVM_DEBUG(RangeCheck->dump());
645   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
646     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
647                       << RangeCheck->Pred << ")!\n");
648     return None;
649   }
650   auto *RangeCheckIV = RangeCheck->IV;
651   if (!RangeCheckIV->isAffine()) {
652     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
653     return None;
654   }
655   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
656   // We cannot just compare with latch IV step because the latch and range IVs
657   // may have different types.
658   if (!isSupportedStep(Step)) {
659     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
660     return None;
661   }
662   auto *Ty = RangeCheckIV->getType();
663   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
664   if (!CurrLatchCheckOpt) {
665     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
666                          "corresponding to range type: "
667                       << *Ty << "\n");
668     return None;
669   }
670 
671   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
672   // At this point, the range and latch step should have the same type, but need
673   // not have the same value (we support both 1 and -1 steps).
674   assert(Step->getType() ==
675              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
676          "Range and latch steps should be of same type!");
677   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
678     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
679     return None;
680   }
681 
682   if (Step->isOne())
683     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
684                                                Expander, Guard);
685   else {
686     assert(Step->isAllOnesValue() && "Step should be -1!");
687     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
688                                                Expander, Guard);
689   }
690 }
691 
692 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
693                                         Value *Condition,
694                                         SCEVExpander &Expander,
695                                         Instruction *Guard) {
696   unsigned NumWidened = 0;
697   // The guard condition is expected to be in form of:
698   //   cond1 && cond2 && cond3 ...
699   // Iterate over subconditions looking for icmp conditions which can be
700   // widened across loop iterations. Widening these conditions remember the
701   // resulting list of subconditions in Checks vector.
702   SmallVector<Value *, 4> Worklist(1, Condition);
703   SmallPtrSet<Value *, 4> Visited;
704   Value *WideableCond = nullptr;
705   do {
706     Value *Condition = Worklist.pop_back_val();
707     if (!Visited.insert(Condition).second)
708       continue;
709 
710     Value *LHS, *RHS;
711     using namespace llvm::PatternMatch;
712     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
713       Worklist.push_back(LHS);
714       Worklist.push_back(RHS);
715       continue;
716     }
717 
718     if (match(Condition,
719               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
720       // Pick any, we don't care which
721       WideableCond = Condition;
722       continue;
723     }
724 
725     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
726       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
727                                                    Guard)) {
728         Checks.push_back(NewRangeCheck.getValue());
729         NumWidened++;
730         continue;
731       }
732     }
733 
734     // Save the condition as is if we can't widen it
735     Checks.push_back(Condition);
736   } while (!Worklist.empty());
737   // At the moment, our matching logic for wideable conditions implicitly
738   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
739   // Note that if there were multiple calls to wideable condition in the
740   // traversal, we only need to keep one, and which one is arbitrary.
