xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 099eca832e7ef22c7229bc707789bc680ea228bd)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Transforms/Scalar.h"
197 #include "llvm/Transforms/Utils/Local.h"
198 #include "llvm/Transforms/Utils/LoopUtils.h"
199 
200 #define DEBUG_TYPE "loop-predication"
201 
202 STATISTIC(TotalConsidered, "Number of guards considered");
203 STATISTIC(TotalWidened, "Number of checks widened");
204 
205 using namespace llvm;
206 
207 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208                                         cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211                                         cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool>
214     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215                             cl::Hidden, cl::init(false));
216 
217 // This is the scale factor for the latch probability. We use this during
218 // profitability analysis to find other exiting blocks that have a much higher
219 // probability of exiting the loop instead of loop exiting via latch.
220 // This value should be greater than 1 for a sane profitability check.
221 static cl::opt<float> LatchExitProbabilityScale(
222     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223     cl::desc("scale factor for the latch probability. Value should be greater "
224              "than 1. Lower values are ignored"));
225 
226 static cl::opt<bool> PredicateWidenableBranchGuards(
227     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228     cl::desc("Whether or not we should predicate guards "
229              "expressed as widenable branches to deoptimize blocks"),
230     cl::init(true));
231 
232 namespace {
233 /// Represents an induction variable check:
234 ///   icmp Pred, <induction variable>, <loop invariant limit>
235 struct LoopICmp {
236   ICmpInst::Predicate Pred;
237   const SCEVAddRecExpr *IV;
238   const SCEV *Limit;
239   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240            const SCEV *Limit)
241     : Pred(Pred), IV(IV), Limit(Limit) {}
242   LoopICmp() {}
243   void dump() {
244     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245            << ", Limit = " << *Limit << "\n";
246   }
247 };
248 
249 class LoopPredication {
250   AliasAnalysis *AA;
251   ScalarEvolution *SE;
252   BranchProbabilityInfo *BPI;
253 
254   Loop *L;
255   const DataLayout *DL;
256   BasicBlock *Preheader;
257   LoopICmp LatchCheck;
258 
259   bool isSupportedStep(const SCEV* Step);
260   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
261     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
262                          ICI->getOperand(1));
263   }
264   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
265                                    Value *RHS);
266 
267   Optional<LoopICmp> parseLoopLatchICmp();
268 
269   /// Return an insertion point suitable for inserting a safe to speculate
270   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
271   /// trivial result would be the at the User itself, but we try to return a
272   /// loop invariant location if possible.
273   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
274   /// Same as above, *except* that this uses the SCEV definition of invariant
275   /// which is that an expression *can be made* invariant via SCEVExpander.
276   /// Thus, this version is only suitable for finding an insert point to be be
277   /// passed to SCEVExpander!
278   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
279 
280   /// Return true if the value is known to produce a single fixed value across
281   /// all iterations on which it executes.  Note that this does not imply
282   /// speculation safety.  That must be established seperately.
283   bool isLoopInvariantValue(const SCEV* S);
284 
285   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
286                      ICmpInst::Predicate Pred, const SCEV *LHS,
287                      const SCEV *RHS);
288 
289   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
290                                         Instruction *Guard);
291   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
292                                                         LoopICmp RangeCheck,
293                                                         SCEVExpander &Expander,
294                                                         Instruction *Guard);
295   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
296                                                         LoopICmp RangeCheck,
297                                                         SCEVExpander &Expander,
298                                                         Instruction *Guard);
299   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
300                          SCEVExpander &Expander, Instruction *Guard);
301   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
302   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
303   // If the loop always exits through another block in the loop, we should not
304   // predicate based on the latch check. For example, the latch check can be a
305   // very coarse grained check and there can be more fine grained exit checks
306   // within the loop. We identify such unprofitable loops through BPI.
