xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 05da2fe52162c80dfa18aedf70cf73cb11201811)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/InitializePasses.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/Debug.h"
197 #include "llvm/Transforms/Scalar.h"
198 #include "llvm/Transforms/Utils/Local.h"
199 #include "llvm/Transforms/Utils/LoopUtils.h"
200 
201 #define DEBUG_TYPE "loop-predication"
202 
203 STATISTIC(TotalConsidered, "Number of guards considered");
204 STATISTIC(TotalWidened, "Number of checks widened");
205 
206 using namespace llvm;
207 
208 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
209                                         cl::Hidden, cl::init(true));
210 
211 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
212                                         cl::Hidden, cl::init(true));
213 
214 static cl::opt<bool>
215     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
216                             cl::Hidden, cl::init(false));
217 
218 // This is the scale factor for the latch probability. We use this during
219 // profitability analysis to find other exiting blocks that have a much higher
220 // probability of exiting the loop instead of loop exiting via latch.
221 // This value should be greater than 1 for a sane profitability check.
222 static cl::opt<float> LatchExitProbabilityScale(
223     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
224     cl::desc("scale factor for the latch probability. Value should be greater "
225              "than 1. Lower values are ignored"));
226 
227 static cl::opt<bool> PredicateWidenableBranchGuards(
228     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
229     cl::desc("Whether or not we should predicate guards "
230              "expressed as widenable branches to deoptimize blocks"),
231     cl::init(true));
232 
233 namespace {
234 /// Represents an induction variable check:
235 ///   icmp Pred, <induction variable>, <loop invariant limit>
236 struct LoopICmp {
237   ICmpInst::Predicate Pred;
238   const SCEVAddRecExpr *IV;
239   const SCEV *Limit;
240   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
241            const SCEV *Limit)
242     : Pred(Pred), IV(IV), Limit(Limit) {}
243   LoopICmp() {}
244   void dump() {
245     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
246            << ", Limit = " << *Limit << "\n";
247   }
248 };
249 
250 class LoopPredication {
251   AliasAnalysis *AA;
252   ScalarEvolution *SE;
253   BranchProbabilityInfo *BPI;
254 
255   Loop *L;
256   const DataLayout *DL;
257   BasicBlock *Preheader;
258   LoopICmp LatchCheck;
259 
260   bool isSupportedStep(const SCEV* Step);
261   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
262   Optional<LoopICmp> parseLoopLatchICmp();
263 
264   /// Return an insertion point suitable for inserting a safe to speculate
265   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
266   /// trivial result would be the at the User itself, but we try to return a
267   /// loop invariant location if possible.
268   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
269   /// Same as above, *except* that this uses the SCEV definition of invariant
270   /// which is that an expression *can be made* invariant via SCEVExpander.
271   /// Thus, this version is only suitable for finding an insert point to be be
272   /// passed to SCEVExpander!
273   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
274 
275   /// Return true if the value is known to produce a single fixed value across
276   /// all iterations on which it executes.  Note that this does not imply
277   /// speculation safety.  That must be established seperately.
278   bool isLoopInvariantValue(const SCEV* S);
279 
280   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
281                      ICmpInst::Predicate Pred, const SCEV *LHS,
282                      const SCEV *RHS);
283 
284   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
285                                         Instruction *Guard);
286   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
287                                                         LoopICmp RangeCheck,
288                                                         SCEVExpander &Expander,
289                                                         Instruction *Guard);
290   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
291                                                         LoopICmp RangeCheck,
292                                                         SCEVExpander &Expander,
293                                                         Instruction *Guard);
294   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
295                          SCEVExpander &Expander, Instruction *Guard);
296   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
297   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
298   // If the loop always exits through another block in the loop, we should not
299   // predicate based on the latch check. For example, the latch check can be a
300   // very coarse grained check and there can be more fine grained exit checks
301   // within the loop. We identify such unprofitable loops through BPI.
