xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 0e362883182db53da9d6dd8e90f8eafb4e3b916c)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/GlobalValue.h"
192 #include "llvm/IR/IntrinsicInst.h"
193 #include "llvm/IR/Module.h"
194 #include "llvm/IR/PatternMatch.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 
205 #define DEBUG_TYPE "loop-predication"
206 
207 STATISTIC(TotalConsidered, "Number of guards considered");
208 STATISTIC(TotalWidened, "Number of checks widened");
209 
210 using namespace llvm;
211 
212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
213                                         cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
216                                         cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
220                             cl::Hidden, cl::init(false));
221 
222 // This is the scale factor for the latch probability. We use this during
223 // profitability analysis to find other exiting blocks that have a much higher
224 // probability of exiting the loop instead of loop exiting via latch.
225 // This value should be greater than 1 for a sane profitability check.
226 static cl::opt<float> LatchExitProbabilityScale(
227     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228     cl::desc("scale factor for the latch probability. Value should be greater "
229              "than 1. Lower values are ignored"));
230 
231 static cl::opt<bool> PredicateWidenableBranchGuards(
232     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233     cl::desc("Whether or not we should predicate guards "
234              "expressed as widenable branches to deoptimize blocks"),
235     cl::init(true));
236 
237 namespace {
238 /// Represents an induction variable check:
239 ///   icmp Pred, <induction variable>, <loop invariant limit>
240 struct LoopICmp {
241   ICmpInst::Predicate Pred;
242   const SCEVAddRecExpr *IV;
243   const SCEV *Limit;
244   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
245            const SCEV *Limit)
246     : Pred(Pred), IV(IV), Limit(Limit) {}
247   LoopICmp() {}
248   void dump() {
249     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
250            << ", Limit = " << *Limit << "\n";
251   }
252 };
253 
254 class LoopPredication {
255   AliasAnalysis *AA;
256   DominatorTree *DT;
257   ScalarEvolution *SE;
258   LoopInfo *LI;
259   BranchProbabilityInfo *BPI;
260   MemorySSAUpdater *MSSAU;
261 
262   Loop *L;
263   const DataLayout *DL;
264   BasicBlock *Preheader;
265   LoopICmp LatchCheck;
266 
267   bool isSupportedStep(const SCEV* Step);
268   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
269   Optional<LoopICmp> parseLoopLatchICmp();
270 
271   /// Return an insertion point suitable for inserting a safe to speculate
272   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
273   /// trivial result would be the at the User itself, but we try to return a
274   /// loop invariant location if possible.
275   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
276   /// Same as above, *except* that this uses the SCEV definition of invariant
277   /// which is that an expression *can be made* invariant via SCEVExpander.
278   /// Thus, this version is only suitable for finding an insert point to be be
279   /// passed to SCEVExpander!
280   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
281 
282   /// Return true if the value is known to produce a single fixed value across
283   /// all iterations on which it executes.  Note that this does not imply
284   /// speculation safety.  That must be established separately.
285   bool isLoopInvariantValue(const SCEV* S);
286 
287   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
288                      ICmpInst::Predicate Pred, const SCEV *LHS,
289                      const SCEV *RHS);
290 
291   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
292                                         Instruction *Guard);
293   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
294                                                         LoopICmp RangeCheck,
295                                                         SCEVExpander &Expander,
296                                                         Instruction *Guard);
297   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
298                                                         LoopICmp RangeCheck,
299                                                         SCEVExpander &Expander,
300                                                         Instruction *Guard);
301   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
302                          SCEVExpander &Expander, Instruction *Guard);
303   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
304   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
305   // If the loop always exits through another block in the loop, we should not
306   // predicate based on the latch check. For example, the latch check can be a
307   // very coarse grained check and there can be more fine grained exit checks
308   // within the loop. We identify such unprofitable loops through BPI.