307   bool isLoopProfitableToPredicate();
308 
309   // When the IV type is wider than the range operand type, we can still do loop
310   // predication, by generating SCEVs for the range and latch that are of the
311   // same type. We achieve this by generating a SCEV truncate expression for the
312   // latch IV. This is done iff truncation of the IV is a safe operation,
313   // without loss of information.
314   // Another way to achieve this is by generating a wider type SCEV for the
315   // range check operand, however, this needs a more involved check that
316   // operands do not overflow. This can lead to loss of information when the
317   // range operand is of the form: add i32 %offset, %iv. We need to prove that
318   // sext(x + y) is same as sext(x) + sext(y).
319   // This function returns true if we can safely represent the IV type in
320   // the RangeCheckType without loss of information.
321   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
322   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
323   // so.
324   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
325 
326 public:
327   LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
328                   BranchProbabilityInfo *BPI)
329     : AA(AA), SE(SE), BPI(BPI){};
330   bool runOnLoop(Loop *L);
331 };
332 
333 class LoopPredicationLegacyPass : public LoopPass {
334 public:
335   static char ID;
336   LoopPredicationLegacyPass() : LoopPass(ID) {
337     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
338   }
339 
340   void getAnalysisUsage(AnalysisUsage &AU) const override {
341     AU.addRequired<BranchProbabilityInfoWrapperPass>();
342     getLoopAnalysisUsage(AU);
343   }
344 
345   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
346     if (skipLoop(L))
347       return false;
348     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
349     BranchProbabilityInfo &BPI =
350         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
351     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
352     LoopPredication LP(AA, SE, &BPI);
353     return LP.runOnLoop(L);
354   }
355 };
356 
357 char LoopPredicationLegacyPass::ID = 0;
358 } // end namespace llvm
359 
360 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
361                       "Loop predication", false, false)
362 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
363 INITIALIZE_PASS_DEPENDENCY(LoopPass)
364 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
365                     "Loop predication", false, false)
366 
367 Pass *llvm::createLoopPredicationPass() {
368   return new LoopPredicationLegacyPass();
369 }
370 
371 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
372                                            LoopStandardAnalysisResults &AR,
373                                            LPMUpdater &U) {
374   const auto &FAM =
375       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
376   Function *F = L.getHeader()->getParent();
377   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
378   LoopPredication LP(&AR.AA, &AR.SE, BPI);
379   if (!LP.runOnLoop(&L))
380     return PreservedAnalyses::all();
381 
382   return getLoopPassPreservedAnalyses();
383 }
384 
385 Optional<LoopICmp>
386 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
387                                Value *RHS) {
388   const SCEV *LHSS = SE->getSCEV(LHS);
389   if (isa<SCEVCouldNotCompute>(LHSS))
390     return None;
391   const SCEV *RHSS = SE->getSCEV(RHS);
392   if (isa<SCEVCouldNotCompute>(RHSS))
393     return None;
394 
395   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
396   if (SE->isLoopInvariant(LHSS, L)) {
397     std::swap(LHS, RHS);
398     std::swap(LHSS, RHSS);
399     Pred = ICmpInst::getSwappedPredicate(Pred);
400   }
401 
402   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
403   if (!AR || AR->getLoop() != L)
404     return None;
405 
406   return LoopICmp(Pred, AR, RHSS);
407 }
408 
409 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
410                                     Instruction *Guard,
411                                     ICmpInst::Predicate Pred, const SCEV *LHS,
412                                     const SCEV *RHS) {
413   Type *Ty = LHS->getType();
414   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
415 
416   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
417     IRBuilder<> Builder(Guard);
418     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
419       return Builder.getTrue();
420     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
421                                      LHS, RHS))
422       return Builder.getFalse();
423   }
424 
425   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
426   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
427   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
428   return Builder.CreateICmp(Pred, LHSV, RHSV);
429 }
430 
431 Optional<LoopICmp>
432 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
433 
434   auto *LatchType = LatchCheck.IV->getType();
435   if (RangeCheckType == LatchType)
436     return LatchCheck;
437   // For now, bail out if latch type is narrower than range type.