302   bool isLoopProfitableToPredicate();
303 
304 public:
305   LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
306                   BranchProbabilityInfo *BPI)
307     : AA(AA), SE(SE), BPI(BPI){};
308   bool runOnLoop(Loop *L);
309 };
310 
311 class LoopPredicationLegacyPass : public LoopPass {
312 public:
313   static char ID;
314   LoopPredicationLegacyPass() : LoopPass(ID) {
315     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
316   }
317 
318   void getAnalysisUsage(AnalysisUsage &AU) const override {
319     AU.addRequired<BranchProbabilityInfoWrapperPass>();
320     getLoopAnalysisUsage(AU);
321   }
322 
323   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
324     if (skipLoop(L))
325       return false;
326     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
327     BranchProbabilityInfo &BPI =
328         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
329     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
330     LoopPredication LP(AA, SE, &BPI);
331     return LP.runOnLoop(L);
332   }
333 };
334 
335 char LoopPredicationLegacyPass::ID = 0;
336 } // end namespace llvm
337 
338 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
339                       "Loop predication", false, false)
340 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
341 INITIALIZE_PASS_DEPENDENCY(LoopPass)
342 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
343                     "Loop predication", false, false)
344 
345 Pass *llvm::createLoopPredicationPass() {
346   return new LoopPredicationLegacyPass();
347 }
348 
349 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
350                                            LoopStandardAnalysisResults &AR,
351                                            LPMUpdater &U) {
352   const auto &FAM =
353       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
354   Function *F = L.getHeader()->getParent();
355   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
356   LoopPredication LP(&AR.AA, &AR.SE, BPI);
357   if (!LP.runOnLoop(&L))
358     return PreservedAnalyses::all();
359 
360   return getLoopPassPreservedAnalyses();
361 }
362 
363 Optional<LoopICmp>
364 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
365   auto Pred = ICI->getPredicate();
366   auto *LHS = ICI->getOperand(0);
367   auto *RHS = ICI->getOperand(1);
368 
369   const SCEV *LHSS = SE->getSCEV(LHS);
370   if (isa<SCEVCouldNotCompute>(LHSS))
371     return None;
372   const SCEV *RHSS = SE->getSCEV(RHS);
373   if (isa<SCEVCouldNotCompute>(RHSS))
374     return None;
375 
376   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
377   if (SE->isLoopInvariant(LHSS, L)) {
378     std::swap(LHS, RHS);
379     std::swap(LHSS, RHSS);
380     Pred = ICmpInst::getSwappedPredicate(Pred);
381   }
382 
383   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
384   if (!AR || AR->getLoop() != L)
385     return None;
386 
387   return LoopICmp(Pred, AR, RHSS);
388 }
389 
390 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
391                                     Instruction *Guard,
392                                     ICmpInst::Predicate Pred, const SCEV *LHS,
393                                     const SCEV *RHS) {
394   Type *Ty = LHS->getType();
395   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
396 
397   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
398     IRBuilder<> Builder(Guard);
399     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
400       return Builder.getTrue();
401     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
402                                      LHS, RHS))
403       return Builder.getFalse();
404   }
405 
406   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
407   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
408   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
409   return Builder.CreateICmp(Pred, LHSV, RHSV);
410 }
411 
412 
413 // Returns true if its safe to truncate the IV to RangeCheckType.
414 // When the IV type is wider than the range operand type, we can still do loop
415 // predication, by generating SCEVs for the range and latch that are of the
416 // same type. We achieve this by generating a SCEV truncate expression for the
417 // latch IV. This is done iff truncation of the IV is a safe operation,
418 // without loss of information.
419 // Another way to achieve this is by generating a wider type SCEV for the
420 // range check operand, however, this needs a more involved check that
421 // operands do not overflow. This can lead to loss of information when the
422 // range operand is of the form: add i32 %offset, %iv. We need to prove that
423 // sext(x + y) is same as sext(x) + sext(y).
