xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision ff8b8aea2ef5a9a4e02e86b4c0850244d0b6047a)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionExpander.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <forward_list>
59 #include <set>
60 #include <tuple>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define LLE_OPTION "loop-load-elim"
66 #define DEBUG_TYPE LLE_OPTION
67 
68 static cl::opt<unsigned> CheckPerElim(
69     "runtime-check-per-loop-load-elim", cl::Hidden,
70     cl::desc("Max number of memchecks allowed per eliminated load on average"),
71     cl::init(1));
72 
73 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
74     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
75     cl::desc("The maximum number of SCEV checks allowed for Loop "
76              "Load Elimination"));
77 
78 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
79 
80 namespace {
81 
82 /// \brief Represent a store-to-forwarding candidate.
83 struct StoreToLoadForwardingCandidate {
84   LoadInst *Load;
85   StoreInst *Store;
86 
87   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
88       : Load(Load), Store(Store) {}
89 
90   /// \brief Return true if the dependence from the store to the load has a
91   /// distance of one.  E.g. A[i+1] = A[i]
92   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
93                                  Loop *L) const {
94     Value *LoadPtr = Load->getPointerOperand();
95     Value *StorePtr = Store->getPointerOperand();
96     Type *LoadPtrType = LoadPtr->getType();
97     Type *LoadType = LoadPtrType->getPointerElementType();
98 
99     assert(LoadPtrType->getPointerAddressSpace() ==
100                StorePtr->getType()->getPointerAddressSpace() &&
101            LoadType == StorePtr->getType()->getPointerElementType() &&
102            "Should be a known dependence");
103 
104     // Currently we only support accesses with unit stride.  FIXME: we should be
105     // able to handle non unit stirde as well as long as the stride is equal to
106     // the dependence distance.
107     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
108         getPtrStride(PSE, StorePtr, L) != 1)
109       return false;
110 
111     auto &DL = Load->getParent()->getModule()->getDataLayout();
112     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
113 
114     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
115     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
116 
117     // We don't need to check non-wrapping here because forward/backward
118     // dependence wouldn't be valid if these weren't monotonic accesses.
119     auto *Dist = cast<SCEVConstant>(
120         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
121     const APInt &Val = Dist->getAPInt();
122     return Val == TypeByteSize;
123   }
124 
125   Value *getLoadPtr() const { return Load->getPointerOperand(); }
126 
127 #ifndef NDEBUG
128   friend raw_ostream &operator<<(raw_ostream &OS,
129                                  const StoreToLoadForwardingCandidate &Cand) {
130     OS << *Cand.Store << " -->\n";
131     OS.indent(2) << *Cand.Load << "\n";
132     return OS;
133   }
134 #endif
135 };
136 
137 } // end anonymous namespace
138 
139 /// \brief Check if the store dominates all latches, so as long as there is no
140 /// intervening store this value will be loaded in the next iteration.
141 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
142                                          DominatorTree *DT) {
143   SmallVector<BasicBlock *, 8> Latches;
144   L->getLoopLatches(Latches);
145   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
146     return DT->dominates(StoreBlock, Latch);
147   });
148 }
149 
150 /// \brief Return true if the load is not executed on all paths in the loop.
151 static bool isLoadConditional(LoadInst *Load, Loop *L) {
152   return Load->getParent() != L->getHeader();
153 }
154 
155 namespace {
156 
157 /// \brief The per-loop class that does most of the work.
158 class LoadEliminationForLoop {
159 public:
160   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
161                          DominatorTree *DT)
162       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
163 
164   /// \brief Look through the loop-carried and loop-independent dependences in
165   /// this loop and find store->load dependences.
166   ///
167   /// Note that no candidate is returned if LAA has failed to analyze the loop
168   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
169   std::forward_list<StoreToLoadForwardingCandidate>
170   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
171     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
172 
173     const auto *Deps = LAI.getDepChecker().getDependences();
174     if (!Deps)
175       return Candidates;
176 
177     // Find store->load dependences (consequently true dep).  Both lexically
178     // forward and backward dependences qualify.  Disqualify loads that have
179     // other unknown dependences.