438   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
439     return None;
440   if (!isSafeToTruncateWideIVType(RangeCheckType))
441     return None;
442   // We can now safely identify the truncated version of the IV and limit for
443   // RangeCheckType.
444   LoopICmp NewLatchCheck;
445   NewLatchCheck.Pred = LatchCheck.Pred;
446   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
447       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
448   if (!NewLatchCheck.IV)
449     return None;
450   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
451   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
452                     << "can be represented as range check type:"
453                     << *RangeCheckType << "\n");
454   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
455   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
456   return NewLatchCheck;
457 }
458 
459 bool LoopPredication::isSupportedStep(const SCEV* Step) {
460   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
461 }
462 
463 Instruction *LoopPredication::findInsertPt(Instruction *Use,
464                                            ArrayRef<Value*> Ops) {
465   for (Value *Op : Ops)
466     if (!L->isLoopInvariant(Op))
467       return Use;
468   return Preheader->getTerminator();
469 }
470 
471 Instruction *LoopPredication::findInsertPt(Instruction *Use,
472                                            ArrayRef<const SCEV*> Ops) {
473   // Subtlety: SCEV considers things to be invariant if the value produced is
474   // the same across iterations.  This is not the same as being able to
475   // evaluate outside the loop, which is what we actually need here.
476   for (const SCEV *Op : Ops)
477     if (!SE->isLoopInvariant(Op, L) ||
478         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
479       return Use;
480   return Preheader->getTerminator();
481 }
482 
483 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
484   // Handling expressions which produce invariant results, but *haven't* yet
485   // been removed from the loop serves two important purposes.
486   // 1) Most importantly, it resolves a pass ordering cycle which would
487   // otherwise need us to iteration licm, loop-predication, and either
488   // loop-unswitch or loop-peeling to make progress on examples with lots of
489   // predicable range checks in a row.  (Since, in the general case,  we can't
490   // hoist the length checks until the dominating checks have been discharged
491   // as we can't prove doing so is safe.)
492   // 2) As a nice side effect, this exposes the value of peeling or unswitching
493   // much more obviously in the IR.  Otherwise, the cost modeling for other
494   // transforms would end up needing to duplicate all of this logic to model a
495   // check which becomes predictable based on a modeled peel or unswitch.
496   //
497   // The cost of doing so in the worst case is an extra fill from the stack  in
498   // the loop to materialize the loop invariant test value instead of checking
499   // against the original IV which is presumable in a register inside the loop.
500   // Such cases are presumably rare, and hint at missing oppurtunities for
501   // other passes.
502 
503   if (SE->isLoopInvariant(S, L))
504     // Note: This the SCEV variant, so the original Value* may be within the
505     // loop even though SCEV has proven it is loop invariant.
506     return true;
507 
508   // Handle a particular important case which SCEV doesn't yet know about which
509   // shows up in range checks on arrays with immutable lengths.
510   // TODO: This should be sunk inside SCEV.
511   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
512     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
513       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
514         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
515             LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
516           return true;
517   return false;
518 }
519 
520 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
521     LoopICmp LatchCheck, LoopICmp RangeCheck,
522     SCEVExpander &Expander, Instruction *Guard) {
523   auto *Ty = RangeCheck.IV->getType();
524   // Generate the widened condition for the forward loop:
525   //   guardStart u< guardLimit &&
526   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
527   // where <pred> depends on the latch condition predicate. See the file
528   // header comment for the reasoning.
529   // guardLimit - guardStart + latchStart - 1
530   const SCEV *GuardStart = RangeCheck.IV->getStart();
531   const SCEV *GuardLimit = RangeCheck.Limit;
532   const SCEV *LatchStart = LatchCheck.IV->getStart();
533   const SCEV *LatchLimit = LatchCheck.Limit;
534   // Subtlety: We need all the values to be *invariant* across all iterations,
535   // but we only need to check expansion safety for those which *aren't*
536   // already guaranteed to dominate the guard.