309   bool isLoopProfitableToPredicate();
310 
311   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
312 
313 public:
314   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
315                   LoopInfo *LI, BranchProbabilityInfo *BPI,
316                   MemorySSAUpdater *MSSAU)
317       : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI), MSSAU(MSSAU){};
318   bool runOnLoop(Loop *L);
319 };
320 
321 class LoopPredicationLegacyPass : public LoopPass {
322 public:
323   static char ID;
324   LoopPredicationLegacyPass() : LoopPass(ID) {
325     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
326   }
327 
328   void getAnalysisUsage(AnalysisUsage &AU) const override {
329     AU.addRequired<BranchProbabilityInfoWrapperPass>();
330     getLoopAnalysisUsage(AU);
331     AU.addPreserved<MemorySSAWrapperPass>();
332   }
333 
334   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
335     if (skipLoop(L))
336       return false;
337     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
338     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
339     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
340     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
341     std::unique_ptr<MemorySSAUpdater> MSSAU;
342     if (MSSAWP)
343       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
344     BranchProbabilityInfo &BPI =
345         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
346     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
347     LoopPredication LP(AA, DT, SE, LI, &BPI, MSSAU ? MSSAU.get() : nullptr);
348     return LP.runOnLoop(L);
349   }
350 };
351 
352 char LoopPredicationLegacyPass::ID = 0;
353 } // end namespace
354 
355 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
356                       "Loop predication", false, false)
357 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
358 INITIALIZE_PASS_DEPENDENCY(LoopPass)
359 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
360                     "Loop predication", false, false)
361 
362 Pass *llvm::createLoopPredicationPass() {
363   return new LoopPredicationLegacyPass();
364 }
365 
366 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
367                                            LoopStandardAnalysisResults &AR,
368                                            LPMUpdater &U) {
369   Function *F = L.getHeader()->getParent();
370   // For the new PM, we also can't use BranchProbabilityInfo as an analysis
371   // pass. Function analyses need to be preserved across loop transformations
372   // but BPI is not preserved, hence a newly built one is needed.
373   BranchProbabilityInfo BPI(*F, AR.LI, &AR.TLI, &AR.DT, nullptr);
374   std::unique_ptr<MemorySSAUpdater> MSSAU;
375   if (AR.MSSA)
376     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
377   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI,
378                      MSSAU ? MSSAU.get() : nullptr);
379   if (!LP.runOnLoop(&L))
380     return PreservedAnalyses::all();
381 
382   auto PA = getLoopPassPreservedAnalyses();
383   if (AR.MSSA)
384     PA.preserve<MemorySSAAnalysis>();
385   return PA;
386 }
387 
388 Optional<LoopICmp>
389 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
390   auto Pred = ICI->getPredicate();
391   auto *LHS = ICI->getOperand(0);
392   auto *RHS = ICI->getOperand(1);
393 
394   const SCEV *LHSS = SE->getSCEV(LHS);
395   if (isa<SCEVCouldNotCompute>(LHSS))
396     return None;
397   const SCEV *RHSS = SE->getSCEV(RHS);
398   if (isa<SCEVCouldNotCompute>(RHSS))
399     return None;
400 
401   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
402   if (SE->isLoopInvariant(LHSS, L)) {
403     std::swap(LHS, RHS);
404     std::swap(LHSS, RHSS);
405     Pred = ICmpInst::getSwappedPredicate(Pred);
406   }
407 
408   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
409   if (!AR || AR->getLoop() != L)
410     return None;
411 
412   return LoopICmp(Pred, AR, RHSS);
413 }
414 
415 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
416                                     Instruction *Guard,
417                                     ICmpInst::Predicate Pred, const SCEV *LHS,
418                                     const SCEV *RHS) {
419   Type *Ty = LHS->getType();
420   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
421 
422   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
423     IRBuilder<> Builder(Guard);
424     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
425       return Builder.getTrue();
426     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
427                                      LHS, RHS))
428       return Builder.getFalse();
429   }
430 
431   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
432   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
433   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
434   return Builder.CreateICmp(Pred, LHSV, RHSV);
435 }
436 
437 
438 // Returns true if its safe to truncate the IV to RangeCheckType.
439 // When the IV type is wider than the range operand type, we can still do loop
440 // predication, by generating SCEVs for the range and latch that are of the
441 // same type. We achieve this by generating a SCEV truncate expression for the
442 // latch IV. This is done iff truncation of the IV is a safe operation,
443 // without loss of information.
444 // Another way to achieve this is by generating a wider type SCEV for the
445 // range check operand, however, this needs a more involved check that
446 // operands do not overflow. This can lead to loss of information when the
447 // range operand is of the form: add i32 %offset, %iv. We need to prove that
448 // sext(x + y) is same as sext(x) + sext(y).
449 // This function returns true if we can safely represent the IV type in
450 // the RangeCheckType without loss of information.
451 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
452                                        ScalarEvolution &SE,
453                                        const LoopICmp LatchCheck,
454                                        Type *RangeCheckType) {
455   if (!EnableIVTruncation)
456     return false;
457   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
458              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
459          "Expected latch check IV type to be larger than range check operand "
460          "type!");
461   // The start and end values of the IV should be known. This is to guarantee
462   // that truncating the wide type will not lose information.