180 
181     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
182 
183     for (const auto &Dep : *Deps) {
184       Instruction *Source = Dep.getSource(LAI);
185       Instruction *Destination = Dep.getDestination(LAI);
186 
187       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
188         if (isa<LoadInst>(Source))
189           LoadsWithUnknownDepedence.insert(Source);
190         if (isa<LoadInst>(Destination))
191           LoadsWithUnknownDepedence.insert(Destination);
192         continue;
193       }
194 
195       if (Dep.isBackward())
196         // Note that the designations source and destination follow the program
197         // order, i.e. source is always first.  (The direction is given by the
198         // DepType.)
199         std::swap(Source, Destination);
200       else
201         assert(Dep.isForward() && "Needs to be a forward dependence");
202 
203       auto *Store = dyn_cast<StoreInst>(Source);
204       if (!Store)
205         continue;
206       auto *Load = dyn_cast<LoadInst>(Destination);
207       if (!Load)
208         continue;
209 
210       // Only progagate the value if they are of the same type.
211       if (Store->getPointerOperandType() != Load->getPointerOperandType())
212         continue;
213 
214       Candidates.emplace_front(Load, Store);
215     }
216 
217     if (!LoadsWithUnknownDepedence.empty())
218       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
219         return LoadsWithUnknownDepedence.count(C.Load);
220       });
221 
222     return Candidates;
223   }
224 
225   /// \brief Return the index of the instruction according to program order.
226   unsigned getInstrIndex(Instruction *Inst) {
227     auto I = InstOrder.find(Inst);
228     assert(I != InstOrder.end() && "No index for instruction");
229     return I->second;
230   }
231 
232   /// \brief If a load has multiple candidates associated (i.e. different
233   /// stores), it means that it could be forwarding from multiple stores
234   /// depending on control flow.  Remove these candidates.
235   ///
236   /// Here, we rely on LAA to include the relevant loop-independent dependences.
237   /// LAA is known to omit these in the very simple case when the read and the
238   /// write within an alias set always takes place using the *same* pointer.
239   ///
240   /// However, we know that this is not the case here, i.e. we can rely on LAA
241   /// to provide us with loop-independent dependences for the cases we're
242   /// interested.  Consider the case for example where a loop-independent
243   /// dependece S1->S2 invalidates the forwarding S3->S2.
244   ///
245   ///         A[i]   = ...   (S1)
246   ///         ...    = A[i]  (S2)
247   ///         A[i+1] = ...   (S3)
248   ///
249   /// LAA will perform dependence analysis here because there are two
250   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
251   void removeDependencesFromMultipleStores(
252       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
253     // If Store is nullptr it means that we have multiple stores forwarding to
254     // this store.
255     using LoadToSingleCandT =
256         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
257     LoadToSingleCandT LoadToSingleCand;
258 
259     for (const auto &Cand : Candidates) {
260       bool NewElt;
261       LoadToSingleCandT::iterator Iter;
262 
263       std::tie(Iter, NewElt) =
264           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
265       if (!NewElt) {
266         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
267         // Already multiple stores forward to this load.
268         if (OtherCand == nullptr)
269           continue;
270 
271         // Handle the very basic case when the two stores are in the same block
272         // so deciding which one forwards is easy.  The later one forwards as
273         // long as they both have a dependence distance of one to the load.
274         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
275             Cand.isDependenceDistanceOfOne(PSE, L) &&
276             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
277           // They are in the same block, the later one will forward to the load.