537   if (!isLoopInvariantValue(GuardStart) ||
538       !isLoopInvariantValue(GuardLimit) ||
539       !isLoopInvariantValue(LatchStart) ||
540       !isLoopInvariantValue(LatchLimit)) {
541     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
542     return None;
543   }
544   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
545       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
546     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
547     return None;
548   }
549 
550   // guardLimit - guardStart + latchStart - 1
551   const SCEV *RHS =
552       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
553                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
554   auto LimitCheckPred =
555       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
556 
557   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
558   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
559   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
560 
561   auto *LimitCheck =
562       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
563   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
564                                           GuardStart, GuardLimit);
565   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
566   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
567 }
568 
569 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
570     LoopICmp LatchCheck, LoopICmp RangeCheck,
571     SCEVExpander &Expander, Instruction *Guard) {
572   auto *Ty = RangeCheck.IV->getType();
573   const SCEV *GuardStart = RangeCheck.IV->getStart();
574   const SCEV *GuardLimit = RangeCheck.Limit;
575   const SCEV *LatchStart = LatchCheck.IV->getStart();
576   const SCEV *LatchLimit = LatchCheck.Limit;
577   // Subtlety: We need all the values to be *invariant* across all iterations,
578   // but we only need to check expansion safety for those which *aren't*
579   // already guaranteed to dominate the guard.
580   if (!isLoopInvariantValue(GuardStart) ||
581       !isLoopInvariantValue(GuardLimit) ||
582       !isLoopInvariantValue(LatchStart) ||
583       !isLoopInvariantValue(LatchLimit)) {
584     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
585     return None;
586   }
587   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
588       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
589     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
590     return None;
591   }
592   // The decrement of the latch check IV should be the same as the
593   // rangeCheckIV.
594   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
595   if (RangeCheck.IV != PostDecLatchCheckIV) {
596     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
597                       << *PostDecLatchCheckIV
598                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
599     return None;
600   }
601 
602   // Generate the widened condition for CountDownLoop:
603   // guardStart u< guardLimit &&
604   // latchLimit <pred> 1.
605   // See the header comment for reasoning of the checks.
606   auto LimitCheckPred =
607       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
608   auto *FirstIterationCheck = expandCheck(Expander, Guard,
609                                           ICmpInst::ICMP_ULT,
610                                           GuardStart, GuardLimit);
611   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
612                                  SE->getOne(Ty));
613   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
614   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
615 }
616 
617 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
618                                LoopICmp& RC) {
619   // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form.
620   // Normalize back to the ULT/SLT form for ease of handling.
621   if (RC.Pred == ICmpInst::ICMP_NE &&
622       RC.IV->getStepRecurrence(*SE)->isOne() &&
623       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
624     RC.Pred = ICmpInst::ICMP_ULT;
625 }
626 
627 
628 /// If ICI can be widened to a loop invariant condition emits the loop
629 /// invariant condition in the loop preheader and return it, otherwise
630 /// returns None.
631 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
632                                                        SCEVExpander &Expander,
633                                                        Instruction *Guard) {
634   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
635   LLVM_DEBUG(ICI->dump());
636 
637   // parseLoopStructure guarantees that the latch condition is:
638   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
639   // We are looking for the range checks of the form:
640   //   i u< guardLimit
641   auto RangeCheck = parseLoopICmp(ICI);
642   if (!RangeCheck) {
643     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
644     return None;
645   }
646   LLVM_DEBUG(dbgs() << "Guard check:\n");
647   LLVM_DEBUG(RangeCheck->dump());
648   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
649     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
650                       << RangeCheck->Pred << ")!\n");
651     return None;
652   }
653   auto *RangeCheckIV = RangeCheck->IV;
654   if (!RangeCheckIV->isAffine()) {
655     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
656     return None;
657   }
658   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
659   // We cannot just compare with latch IV step because the latch and range IVs
660   // may have different types.