741   if (WideableCond)
742     Checks.push_back(WideableCond);
743   return NumWidened;
744 }
745 
746 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
747                                            SCEVExpander &Expander) {
748   LLVM_DEBUG(dbgs() << "Processing guard:\n");
749   LLVM_DEBUG(Guard->dump());
750 
751   TotalConsidered++;
752   SmallVector<Value *, 4> Checks;
753   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
754                                       Guard);
755   if (NumWidened == 0)
756     return false;
757 
758   TotalWidened += NumWidened;
759 
760   // Emit the new guard condition
761   IRBuilder<> Builder(findInsertPt(Guard, Checks));
762   Value *LastCheck = nullptr;
763   for (auto *Check : Checks)
764     if (!LastCheck)
765       LastCheck = Check;
766     else
767       LastCheck = Builder.CreateAnd(LastCheck, Check);
768   auto *OldCond = Guard->getOperand(0);
769   Guard->setOperand(0, LastCheck);
770   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
771 
772   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
773   return true;
774 }
775 
776 bool LoopPredication::widenWidenableBranchGuardConditions(
777     BranchInst *BI, SCEVExpander &Expander) {
778   assert(isGuardAsWidenableBranch(BI) && "Must be!");
779   LLVM_DEBUG(dbgs() << "Processing guard:\n");
780   LLVM_DEBUG(BI->dump());
781 
782   TotalConsidered++;
783   SmallVector<Value *, 4> Checks;
784   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
785                                       Expander, BI);
786   if (NumWidened == 0)
787     return false;
788 
789   TotalWidened += NumWidened;
790 
791   // Emit the new guard condition
792   IRBuilder<> Builder(findInsertPt(BI, Checks));
793   Value *LastCheck = nullptr;
794   for (auto *Check : Checks)
795     if (!LastCheck)
796       LastCheck = Check;
797     else
798       LastCheck = Builder.CreateAnd(LastCheck, Check);
799   auto *OldCond = BI->getCondition();
800   BI->setCondition(LastCheck);
801   assert(isGuardAsWidenableBranch(BI) &&
802          "Stopped being a guard after transform?");
803   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
804 
805   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
806   return true;
807 }
808 
809 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
810   using namespace PatternMatch;
811 
812   BasicBlock *LoopLatch = L->getLoopLatch();
813   if (!LoopLatch) {
814     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
815     return None;
816   }
817 
818   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
819   if (!BI) {
820     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
821     return None;
822   }
823   BasicBlock *TrueDest = BI->getSuccessor(0);
824   BasicBlock *FalseDest = BI->getSuccessor(1);
825   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
826          "One of the latch's destinations must be the header");
827 
828   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
829   if (!ICI || !BI->isConditional()) {
830     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
831     return None;
832   }
833   auto Result = parseLoopICmp(ICI);
834   if (!Result) {
835     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
836     return None;
837   }
838 
839   if (TrueDest != L->getHeader())
840     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
841 
842   // Check affine first, so if it's not we don't try to compute the step
843   // recurrence.
844   if (!Result->IV->isAffine()) {
845     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
846     return None;
847   }
848 
849   auto *Step = Result->IV->getStepRecurrence(*SE);
850   if (!isSupportedStep(Step)) {
851     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
852     return None;
853   }
854 
855   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
856     if (Step->isOne()) {
857       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
858              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
859     } else {
860       assert(Step->isAllOnesValue() && "Step should be -1!");
861       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
862              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
863     }
864   };
865 
866   normalizePredicate(SE, L, *Result);
867   if (IsUnsupportedPredicate(Step, Result->Pred)) {
868     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
869                       << ")!\n");
870     return None;
871   }
872 
873   return Result;
874 }
875 
876 // Returns true if its safe to truncate the IV to RangeCheckType.
877 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
878   if (!EnableIVTruncation)
879     return false;
880   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
881              DL->getTypeSizeInBits(RangeCheckType) &&
882          "Expected latch check IV type to be larger than range check operand "
883          "type!");
884   // The start and end values of the IV should be known. This is to guarantee
885   // that truncating the wide type will not lose information.
886   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
887   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
888   if (!Limit || !Start)
889     return false;
890   // This check makes sure that the IV does not change sign during loop
891   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
892   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
893   // IV wraps around, and the truncation of the IV would lose the range of
894   // iterations between 2^32 and 2^64.
895   bool Increasing;
896   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
897     return false;
898   // The active bits should be less than the bits in the RangeCheckType. This
899   // guarantees that truncating the latch check to RangeCheckType is a safe
900   // operation.
901   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
902   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
903          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
904 }
905 
906 bool LoopPredication::isLoopProfitableToPredicate() {
907   if (SkipProfitabilityChecks || !BPI)
908     return true;
909 
910   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
911   L->getExitEdges(ExitEdges);
912   // If there is only one exiting edge in the loop, it is always profitable to
913   // predicate the loop.
914   if (ExitEdges.size() == 1)
915     return true;
916 
917   // Calculate the exiting probabilities of all exiting edges from the loop,
918   // starting with the LatchExitProbability.