463   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
464   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
465   if (!Limit || !Start)
466     return false;
467   // This check makes sure that the IV does not change sign during loop
468   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
469   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
470   // IV wraps around, and the truncation of the IV would lose the range of
471   // iterations between 2^32 and 2^64.
472   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
473     return false;
474   // The active bits should be less than the bits in the RangeCheckType. This
475   // guarantees that truncating the latch check to RangeCheckType is a safe
476   // operation.
477   auto RangeCheckTypeBitSize =
478       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
479   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
480          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
481 }
482 
483 
484 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
485 // the requested type if safe to do so.  May involve the use of a new IV.
486 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
487                                                  ScalarEvolution &SE,
488                                                  const LoopICmp LatchCheck,
489                                                  Type *RangeCheckType) {
490 
491   auto *LatchType = LatchCheck.IV->getType();
492   if (RangeCheckType == LatchType)
493     return LatchCheck;
494   // For now, bail out if latch type is narrower than range type.
495   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
496       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
497     return None;
498   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
499     return None;
500   // We can now safely identify the truncated version of the IV and limit for
501   // RangeCheckType.
502   LoopICmp NewLatchCheck;
503   NewLatchCheck.Pred = LatchCheck.Pred;
504   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
505       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
506   if (!NewLatchCheck.IV)
507     return None;
508   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
509   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
510                     << "can be represented as range check type:"
511                     << *RangeCheckType << "\n");
512   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
513   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
514   return NewLatchCheck;
515 }
516 
517 bool LoopPredication::isSupportedStep(const SCEV* Step) {
518   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
519 }
520 
521 Instruction *LoopPredication::findInsertPt(Instruction *Use,
522                                            ArrayRef<Value*> Ops) {
523   for (Value *Op : Ops)
524     if (!L->isLoopInvariant(Op))
525       return Use;
526   return Preheader->getTerminator();
527 }
528 
529 Instruction *LoopPredication::findInsertPt(Instruction *Use,
530                                            ArrayRef<const SCEV*> Ops) {
531   // Subtlety: SCEV considers things to be invariant if the value produced is
532   // the same across iterations.  This is not the same as being able to
533   // evaluate outside the loop, which is what we actually need here.
534   for (const SCEV *Op : Ops)
535     if (!SE->isLoopInvariant(Op, L) ||
536         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
537       return Use;
538   return Preheader->getTerminator();
539 }
540 
541 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
542   // Handling expressions which produce invariant results, but *haven't* yet
543   // been removed from the loop serves two important purposes.
544   // 1) Most importantly, it resolves a pass ordering cycle which would
545   // otherwise need us to iteration licm, loop-predication, and either
546   // loop-unswitch or loop-peeling to make progress on examples with lots of
547   // predicable range checks in a row.  (Since, in the general case,  we can't
548   // hoist the length checks until the dominating checks have been discharged
549   // as we can't prove doing so is safe.)
550   // 2) As a nice side effect, this exposes the value of peeling or unswitching
551   // much more obviously in the IR.  Otherwise, the cost modeling for other
552   // transforms would end up needing to duplicate all of this logic to model a
553   // check which becomes predictable based on a modeled peel or unswitch.
554   //
555   // The cost of doing so in the worst case is an extra fill from the stack  in
556   // the loop to materialize the loop invariant test value instead of checking
557   // against the original IV which is presumable in a register inside the loop.
558   // Such cases are presumably rare, and hint at missing oppurtunities for
559   // other passes.
560 
561   if (SE->isLoopInvariant(S, L))
562     // Note: This the SCEV variant, so the original Value* may be within the
563     // loop even though SCEV has proven it is loop invariant.
564     return true;
565 
566   // Handle a particular important case which SCEV doesn't yet know about which
567   // shows up in range checks on arrays with immutable lengths.
568   // TODO: This should be sunk inside SCEV.
569   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
570     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
571       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
572         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
573             LI->hasMetadata(LLVMContext::MD_invariant_load))
574           return true;
575   return false;
576 }
577 
578 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
579     LoopICmp LatchCheck, LoopICmp RangeCheck,
580     SCEVExpander &Expander, Instruction *Guard) {
581   auto *Ty = RangeCheck.IV->getType();
582   // Generate the widened condition for the forward loop:
583   //   guardStart u< guardLimit &&
584   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
585   // where <pred> depends on the latch condition predicate. See the file
586   // header comment for the reasoning.
