1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/ScalarEvolution.h" 187 #include "llvm/Analysis/ScalarEvolutionExpander.h" 188 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 189 #include "llvm/IR/Function.h" 190 #include "llvm/IR/GlobalValue.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/Pass.h" 195 #include "llvm/Support/Debug.h" 196 #include "llvm/Transforms/Scalar.h" 197 #include "llvm/Transforms/Utils/Local.h" 198 #include "llvm/Transforms/Utils/LoopUtils.h" 199 200 #define DEBUG_TYPE "loop-predication" 201 202 STATISTIC(TotalConsidered, "Number of guards considered"); 203 STATISTIC(TotalWidened, "Number of checks widened"); 204 205 using namespace llvm; 206 207 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 208 cl::Hidden, cl::init(true)); 209 210 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 211 cl::Hidden, cl::init(true)); 212 213 static cl::opt<bool> 214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 215 cl::Hidden, cl::init(false)); 216 217 // This is the scale factor for the latch probability. We use this during 218 // profitability analysis to find other exiting blocks that have a much higher 219 // probability of exiting the loop instead of loop exiting via latch. 220 // This value should be greater than 1 for a sane profitability check. 221 static cl::opt<float> LatchExitProbabilityScale( 222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 223 cl::desc("scale factor for the latch probability. Value should be greater " 224 "than 1. Lower values are ignored")); 225 226 static cl::opt<bool> PredicateWidenableBranchGuards( 227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 228 cl::desc("Whether or not we should predicate guards " 229 "expressed as widenable branches to deoptimize blocks"), 230 cl::init(true)); 231 232 namespace { 233 /// Represents an induction variable check: 234 /// icmp Pred, <induction variable>, <loop invariant limit> 235 struct LoopICmp { 236 ICmpInst::Predicate Pred; 237 const SCEVAddRecExpr *IV; 238 const SCEV *Limit; 239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 240 const SCEV *Limit) 241 : Pred(Pred), IV(IV), Limit(Limit) {} 242 LoopICmp() {} 243 void dump() { 244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 245 << ", Limit = " << *Limit << "\n"; 246 } 247 }; 248 249 class LoopPredication { 250 AliasAnalysis *AA; 251 ScalarEvolution *SE; 252 BranchProbabilityInfo *BPI; 253 254 Loop *L; 255 const DataLayout *DL; 256 BasicBlock *Preheader; 257 LoopICmp LatchCheck; 258 259 bool isSupportedStep(const SCEV* Step); 260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 261 Optional<LoopICmp> parseLoopLatchICmp(); 262 263 /// Return an insertion point suitable for inserting a safe to speculate 264 /// instruction whose only user will be 'User' which has operands 'Ops'. A 265 /// trivial result would be the at the User itself, but we try to return a 266 /// loop invariant location if possible. 267 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 268 /// Same as above, *except* that this uses the SCEV definition of invariant 269 /// which is that an expression *can be made* invariant via SCEVExpander. 270 /// Thus, this version is only suitable for finding an insert point to be be 271 /// passed to SCEVExpander! 272 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 273 274 /// Return true if the value is known to produce a single fixed value across 275 /// all iterations on which it executes. Note that this does not imply 276 /// speculation safety. That must be established seperately. 277 bool isLoopInvariantValue(const SCEV* S); 278 279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 280 ICmpInst::Predicate Pred, const SCEV *LHS, 281 const SCEV *RHS); 282 283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 284 Instruction *Guard); 285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 286 LoopICmp RangeCheck, 287 SCEVExpander &Expander, 288 Instruction *Guard); 289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 290 LoopICmp RangeCheck, 291 SCEVExpander &Expander, 292 Instruction *Guard); 293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 294 SCEVExpander &Expander, Instruction *Guard); 295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 297 // If the loop always exits through another block in the loop, we should not 298 // predicate based on the latch check. For example, the latch check can be a 299 // very coarse grained check and there can be more fine grained exit checks 300 // within the loop. We