1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/BranchProbabilityInfo.h" 182 #include "llvm/Analysis/GuardUtils.h" 183 #include "llvm/Analysis/LoopInfo.h" 184 #include "llvm/Analysis/LoopPass.h" 185 #include "llvm/Analysis/ScalarEvolution.h" 186 #include "llvm/Analysis/ScalarEvolutionExpander.h" 187 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 188 #include "llvm/IR/Function.h" 189 #include "llvm/IR/GlobalValue.h" 190 #include "llvm/IR/IntrinsicInst.h" 191 #include "llvm/IR/Module.h" 192 #include "llvm/IR/PatternMatch.h" 193 #include "llvm/Pass.h" 194 #include "llvm/Support/Debug.h" 195 #include "llvm/Transforms/Scalar.h" 196 #include "llvm/Transforms/Utils/Local.h" 197 #include "llvm/Transforms/Utils/LoopUtils.h" 198 199 #define DEBUG_TYPE "loop-predication" 200 201 STATISTIC(TotalConsidered, "Number of guards considered"); 202 STATISTIC(TotalWidened, "Number of checks widened"); 203 204 using namespace llvm; 205 206 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 207 cl::Hidden, cl::init(true)); 208 209 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 210 cl::Hidden, cl::init(true)); 211 212 static cl::opt<bool> 213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 214 cl::Hidden, cl::init(false)); 215 216 // This is the scale factor for the latch probability. We use this during 217 // profitability analysis to find other exiting blocks that have a much higher 218 // probability of exiting the loop instead of loop exiting via latch. 219 // This value should be greater than 1 for a sane profitability check. 220 static cl::opt<float> LatchExitProbabilityScale( 221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 222 cl::desc("scale factor for the latch probability. Value should be greater " 223 "than 1. Lower values are ignored")); 224 225 static cl::opt<bool> PredicateWidenableBranchGuards( 226 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 227 cl::desc("Whether or not we should predicate guards " 228 "expressed as widenable branches to deoptimize blocks"), 229 cl::init(true)); 230 231 namespace { 232 class LoopPredication { 233 /// Represents an induction variable check: 234 /// icmp Pred, <induction variable>, <loop invariant limit> 235 struct LoopICmp { 236 ICmpInst::Predicate Pred; 237 const SCEVAddRecExpr *IV; 238 const SCEV *Limit; 239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 240 const SCEV *Limit) 241 : Pred(Pred), IV(IV), Limit(Limit) {} 242 LoopICmp() {} 243 void dump() { 244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 245 << ", Limit = " << *Limit << "\n"; 246 } 247 }; 248 249 ScalarEvolution *SE; 250 BranchProbabilityInfo *BPI; 251 252 Loop *L; 253 const DataLayout *DL; 254 BasicBlock *Preheader; 255 LoopICmp LatchCheck; 256 257 bool isSupportedStep(const SCEV* Step); 258 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 259 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 260 ICI->getOperand(1)); 261 } 262 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 263 Value *RHS); 264 265 Optional<LoopICmp> parseLoopLatchICmp(); 266 267 bool CanExpand(const SCEV* S); 268 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 269 ICmpInst::Predicate Pred, const SCEV *LHS, 270 const SCEV *RHS); 271 272 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 273 IRBuilder<> &Builder); 274 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 275 LoopICmp RangeCheck, 276 SCEVExpander &Expander, 277 IRBuilder<> &Builder); 278 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 279 LoopICmp RangeCheck, 280 SCEVExpander &Expander, 281 IRBuilder<> &Builder); 282 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 283 SCEVExpander &Expander, IRBuilder<> &Builder); 284 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 285 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 286 // If the loop always exits through another block in the loop, we should not 287 // predicate based on the latch check. For example, the latch check can be a 288 // very coarse grained check and there can be more fine grained exit checks 289 // within the loop. We identify such unprofitable loops through BPI. 290 bool isLoopProfitableToPredicate(); 291 292 // When the IV type is wider than the range operand type, we can still do loop 293 // predication, by generating SCEVs for the range and latch that are of the 294 // same type. We achieve this by generating a SCEV truncate expression for the 295 // latch IV. This is done iff truncation of the IV is a safe operation, 296 // without loss of information. 297 // Another way to achieve this is by generating a wider type SCEV for the 298 // range check operand, however, this needs a more involved check that 299 // operands do not overflow. This can lead to loss of information when the 300 // range operand is of the form: add i32 %offset, %iv. We need to prove that 301 // sext(x + y) is same as sext(x) + sext(y). 302 // This function returns true if we can safely represent the IV type in 303 // the RangeCheckType without loss of information. 