1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // When S = 1 (i.e. forward iterating loop), the transformation is supported 102 // when: 103 // * The loop has a single latch with the condition of the form: 104 // B(X) = latchStart + X <pred> latchLimit, 105 // where <pred> is u<, u<=, s<, or s<=. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 156 // when: 157 // * The loop has a single latch with the condition of the form: 158 // B(X) = X <pred> latchLimit, where <pred> is u> or s>. 159 // * The guard condition is of the form 160 // G(X) = X - 1 u< guardLimit 161 // 162 // For the ugt latch comparison case M is: 163 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 164 // 165 // The only way the antecedent can be true and the consequent can be false is if 166 // X == 1. 167 // If X == 1 then the second half of the antecedent is 168 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 169 // 170 // So the widened condition is: 171 // guardStart u< guardLimit && latchLimit u>= 1. 172 // Similarly for sgt condition the widened condition is: 173 // guardStart u< guardLimit && latchLimit s>= 1. 174 //===----------------------------------------------------------------------===// 175 176 #include "llvm/Transforms/Scalar/LoopPredication.h" 177 #include "llvm/Analysis/LoopInfo.h" 178 #include "llvm/Analysis/LoopPass.h" 179 #include "llvm/Analysis/ScalarEvolution.h" 180 #include "llvm/Analysis/ScalarEvolutionExpander.h" 181 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 182 #include "llvm/IR/Function.h" 183 #include "llvm/IR/GlobalValue.h" 184 #include "llvm/IR/IntrinsicInst.h" 185 #include "llvm/IR/Module.h" 186 #include "llvm/IR/PatternMatch.h" 187 #include "llvm/Pass.h" 188 #include "llvm/Support/Debug.h" 189 #include "llvm/Transforms/Scalar.h" 190 #include "llvm/Transforms/Utils/LoopUtils.h" 191 192 #define DEBUG_TYPE "loop-predication" 193 194 using namespace llvm; 195 196 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 197 cl::Hidden, cl::init(true)); 198 199 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 200 cl::Hidden, cl::init(true)); 201 namespace { 202 class LoopPredication { 203 /// Represents an induction variable check: 204 /// icmp Pred, <induction variable>, <loop invariant limit> 205 struct LoopICmp { 206 ICmpInst::Predicate Pred; 207 const SCEVAddRecExpr *IV; 208 const SCEV *Limit; 209 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 210 const SCEV *Limit) 211 : Pred(Pred), IV(IV), Limit(Limit) {} 212 LoopICmp() {} 213 void dump() { 214 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 215 << ", Limit = " << *Limit << "\n"; 216 } 217 }; 218 219 ScalarEvolution *SE; 220 221 Loop *L; 222 const DataLayout *DL; 223 BasicBlock *Preheader; 224 LoopICmp LatchCheck; 225 226 bool isSupportedStep(const SCEV* Step); 227 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 228 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 229 ICI->getOperand(1)); 230 } 231 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 232 Value *RHS); 233 234 Optional<LoopICmp> parseLoopLatchICmp(); 235 236 bool CanExpand(const SCEV* S); 237 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 238 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 239 Instruction *InsertAt); 240 241 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 242 IRBuilder<> &Builder); 243 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 244 LoopICmp RangeCheck, 245 SCEVExpander &Expander, 246 IRBuilder<> &Builder); 247 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 248 LoopICmp RangeCheck, 249 SCEVExpander &Expander, 250 IRBuilder<> &Builder); 251 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 252 253 // When the IV type is wider than the range operand type, we can still do loop 254 // predication, by generating SCEVs for the range and latch that are of the 255 // same type. We achieve this by generating a SCEV truncate expression for the 256 // latch IV. This is done iff truncation of the IV is a safe operation, 257 // without loss of information. 258 // Another way to achieve this is by generating a wider type SCEV for the 259 // range check operand, however, this needs a more involved check that 260 // operands do not overflow. This can lead to loss of information when the 261 // range operand is of the form: add i32 %offset, %iv. We need to prove that 262 // sext(x + y) is same as sext(x) + sext(y). 263 // This function returns true if we can safely represent the IV type in 264 // the RangeCheckType without loss of information. 