identify such unprofitable loops through BPI. 301 bool isLoopProfitableToPredicate(); 302 303 public: 304 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE, 305 BranchProbabilityInfo *BPI) 306 : AA(AA), SE(SE), BPI(BPI){}; 307 bool runOnLoop(Loop *L); 308 }; 309 310 class LoopPredicationLegacyPass : public LoopPass { 311 public: 312 static char ID; 313 LoopPredicationLegacyPass() : LoopPass(ID) { 314 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 315 } 316 317 void getAnalysisUsage(AnalysisUsage &AU) const override { 318 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 319 getLoopAnalysisUsage(AU); 320 } 321 322 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 323 if (skipLoop(L)) 324 return false; 325 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 326 BranchProbabilityInfo &BPI = 327 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 328 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 329 LoopPredication LP(AA, SE, &BPI); 330 return LP.runOnLoop(L); 331 } 332 }; 333 334 char LoopPredicationLegacyPass::ID = 0; 335 } // end namespace llvm 336 337 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 338 "Loop predication", false, false) 339 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 340 INITIALIZE_PASS_DEPENDENCY(LoopPass) 341 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 342 "Loop predication", false, false) 343 344 Pass *llvm::createLoopPredicationPass() { 345 return new LoopPredicationLegacyPass(); 346 } 347 348 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 349 LoopStandardAnalysisResults &AR, 350 LPMUpdater &U) { 351 const auto &FAM = 352 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 353 Function *F = L.getHeader()->getParent(); 354 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 355 LoopPredication LP(&AR.AA, &AR.SE, BPI); 356 if (!LP.runOnLoop(&L)) 357 return PreservedAnalyses::all(); 358 359 return getLoopPassPreservedAnalyses(); 360 } 361 362 Optional<LoopICmp> 363 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 364 auto Pred = ICI->getPredicate(); 365 auto *LHS = ICI->getOperand(0); 366 auto *RHS = ICI->getOperand(1); 367 368 const SCEV *LHSS = SE->getSCEV(LHS); 369 if (isa<SCEVCouldNotCompute>(LHSS)) 370 return None; 371 const SCEV *RHSS = SE->getSCEV(RHS); 372 if (isa<SCEVCouldNotCompute>(RHSS)) 373 return None; 374 375 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 376 if (SE->isLoopInvariant(LHSS, L)) { 377 std::swap(LHS, RHS); 378 std::swap(LHSS, RHSS); 379 Pred = ICmpInst::getSwappedPredicate(Pred); 380 } 381 382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 383 if (!AR || AR->getLoop() != L) 384 return None; 385 386 return LoopICmp(Pred, AR, RHSS); 387 } 388 389 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 390 Instruction *Guard, 391 ICmpInst::Predicate Pred, const SCEV *LHS, 392 const SCEV *RHS) { 393 Type *Ty = LHS->getType(); 394 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 395 396 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 397 IRBuilder<> Builder(Guard); 398 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 399 return Builder.getTrue(); 400 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 401 LHS, RHS)) 402 return Builder.getFalse(); 403 } 404 405 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 406 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 407 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 408 return Builder.CreateICmp(Pred, LHSV, RHSV); 409 } 410 411 412 // Returns true if its safe to truncate the IV to RangeCheckType. 413 // When the IV type is wider than the range operand type, we can still do loop 414 // predication, by generating SCEVs for the range and latch that are of the 415 // same type. We achieve this by generating a SCEV truncate expression for the 416 // latch IV. This is done iff truncation of the IV is a safe operation, 417 // without loss of information. 418 // Another way to achieve this is by generating a wider type SCEV for the 419 // range check operand, however, this needs a more involved check that 420 // operands do not overflow. This can lead to loss of information when the 421 // range operand is of the form: add i32 %offset, %iv. We need to prove that 422 // sext(x + y) is same as sext(x) + sext(y). 423 // This function returns true if we can safely represent the IV type in 424 // the RangeCheckType without loss of information. 