587   // guardLimit - guardStart + latchStart - 1
588   const SCEV *GuardStart = RangeCheck.IV->getStart();
589   const SCEV *GuardLimit = RangeCheck.Limit;
590   const SCEV *LatchStart = LatchCheck.IV->getStart();
591   const SCEV *LatchLimit = LatchCheck.Limit;
592   // Subtlety: We need all the values to be *invariant* across all iterations,
593   // but we only need to check expansion safety for those which *aren't*
594   // already guaranteed to dominate the guard.
595   if (!isLoopInvariantValue(GuardStart) ||
596       !isLoopInvariantValue(GuardLimit) ||
597       !isLoopInvariantValue(LatchStart) ||
598       !isLoopInvariantValue(LatchLimit)) {
599     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
600     return None;
601   }
602   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
603       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
604     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
605     return None;
606   }
607 
608   // guardLimit - guardStart + latchStart - 1
609   const SCEV *RHS =
610       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
611                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
612   auto LimitCheckPred =
613       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
614 
615   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
616   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
617   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
618 
619   auto *LimitCheck =
620       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
621   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
622                                           GuardStart, GuardLimit);
623   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
624   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
625 }
626 
627 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
628     LoopICmp LatchCheck, LoopICmp RangeCheck,
629     SCEVExpander &Expander, Instruction *Guard) {
630   auto *Ty = RangeCheck.IV->getType();
631   const SCEV *GuardStart = RangeCheck.IV->getStart();
632   const SCEV *GuardLimit = RangeCheck.Limit;
633   const SCEV *LatchStart = LatchCheck.IV->getStart();
634   const SCEV *LatchLimit = LatchCheck.Limit;
635   // Subtlety: We need all the values to be *invariant* across all iterations,
636   // but we only need to check expansion safety for those which *aren't*
637   // already guaranteed to dominate the guard.
638   if (!isLoopInvariantValue(GuardStart) ||
639       !isLoopInvariantValue(GuardLimit) ||
640       !isLoopInvariantValue(LatchStart) ||
641       !isLoopInvariantValue(LatchLimit)) {
642     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
643     return None;
644   }
645   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
646       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
647     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
648     return None;
649   }
650   // The decrement of the latch check IV should be the same as the
651   // rangeCheckIV.
652   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
653   if (RangeCheck.IV != PostDecLatchCheckIV) {
654     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
655                       << *PostDecLatchCheckIV
656                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
657     return None;
658   }
659 
660   // Generate the widened condition for CountDownLoop:
661   // guardStart u< guardLimit &&
662   // latchLimit <pred> 1.
663   // See the header comment for reasoning of the checks.
664   auto LimitCheckPred =
665       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
666   auto *FirstIterationCheck = expandCheck(Expander, Guard,
667                                           ICmpInst::ICMP_ULT,
668                                           GuardStart, GuardLimit);
669   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
670                                  SE->getOne(Ty));
671   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
672   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
673 }
674 
675 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
676                                LoopICmp& RC) {
677   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
678   // ULT/UGE form for ease of handling by our caller.
679   if (ICmpInst::isEquality(RC.Pred) &&
680       RC.IV->getStepRecurrence(*SE)->isOne() &&
681       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
682     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
683       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
684 }
685 
686 
687 /// If ICI can be widened to a loop invariant condition emits the loop
688 /// invariant condition in the loop preheader and return it, otherwise
689 /// returns None.
690 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
691                                                        SCEVExpander &Expander,
692                                                        Instruction *Guard) {
693   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
694   LLVM_DEBUG(ICI->dump());
695 
696   // parseLoopStructure guarantees that the latch condition is:
697   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
698   // We are looking for the range checks of the form:
699   //   i u< guardLimit
700   auto RangeCheck = parseLoopICmp(ICI);
701   if (!RangeCheck) {
702     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
703     return None;
704   }
705   LLVM_DEBUG(dbgs() << "Guard check:\n");
706   LLVM_DEBUG(RangeCheck->dump());
707   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
708     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
709                       << RangeCheck->Pred << ")!\n");
710     return None;
711   }
712   auto *RangeCheckIV = RangeCheck->IV;
713   if (!RangeCheckIV->isAffine()) {
714     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
715     return None;
716   }
717   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
718   // We cannot just compare with latch IV step because the latch and range IVs
719   // may have different types.
720   if (!isSupportedStep(Step)) {
721     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
722     return None;
723   }
724   auto *Ty = RangeCheckIV->getType();
725   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
726   if (!CurrLatchCheckOpt) {
727     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
728                          "corresponding to range type: "
729                       << *Ty << "\n");
730     return None;
731   }
732 
733   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
734   // At this point, the range and latch step should have the same type, but need
735   // not have the same value (we support both 1 and -1 steps).