278           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
279             OtherCand = &Cand;
280         } else
281           OtherCand = nullptr;
282       }
283     }
284 
285     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
286       if (LoadToSingleCand[Cand.Load] != &Cand) {
287         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
288                      << "  The load may have multiple stores forwarding to "
289                      << "it\n");
290         return true;
291       }
292       return false;
293     });
294   }
295 
296   /// \brief Given two pointers operations by their RuntimePointerChecking
297   /// indices, return true if they require an alias check.
298   ///
299   /// We need a check if one is a pointer for a candidate load and the other is
300   /// a pointer for a possibly intervening store.
301   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
302                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
303                      const std::set<Value *> &CandLoadPtrs) {
304     Value *Ptr1 =
305         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
306     Value *Ptr2 =
307         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
308     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
309             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
310   }
311 
312   /// \brief Return pointers that are possibly written to on the path from a
313   /// forwarding store to a load.
314   ///
315   /// These pointers need to be alias-checked against the forwarding candidates.
316   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
317       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
318     // From FirstStore to LastLoad neither of the elimination candidate loads
319     // should overlap with any of the stores.
320     //
321     // E.g.:
322     //
323     // st1 C[i]
324     // ld1 B[i] <-------,
325     // ld0 A[i] <----,  |              * LastLoad
326     // ...           |  |
327     // st2 E[i]      |  |
328     // st3 B[i+1] -- | -'              * FirstStore
329     // st0 A[i+1] ---'
330     // st4 D[i]
331     //
332     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
333     // ld0.
334 
335     LoadInst *LastLoad =
336         std::max_element(Candidates.begin(), Candidates.end(),
337                          [&](const StoreToLoadForwardingCandidate &A,
338                              const StoreToLoadForwardingCandidate &B) {
339                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
340                          })
341             ->Load;
342     StoreInst *FirstStore =
343         std::min_element(Candidates.begin(), Candidates.end(),
344                          [&](const StoreToLoadForwardingCandidate &A,
345                              const StoreToLoadForwardingCandidate &B) {
346                            return getInstrIndex(A.Store) <
347                                   getInstrIndex(B.Store);
348                          })
349             ->Store;
350 
351     // We're looking for stores after the first forwarding store until the end
352     // of the loop, then from the beginning of the loop until the last
353     // forwarded-to load.  Collect the pointer for the stores.
354     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
355 
356     auto InsertStorePtr = [&](Instruction *I) {
357       if (auto *S = dyn_cast<StoreInst>(I))
358         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
359     };
360     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
361     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
362                   MemInstrs.end(), InsertStorePtr);
363     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
364                   InsertStorePtr);
365 
366     return PtrsWrittenOnFwdingPath;
367   }
368 
369   /// \brief Determine the pointer alias checks to prove that there are no
370   /// intervening stores.
371   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
372       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
373 
374     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
375         findPointersWrittenOnForwardingPath(Candidates);
376 
377     // Collect the pointers of the candidate loads.
378     // FIXME: SmallSet does not work with std::inserter.
379     std::set<Value *> CandLoadPtrs;
380     transform(Candidates,
381                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
382                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
383 
384     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
385     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
386 
387     copy_if(AllChecks, std::back_inserter(Checks),
388             [&](const RuntimePointerChecking::PointerCheck &Check) {
389               for (auto PtrIdx1 : Check.first->Members)
390                 for (auto PtrIdx2 : Check.second->Members)
391                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
392                                     CandLoadPtrs))
393                     return true;
394               return false;
395             });
396 
397     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
398     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
399 
400     return Checks;
401   }
402 
403   /// \brief Perform the transformation for a candidate.