425 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 426 ScalarEvolution &SE, 427 const LoopICmp LatchCheck, 428 Type *RangeCheckType) { 429 if (!EnableIVTruncation) 430 return false; 431 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) > 432 DL.getTypeSizeInBits(RangeCheckType) && 433 "Expected latch check IV type to be larger than range check operand " 434 "type!"); 435 // The start and end values of the IV should be known. This is to guarantee 436 // that truncating the wide type will not lose information. 437 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 438 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 439 if (!Limit || !Start) 440 return false; 441 // This check makes sure that the IV does not change sign during loop 442 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 443 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 444 // IV wraps around, and the truncation of the IV would lose the range of 445 // iterations between 2^32 and 2^64. 446 bool Increasing; 447 if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 448 return false; 449 // The active bits should be less than the bits in the RangeCheckType. This 450 // guarantees that truncating the latch check to RangeCheckType is a safe 451 // operation. 452 auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType); 453 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 454 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 455 } 456 457 458 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 459 // the requested type if safe to do so. May involve the use of a new IV. 460 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 461 ScalarEvolution &SE, 462 const LoopICmp LatchCheck, 463 Type *RangeCheckType) { 464 465 auto *LatchType = LatchCheck.IV->getType(); 466 if (RangeCheckType == LatchType) 467 return LatchCheck; 468 // For now, bail out if latch type is narrower than range type. 469 if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType)) 470 return None; 471 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 472 return None; 473 // We can now safely identify the truncated version of the IV and limit for 474 // RangeCheckType. 475 LoopICmp NewLatchCheck; 476 NewLatchCheck.Pred = LatchCheck.Pred; 477 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 478 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 479 if (!NewLatchCheck.IV) 480 return None; 481 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 482 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 483 << "can be represented as range check type:" 484 << *RangeCheckType << "\n"); 485 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 486 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 487 return NewLatchCheck; 488 } 489 490 bool LoopPredication::isSupportedStep(const SCEV* Step) { 491 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 492 } 493 494 Instruction *LoopPredication::findInsertPt(Instruction *Use, 495 ArrayRef<Value*> Ops) { 496 for (Value *Op : Ops) 497 if (!L->isLoopInvariant(Op)) 498 return Use; 499 return Preheader->getTerminator(); 500 } 501 502 Instruction *LoopPredication::findInsertPt(Instruction *Use, 503 ArrayRef<const SCEV*> Ops) { 504 // Subtlety: SCEV considers things to be invariant if the value produced is 505 // the same across iterations. This is not the same as being able to 506 // evaluate outside the loop, which is what we actually need here. 507 for (const SCEV *Op : Ops) 508 if (!SE->isLoopInvariant(Op, L) || 509 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) 510 return Use; 511 return Preheader->getTerminator(); 512 } 513 514 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 515 // Handling expressions which produce invariant results, but *haven't* yet 516 // been removed from the loop serves two important purposes. 517 // 1) Most importantly, it resolves a pass ordering cycle which would 518 // otherwise need us to iteration licm, loop-predication, and either 519 // loop-unswitch or loop-peeling to make progress on examples with lots of 520 // predicable range checks in a row. (Since, in the general case, we can't 521 // hoist the length checks until the dominating checks have been discharged 522 // as we can't prove doing so is safe.) 523 // 2) As a nice side effect, this exposes the value of peeling or unswitching 524 // much more obviously in the IR. Otherwise, the cost modeling for other 525 // transforms would end up needing to duplicate all of this logic to model a 526 // check which becomes predictable based on a modeled peel or unswitch. 