736   assert(Step->getType() ==
737              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
738          "Range and latch steps should be of same type!");
739   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
740     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
741     return None;
742   }
743 
744   if (Step->isOne())
745     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
746                                                Expander, Guard);
747   else {
748     assert(Step->isAllOnesValue() && "Step should be -1!");
749     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
750                                                Expander, Guard);
751   }
752 }
753 
754 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
755                                         Value *Condition,
756                                         SCEVExpander &Expander,
757                                         Instruction *Guard) {
758   unsigned NumWidened = 0;
759   // The guard condition is expected to be in form of:
760   //   cond1 && cond2 && cond3 ...
761   // Iterate over subconditions looking for icmp conditions which can be
762   // widened across loop iterations. Widening these conditions remember the
763   // resulting list of subconditions in Checks vector.
764   SmallVector<Value *, 4> Worklist(1, Condition);
765   SmallPtrSet<Value *, 4> Visited;
766   Value *WideableCond = nullptr;
767   do {
768     Value *Condition = Worklist.pop_back_val();
769     if (!Visited.insert(Condition).second)
770       continue;
771 
772     Value *LHS, *RHS;
773     using namespace llvm::PatternMatch;
774     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
775       Worklist.push_back(LHS);
776       Worklist.push_back(RHS);
777       continue;
778     }
779 
780     if (match(Condition,
781               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
782       // Pick any, we don't care which
783       WideableCond = Condition;
784       continue;
785     }
786 
787     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
788       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
789                                                    Guard)) {
790         Checks.push_back(NewRangeCheck.getValue());
791         NumWidened++;
792         continue;
793       }
794     }
795 
796     // Save the condition as is if we can't widen it
797     Checks.push_back(Condition);
798   } while (!Worklist.empty());
799   // At the moment, our matching logic for wideable conditions implicitly
800   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
801   // Note that if there were multiple calls to wideable condition in the
802   // traversal, we only need to keep one, and which one is arbitrary.
803   if (WideableCond)
804     Checks.push_back(WideableCond);
805   return NumWidened;
806 }
807 
808 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
809                                            SCEVExpander &Expander) {
810   LLVM_DEBUG(dbgs() << "Processing guard:\n");
811   LLVM_DEBUG(Guard->dump());
812 
813   TotalConsidered++;
814   SmallVector<Value *, 4> Checks;
815   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
816                                       Guard);
817   if (NumWidened == 0)
818     return false;
819 
820   TotalWidened += NumWidened;
821 
822   // Emit the new guard condition
823   IRBuilder<> Builder(findInsertPt(Guard, Checks));
824   Value *AllChecks = Builder.CreateAnd(Checks);
825   auto *OldCond = Guard->getOperand(0);
826   Guard->setOperand(0, AllChecks);
827   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
828 
829   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
830   return true;
831 }
832 
833 bool LoopPredication::widenWidenableBranchGuardConditions(
834     BranchInst *BI, SCEVExpander &Expander) {
835   assert(isGuardAsWidenableBranch(BI) && "Must be!");
836   LLVM_DEBUG(dbgs() << "Processing guard:\n");
837   LLVM_DEBUG(BI->dump());
838 
839   TotalConsidered++;
840   SmallVector<Value *, 4> Checks;
841   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
842                                       Expander, BI);
843   if (NumWidened == 0)
844     return false;
845 
846   TotalWidened += NumWidened;
847 
848   // Emit the new guard condition
849   IRBuilder<> Builder(findInsertPt(BI, Checks));
850   Value *AllChecks = Builder.CreateAnd(Checks);
851   auto *OldCond = BI->getCondition();
852   BI->setCondition(AllChecks);
853   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
854   assert(isGuardAsWidenableBranch(BI) &&
855          "Stopped being a guard after transform?");
856 
857   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
858   return true;
859 }
860 
861 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
862   using namespace PatternMatch;
863 
864   BasicBlock *LoopLatch = L->getLoopLatch();
865   if (!LoopLatch) {
866     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
867     return None;
868   }
869 
870   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
871   if (!BI || !BI->isConditional()) {
872     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
873     return None;
874   }
875   BasicBlock *TrueDest = BI->getSuccessor(0);
876   assert(
877       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
878       "One of the latch's destinations must be the header");
879 
880   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
881   if (!ICI) {
882     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
883     return None;
884   }
885   auto Result = parseLoopICmp(ICI);
886   if (!Result) {
887     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
888     return None;
889   }
890 
891   if (TrueDest != L->getHeader())
892     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
893 
894   // Check affine first, so if it's not we don't try to compute the step
895   // recurrence.