424 // This function returns true if we can safely represent the IV type in
425 // the RangeCheckType without loss of information.
426 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
427                                        ScalarEvolution &SE,
428                                        const LoopICmp LatchCheck,
429                                        Type *RangeCheckType) {
430   if (!EnableIVTruncation)
431     return false;
432   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
433              DL.getTypeSizeInBits(RangeCheckType) &&
434          "Expected latch check IV type to be larger than range check operand "
435          "type!");
436   // The start and end values of the IV should be known. This is to guarantee
437   // that truncating the wide type will not lose information.
438   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
439   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
440   if (!Limit || !Start)
441     return false;
442   // This check makes sure that the IV does not change sign during loop
443   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
444   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
445   // IV wraps around, and the truncation of the IV would lose the range of
446   // iterations between 2^32 and 2^64.
447   bool Increasing;
448   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
449     return false;
450   // The active bits should be less than the bits in the RangeCheckType. This
451   // guarantees that truncating the latch check to RangeCheckType is a safe
452   // operation.
453   auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
454   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
455          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
456 }
457 
458 
459 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
460 // the requested type if safe to do so.  May involve the use of a new IV.
461 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
462                                                  ScalarEvolution &SE,
463                                                  const LoopICmp LatchCheck,
464                                                  Type *RangeCheckType) {
465 
466   auto *LatchType = LatchCheck.IV->getType();
467   if (RangeCheckType == LatchType)
468     return LatchCheck;
469   // For now, bail out if latch type is narrower than range type.
470   if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
471     return None;
472   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
473     return None;
474   // We can now safely identify the truncated version of the IV and limit for
475   // RangeCheckType.
476   LoopICmp NewLatchCheck;
477   NewLatchCheck.Pred = LatchCheck.Pred;
478   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
479       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
480   if (!NewLatchCheck.IV)
481     return None;
482   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
483   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
484                     << "can be represented as range check type:"
485                     << *RangeCheckType << "\n");
486   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
487   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
488   return NewLatchCheck;
489 }
490 
491 bool LoopPredication::isSupportedStep(const SCEV* Step) {
492   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
493 }
494 
495 Instruction *LoopPredication::findInsertPt(Instruction *Use,
496                                            ArrayRef<Value*> Ops) {
497   for (Value *Op : Ops)
498     if (!L->isLoopInvariant(Op))
499       return Use;
500   return Preheader->getTerminator();
501 }
502 
503 Instruction *LoopPredication::findInsertPt(Instruction *Use,
504                                            ArrayRef<const SCEV*> Ops) {
505   // Subtlety: SCEV considers things to be invariant if the value produced is
506   // the same across iterations.  This is not the same as being able to
507   // evaluate outside the loop, which is what we actually need here.
508   for (const SCEV *Op : Ops)
509     if (!SE->isLoopInvariant(Op, L) ||
510         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
511       return Use;
512   return Preheader->getTerminator();
513 }
514 
515 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
516   // Handling expressions which produce invariant results, but *haven't* yet
517   // been removed from the loop serves two important purposes.
518   // 1) Most importantly, it resolves a pass ordering cycle which would
519   // otherwise need us to iteration licm, loop-predication, and either
520   // loop-unswitch or loop-peeling to make progress on examples with lots of
521   // predicable range checks in a row.  (Since, in the general case,  we can't
522   // hoist the length checks until the dominating checks have been discharged
523   // as we can't prove doing so is safe.)
524   // 2) As a nice side effect, this exposes the value of peeling or unswitching
525   // much more obviously in the IR.  Otherwise, the cost modeling for other
526   // transforms would end up needing to duplicate all of this logic to model a
527   // check which becomes predictable based on a modeled peel or unswitch.
528   //
529   // The cost of doing so in the worst case is an extra fill from the stack  in
530   // the loop to materialize the loop invariant test value instead of checking
531   // against the original IV which is presumable in a register inside the loop.