304 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 305 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 306 // so. 307 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 308 309 public: 310 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) 311 : SE(SE), BPI(BPI){}; 312 bool runOnLoop(Loop *L); 313 }; 314 315 class LoopPredicationLegacyPass : public LoopPass { 316 public: 317 static char ID; 318 LoopPredicationLegacyPass() : LoopPass(ID) { 319 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 320 } 321 322 void getAnalysisUsage(AnalysisUsage &AU) const override { 323 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 324 getLoopAnalysisUsage(AU); 325 } 326 327 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 328 if (skipLoop(L)) 329 return false; 330 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 331 BranchProbabilityInfo &BPI = 332 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 333 LoopPredication LP(SE, &BPI); 334 return LP.runOnLoop(L); 335 } 336 }; 337 338 char LoopPredicationLegacyPass::ID = 0; 339 } // end namespace llvm 340 341 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 342 "Loop predication", false, false) 343 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 344 INITIALIZE_PASS_DEPENDENCY(LoopPass) 345 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 346 "Loop predication", false, false) 347 348 Pass *llvm::createLoopPredicationPass() { 349 return new LoopPredicationLegacyPass(); 350 } 351 352 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 353 LoopStandardAnalysisResults &AR, 354 LPMUpdater &U) { 355 const auto &FAM = 356 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 357 Function *F = L.getHeader()->getParent(); 358 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 359 LoopPredication LP(&AR.SE, BPI); 360 if (!LP.runOnLoop(&L)) 361 return PreservedAnalyses::all(); 362 363 return getLoopPassPreservedAnalyses(); 364 } 365 366 Optional<LoopPredication::LoopICmp> 367 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 368 Value *RHS) { 369 const SCEV *LHSS = SE->getSCEV(LHS); 370 if (isa<SCEVCouldNotCompute>(LHSS)) 371 return None; 372 const SCEV *RHSS = SE->getSCEV(RHS); 373 if (isa<SCEVCouldNotCompute>(RHSS)) 374 return None; 375 376 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 377 if (SE->isLoopInvariant(LHSS, L)) { 378 std::swap(LHS, RHS); 379 std::swap(LHSS, RHSS); 380 Pred = ICmpInst::getSwappedPredicate(Pred); 381 } 382 383 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 384 if (!AR || AR->getLoop() != L) 385 return None; 386 387 return LoopICmp(Pred, AR, RHSS); 388 } 389 390 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 391 IRBuilder<> &Builder, 392 ICmpInst::Predicate Pred, const SCEV *LHS, 393 const SCEV *RHS) { 394 Type *Ty = LHS->getType(); 395 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 396 397 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 398 return Builder.getTrue(); 399 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 400 LHS, RHS)) 401 return Builder.getFalse(); 402 403 Instruction *InsertAt = &*Builder.GetInsertPoint(); 404 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 405 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 406 return Builder.CreateICmp(Pred, LHSV, RHSV); 407 } 408 409 Optional<LoopPredication::LoopICmp> 410 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 411 412 auto *LatchType = LatchCheck.IV->getType(); 413 if (RangeCheckType == LatchType) 414 return LatchCheck; 415 // For now, bail out if latch type is narrower than range type. 416 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 417 return None; 418 if (!isSafeToTruncateWideIVType(RangeCheckType)) 419 return None; 420 // We can now safely identify the truncated version of the IV and limit for 421 // RangeCheckType. 422 LoopICmp NewLatchCheck; 423 NewLatchCheck.Pred = LatchCheck.Pred; 424 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 425 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 426 if (!NewLatchCheck.IV) 427 return None; 428 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 429 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 430 << "can be represented as range check type:" 431 << *RangeCheckType << "\n"); 432 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 433 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 434 return NewLatchCheck; 435 } 436 437 bool LoopPredication::isSupportedStep(const SCEV* Step) { 438 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 439 } 440 441 bool LoopPredication::CanExpand(const SCEV* S) { 442 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 443 } 444 445 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 446 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 447 SCEVExpander &Expander, IRBuilder<> &Builder) { 448 auto *Ty = RangeCheck.IV->getType(); 449 // Generate the widened condition for the forward loop: 450 // guardStart u< guardLimit && 451 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 452 // where <pred> depends on the latch condition predicate. See the file 453 // header comment for the reasoning. 