661   if (!isSupportedStep(Step)) {
662     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
663     return None;
664   }
665   auto *Ty = RangeCheckIV->getType();
666   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
667   if (!CurrLatchCheckOpt) {
668     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
669                          "corresponding to range type: "
670                       << *Ty << "\n");
671     return None;
672   }
673 
674   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
675   // At this point, the range and latch step should have the same type, but need
676   // not have the same value (we support both 1 and -1 steps).
677   assert(Step->getType() ==
678              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
679          "Range and latch steps should be of same type!");
680   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
681     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
682     return None;
683   }
684 
685   if (Step->isOne())
686     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
687                                                Expander, Guard);
688   else {
689     assert(Step->isAllOnesValue() && "Step should be -1!");
690     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
691                                                Expander, Guard);
692   }
693 }
694 
695 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
696                                         Value *Condition,
697                                         SCEVExpander &Expander,
698                                         Instruction *Guard) {
699   unsigned NumWidened = 0;
700   // The guard condition is expected to be in form of:
701   //   cond1 && cond2 && cond3 ...
702   // Iterate over subconditions looking for icmp conditions which can be
703   // widened across loop iterations. Widening these conditions remember the
704   // resulting list of subconditions in Checks vector.
705   SmallVector<Value *, 4> Worklist(1, Condition);
706   SmallPtrSet<Value *, 4> Visited;
707   Value *WideableCond = nullptr;
708   do {
709     Value *Condition = Worklist.pop_back_val();
710     if (!Visited.insert(Condition).second)
711       continue;
712 
713     Value *LHS, *RHS;
714     using namespace llvm::PatternMatch;
715     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
716       Worklist.push_back(LHS);
717       Worklist.push_back(RHS);
718       continue;
719     }
720 
721     if (match(Condition,
722               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
723       // Pick any, we don't care which
724       WideableCond = Condition;
725       continue;
726     }
727 
728     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
729       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
730                                                    Guard)) {
731         Checks.push_back(NewRangeCheck.getValue());
732         NumWidened++;
733         continue;
734       }
735     }
736 
737     // Save the condition as is if we can't widen it
738     Checks.push_back(Condition);
739   } while (!Worklist.empty());
740   // At the moment, our matching logic for wideable conditions implicitly
741   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
742   // Note that if there were multiple calls to wideable condition in the
743   // traversal, we only need to keep one, and which one is arbitrary.
744   if (WideableCond)
745     Checks.push_back(WideableCond);
746   return NumWidened;
747 }
748 
749 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
750                                            SCEVExpander &Expander) {
751   LLVM_DEBUG(dbgs() << "Processing guard:\n");
752   LLVM_DEBUG(Guard->dump());
753 
754   TotalConsidered++;
755   SmallVector<Value *, 4> Checks;
756   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
757                                       Guard);
758   if (NumWidened == 0)
759     return false;
760 
761   TotalWidened += NumWidened;
762 
763   // Emit the new guard condition
764   IRBuilder<> Builder(findInsertPt(Guard, Checks));
765   Value *LastCheck = nullptr;
766   for (auto *Check : Checks)
767     if (!LastCheck)
768       LastCheck = Check;
769     else
770       LastCheck = Builder.CreateAnd(LastCheck, Check);
771   auto *OldCond = Guard->getOperand(0);
772   Guard->setOperand(0, LastCheck);
773   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
774 
775   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
776   return true;
777 }
778 
779 bool LoopPredication::widenWidenableBranchGuardConditions(
780     BranchInst *BI, SCEVExpander &Expander) {
781   assert(isGuardAsWidenableBranch(BI) && "Must be!");
782   LLVM_DEBUG(dbgs() << "Processing guard:\n");
783   LLVM_DEBUG(BI->dump());
784 
785   TotalConsidered++;
786   SmallVector<Value *, 4> Checks;
787   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