527 // 528 // The cost of doing so in the worst case is an extra fill from the stack in 529 // the loop to materialize the loop invariant test value instead of checking 530 // against the original IV which is presumable in a register inside the loop. 531 // Such cases are presumably rare, and hint at missing oppurtunities for 532 // other passes. 533 534 if (SE->isLoopInvariant(S, L)) 535 // Note: This the SCEV variant, so the original Value* may be within the 536 // loop even though SCEV has proven it is loop invariant. 537 return true; 538 539 // Handle a particular important case which SCEV doesn't yet know about which 540 // shows up in range checks on arrays with immutable lengths. 541 // TODO: This should be sunk inside SCEV. 542 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 543 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 544 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 545 if (AA->pointsToConstantMemory(LI->getOperand(0)) || 546 LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) 547 return true; 548 return false; 549 } 550 551 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 552 LoopICmp LatchCheck, LoopICmp RangeCheck, 553 SCEVExpander &Expander, Instruction *Guard) { 554 auto *Ty = RangeCheck.IV->getType(); 555 // Generate the widened condition for the forward loop: 556 // guardStart u< guardLimit && 557 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 558 // where <pred> depends on the latch condition predicate. See the file 559 // header comment for the reasoning. 560 // guardLimit - guardStart + latchStart - 1 561 const SCEV *GuardStart = RangeCheck.IV->getStart(); 562 const SCEV *GuardLimit = RangeCheck.Limit; 563 const SCEV *LatchStart = LatchCheck.IV->getStart(); 564 const SCEV *LatchLimit = LatchCheck.Limit; 565 // Subtlety: We need all the values to be *invariant* across all iterations, 566 // but we only need to check expansion safety for those which *aren't* 567 // already guaranteed to dominate the guard. 568 if (!isLoopInvariantValue(GuardStart) || 569 !isLoopInvariantValue(GuardLimit) || 570 !isLoopInvariantValue(LatchStart) || 571 !isLoopInvariantValue(LatchLimit)) { 572 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 573 return None; 574 } 575 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 576 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 577 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 578 return None; 579 } 580 581 // guardLimit - guardStart + latchStart - 1 582 const SCEV *RHS = 583 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 584 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 585 auto LimitCheckPred = 586 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 587 588 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 589 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 590 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 591 592 auto *LimitCheck = 593 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 594 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 595 GuardStart, GuardLimit); 596 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 597 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 598 } 599 600 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 601 LoopICmp LatchCheck, LoopICmp RangeCheck, 602 SCEVExpander &Expander, Instruction *Guard) { 603 auto *Ty = RangeCheck.IV->getType(); 604 const SCEV *GuardStart = RangeCheck.IV->getStart(); 605 const SCEV *GuardLimit = RangeCheck.Limit; 606 const SCEV *LatchStart = LatchCheck.IV->getStart(); 607 const SCEV *LatchLimit = LatchCheck.Limit; 608 // Subtlety: We need all the values to be *invariant* across all iterations, 609 // but we only need to check expansion safety for those which *aren't* 610 // already guaranteed to dominate the guard. 611 if (!isLoopInvariantValue(GuardStart) || 612 !isLoopInvariantValue(GuardLimit) || 613 !isLoopInvariantValue(LatchStart) || 614 !isLoopInvariantValue(LatchLimit)) { 615 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 616 return None; 617 } 618 if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 619 !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 620 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 621 return None; 622 } 623 // The decrement of the latch check IV should be the same as the 624 // rangeCheckIV. 625 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 626 if (RangeCheck.IV != PostDecLatchCheckIV) { 627 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 628 << *PostDecLatchCheckIV 629 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 630 return None; 631 } 632 633 // Generate the widened condition for CountDownLoop: 634 // guardStart u< guardLimit && 635 // latchLimit <pred> 1. 