xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision fab2bb8bfda865bd438dee981d7be7df8017b76d)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils.h"
54 #include "llvm/Transforms/Utils/LoopSimplify.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <forward_list>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
68 
69 static cl::opt<unsigned> CheckPerElim(
70     "runtime-check-per-loop-load-elim", cl::Hidden,
71     cl::desc("Max number of memchecks allowed per eliminated load on average"),
72     cl::init(1));
73 
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76     cl::desc("The maximum number of SCEV checks allowed for Loop "
77              "Load Elimination"));
78 
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
80 
81 namespace {
82 
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85   LoadInst *Load;
86   StoreInst *Store;
87 
88   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89       : Load(Load), Store(Store) {}
90 
91   /// Return true if the dependence from the store to the load has an
92   /// absolute distance of one.
93   /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
95                                  Loop *L) const {
96     Value *LoadPtr = Load->getPointerOperand();
97     Value *StorePtr = Store->getPointerOperand();
98     Type *LoadType = getLoadStoreType(Load);
99     auto &DL = Load->getParent()->getModule()->getDataLayout();
100 
101     assert(LoadPtr->getType()->getPointerAddressSpace() ==
102                StorePtr->getType()->getPointerAddressSpace() &&
103            DL.getTypeSizeInBits(LoadType) ==
104                DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
105            "Should be a known dependence");
106 
107     int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
108     int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
109     if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
110       return false;
111 
112     // TODO: This check for stride values other than 1 and -1 can be eliminated.
113     // However, doing so may cause the LoopAccessAnalysis to overcompensate,
114     // generating numerous non-wrap runtime checks that may undermine the
115     // benefits of load elimination. To safely implement support for non-unit
116     // strides, we would need to ensure either that the processed case does not
117     // require these additional checks, or improve the LAA to handle them more
118     // efficiently, or potentially both.
119     if (std::abs(StrideLoad) != 1)
120       return false;
121 
122     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
123 
124     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
125     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
126 
127     // We don't need to check non-wrapping here because forward/backward
128     // dependence wouldn't be valid if these weren't monotonic accesses.
129     auto *Dist = cast<SCEVConstant>(
130         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131     const APInt &Val = Dist->getAPInt();
132     return Val == TypeByteSize * StrideLoad;
133   }
134 
135   Value *getLoadPtr() const { return Load->getPointerOperand(); }
136 
137 #ifndef NDEBUG
138   friend raw_ostream &operator<<(raw_ostream &OS,
139                                  const StoreToLoadForwardingCandidate &Cand) {
140     OS << *Cand.Store << " -->\n";
141     OS.indent(2) << *Cand.Load << "\n";
142     return OS;
143   }
144 #endif
145 };
146 
147 } // end anonymous namespace
148 
149 /// Check if the store dominates all latches, so as long as there is no
150 /// intervening store this value will be loaded in the next iteration.
151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
152                                          DominatorTree *DT) {
153   SmallVector<BasicBlock *, 8> Latches;
154   L->getLoopLatches(Latches);
155   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
156     return DT->dominates(StoreBlock, Latch);
157   });
158 }
159 
160 /// Return true if the load is not executed on all paths in the loop.
161 static bool isLoadConditional(LoadInst *Load, Loop *L) {
162   return Load->getParent() != L->getHeader();
163 }
164 
165 namespace {
166 
167 /// The per-loop class that does most of the work.
168 class LoadEliminationForLoop {
169 public:
170   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
171                          DominatorTree *DT, BlockFrequencyInfo *BFI,
172                          ProfileSummaryInfo* PSI)
173       : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
174 
175   /// Look through the loop-carried and loop-independent dependences in
176   /// this loop and find store->load dependences.
177   ///
178   /// Note that no candidate is returned if LAA has failed to analyze the loop
179   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
180   std::forward_list<StoreToLoadForwardingCandidate>
181   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
182     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
183 
184     const auto *Deps = LAI.getDepChecker().getDependences();
185     if (!Deps)
186       return Candidates;
187 
188     // Find store->load dependences (consequently true dep).  Both lexically
189     // forward and backward dependences qualify.  Disqualify loads that have
190     // other unknown dependences.
191 
192     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
193 
194     for (const auto &Dep : *Deps) {
195       Instruction *Source = Dep.getSource(LAI);
196       Instruction *Destination = Dep.getDestination(LAI);
197 
198       if (Dep.Type == MemoryDepChecker::Dependence::Unknown ||
199           Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) {
200         if (isa<LoadInst>(Source))
201           LoadsWithUnknownDepedence.insert(Source);
202         if (isa<LoadInst>(Destination))
203           LoadsWithUnknownDepedence.insert(Destination);
204         continue;
205       }
206 
207       if (Dep.isBackward())
208         // Note that the designations source and destination follow the program
209         // order, i.e. source is always first.  (The direction is given by the
210         // DepType.)