788                                       Expander, BI);
789   if (NumWidened == 0)
790     return false;
791 
792   TotalWidened += NumWidened;
793 
794   // Emit the new guard condition
795   IRBuilder<> Builder(findInsertPt(BI, Checks));
796   Value *LastCheck = nullptr;
797   for (auto *Check : Checks)
798     if (!LastCheck)
799       LastCheck = Check;
800     else
801       LastCheck = Builder.CreateAnd(LastCheck, Check);
802   auto *OldCond = BI->getCondition();
803   BI->setCondition(LastCheck);
804   assert(isGuardAsWidenableBranch(BI) &&
805          "Stopped being a guard after transform?");
806   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
807 
808   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
809   return true;
810 }
811 
812 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
813   using namespace PatternMatch;
814 
815   BasicBlock *LoopLatch = L->getLoopLatch();
816   if (!LoopLatch) {
817     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
818     return None;
819   }
820 
821   ICmpInst::Predicate Pred;
822   Value *LHS, *RHS;
823   BasicBlock *TrueDest, *FalseDest;
824 
825   if (!match(LoopLatch->getTerminator(),
826              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
827                   FalseDest))) {
828     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
829     return None;
830   }
831   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
832          "One of the latch's destinations must be the header");
833   if (TrueDest != L->getHeader())
834     Pred = ICmpInst::getInversePredicate(Pred);
835 
836   auto Result = parseLoopICmp(Pred, LHS, RHS);
837   if (!Result) {
838     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
839     return None;
840   }
841 
842   // Check affine first, so if it's not we don't try to compute the step
843   // recurrence.
844   if (!Result->IV->isAffine()) {
845     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
846     return None;
847   }
848 
849   auto *Step = Result->IV->getStepRecurrence(*SE);
850   if (!isSupportedStep(Step)) {
851     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
852     return None;
853   }
854 
855   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
856     if (Step->isOne()) {
857       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
858              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
859     } else {
860       assert(Step->isAllOnesValue() && "Step should be -1!");
861       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
862              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
863     }
864   };
865 
866   normalizePredicate(SE, L, *Result);
867   if (IsUnsupportedPredicate(Step, Result->Pred)) {
868     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
869                       << ")!\n");
870     return None;
871   }
872   return Result;
873 }
874 
875 // Returns true if its safe to truncate the IV to RangeCheckType.
876 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
877   if (!EnableIVTruncation)
878     return false;
879   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
880              DL->getTypeSizeInBits(RangeCheckType) &&
881          "Expected latch check IV type to be larger than range check operand "
882          "type!");
883   // The start and end values of the IV should be known. This is to guarantee
884   // that truncating the wide type will not lose information.
885   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
886   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
887   if (!Limit || !Start)
888     return false;
889   // This check makes sure that the IV does not change sign during loop
890   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
891   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
892   // IV wraps around, and the truncation of the IV would lose the range of
893   // iterations between 2^32 and 2^64.
894   bool Increasing;
895   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
896     return false;
897   // The active bits should be less than the bits in the RangeCheckType. This
898   // guarantees that truncating the latch check to RangeCheckType is a safe
899   // operation.
900   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
901   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
902          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
903 }
904 
905 bool LoopPredication::isLoopProfitableToPredicate() {
906   if (SkipProfitabilityChecks || !BPI)
907     return true;
908 
909   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
910   L->getExitEdges(ExitEdges);
911   // If there is only one exiting edge in the loop, it is always profitable to
912   // predicate the loop.
913   if (ExitEdges.size() == 1)
914     return true;
915 
916   // Calculate the exiting probabilities of all exiting edges from the loop,
917   // starting with the LatchExitProbability.