454 // guardLimit - guardStart + latchStart - 1 455 const SCEV *GuardStart = RangeCheck.IV->getStart(); 456 const SCEV *GuardLimit = RangeCheck.Limit; 457 const SCEV *LatchStart = LatchCheck.IV->getStart(); 458 const SCEV *LatchLimit = LatchCheck.Limit; 459 460 // guardLimit - guardStart + latchStart - 1 461 const SCEV *RHS = 462 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 463 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 464 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 465 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 466 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 467 return None; 468 } 469 auto LimitCheckPred = 470 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 471 472 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 473 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 474 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 475 476 auto *LimitCheck = 477 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS); 478 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 479 GuardStart, GuardLimit); 480 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 481 } 482 483 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 484 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 485 SCEVExpander &Expander, IRBuilder<> &Builder) { 486 auto *Ty = RangeCheck.IV->getType(); 487 const SCEV *GuardStart = RangeCheck.IV->getStart(); 488 const SCEV *GuardLimit = RangeCheck.Limit; 489 const SCEV *LatchLimit = LatchCheck.Limit; 490 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 491 !CanExpand(LatchLimit)) { 492 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 493 return None; 494 } 495 // The decrement of the latch check IV should be the same as the 496 // rangeCheckIV. 497 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 498 if (RangeCheck.IV != PostDecLatchCheckIV) { 499 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 500 << *PostDecLatchCheckIV 501 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 502 return None; 503 } 504 505 // Generate the widened condition for CountDownLoop: 506 // guardStart u< guardLimit && 507 // latchLimit <pred> 1. 508 // See the header comment for reasoning of the checks. 509 auto LimitCheckPred = 510 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 511 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 512 GuardStart, GuardLimit); 513 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 514 SE->getOne(Ty)); 515 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 516 } 517 518 /// If ICI can be widened to a loop invariant condition emits the loop 519 /// invariant condition in the loop preheader and return it, otherwise 520 /// returns None. 521 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 522 SCEVExpander &Expander, 523 IRBuilder<> &Builder) { 524 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 525 LLVM_DEBUG(ICI->dump()); 526 527 // parseLoopStructure guarantees that the latch condition is: 528 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 529 // We are looking for the range checks of the form: 530 // i u< guardLimit 531 auto RangeCheck = parseLoopICmp(ICI); 532 if (!RangeCheck) { 533 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 534 return None; 535 } 536 LLVM_DEBUG(dbgs() << "Guard check:\n"); 537 LLVM_DEBUG(RangeCheck->dump()); 538 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 539 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 540 << RangeCheck->Pred << ")!\n"); 541 return None; 542 } 543 auto *RangeCheckIV = RangeCheck->IV; 544 if (!RangeCheckIV->isAffine()) { 545 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 546 return None; 547 } 548 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 549 // We cannot just compare with latch IV step because the latch and range IVs 550 // may have different types. 551 if (!isSupportedStep(Step)) { 552 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 553 return None; 554 } 555 auto *Ty = RangeCheckIV->getType(); 556 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 557 if (!CurrLatchCheckOpt) { 558 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 559 "corresponding to range type: " 560 << *Ty << "\n"); 561 return None; 562 } 563 564 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 565 // At this point, the range and latch step should have the same type, but need 566 // not have the same value (we support both 1 and -1 steps). 567 assert(Step->getType() == 568 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 569 "Range and latch steps should be of same type!"); 570 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 571 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 572 return None; 573 } 574 575 if (Step->isOne()) 576 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 577 Expander, Builder); 578 else { 579 assert(Step->isAllOnesValue() && "Step should be -1!"); 580 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 581 Expander, Builder); 582 } 583 } 584 585 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 586 Value *Condition, 587 SCEVExpander &Expander, 588 IRBuilder<> &Builder) { 589 unsigned NumWidened = 0; 590 // The guard condition is expected to be in form of: 591 // cond1 && cond2 && cond3 ... 592 // Iterate over subconditions looking for icmp conditions which can be 593 // widened across loop iterations. Widening these conditions remember the 594 // resulting list of subconditions in Checks vector. 