532   // Such cases are presumably rare, and hint at missing oppurtunities for
533   // other passes.
534 
535   if (SE->isLoopInvariant(S, L))
536     // Note: This the SCEV variant, so the original Value* may be within the
537     // loop even though SCEV has proven it is loop invariant.
538     return true;
539 
540   // Handle a particular important case which SCEV doesn't yet know about which
541   // shows up in range checks on arrays with immutable lengths.
542   // TODO: This should be sunk inside SCEV.
543   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
544     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
545       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
546         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
547             LI->hasMetadata(LLVMContext::MD_invariant_load))
548           return true;
549   return false;
550 }
551 
552 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
553     LoopICmp LatchCheck, LoopICmp RangeCheck,
554     SCEVExpander &Expander, Instruction *Guard) {
555   auto *Ty = RangeCheck.IV->getType();
556   // Generate the widened condition for the forward loop:
557   //   guardStart u< guardLimit &&
558   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
559   // where <pred> depends on the latch condition predicate. See the file
560   // header comment for the reasoning.
561   // guardLimit - guardStart + latchStart - 1
562   const SCEV *GuardStart = RangeCheck.IV->getStart();
563   const SCEV *GuardLimit = RangeCheck.Limit;
564   const SCEV *LatchStart = LatchCheck.IV->getStart();
565   const SCEV *LatchLimit = LatchCheck.Limit;
566   // Subtlety: We need all the values to be *invariant* across all iterations,
567   // but we only need to check expansion safety for those which *aren't*
568   // already guaranteed to dominate the guard.
569   if (!isLoopInvariantValue(GuardStart) ||
570       !isLoopInvariantValue(GuardLimit) ||
571       !isLoopInvariantValue(LatchStart) ||
572       !isLoopInvariantValue(LatchLimit)) {
573     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
574     return None;
575   }
576   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
577       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
578     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
579     return None;
580   }
581 
582   // guardLimit - guardStart + latchStart - 1
583   const SCEV *RHS =
584       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
585                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
586   auto LimitCheckPred =
587       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
588 
589   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
590   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
591   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
592 
593   auto *LimitCheck =
594       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
595   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
596                                           GuardStart, GuardLimit);
597   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
598   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
599 }
600 
601 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
602     LoopICmp LatchCheck, LoopICmp RangeCheck,
603     SCEVExpander &Expander, Instruction *Guard) {
604   auto *Ty = RangeCheck.IV->getType();
605   const SCEV *GuardStart = RangeCheck.IV->getStart();
606   const SCEV *GuardLimit = RangeCheck.Limit;
607   const SCEV *LatchStart = LatchCheck.IV->getStart();
608   const SCEV *LatchLimit = LatchCheck.Limit;
609   // Subtlety: We need all the values to be *invariant* across all iterations,
610   // but we only need to check expansion safety for those which *aren't*
611   // already guaranteed to dominate the guard.
612   if (!isLoopInvariantValue(GuardStart) ||
613       !isLoopInvariantValue(GuardLimit) ||
614       !isLoopInvariantValue(LatchStart) ||
615       !isLoopInvariantValue(LatchLimit)) {
616     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
617     return None;
618   }
619   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
620       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
621     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
622     return None;
623   }
624   // The decrement of the latch check IV should be the same as the
625   // rangeCheckIV.
626   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
627   if (RangeCheck.IV != PostDecLatchCheckIV) {
628     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
629                       << *PostDecLatchCheckIV
630                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
631     return None;
632   }
633 
634   // Generate the widened condition for CountDownLoop:
635   // guardStart u< guardLimit &&
636   // latchLimit <pred> 1.
637   // See the header comment for reasoning of the checks.