919   // Heuristic for profitability: If any of the exiting blocks' probability of
920   // exiting the loop is larger than exiting through the latch block, it's not
921   // profitable to predicate the loop.
922   auto *LatchBlock = L->getLoopLatch();
923   assert(LatchBlock && "Should have a single latch at this point!");
924   auto *LatchTerm = LatchBlock->getTerminator();
925   assert(LatchTerm->getNumSuccessors() == 2 &&
926          "expected to be an exiting block with 2 succs!");
927   unsigned LatchBrExitIdx =
928       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
929   BranchProbability LatchExitProbability =
930       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
931 
932   // Protect against degenerate inputs provided by the user. Providing a value
933   // less than one, can invert the definition of profitable loop predication.
934   float ScaleFactor = LatchExitProbabilityScale;
935   if (ScaleFactor < 1) {
936     LLVM_DEBUG(
937         dbgs()
938         << "Ignored user setting for loop-predication-latch-probability-scale: "
939         << LatchExitProbabilityScale << "\n");
940     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
941     ScaleFactor = 1.0;
942   }
943   const auto LatchProbabilityThreshold =
944       LatchExitProbability * ScaleFactor;
945 
946   for (const auto &ExitEdge : ExitEdges) {
947     BranchProbability ExitingBlockProbability =
948         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
949     // Some exiting edge has higher probability than the latch exiting edge.
950     // No longer profitable to predicate.
951     if (ExitingBlockProbability > LatchProbabilityThreshold)
952       return false;
953   }
954   // Using BPI, we have concluded that the most probable way to exit from the
955   // loop is through the latch (or there's no profile information and all
956   // exits are equally likely).
957   return true;
958 }
959 
960 bool LoopPredication::runOnLoop(Loop *Loop) {
961   L = Loop;
962 
963   LLVM_DEBUG(dbgs() << "Analyzing ");
964   LLVM_DEBUG(L->dump());
965 
966   Module *M = L->getHeader()->getModule();
967 
968   // There is nothing to do if the module doesn't use guards
969   auto *GuardDecl =
970       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
971   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
972   auto *WCDecl = M->getFunction(
973       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
974   bool HasWidenableConditions =
975       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
976   if (!HasIntrinsicGuards && !HasWidenableConditions)
977     return false;
978 
979   DL = &M->getDataLayout();
980 
981   Preheader = L->getLoopPreheader();
982   if (!Preheader)
983     return false;
984 
985   auto LatchCheckOpt = parseLoopLatchICmp();
986   if (!LatchCheckOpt)
987     return false;
988   LatchCheck = *LatchCheckOpt;
989 
990   LLVM_DEBUG(dbgs() << "Latch check:\n");
991   LLVM_DEBUG(LatchCheck.dump());
992 
993   if (!isLoopProfitableToPredicate()) {
994     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
995     return false;
996   }
997   // Collect all the guards into a vector and process later, so as not
998   // to invalidate the instruction iterator.
999   SmallVector<IntrinsicInst *, 4> Guards;
1000   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1001   for (const auto BB : L->blocks()) {
1002     for (auto &I : *BB)
1003       if (isGuard(&I))
1004         Guards.push_back(cast<IntrinsicInst>(&I));
1005     if (PredicateWidenableBranchGuards &&
1006         isGuardAsWidenableBranch(BB->getTerminator()))
1007       GuardsAsWidenableBranches.push_back(
1008           cast<BranchInst>(BB->getTerminator()));
1009   }
1010 
1011   if (Guards.empty() && GuardsAsWidenableBranches.empty())
1012     return false;
1013 
1014   SCEVExpander Expander(*SE, *DL, "loop-predication");
1015 
1016   bool Changed = false;
1017   for (auto *Guard : Guards)
1018     Changed |= widenGuardConditions(Guard, Expander);
1019   for (auto *Guard : GuardsAsWidenableBranches)
1020     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1021 
1022   return Changed;
1023 }
1024