595 SmallVector<Value *, 4> Worklist(1, Condition); 596 SmallPtrSet<Value *, 4> Visited; 597 do { 598 Value *Condition = Worklist.pop_back_val(); 599 if (!Visited.insert(Condition).second) 600 continue; 601 602 Value *LHS, *RHS; 603 using namespace llvm::PatternMatch; 604 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 605 Worklist.push_back(LHS); 606 Worklist.push_back(RHS); 607 continue; 608 } 609 610 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 611 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 612 Builder)) { 613 Checks.push_back(NewRangeCheck.getValue()); 614 NumWidened++; 615 continue; 616 } 617 } 618 619 // Save the condition as is if we can't widen it 620 Checks.push_back(Condition); 621 } while (!Worklist.empty()); 622 return NumWidened; 623 } 624 625 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 626 SCEVExpander &Expander) { 627 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 628 LLVM_DEBUG(Guard->dump()); 629 630 TotalConsidered++; 631 SmallVector<Value *, 4> Checks; 632 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 633 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 634 Builder); 635 if (NumWidened == 0) 636 return false; 637 638 TotalWidened += NumWidened; 639 640 // Emit the new guard condition 641 Builder.SetInsertPoint(Guard); 642 Value *LastCheck = nullptr; 643 for (auto *Check : Checks) 644 if (!LastCheck) 645 LastCheck = Check; 646 else 647 LastCheck = Builder.CreateAnd(LastCheck, Check); 648 auto *OldCond = Guard->getOperand(0); 649 Guard->setOperand(0, LastCheck); 650 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 651 652 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 653 return true; 654 } 655 656 bool LoopPredication::widenWidenableBranchGuardConditions( 657 BranchInst *Guard, SCEVExpander &Expander) { 658 assert(isGuardAsWidenableBranch(Guard) && "Must be!"); 659 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 660 LLVM_DEBUG(Guard->dump()); 661 662 TotalConsidered++; 663 SmallVector<Value *, 4> Checks; 664 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 665 Value *Condition = nullptr, *WidenableCondition = nullptr; 666 BasicBlock *GBB = nullptr, *DBB = nullptr; 667 parseWidenableBranch(Guard, Condition, WidenableCondition, GBB, DBB); 668 unsigned NumWidened = collectChecks(Checks, Condition, Expander, Builder); 669 if (NumWidened == 0) 670 return false; 671 672 TotalWidened += NumWidened; 673 674 // Emit the new guard condition 675 Builder.SetInsertPoint(Guard); 676 Value *LastCheck = nullptr; 677 for (auto *Check : Checks) 678 if (!LastCheck) 679 LastCheck = Check; 680 else 681 LastCheck = Builder.CreateAnd(LastCheck, Check); 682 // Make sure that the check contains widenable condition and therefore can be 683 // further widened. 684 LastCheck = Builder.CreateAnd(LastCheck, WidenableCondition); 685 auto *OldCond = Guard->getOperand(0); 686 Guard->setOperand(0, LastCheck); 687 assert(isGuardAsWidenableBranch(Guard) && 688 "Stopped being a guard after transform?"); 689 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 690 691 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 692 return true; 693 } 694 695 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 696 using namespace PatternMatch; 697 698 BasicBlock *LoopLatch = L->getLoopLatch(); 699 if (!LoopLatch) { 700 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 701 return None; 702 } 703 704 ICmpInst::Predicate Pred; 705 Value *LHS, *RHS; 706 BasicBlock *TrueDest, *FalseDest; 707 708 if (!match(LoopLatch->getTerminator(), 709 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 710 FalseDest))) { 711 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 712 return None; 713 } 714 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 715 "One of the latch's destinations must be the header"); 716 if (TrueDest != L->getHeader()) 717 Pred = ICmpInst::getInversePredicate(Pred); 718 719 auto Result = parseLoopICmp(Pred, LHS, RHS); 720 if (!Result) { 721 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 722 return None; 723 } 724 725 // Check affine first, so if it's not we don't try to compute the step 726 // recurrence. 727 if (!Result->IV->isAffine()) { 728 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 729 return None; 730 } 731 732 auto *Step = Result->IV->getStepRecurrence(*SE); 733 if (!isSupportedStep(Step)) { 734 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 735 return None; 736 } 737 738 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 739 if (Step->isOne()) { 740 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 741 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 742 } else { 743 assert(Step->isAllOnesValue() && "Step should be -1!"); 744 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 745 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 746 } 747 }; 748 749 if (IsUnsupportedPredicate(Step, Result->Pred)) { 750 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 751 << ")!\n"); 752 return None; 753 } 754 return Result; 755 } 756 757 // Returns true if its safe to truncate the IV to RangeCheckType. 758 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 759 if (!EnableIVTruncation) 760 return false; 761 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 762 DL->getTypeSizeInBits(RangeCheckType) && 763 "Expected latch check IV type to be larger than range check operand " 764 "type!"); 765 // The start and end values of the IV should be known. This is to guarantee 766 // that truncating the wide type will not lose information. 