638   auto LimitCheckPred =
639       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
640   auto *FirstIterationCheck = expandCheck(Expander, Guard,
641                                           ICmpInst::ICMP_ULT,
642                                           GuardStart, GuardLimit);
643   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
644                                  SE->getOne(Ty));
645   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
646   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
647 }
648 
649 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
650                                LoopICmp& RC) {
651   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
652   // ULT/UGE form for ease of handling by our caller.
653   if (ICmpInst::isEquality(RC.Pred) &&
654       RC.IV->getStepRecurrence(*SE)->isOne() &&
655       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
656     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
657       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
658 }
659 
660 
661 /// If ICI can be widened to a loop invariant condition emits the loop
662 /// invariant condition in the loop preheader and return it, otherwise
663 /// returns None.
664 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
665                                                        SCEVExpander &Expander,
666                                                        Instruction *Guard) {
667   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
668   LLVM_DEBUG(ICI->dump());
669 
670   // parseLoopStructure guarantees that the latch condition is:
671   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
672   // We are looking for the range checks of the form:
673   //   i u< guardLimit
674   auto RangeCheck = parseLoopICmp(ICI);
675   if (!RangeCheck) {
676     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
677     return None;
678   }
679   LLVM_DEBUG(dbgs() << "Guard check:\n");
680   LLVM_DEBUG(RangeCheck->dump());
681   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
682     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
683                       << RangeCheck->Pred << ")!\n");
684     return None;
685   }
686   auto *RangeCheckIV = RangeCheck->IV;
687   if (!RangeCheckIV->isAffine()) {
688     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
689     return None;
690   }
691   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
692   // We cannot just compare with latch IV step because the latch and range IVs
693   // may have different types.
694   if (!isSupportedStep(Step)) {
695     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
696     return None;
697   }
698   auto *Ty = RangeCheckIV->getType();
699   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
700   if (!CurrLatchCheckOpt) {
701     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
702                          "corresponding to range type: "
703                       << *Ty << "\n");
704     return None;
705   }
706 
707   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
708   // At this point, the range and latch step should have the same type, but need
709   // not have the same value (we support both 1 and -1 steps).
710   assert(Step->getType() ==
711              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
712          "Range and latch steps should be of same type!");
713   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
714     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
715     return None;
716   }
717 
718   if (Step->isOne())
719     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
720                                                Expander, Guard);
721   else {
722     assert(Step->isAllOnesValue() && "Step should be -1!");
723     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
724                                                Expander, Guard);
725   }
726 }
727 
728 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
729                                         Value *Condition,
730                                         SCEVExpander &Expander,
731                                         Instruction *Guard) {
732   unsigned NumWidened = 0;
733   // The guard condition is expected to be in form of:
734   //   cond1 && cond2 && cond3 ...
735   // Iterate over subconditions looking for icmp conditions which can be
736   // widened across loop iterations. Widening these conditions remember the
737   // resulting list of subconditions in Checks vector.
738   SmallVector<Value *, 4> Worklist(1, Condition);
739   SmallPtrSet<Value *, 4> Visited;
740   Value *WideableCond = nullptr;
741   do {
742     Value *Condition = Worklist.pop_back_val();
743     if (!Visited.insert(Condition).second)
744       continue;
745 
746     Value *LHS, *RHS;
747     using namespace llvm::PatternMatch;
748     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
749       Worklist.push_back(LHS);
750       Worklist.push_back(RHS);
751       continue;
752     }
753 
754     if (match(Condition,
755               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
756       // Pick any, we don't care which
757       WideableCond = Condition;
758       continue;
759     }
760 
761     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
762       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
763                                                    Guard)) {
764         Checks.push_back(NewRangeCheck.getValue());
765         NumWidened++;
766         continue;
767       }
768     }
769 
770     // Save the condition as is if we can't widen it
771     Checks.push_back(Condition);
772   } while (!Worklist.empty());
773   // At the moment, our matching logic for wideable conditions implicitly
774   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
775   // Note that if there were multiple calls to wideable condition in the
776   // traversal, we only need to keep one, and which one is arbitrary.