896   if (!Result->IV->isAffine()) {
897     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
898     return None;
899   }
900 
901   auto *Step = Result->IV->getStepRecurrence(*SE);
902   if (!isSupportedStep(Step)) {
903     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
904     return None;
905   }
906 
907   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
908     if (Step->isOne()) {
909       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
910              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
911     } else {
912       assert(Step->isAllOnesValue() && "Step should be -1!");
913       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
914              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
915     }
916   };
917 
918   normalizePredicate(SE, L, *Result);
919   if (IsUnsupportedPredicate(Step, Result->Pred)) {
920     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
921                       << ")!\n");
922     return None;
923   }
924 
925   return Result;
926 }
927 
928 
929 bool LoopPredication::isLoopProfitableToPredicate() {
930   if (SkipProfitabilityChecks || !BPI)
931     return true;
932 
933   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
934   L->getExitEdges(ExitEdges);
935   // If there is only one exiting edge in the loop, it is always profitable to
936   // predicate the loop.
937   if (ExitEdges.size() == 1)
938     return true;
939 
940   // Calculate the exiting probabilities of all exiting edges from the loop,
941   // starting with the LatchExitProbability.
942   // Heuristic for profitability: If any of the exiting blocks' probability of
943   // exiting the loop is larger than exiting through the latch block, it's not
944   // profitable to predicate the loop.
945   auto *LatchBlock = L->getLoopLatch();
946   assert(LatchBlock && "Should have a single latch at this point!");
947   auto *LatchTerm = LatchBlock->getTerminator();
948   assert(LatchTerm->getNumSuccessors() == 2 &&
949          "expected to be an exiting block with 2 succs!");
950   unsigned LatchBrExitIdx =
951       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
952   BranchProbability LatchExitProbability =
953       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
954 
955   // Protect against degenerate inputs provided by the user. Providing a value
956   // less than one, can invert the definition of profitable loop predication.
957   float ScaleFactor = LatchExitProbabilityScale;
958   if (ScaleFactor < 1) {
959     LLVM_DEBUG(
960         dbgs()
961         << "Ignored user setting for loop-predication-latch-probability-scale: "
962         << LatchExitProbabilityScale << "\n");
963     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
964     ScaleFactor = 1.0;
965   }
966   const auto LatchProbabilityThreshold =
967       LatchExitProbability * ScaleFactor;
968 
969   for (const auto &ExitEdge : ExitEdges) {
970     BranchProbability ExitingBlockProbability =
971         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
972     // Some exiting edge has higher probability than the latch exiting edge.
973     // No longer profitable to predicate.
974     if (ExitingBlockProbability > LatchProbabilityThreshold)
975       return false;
976   }
977   // Using BPI, we have concluded that the most probable way to exit from the
978   // loop is through the latch (or there's no profile information and all
979   // exits are equally likely).
980   return true;
981 }
982 
983 /// If we can (cheaply) find a widenable branch which controls entry into the
984 /// loop, return it.
985 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
986   // Walk back through any unconditional executed blocks and see if we can find
987   // a widenable condition which seems to control execution of this loop.  Note
988   // that we predict that maythrow calls are likely untaken and thus that it's
989   // profitable to widen a branch before a maythrow call with a condition
990   // afterwards even though that may cause the slow path to run in a case where
991   // it wouldn't have otherwise.
992   BasicBlock *BB = L->getLoopPreheader();
993   if (!BB)
994     return nullptr;
995   do {
996     if (BasicBlock *Pred = BB->getSinglePredecessor())
997       if (BB == Pred->getSingleSuccessor()) {
998         BB = Pred;
999         continue;
1000       }
1001     break;
1002   } while (true);
1003 
1004   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1005     auto *Term = Pred->getTerminator();
1006 
1007     Value *Cond, *WC;
1008     BasicBlock *IfTrueBB, *IfFalseBB;
1009     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1010         IfTrueBB == BB)
1011       return cast<BranchInst>(Term);
1012   }
1013   return nullptr;
1014 }
1015 
1016 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1017 /// on the actual exit count.  If there are not at least two analyzeable exits,
1018 /// returns SCEVCouldNotCompute.