265 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 266 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 267 // so. 268 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 269 public: 270 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 271 bool runOnLoop(Loop *L); 272 }; 273 274 class LoopPredicationLegacyPass : public LoopPass { 275 public: 276 static char ID; 277 LoopPredicationLegacyPass() : LoopPass(ID) { 278 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 279 } 280 281 void getAnalysisUsage(AnalysisUsage &AU) const override { 282 getLoopAnalysisUsage(AU); 283 } 284 285 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 286 if (skipLoop(L)) 287 return false; 288 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 289 LoopPredication LP(SE); 290 return LP.runOnLoop(L); 291 } 292 }; 293 294 char LoopPredicationLegacyPass::ID = 0; 295 } // end namespace llvm 296 297 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 298 "Loop predication", false, false) 299 INITIALIZE_PASS_DEPENDENCY(LoopPass) 300 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 301 "Loop predication", false, false) 302 303 Pass *llvm::createLoopPredicationPass() { 304 return new LoopPredicationLegacyPass(); 305 } 306 307 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 308 LoopStandardAnalysisResults &AR, 309 LPMUpdater &U) { 310 LoopPredication LP(&AR.SE); 311 if (!LP.runOnLoop(&L)) 312 return PreservedAnalyses::all(); 313 314 return getLoopPassPreservedAnalyses(); 315 } 316 317 Optional<LoopPredication::LoopICmp> 318 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 319 Value *RHS) { 320 const SCEV *LHSS = SE->getSCEV(LHS); 321 if (isa<SCEVCouldNotCompute>(LHSS)) 322 return None; 323 const SCEV *RHSS = SE->getSCEV(RHS); 324 if (isa<SCEVCouldNotCompute>(RHSS)) 325 return None; 326 327 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 328 if (SE->isLoopInvariant(LHSS, L)) { 329 std::swap(LHS, RHS); 330 std::swap(LHSS, RHSS); 331 Pred = ICmpInst::getSwappedPredicate(Pred); 332 } 333 334 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 335 if (!AR || AR->getLoop() != L) 336 return None; 337 338 return LoopICmp(Pred, AR, RHSS); 339 } 340 341 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 342 IRBuilder<> &Builder, 343 ICmpInst::Predicate Pred, const SCEV *LHS, 344 const SCEV *RHS, Instruction *InsertAt) { 345 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 346 347 Type *Ty = LHS->getType(); 348 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 349 350 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 351 return Builder.getTrue(); 352 353 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 354 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 355 return Builder.CreateICmp(Pred, LHSV, RHSV); 356 } 357 358 Optional<LoopPredication::LoopICmp> 359 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 360 361 auto *LatchType = LatchCheck.IV->getType(); 362 if (RangeCheckType == LatchType) 363 return LatchCheck; 364 // For now, bail out if latch type is narrower than range type. 365 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 366 return None; 367 if (!isSafeToTruncateWideIVType(RangeCheckType)) 368 return None; 369 // We can now safely identify the truncated version of the IV and limit for 370 // RangeCheckType. 371 LoopICmp NewLatchCheck; 372 NewLatchCheck.Pred = LatchCheck.Pred; 373 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 374 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 375 if (!NewLatchCheck.IV) 376 return None; 377 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 378 DEBUG(dbgs() << "IV of type: " << *LatchType 379 << "can be represented as range check type:" << *RangeCheckType 380 << "\n"); 381 DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 382 DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 383 return NewLatchCheck; 384 } 385 386 bool LoopPredication::isSupportedStep(const SCEV* Step) { 387 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 388 } 389 390 bool LoopPredication::CanExpand(const SCEV* S) { 391 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 392 } 393 394 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 395 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 396 SCEVExpander &Expander, IRBuilder<> &Builder) { 397 auto *Ty = RangeCheck.IV->getType(); 398 // Generate the widened condition for the forward loop: 399 // guardStart u< guardLimit && 400 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 401 // where <pred> depends on the latch condition predicate. See the file 402 // header comment for the reasoning. 403 // guardLimit - guardStart + latchStart - 1 404 const SCEV *GuardStart = RangeCheck.IV->getStart(); 405 const SCEV *GuardLimit = RangeCheck.Limit; 406 const SCEV *LatchStart = LatchCheck.IV->getStart(); 407 const SCEV *LatchLimit = LatchCheck.Limit; 408 409 // guardLimit - guardStart + latchStart - 1 410 const SCEV *RHS = 411 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 412 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 413 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 414 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 415 DEBUG(dbgs() << "Can't expand limit check!\n"); 416 return None; 417 } 418 ICmpInst::Predicate LimitCheckPred; 419 switch (LatchCheck.Pred) { 420 case ICmpInst::ICMP_ULT: 421 LimitCheckPred = ICmpInst::ICMP_ULE; 422 break; 423 case ICmpInst::ICMP_ULE: 424 LimitCheckPred = ICmpInst::ICMP_ULT; 425 break; 426 case ICmpInst::ICMP_SLT: 427 LimitCheckPred = ICmpInst::ICMP_SLE; 428 break; 429 case ICmpInst::ICMP_SLE: 430 LimitCheckPred = ICmpInst::ICMP_SLT; 431 break; 432 default: 433 llvm_unreachable("Unsupported loop latch!"); 434 } 435 436 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 437 DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 438 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 439 440 Instruction *InsertAt = Preheader->getTerminator(); 441 auto *LimitCheck = 442 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 443 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 444 GuardStart, GuardLimit, InsertAt); 445 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 446 } 447 448 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 449 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 450 SCEVExpander &Expander, IRBuilder<> &Builder) { 451 auto *Ty = RangeCheck.IV->getType(); 452 const SCEV *GuardStart = RangeCheck.IV->getStart(); 453 const SCEV *GuardLimit = RangeCheck.Limit; 454 const SCEV *LatchLimit = LatchCheck.Limit; 455 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 456 !CanExpand(LatchLimit)) { 457 DEBUG(dbgs() << "Can't expand limit check!