777   if (WideableCond)
778     Checks.push_back(WideableCond);
779   return NumWidened;
780 }
781 
782 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
783                                            SCEVExpander &Expander) {
784   LLVM_DEBUG(dbgs() << "Processing guard:\n");
785   LLVM_DEBUG(Guard->dump());
786 
787   TotalConsidered++;
788   SmallVector<Value *, 4> Checks;
789   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
790                                       Guard);
791   if (NumWidened == 0)
792     return false;
793 
794   TotalWidened += NumWidened;
795 
796   // Emit the new guard condition
797   IRBuilder<> Builder(findInsertPt(Guard, Checks));
798   Value *AllChecks = Builder.CreateAnd(Checks);
799   auto *OldCond = Guard->getOperand(0);
800   Guard->setOperand(0, AllChecks);
801   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
802 
803   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
804   return true;
805 }
806 
807 bool LoopPredication::widenWidenableBranchGuardConditions(
808     BranchInst *BI, SCEVExpander &Expander) {
809   assert(isGuardAsWidenableBranch(BI) && "Must be!");
810   LLVM_DEBUG(dbgs() << "Processing guard:\n");
811   LLVM_DEBUG(BI->dump());
812 
813   TotalConsidered++;
814   SmallVector<Value *, 4> Checks;
815   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
816                                       Expander, BI);
817   if (NumWidened == 0)
818     return false;
819 
820   TotalWidened += NumWidened;
821 
822   // Emit the new guard condition
823   IRBuilder<> Builder(findInsertPt(BI, Checks));
824   Value *AllChecks = Builder.CreateAnd(Checks);
825   auto *OldCond = BI->getCondition();
826   BI->setCondition(AllChecks);
827   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
828   assert(isGuardAsWidenableBranch(BI) &&
829          "Stopped being a guard after transform?");
830 
831   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
832   return true;
833 }
834 
835 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
836   using namespace PatternMatch;
837 
838   BasicBlock *LoopLatch = L->getLoopLatch();
839   if (!LoopLatch) {
840     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
841     return None;
842   }
843 
844   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
845   if (!BI || !BI->isConditional()) {
846     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
847     return None;
848   }
849   BasicBlock *TrueDest = BI->getSuccessor(0);
850   assert(
851       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
852       "One of the latch's destinations must be the header");
853 
854   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
855   if (!ICI) {
856     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
857     return None;
858   }
859   auto Result = parseLoopICmp(ICI);
860   if (!Result) {
861     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
862     return None;
863   }
864 
865   if (TrueDest != L->getHeader())
866     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
867 
868   // Check affine first, so if it's not we don't try to compute the step
869   // recurrence.
870   if (!Result->IV->isAffine()) {
871     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
872     return None;
873   }
874 
875   auto *Step = Result->IV->getStepRecurrence(*SE);
876   if (!isSupportedStep(Step)) {
877     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
878     return None;
879   }
880 
881   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
882     if (Step->isOne()) {
883       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
884              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
885     } else {
886       assert(Step->isAllOnesValue() && "Step should be -1!");
887       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
888              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
889     }
890   };
891 
892   normalizePredicate(SE, L, *Result);
893   if (IsUnsupportedPredicate(Step, Result->Pred)) {
894     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
895                       << ")!\n");
896     return None;
897   }
898 
899   return Result;
900 }
901 
902 
903 bool LoopPredication::isLoopProfitableToPredicate() {
904   if (SkipProfitabilityChecks || !BPI)
905     return true;
906 
907   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
908   L->getExitEdges(ExitEdges);
909   // If there is only one exiting edge in the loop, it is always profitable to
910   // predicate the loop.
911   if (ExitEdges.size() == 1)
912     return true;
913 
914   // Calculate the exiting probabilities of all exiting edges from the loop,
915   // starting with the LatchExitProbability.