1019 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1020                                                        DominatorTree &DT,
1021                                                        Loop *L) {
1022   SmallVector<BasicBlock *, 16> ExitingBlocks;
1023   L->getExitingBlocks(ExitingBlocks);
1024 
1025   SmallVector<const SCEV *, 4> ExitCounts;
1026   for (BasicBlock *ExitingBB : ExitingBlocks) {
1027     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1028     if (isa<SCEVCouldNotCompute>(ExitCount))
1029       continue;
1030     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1031            "We should only have known counts for exiting blocks that "
1032            "dominate latch!");
1033     ExitCounts.push_back(ExitCount);
1034   }
1035   if (ExitCounts.size() < 2)
1036     return SE.getCouldNotCompute();
1037   return SE.getUMinFromMismatchedTypes(ExitCounts);
1038 }
1039 
1040 /// This implements an analogous, but entirely distinct transform from the main
1041 /// loop predication transform.  This one is phrased in terms of using a
1042 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1043 /// following loop.  This is close in spirit to the IndVarSimplify transform
1044 /// of the same name, but is materially different widening loosens legality
1045 /// sharply.
1046 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1047   // The transformation performed here aims to widen a widenable condition
1048   // above the loop such that all analyzeable exit leading to deopt are dead.
1049   // It assumes that the latch is the dominant exit for profitability and that
1050   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1051   // semantics of widenable expressions for legality. (i.e. being able to fall
1052   // down the widenable path spuriously allows us to ignore exit order,
1053   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1054   // which restrict the applicability of the non-WC based version of this
1055   // transform in IndVarSimplify.)
1056   //
1057   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1058   // imply flags on the expression being hoisted and inserting new uses (flags
1059   // are only correct for current uses).  The result is that we may be
1060   // inserting a branch on the value which can be either poison or undef.  In
1061   // this case, the branch can legally go either way; we just need to avoid
1062   // introducing UB.  This is achieved through the use of the freeze
1063   // instruction.
1064 
1065   SmallVector<BasicBlock *, 16> ExitingBlocks;
1066   L->getExitingBlocks(ExitingBlocks);
1067 
1068   if (ExitingBlocks.empty())
1069     return false; // Nothing to do.
1070 
1071   auto *Latch = L->getLoopLatch();
1072   if (!Latch)
1073     return false;
1074 
1075   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1076   if (!WidenableBR)
1077     return false;
1078 
1079   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1080   if (isa<SCEVCouldNotCompute>(LatchEC))
1081     return false; // profitability - want hot exit in analyzeable set
1082 
1083   // At this point, we have found an analyzeable latch, and a widenable
1084   // condition above the loop.  If we have a widenable exit within the loop
1085   // (for which we can't compute exit counts), drop the ability to further
1086   // widen so that we gain ability to analyze it's exit count and perform this
1087   // transform.  TODO: It'd be nice to know for sure the exit became
1088   // analyzeable after dropping widenability.
1089   bool ChangedLoop = false;
1090 
1091   for (auto *ExitingBB : ExitingBlocks) {
1092     if (LI->getLoopFor(ExitingBB) != L)
1093       continue;
1094 
1095     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1096     if (!BI)
1097       continue;
1098 
1099     Use *Cond, *WC;
1100     BasicBlock *IfTrueBB, *IfFalseBB;
1101     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1102         L->contains(IfTrueBB)) {
1103       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1104       ChangedLoop = true;
1105     }
1106   }
1107   if (ChangedLoop)
1108     SE->forgetLoop(L);
1109 
1110   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1111   // important for profitability.  We may have a loop which hasn't been fully
1112   // canonicalized just yet.  If the exit we chose to widen is provably never
1113   // taken, we want the widened form to *also* be provably never taken.  We
1114   // can't guarantee this as a current unanalyzeable exit may later become
1115   // analyzeable, but we can at least avoid the obvious cases.
1116   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1117   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1118       !SE->isLoopInvariant(MinEC, L) ||
1119       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1120     return ChangedLoop;
1121 
1122   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1123   // that it can only have one transitive use at the moment, and thus moving
1124   // that use to just before the branch and inserting code before it and then
1125   // modifying the operand is legal.
1126   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1127   // Here we unconditionally modify the IR, so after this point we should return
1128   // only `true`!
1129   IP->moveBefore(WidenableBR);
1130   if (MSSAU)
1131     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1132        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1133                           MemorySSA::BeforeTerminator);
1134   Rewriter.setInsertPoint(IP);
1135   IRBuilder<> B(IP);
1136 
1137   bool InvalidateLoop = false;
1138   Value *MinECV = nullptr; // lazily generated if needed
1139   for (BasicBlock *ExitingBB : ExitingBlocks) {
1140     // If our exiting block exits multiple loops, we can only rewrite the
1141     // innermost one.  Otherwise, we're changing how many times the innermost
1142     // loop runs before it exits.