\n"); 458 return None; 459 } 460 // The decrement of the latch check IV should be the same as the 461 // rangeCheckIV. 462 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 463 if (RangeCheck.IV != PostDecLatchCheckIV) { 464 DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 465 << *PostDecLatchCheckIV 466 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 467 return None; 468 } 469 470 // Generate the widened condition for CountDownLoop: 471 // guardStart u< guardLimit && 472 // latchLimit <pred> 1. 473 // See the header comment for reasoning of the checks. 474 Instruction *InsertAt = Preheader->getTerminator(); 475 auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred) 476 ? ICmpInst::ICMP_SGE 477 : ICmpInst::ICMP_UGE; 478 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 479 GuardStart, GuardLimit, InsertAt); 480 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 481 SE->getOne(Ty), InsertAt); 482 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 483 } 484 485 /// If ICI can be widened to a loop invariant condition emits the loop 486 /// invariant condition in the loop preheader and return it, otherwise 487 /// returns None. 488 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 489 SCEVExpander &Expander, 490 IRBuilder<> &Builder) { 491 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 492 DEBUG(ICI->dump()); 493 494 // parseLoopStructure guarantees that the latch condition is: 495 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 496 // We are looking for the range checks of the form: 497 // i u< guardLimit 498 auto RangeCheck = parseLoopICmp(ICI); 499 if (!RangeCheck) { 500 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 501 return None; 502 } 503 DEBUG(dbgs() << "Guard check:\n"); 504 DEBUG(RangeCheck->dump()); 505 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 506 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred 507 << ")!\n"); 508 return None; 509 } 510 auto *RangeCheckIV = RangeCheck->IV; 511 if (!RangeCheckIV->isAffine()) { 512 DEBUG(dbgs() << "Range check IV is not affine!\n"); 513 return None; 514 } 515 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 516 // We cannot just compare with latch IV step because the latch and range IVs 517 // may have different types. 518 if (!isSupportedStep(Step)) { 519 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 520 return None; 521 } 522 auto *Ty = RangeCheckIV->getType(); 523 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 524 if (!CurrLatchCheckOpt) { 525 DEBUG(dbgs() << "Failed to generate a loop latch check " 526 "corresponding to range type: " 527 << *Ty << "\n"); 528 return None; 529 } 530 531 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 532 // At this point, the range and latch step should have the same type, but need 533 // not have the same value (we support both 1 and -1 steps). 534 assert(Step->getType() == 535 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 536 "Range and latch steps should be of same type!"); 537 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 538 DEBUG(dbgs() << "Range and latch have different step values!\n"); 539 return None; 540 } 541 542 if (Step->isOne()) 543 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 544 Expander, Builder); 545 else { 546 assert(Step->isAllOnesValue() && "Step should be -1!"); 547 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 548 Expander, Builder); 549 } 550 } 551 552 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 553 SCEVExpander &Expander) { 554 DEBUG(dbgs() << "Processing guard:\n"); 555 DEBUG(Guard->dump()); 556 557 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 558 559 // The guard condition is expected to be in form of: 560 // cond1 && cond2 && cond3 ... 561 // Iterate over subconditions looking for icmp conditions which can be 562 // widened across loop iterations. Widening these conditions remember the 563 // resulting list of subconditions in Checks vector. 