636 // See the header comment for reasoning of the checks. 637 auto LimitCheckPred = 638 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 639 auto *FirstIterationCheck = expandCheck(Expander, Guard, 640 ICmpInst::ICMP_ULT, 641 GuardStart, GuardLimit); 642 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 643 SE->getOne(Ty)); 644 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 645 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 646 } 647 648 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 649 LoopICmp& RC) { 650 // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form. 651 // Normalize back to the ULT/SLT form for ease of handling. 652 if (RC.Pred == ICmpInst::ICMP_NE && 653 RC.IV->getStepRecurrence(*SE)->isOne() && 654 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 655 RC.Pred = ICmpInst::ICMP_ULT; 656 } 657 658 659 /// If ICI can be widened to a loop invariant condition emits the loop 660 /// invariant condition in the loop preheader and return it, otherwise 661 /// returns None. 662 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 663 SCEVExpander &Expander, 664 Instruction *Guard) { 665 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 666 LLVM_DEBUG(ICI->dump()); 667 668 // parseLoopStructure guarantees that the latch condition is: 669 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 670 // We are looking for the range checks of the form: 671 // i u< guardLimit 672 auto RangeCheck = parseLoopICmp(ICI); 673 if (!RangeCheck) { 674 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 675 return None; 676 } 677 LLVM_DEBUG(dbgs() << "Guard check:\n"); 678 LLVM_DEBUG(RangeCheck->dump()); 679 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 680 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 681 << RangeCheck->Pred << ")!\n"); 682 return None; 683 } 684 auto *RangeCheckIV = RangeCheck->IV; 685 if (!RangeCheckIV->isAffine()) { 686 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 687 return None; 688 } 689 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 690 // We cannot just compare with latch IV step because the latch and range IVs 691 // may have different types. 692 if (!isSupportedStep(Step)) { 693 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 694 return None; 695 } 696 auto *Ty = RangeCheckIV->getType(); 697 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 698 if (!CurrLatchCheckOpt) { 699 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 700 "corresponding to range type: " 701 << *Ty << "\n"); 702 return None; 703 } 704 705 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 706 // At this point, the range and latch step should have the same type, but need 707 // not have the same value (we support both 1 and -1 steps). 708 assert(Step->getType() == 709 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 710 "Range and latch steps should be of same type!"); 711 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 712 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 713 return None; 714 } 715 716 if (Step->isOne()) 717 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 718 Expander, Guard); 719 else { 720 assert(Step->isAllOnesValue() && "Step should be -1!"); 721 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 722 Expander, Guard); 723 } 724 } 725 726 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 727 Value *Condition, 728 SCEVExpander &Expander, 729 Instruction *Guard) { 730 unsigned NumWidened = 0; 731 // The guard condition is expected to be in form of: 732 // cond1 && cond2 && cond3 ... 733 // Iterate over subconditions looking for icmp conditions which can be 734 // widened across loop iterations. Widening these conditions remember the 735 // resulting list of subconditions in Checks vector. 