767 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 768 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 769 if (!Limit || !Start) 770 return false; 771 // This check makes sure that the IV does not change sign during loop 772 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 773 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 774 // IV wraps around, and the truncation of the IV would lose the range of 775 // iterations between 2^32 and 2^64. 776 bool Increasing; 777 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 778 return false; 779 // The active bits should be less than the bits in the RangeCheckType. This 780 // guarantees that truncating the latch check to RangeCheckType is a safe 781 // operation. 782 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 783 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 784 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 785 } 786 787 bool LoopPredication::isLoopProfitableToPredicate() { 788 if (SkipProfitabilityChecks || !BPI) 789 return true; 790 791 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; 792 L->getExitEdges(ExitEdges); 793 // If there is only one exiting edge in the loop, it is always profitable to 794 // predicate the loop. 795 if (ExitEdges.size() == 1) 796 return true; 797 798 // Calculate the exiting probabilities of all exiting edges from the loop, 799 // starting with the LatchExitProbability. 800 // Heuristic for profitability: If any of the exiting blocks' probability of 801 // exiting the loop is larger than exiting through the latch block, it's not 802 // profitable to predicate the loop. 803 auto *LatchBlock = L->getLoopLatch(); 804 assert(LatchBlock && "Should have a single latch at this point!"); 805 auto *LatchTerm = LatchBlock->getTerminator(); 806 assert(LatchTerm->getNumSuccessors() == 2 && 807 "expected to be an exiting block with 2 succs!"); 808 unsigned LatchBrExitIdx = 809 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 810 BranchProbability LatchExitProbability = 811 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 812 813 // Protect against degenerate inputs provided by the user. Providing a value 814 // less than one, can invert the definition of profitable loop predication. 815 float ScaleFactor = LatchExitProbabilityScale; 816 if (ScaleFactor < 1) { 817 LLVM_DEBUG( 818 dbgs() 819 << "Ignored user setting for loop-predication-latch-probability-scale: " 820 << LatchExitProbabilityScale << "\n"); 821 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 822 ScaleFactor = 1.0; 823 } 824 const auto LatchProbabilityThreshold = 825 LatchExitProbability * ScaleFactor; 826 827 for (const auto &ExitEdge : ExitEdges) { 828 BranchProbability ExitingBlockProbability = 829 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 830 // Some exiting edge has higher probability than the latch exiting edge. 831 // No longer profitable to predicate. 832 if (ExitingBlockProbability > LatchProbabilityThreshold) 833 return false; 834 } 835 // Using BPI, we have concluded that the most probable way to exit from the 836 // loop is through the latch (or there's no profile information and all 837 // exits are equally likely). 838 return true; 839 } 840 841 bool LoopPredication::runOnLoop(Loop *Loop) { 842 L = Loop; 843 844 LLVM_DEBUG(dbgs() << "Analyzing "); 845 LLVM_DEBUG(L->dump()); 846 847 Module *M = L->getHeader()->getModule(); 848 849 // There is nothing to do if the module doesn't use guards 850 auto *GuardDecl = 851 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 852 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 853 auto *WCDecl = M->getFunction( 854 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 855 bool HasWidenableConditions = 856 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 857 if (!HasIntrinsicGuards && !HasWidenableConditions) 858 return false; 859 860 DL = &M->getDataLayout(); 861 862 Preheader = L->getLoopPreheader(); 863 if (!Preheader) 864 return false; 865 866 auto LatchCheckOpt = parseLoopLatchICmp(); 867 if (!LatchCheckOpt) 868 return false; 869 LatchCheck = *LatchCheckOpt; 870 871 LLVM_DEBUG(dbgs() << "Latch check:\n"); 872 LLVM_DEBUG(LatchCheck.dump()); 873 874 if (!isLoopProfitableToPredicate()) { 875 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 876 return false; 877 } 878 // Collect all the guards into a vector and process later, so as not 879 // to invalidate the instruction iterator. 880 SmallVector<IntrinsicInst *, 4> Guards; 881 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 882 for (const auto BB : L->blocks()) { 883 for (auto &I : *BB) 884 if (isGuard(&I)) 885 Guards.push_back(cast<IntrinsicInst>(&I)); 886 if (PredicateWidenableBranchGuards && 887 isGuardAsWidenableBranch(BB->getTerminator())) 888 GuardsAsWidenableBranches.push_back( 889 cast<BranchInst>(BB->getTerminator())); 890 } 891 892 if (Guards.empty() && GuardsAsWidenableBranches.empty()) 893 return false; 894 895 SCEVExpander Expander(*SE, *DL, "loop-predication"); 896 897 bool Changed = false; 898 for (auto *Guard : Guards) 899 Changed |= widenGuardConditions(Guard, Expander); 900 for (auto *Guard : GuardsAsWidenableBranches) 901 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 902 903 return Changed; 904 } 905