916   // Heuristic for profitability: If any of the exiting blocks' probability of
917   // exiting the loop is larger than exiting through the latch block, it's not
918   // profitable to predicate the loop.
919   auto *LatchBlock = L->getLoopLatch();
920   assert(LatchBlock && "Should have a single latch at this point!");
921   auto *LatchTerm = LatchBlock->getTerminator();
922   assert(LatchTerm->getNumSuccessors() == 2 &&
923          "expected to be an exiting block with 2 succs!");
924   unsigned LatchBrExitIdx =
925       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
926   BranchProbability LatchExitProbability =
927       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
928 
929   // Protect against degenerate inputs provided by the user. Providing a value
930   // less than one, can invert the definition of profitable loop predication.
931   float ScaleFactor = LatchExitProbabilityScale;
932   if (ScaleFactor < 1) {
933     LLVM_DEBUG(
934         dbgs()
935         << "Ignored user setting for loop-predication-latch-probability-scale: "
936         << LatchExitProbabilityScale << "\n");
937     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
938     ScaleFactor = 1.0;
939   }
940   const auto LatchProbabilityThreshold =
941       LatchExitProbability * ScaleFactor;
942 
943   for (const auto &ExitEdge : ExitEdges) {
944     BranchProbability ExitingBlockProbability =
945         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
946     // Some exiting edge has higher probability than the latch exiting edge.
947     // No longer profitable to predicate.
948     if (ExitingBlockProbability > LatchProbabilityThreshold)
949       return false;
950   }
951   // Using BPI, we have concluded that the most probable way to exit from the
952   // loop is through the latch (or there's no profile information and all
953   // exits are equally likely).
954   return true;
955 }
956 
957 bool LoopPredication::runOnLoop(Loop *Loop) {
958   L = Loop;
959 
960   LLVM_DEBUG(dbgs() << "Analyzing ");
961   LLVM_DEBUG(L->dump());
962 
963   Module *M = L->getHeader()->getModule();
964 
965   // There is nothing to do if the module doesn't use guards
966   auto *GuardDecl =
967       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
968   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
969   auto *WCDecl = M->getFunction(
970       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
971   bool HasWidenableConditions =
972       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
973   if (!HasIntrinsicGuards && !HasWidenableConditions)
974     return false;
975 
976   DL = &M->getDataLayout();
977 
978   Preheader = L->getLoopPreheader();
979   if (!Preheader)
980     return false;
981 
982   auto LatchCheckOpt = parseLoopLatchICmp();
983   if (!LatchCheckOpt)
984     return false;
985   LatchCheck = *LatchCheckOpt;
986 
987   LLVM_DEBUG(dbgs() << "Latch check:\n");
988   LLVM_DEBUG(LatchCheck.dump());
989 
990   if (!isLoopProfitableToPredicate()) {
991     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
992     return false;
993   }
994   // Collect all the guards into a vector and process later, so as not
995   // to invalidate the instruction iterator.
996   SmallVector<IntrinsicInst *, 4> Guards;
997   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
998   for (const auto BB : L->blocks()) {
999     for (auto &I : *BB)
1000       if (isGuard(&I))
1001         Guards.push_back(cast<IntrinsicInst>(&I));
1002     if (PredicateWidenableBranchGuards &&
1003         isGuardAsWidenableBranch(BB->getTerminator()))
1004       GuardsAsWidenableBranches.push_back(
1005           cast<BranchInst>(BB->getTerminator()));
1006   }
1007 
1008   if (Guards.empty() && GuardsAsWidenableBranches.empty())
1009     return false;
1010 
1011   SCEVExpander Expander(*SE, *DL, "loop-predication");
1012 
1013   bool Changed = false;
1014   for (auto *Guard : Guards)
1015     Changed |= widenGuardConditions(Guard, Expander);
1016   for (auto *Guard : GuardsAsWidenableBranches)
1017     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1018 
1019   return Changed;
1020 }
1021