736 SmallVector<Value *, 4> Worklist(1, Condition); 737 SmallPtrSet<Value *, 4> Visited; 738 Value *WideableCond = nullptr; 739 do { 740 Value *Condition = Worklist.pop_back_val(); 741 if (!Visited.insert(Condition).second) 742 continue; 743 744 Value *LHS, *RHS; 745 using namespace llvm::PatternMatch; 746 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 747 Worklist.push_back(LHS); 748 Worklist.push_back(RHS); 749 continue; 750 } 751 752 if (match(Condition, 753 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 754 // Pick any, we don't care which 755 WideableCond = Condition; 756 continue; 757 } 758 759 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 760 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 761 Guard)) { 762 Checks.push_back(NewRangeCheck.getValue()); 763 NumWidened++; 764 continue; 765 } 766 } 767 768 // Save the condition as is if we can't widen it 769 Checks.push_back(Condition); 770 } while (!Worklist.empty()); 771 // At the moment, our matching logic for wideable conditions implicitly 772 // assumes we preserve the form: (br (and Cond, WC())). FIXME 773 // Note that if there were multiple calls to wideable condition in the 774 // traversal, we only need to keep one, and which one is arbitrary. 775 if (WideableCond) 776 Checks.push_back(WideableCond); 777 return NumWidened; 778 } 779 780 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 781 SCEVExpander &Expander) { 782 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 783 LLVM_DEBUG(Guard->dump()); 784 785 TotalConsidered++; 786 SmallVector<Value *, 4> Checks; 787 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 788 Guard); 789 if (NumWidened == 0) 790 return false; 791 792 TotalWidened += NumWidened; 793 794 // Emit the new guard condition 795 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 796 Value *LastCheck = nullptr; 797 for (auto *Check : Checks) 798 if (!LastCheck) 799 LastCheck = Check; 800 else 801 LastCheck = Builder.CreateAnd(LastCheck, Check); 802 auto *OldCond = Guard->getOperand(0); 803 Guard->setOperand(0, LastCheck); 804 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 805 806 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 807 return true; 808 } 809 810 bool LoopPredication::widenWidenableBranchGuardConditions( 811 BranchInst *BI, SCEVExpander &Expander) { 812 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 813 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 814 LLVM_DEBUG(BI->dump()); 815 816 TotalConsidered++; 817 SmallVector<Value *, 4> Checks; 818 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 819 Expander, BI); 820 if (NumWidened == 0) 821 return false; 822 823 TotalWidened += NumWidened; 824 825 // Emit the new guard condition 826 IRBuilder<> Builder(findInsertPt(BI, Checks)); 827 Value *LastCheck = nullptr; 828 for (auto *Check : Checks) 829 if (!LastCheck) 830 LastCheck = Check; 831 else 832 LastCheck = Builder.CreateAnd(LastCheck, Check); 833 auto *OldCond = BI->getCondition(); 834 BI->setCondition(LastCheck); 835 assert(isGuardAsWidenableBranch(BI) && 836 "Stopped being a guard after transform?"); 837 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 838 839 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 840 return true; 841 } 842 843 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 844 using namespace PatternMatch; 845 846 BasicBlock *LoopLatch = L->getLoopLatch(); 847 if (!LoopLatch) { 848 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 849 return None; 850 } 851 852 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 853 if (!BI || !BI->isConditional()) { 854 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 855 return None; 856 } 857 BasicBlock *TrueDest = BI->getSuccessor(0); 858 assert( 859 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 860 "One of the latch's destinations must be the header"); 861 862 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 863 if (!ICI) { 864 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 865 return None; 866 } 867 auto Result = parseLoopICmp(ICI); 868 if (!Result) { 869 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 870 return None; 871 } 872 873 if (TrueDest != L->getHeader()) 874 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 875 876 // Check affine first, so if it's not we don't try to compute the step 877 // recurrence. 878 if (!Result->IV->isAffine()) { 879 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 880 return None; 881 } 882 883 auto *Step = Result->IV->getStepRecurrence(*SE); 884 if (!isSupportedStep(Step)) { 885 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 886 return None; 887 } 888 889 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 890 if (Step->isOne()) { 891 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 892 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 893 } else { 894 assert(Step->isAllOnesValue() && "Step should be -1!"); 895 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 896 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 897 } 898 }; 899 900 normalizePredicate(SE, L, *Result); 901 if (IsUnsupportedPredicate(Step, Result->Pred)) { 902 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 903 << ")!