918   // Heuristic for profitability: If any of the exiting blocks' probability of
919   // exiting the loop is larger than exiting through the latch block, it's not
920   // profitable to predicate the loop.
921   auto *LatchBlock = L->getLoopLatch();
922   assert(LatchBlock && "Should have a single latch at this point!");
923   auto *LatchTerm = LatchBlock->getTerminator();
924   assert(LatchTerm->getNumSuccessors() == 2 &&
925          "expected to be an exiting block with 2 succs!");
926   unsigned LatchBrExitIdx =
927       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
928   BranchProbability LatchExitProbability =
929       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
930 
931   // Protect against degenerate inputs provided by the user. Providing a value
932   // less than one, can invert the definition of profitable loop predication.
933   float ScaleFactor = LatchExitProbabilityScale;
934   if (ScaleFactor < 1) {
935     LLVM_DEBUG(
936         dbgs()
937         << "Ignored user setting for loop-predication-latch-probability-scale: "
938         << LatchExitProbabilityScale << "\n");
939     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
940     ScaleFactor = 1.0;
941   }
942   const auto LatchProbabilityThreshold =
943       LatchExitProbability * ScaleFactor;
944 
945   for (const auto &ExitEdge : ExitEdges) {
946     BranchProbability ExitingBlockProbability =
947         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
948     // Some exiting edge has higher probability than the latch exiting edge.
949     // No longer profitable to predicate.
950     if (ExitingBlockProbability > LatchProbabilityThreshold)
951       return false;
952   }
953   // Using BPI, we have concluded that the most probable way to exit from the
954   // loop is through the latch (or there's no profile information and all
955   // exits are equally likely).
956   return true;
957 }
958 
959 bool LoopPredication::runOnLoop(Loop *Loop) {
960   L = Loop;
961 
962   LLVM_DEBUG(dbgs() << "Analyzing ");
963   LLVM_DEBUG(L->dump());
964 
965   Module *M = L->getHeader()->getModule();
966 
967   // There is nothing to do if the module doesn't use guards
968   auto *GuardDecl =
969       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
970   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
971   auto *WCDecl = M->getFunction(
972       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
973   bool HasWidenableConditions =
974       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
975   if (!HasIntrinsicGuards && !HasWidenableConditions)
976     return false;
977 
978   DL = &M->getDataLayout();
979 
980   Preheader = L->getLoopPreheader();
981   if (!Preheader)
982     return false;
983 
984   auto LatchCheckOpt = parseLoopLatchICmp();
985   if (!LatchCheckOpt)
986     return false;
987   LatchCheck = *LatchCheckOpt;
988 
989   LLVM_DEBUG(dbgs() << "Latch check:\n");
990   LLVM_DEBUG(LatchCheck.dump());
991 
992   if (!isLoopProfitableToPredicate()) {
993     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
994     return false;
995   }
996   // Collect all the guards into a vector and process later, so as not
997   // to invalidate the instruction iterator.
998   SmallVector<IntrinsicInst *, 4> Guards;
999   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1000   for (const auto BB : L->blocks()) {
1001     for (auto &I : *BB)
1002       if (isGuard(&I))
1003         Guards.push_back(cast<IntrinsicInst>(&I));
1004     if (PredicateWidenableBranchGuards &&
1005         isGuardAsWidenableBranch(BB->getTerminator()))
1006       GuardsAsWidenableBranches.push_back(
1007           cast<BranchInst>(BB->getTerminator()));
1008   }
1009 
1010   if (Guards.empty() && GuardsAsWidenableBranches.empty())
1011     return false;
1012 
1013   SCEVExpander Expander(*SE, *DL, "loop-predication");
1014 
1015   bool Changed = false;
1016   for (auto *Guard : Guards)
1017     Changed |= widenGuardConditions(Guard, Expander);
1018   for (auto *Guard : GuardsAsWidenableBranches)
1019     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1020 
1021   return Changed;
1022 }
1023