564 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 565 SmallPtrSet<Value *, 4> Visited; 566 567 SmallVector<Value *, 4> Checks; 568 569 unsigned NumWidened = 0; 570 do { 571 Value *Condition = Worklist.pop_back_val(); 572 if (!Visited.insert(Condition).second) 573 continue; 574 575 Value *LHS, *RHS; 576 using namespace llvm::PatternMatch; 577 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 578 Worklist.push_back(LHS); 579 Worklist.push_back(RHS); 580 continue; 581 } 582 583 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 584 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 585 Checks.push_back(NewRangeCheck.getValue()); 586 NumWidened++; 587 continue; 588 } 589 } 590 591 // Save the condition as is if we can't widen it 592 Checks.push_back(Condition); 593 } while (Worklist.size() != 0); 594 595 if (NumWidened == 0) 596 return false; 597 598 // Emit the new guard condition 599 Builder.SetInsertPoint(Guard); 600 Value *LastCheck = nullptr; 601 for (auto *Check : Checks) 602 if (!LastCheck) 603 LastCheck = Check; 604 else 605 LastCheck = Builder.CreateAnd(LastCheck, Check); 606 Guard->setOperand(0, LastCheck); 607 608 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 609 return true; 610 } 611 612 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 613 using namespace PatternMatch; 614 615 BasicBlock *LoopLatch = L->getLoopLatch(); 616 if (!LoopLatch) { 617 DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 618 return None; 619 } 620 621 ICmpInst::Predicate Pred; 622 Value *LHS, *RHS; 623 BasicBlock *TrueDest, *FalseDest; 624 625 if (!match(LoopLatch->getTerminator(), 626 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 627 FalseDest))) { 628 DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 629 return None; 630 } 631 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 632 "One of the latch's destinations must be the header"); 633 if (TrueDest != L->getHeader()) 634 Pred = ICmpInst::getInversePredicate(Pred); 635 636 auto Result = parseLoopICmp(Pred, LHS, RHS); 637 if (!Result) { 638 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 639 return None; 640 } 641 642 // Check affine first, so if it's not we don't try to compute the step 643 // recurrence. 644 if (!Result->IV->isAffine()) { 645 DEBUG(dbgs() << "The induction variable is not affine!\n"); 646 return None; 647 } 648 649 auto *Step = Result->IV->getStepRecurrence(*SE); 650 if (!isSupportedStep(Step)) { 651 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 652 return None; 653 } 654 655 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 656 if (Step->isOne()) { 657 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 658 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 659 } else { 660 assert(Step->isAllOnesValue() && "Step should be -1!"); 661 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT; 662 } 663 }; 664 665 if (IsUnsupportedPredicate(Step, Result->Pred)) { 666 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 667 << ")!\n"); 668 return None; 669 } 670 return Result; 671 } 672 673 // Returns true if its safe to truncate the IV to RangeCheckType. 674 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 675 if (!EnableIVTruncation) 676 return false; 677 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 678 DL->getTypeSizeInBits(RangeCheckType) && 679 "Expected latch check IV type to be larger than range check operand " 680 "type!"); 681 // The start and end values of the IV should be known. This is to guarantee 682 // that truncating the wide type will not lose information. 683 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 684 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 685 if (!Limit || !Start) 686 return false; 687 // This check makes sure that the IV does not change sign during loop 688 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 689 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 690 // IV wraps around, and the truncation of the IV would lose the range of 691 // iterations between 2^32 and 2^64. 692 bool Increasing; 693 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 694 return false; 695 // The active bits should be less than the bits in the RangeCheckType. This 696 // guarantees that truncating the latch check to RangeCheckType is a safe 697 // operation. 698 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 699 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 700 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 701 } 702 703 bool LoopPredication::runOnLoop(Loop *Loop) { 704 L = Loop; 705 706 DEBUG(dbgs() << "Analyzing "); 707 DEBUG(L->dump()); 708 709 Module *M = L->getHeader()->getModule(); 710 711 // There is nothing to do if the module doesn't use guards 712 auto *GuardDecl = 713 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 714 if (!GuardDecl || GuardDecl->use_empty()) 715 return false; 716 717 DL = &M->getDataLayout(); 718 719 Preheader = L->getLoopPreheader(); 720 if (!Preheader) 721 return false; 722 723 auto LatchCheckOpt = parseLoopLatchICmp(); 724 if (!LatchCheckOpt) 725 return false; 726 LatchCheck = *LatchCheckOpt; 727 728 DEBUG(dbgs() << "Latch check:\n"); 729 DEBUG(LatchCheck.dump()); 730 731 // Collect all the guards into a vector and process later, so as not 732 // to invalidate the instruction iterator. 733 SmallVector<IntrinsicInst *, 4> Guards; 734 for (const auto BB : L->blocks()) 735 for (auto &I : *BB) 736 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 737 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 738 Guards.push_back(II); 739 740 if (Guards.empty()) 741 return false; 742 743 SCEVExpander Expander(*SE, *DL, "loop-predication"); 744 745 bool Changed = false; 746 for (auto *Guard : Guards) 747 Changed |= widenGuardConditions(Guard, Expander); 748 749 return Changed; 750 } 751