404   void
405   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
406                                   SCEVExpander &SEE) {
407     // loop:
408     //      %x = load %gep_i
409     //         = ... %x
410     //      store %y, %gep_i_plus_1
411     //
412     // =>
413     //
414     // ph:
415     //      %x.initial = load %gep_0
416     // loop:
417     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
418     //      %x = load %gep_i            <---- now dead
419     //         = ... %x.storeforward
420     //      store %y, %gep_i_plus_1
421 
422     Value *Ptr = Cand.Load->getPointerOperand();
423     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
424     auto *PH = L->getLoopPreheader();
425     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
426                                           PH->getTerminator());
427     Value *Initial =
428         new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false,
429                      Cand.Load->getAlignment(), PH->getTerminator());
430 
431     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
432                                    &L->getHeader()->front());
433     PHI->addIncoming(Initial, PH);
434     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
435 
436     Cand.Load->replaceAllUsesWith(PHI);
437   }
438 
439   /// \brief Top-level driver for each loop: find store->load forwarding
440   /// candidates, add run-time checks and perform transformation.
441   bool processLoop() {
442     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
443                  << "\" checking " << *L << "\n");
444 
445     // Look for store-to-load forwarding cases across the
446     // backedge. E.g.:
447     //
448     // loop:
449     //      %x = load %gep_i
450     //         = ... %x
451     //      store %y, %gep_i_plus_1
452     //
453     // =>
454     //
455     // ph:
456     //      %x.initial = load %gep_0
457     // loop:
458     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
459     //      %x = load %gep_i            <---- now dead
460     //         = ... %x.storeforward
461     //      store %y, %gep_i_plus_1
462 
463     // First start with store->load dependences.
464     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
465     if (StoreToLoadDependences.empty())
466       return false;
467 
468     // Generate an index for each load and store according to the original
469     // program order.  This will be used later.
470     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
471 
472     // To keep things simple for now, remove those where the load is potentially
473     // fed by multiple stores.
474     removeDependencesFromMultipleStores(StoreToLoadDependences);
475     if (StoreToLoadDependences.empty())
476       return false;
477 
478     // Filter the candidates further.
479     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
480     unsigned NumForwarding = 0;
481     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
482       DEBUG(dbgs() << "Candidate " << Cand);
483 
484       // Make sure that the stored values is available everywhere in the loop in
485       // the next iteration.
486       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
487         continue;
488 
489       // If the load is conditional we can't hoist its 0-iteration instance to
490       // the preheader because that would make it unconditional.  Thus we would
491       // access a memory location that the original loop did not access.
492       if (isLoadConditional(Cand.Load, L))
493         continue;
494 
495       // Check whether the SCEV difference is the same as the induction step,
496       // thus we load the value in the next iteration.
497       if (!Cand.isDependenceDistanceOfOne(PSE, L))
498         continue;
499 
500       ++NumForwarding;
501       DEBUG(dbgs()
502             << NumForwarding
503             << ". Valid store-to-load forwarding across the loop backedge\n");
504       Candidates.push_back(Cand);
505     }
506     if (Candidates.empty())
507       return false;
508 
509     // Check intervening may-alias stores.  These need runtime checks for alias
510     // disambiguation.
511     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
512         collectMemchecks(Candidates);
513 
514     // Too many checks are likely to outweigh the benefits of forwarding.
515     if (Checks.size() > Candidates.size() * CheckPerElim) {
516       DEBUG(dbgs() << "Too many run-time checks needed.\n");
517       return false;
518     }
519 
520     if (LAI.getPSE().getUnionPredicate().getComplexity() >
521         LoadElimSCEVCheckThreshold) {
522       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
523       return false;
524     }
525 
526     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
527       if (L->getHeader()->getParent()->optForSize()) {
528         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
529                         "for size.\n");
530         return false;
531       }
532 
533       if (!L->isLoopSimplifyForm()) {
534         DEBUG(dbgs() << "Loop is not is loop-simplify form");
535         return false;
536       }
537 
538       // Point of no-return, start the transformation.  First, version the loop
539       // if necessary.
540 
541       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
542       LV.setAliasChecks(std::move(Checks));
543       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
544       LV.versionLoop();
545     }
546 
547     // Next, propagate the value stored by the store to the users of the load.
548     // Also for the first iteration, generate the initial value of the load.