1143     if (LI->getLoopFor(ExitingBB) != L)
1144       continue;
1145 
1146     // Can't rewrite non-branch yet.
1147     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1148     if (!BI)
1149       continue;
1150 
1151     // If already constant, nothing to do.
1152     if (isa<Constant>(BI->getCondition()))
1153       continue;
1154 
1155     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1156     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1157         ExitCount->getType()->isPointerTy() ||
1158         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1159       continue;
1160 
1161     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1162     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1163     if (!ExitBB->getPostdominatingDeoptimizeCall())
1164       continue;
1165 
1166     /// Here we can be fairly sure that executing this exit will most likely
1167     /// lead to executing llvm.experimental.deoptimize.
1168     /// This is a profitability heuristic, not a legality constraint.
1169 
1170     // If we found a widenable exit condition, do two things:
1171     // 1) fold the widened exit test into the widenable condition
1172     // 2) fold the branch to untaken - avoids infinite looping
1173 
1174     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1175     if (!MinECV)
1176       MinECV = Rewriter.expandCodeFor(MinEC);
1177     Value *RHS = MinECV;
1178     if (ECV->getType() != RHS->getType()) {
1179       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1180       ECV = B.CreateZExt(ECV, WiderTy);
1181       RHS = B.CreateZExt(RHS, WiderTy);
1182     }
1183     assert(!Latch || DT->dominates(ExitingBB, Latch));
1184     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1185     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1186     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1187     // context.
1188     NewCond = B.CreateFreeze(NewCond);
1189 
1190     widenWidenableBranch(WidenableBR, NewCond);
1191 
1192     Value *OldCond = BI->getCondition();
1193     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1194     InvalidateLoop = true;
1195   }
1196 
1197   if (InvalidateLoop)
1198     // We just mutated a bunch of loop exits changing there exit counts
1199     // widely.  We need to force recomputation of the exit counts given these
1200     // changes.  Note that all of the inserted exits are never taken, and
1201     // should be removed next time the CFG is modified.
1202     SE->forgetLoop(L);
1203 
1204   // Always return `true` since we have moved the WidenableBR's condition.
1205   return true;
1206 }
1207 
1208 bool LoopPredication::runOnLoop(Loop *Loop) {
1209   L = Loop;
1210 
1211   LLVM_DEBUG(dbgs() << "Analyzing ");
1212   LLVM_DEBUG(L->dump());
1213 
1214   Module *M = L->getHeader()->getModule();
1215 
1216   // There is nothing to do if the module doesn't use guards
1217   auto *GuardDecl =
1218       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1219   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1220   auto *WCDecl = M->getFunction(
1221       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1222   bool HasWidenableConditions =
1223       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1224   if (!HasIntrinsicGuards && !HasWidenableConditions)
1225     return false;
1226 
1227   DL = &M->getDataLayout();
1228 
1229   Preheader = L->getLoopPreheader();
1230   if (!Preheader)
1231     return false;
1232 
1233   auto LatchCheckOpt = parseLoopLatchICmp();
1234   if (!LatchCheckOpt)
1235     return false;
1236   LatchCheck = *LatchCheckOpt;
1237 
1238   LLVM_DEBUG(dbgs() << "Latch check:\n");
1239   LLVM_DEBUG(LatchCheck.dump());
1240 
1241   if (!isLoopProfitableToPredicate()) {
1242     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1243     return false;
1244   }
1245   // Collect all the guards into a vector and process later, so as not
1246   // to invalidate the instruction iterator.
1247   SmallVector<IntrinsicInst *, 4> Guards;
1248   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1249   for (const auto BB : L->blocks()) {
1250     for (auto &I : *BB)
1251       if (isGuard(&I))
1252         Guards.push_back(cast<IntrinsicInst>(&I));
1253     if (PredicateWidenableBranchGuards &&
1254         isGuardAsWidenableBranch(BB->getTerminator()))
1255       GuardsAsWidenableBranches.push_back(
1256           cast<BranchInst>(BB->getTerminator()));
1257   }
1258 
1259   SCEVExpander Expander(*SE, *DL, "loop-predication");
1260   bool Changed = false;
1261   for (auto *Guard : Guards)
1262     Changed |= widenGuardConditions(Guard, Expander);
1263   for (auto *Guard : GuardsAsWidenableBranches)
1264     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1265   Changed |= predicateLoopExits(L, Expander);
1266 
1267   if (MSSAU && VerifyMemorySSA)
1268     MSSAU->getMemorySSA()->verifyMemorySSA();
1269   return Changed;
1270 }
1271