\n"); 904 return None; 905 } 906 907 return Result; 908 } 909 910 911 bool LoopPredication::isLoopProfitableToPredicate() { 912 if (SkipProfitabilityChecks || !BPI) 913 return true; 914 915 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 916 L->getExitEdges(ExitEdges); 917 // If there is only one exiting edge in the loop, it is always profitable to 918 // predicate the loop. 919 if (ExitEdges.size() == 1) 920 return true; 921 922 // Calculate the exiting probabilities of all exiting edges from the loop, 923 // starting with the LatchExitProbability. 924 // Heuristic for profitability: If any of the exiting blocks' probability of 925 // exiting the loop is larger than exiting through the latch block, it's not 926 // profitable to predicate the loop. 927 auto *LatchBlock = L->getLoopLatch(); 928 assert(LatchBlock && "Should have a single latch at this point!"); 929 auto *LatchTerm = LatchBlock->getTerminator(); 930 assert(LatchTerm->getNumSuccessors() == 2 && 931 "expected to be an exiting block with 2 succs!"); 932 unsigned LatchBrExitIdx = 933 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 934 BranchProbability LatchExitProbability = 935 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 936 937 // Protect against degenerate inputs provided by the user. Providing a value 938 // less than one, can invert the definition of profitable loop predication. 939 float ScaleFactor = LatchExitProbabilityScale; 940 if (ScaleFactor < 1) { 941 LLVM_DEBUG( 942 dbgs() 943 << "Ignored user setting for loop-predication-latch-probability-scale: " 944 << LatchExitProbabilityScale << "\n"); 945 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 946 ScaleFactor = 1.0; 947 } 948 const auto LatchProbabilityThreshold = 949 LatchExitProbability * ScaleFactor; 950 951 for (const auto &ExitEdge : ExitEdges) { 952 BranchProbability ExitingBlockProbability = 953 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 954 // Some exiting edge has higher probability than the latch exiting edge. 955 // No longer profitable to predicate. 956 if (ExitingBlockProbability > LatchProbabilityThreshold) 957 return false; 958 } 959 // Using BPI, we have concluded that the most probable way to exit from the 960 // loop is through the latch (or there's no profile information and all 961 // exits are equally likely). 962 return true; 963 } 964 965 bool LoopPredication::runOnLoop(Loop *Loop) { 966 L = Loop; 967 968 LLVM_DEBUG(dbgs() << "Analyzing "); 969 LLVM_DEBUG(L->dump()); 970 971 Module *M = L->getHeader()->getModule(); 972 973 // There is nothing to do if the module doesn't use guards 974 auto *GuardDecl = 975 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 976 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 977 auto *WCDecl = M->getFunction( 978 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 979 bool HasWidenableConditions = 980 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 981 if (!HasIntrinsicGuards && !HasWidenableConditions) 982 return false; 983 984 DL = &M->getDataLayout(); 985 986 Preheader = L->getLoopPreheader(); 987 if (!Preheader) 988 return false; 989 990 auto LatchCheckOpt = parseLoopLatchICmp(); 991 if (!LatchCheckOpt) 992 return false; 993 LatchCheck = *LatchCheckOpt; 994 995 LLVM_DEBUG(dbgs() << "Latch check:\n"); 996 LLVM_DEBUG(LatchCheck.dump()); 997 998 if (!isLoopProfitableToPredicate()) { 999 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1000 return false; 1001 } 1002 // Collect all the guards into a vector and process later, so as not 1003 // to invalidate the instruction iterator. 1004 SmallVector<IntrinsicInst *, 4> Guards; 1005 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1006 for (const auto BB : L->blocks()) { 1007 for (auto &I : *BB) 1008 if (isGuard(&I)) 1009 Guards.push_back(cast<IntrinsicInst>(&I)); 1010 if (PredicateWidenableBranchGuards && 1011 isGuardAsWidenableBranch(BB->getTerminator())) 1012 GuardsAsWidenableBranches.push_back( 1013 cast<BranchInst>(BB->getTerminator())); 1014 } 1015 1016 if (Guards.empty() && GuardsAsWidenableBranches.empty()) 1017 return false; 1018 1019 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1020 1021 bool Changed = false; 1022 for (auto *Guard : Guards) 1023 Changed |= widenGuardConditions(Guard, Expander); 1024 for (auto *Guard : GuardsAsWidenableBranches) 1025 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1026 1027 return Changed; 1028 } 1029