549     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
550                      "storeforward");
551     for (const auto &Cand : Candidates)
552       propagateStoredValueToLoadUsers(Cand, SEE);
553     NumLoopLoadEliminted += NumForwarding;
554 
555     return true;
556   }
557 
558 private:
559   Loop *L;
560 
561   /// \brief Maps the load/store instructions to their index according to
562   /// program order.
563   DenseMap<Instruction *, unsigned> InstOrder;
564 
565   // Analyses used.
566   LoopInfo *LI;
567   const LoopAccessInfo &LAI;
568   DominatorTree *DT;
569   PredicatedScalarEvolution PSE;
570 };
571 
572 } // end anonymous namespace
573 
574 static bool
575 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
576                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
577   // Build up a worklist of inner-loops to transform to avoid iterator
578   // invalidation.
579   // FIXME: This logic comes from other passes that actually change the loop
580   // nest structure. It isn't clear this is necessary (or useful) for a pass
581   // which merely optimizes the use of loads in a loop.
582   SmallVector<Loop *, 8> Worklist;
583 
584   for (Loop *TopLevelLoop : LI)
585     for (Loop *L : depth_first(TopLevelLoop))
586       // We only handle inner-most loops.
587       if (L->empty())
588         Worklist.push_back(L);
589 
590   // Now walk the identified inner loops.
591   bool Changed = false;
592   for (Loop *L : Worklist) {
593     // The actual work is performed by LoadEliminationForLoop.
594     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
595     Changed |= LEL.processLoop();
596   }
597   return Changed;
598 }
599 
600 namespace {
601 
602 /// \brief The pass.  Most of the work is delegated to the per-loop
603 /// LoadEliminationForLoop class.
604 class LoopLoadElimination : public FunctionPass {
605 public:
606   static char ID;
607 
608   LoopLoadElimination() : FunctionPass(ID) {
609     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
610   }
611 
612   bool runOnFunction(Function &F) override {
613     if (skipFunction(F))
614       return false;
615 
616     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
617     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
618     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
619 
620     // Process each loop nest in the function.
621     return eliminateLoadsAcrossLoops(
622         F, LI, DT,
623         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
624   }
625 
626   void getAnalysisUsage(AnalysisUsage &AU) const override {
627     AU.addRequiredID(LoopSimplifyID);
628     AU.addRequired<LoopInfoWrapperPass>();
629     AU.addPreserved<LoopInfoWrapperPass>();
630     AU.addRequired<LoopAccessLegacyAnalysis>();
631     AU.addRequired<ScalarEvolutionWrapperPass>();
632     AU.addRequired<DominatorTreeWrapperPass>();
633     AU.addPreserved<DominatorTreeWrapperPass>();
634     AU.addPreserved<GlobalsAAWrapperPass>();
635   }
636 };
637 
638 } // end anonymous namespace
639 
640 char LoopLoadElimination::ID;
641 
642 static const char LLE_name[] = "Loop Load Elimination";
643 
644 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
645 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
646 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
647 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
648 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
649 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
650 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
651 
652 FunctionPass *llvm::createLoopLoadEliminationPass() {
653   return new LoopLoadElimination();
654 }
655 
656 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
657                                                FunctionAnalysisManager &AM) {
658   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
659   auto &LI = AM.getResult<LoopAnalysis>(F);
660   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
661   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
662   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
663   auto &AA = AM.getResult<AAManager>(F);
664   auto &AC = AM.getResult<AssumptionAnalysis>(F);
665 
666   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
667   bool Changed = eliminateLoadsAcrossLoops(
668       F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
669         LoopStandardAnalysisResults AR = {AA, AC,  DT,  LI,
670                                           SE, TLI, TTI, nullptr};
671         return LAM.getResult<LoopAccessAnalysis>(L, AR);
672       });
673 
674   if (!Changed)
675     return PreservedAnalyses::all();
676 
677   PreservedAnalyses PA;
678   return PA;
679 }
680