211         std::swap(Source, Destination);
212       else
213         assert(Dep.isForward() && "Needs to be a forward dependence");
214 
215       auto *Store = dyn_cast<StoreInst>(Source);
216       if (!Store)
217         continue;
218       auto *Load = dyn_cast<LoadInst>(Destination);
219       if (!Load)
220         continue;
221 
222       // Only propagate if the stored values are bit/pointer castable.
223       if (!CastInst::isBitOrNoopPointerCastable(
224               getLoadStoreType(Store), getLoadStoreType(Load),
225               Store->getParent()->getModule()->getDataLayout()))
226         continue;
227 
228       Candidates.emplace_front(Load, Store);
229     }
230 
231     if (!LoadsWithUnknownDepedence.empty())
232       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
233         return LoadsWithUnknownDepedence.count(C.Load);
234       });
235 
236     return Candidates;
237   }
238 
239   /// Return the index of the instruction according to program order.
240   unsigned getInstrIndex(Instruction *Inst) {
241     auto I = InstOrder.find(Inst);
242     assert(I != InstOrder.end() && "No index for instruction");
243     return I->second;
244   }
245 
246   /// If a load has multiple candidates associated (i.e. different
247   /// stores), it means that it could be forwarding from multiple stores
248   /// depending on control flow.  Remove these candidates.
249   ///
250   /// Here, we rely on LAA to include the relevant loop-independent dependences.
251   /// LAA is known to omit these in the very simple case when the read and the
252   /// write within an alias set always takes place using the *same* pointer.
253   ///
254   /// However, we know that this is not the case here, i.e. we can rely on LAA
255   /// to provide us with loop-independent dependences for the cases we're
256   /// interested.  Consider the case for example where a loop-independent
257   /// dependece S1->S2 invalidates the forwarding S3->S2.
258   ///
259   ///         A[i]   = ...   (S1)
260   ///         ...    = A[i]  (S2)
261   ///         A[i+1] = ...   (S3)
262   ///
263   /// LAA will perform dependence analysis here because there are two
264   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
265   void removeDependencesFromMultipleStores(
266       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
267     // If Store is nullptr it means that we have multiple stores forwarding to
268     // this store.
269     using LoadToSingleCandT =
270         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
271     LoadToSingleCandT LoadToSingleCand;
272 
273     for (const auto &Cand : Candidates) {
274       bool NewElt;
275       LoadToSingleCandT::iterator Iter;
276 
277       std::tie(Iter, NewElt) =
278           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
279       if (!NewElt) {
280         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
281         // Already multiple stores forward to this load.
282         if (OtherCand == nullptr)
283           continue;
284 
285         // Handle the very basic case when the two stores are in the same block
286         // so deciding which one forwards is easy.  The later one forwards as
287         // long as they both have a dependence distance of one to the load.
288         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
289             Cand.isDependenceDistanceOfOne(PSE, L) &&
290             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
291           // They are in the same block, the later one will forward to the load.
292           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
293             OtherCand = &Cand;
294         } else
295           OtherCand = nullptr;
296       }
297     }
298 
299     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
300       if (LoadToSingleCand[Cand.Load] != &Cand) {
301         LLVM_DEBUG(
302             dbgs() << "Removing from candidates: \n"
303                    << Cand
304                    << "  The load may have multiple stores forwarding to "
305                    << "it\n");
306         return true;
307       }
308       return false;
309     });
310   }
311 
312   /// Given two pointers operations by their RuntimePointerChecking
313   /// indices, return true if they require an alias check.
314   ///
315   /// We need a check if one is a pointer for a candidate load and the other is
316   /// a pointer for a possibly intervening store.
317   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
318                      const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
319                      const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
320     Value *Ptr1 =
321         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
322     Value *Ptr2 =
323         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
324     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
325             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
326   }
327 
328   /// Return pointers that are possibly written to on the path from a
329   /// forwarding store to a load.
330   ///
331   /// These pointers need to be alias-checked against the forwarding candidates.
332   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
333       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
334     // From FirstStore to LastLoad neither of the elimination candidate loads
335     // should overlap with any of the stores.
336     //
337     // E.g.:
338     //
339     // st1 C[i]
340     // ld1 B[i] <-------,
341     // ld0 A[i] <----,  |              * LastLoad
342     // ...           |  |
343     // st2 E[i]      |  |
344     // st3 B[i+1] -- | -'              * FirstStore
345     // st0 A[i+1] ---'
346     // st4 D[i]
347     //
348     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
349     // ld0.
350 
351     LoadInst *LastLoad =
352         llvm::max_element(Candidates,
353                           [&](const StoreToLoadForwardingCandidate &A,
354                               const StoreToLoadForwardingCandidate &B) {
355                             return getInstrIndex(A.Load) <
356                                    getInstrIndex(B.Load);
357                           })
358             ->Load;
359     StoreInst *FirstStore =
360         llvm::min_element(Candidates,
361                           [&](const StoreToLoadForwardingCandidate &A,
362                               const StoreToLoadForwardingCandidate &B) {
363                             return getInstrIndex(A.Store) <
364                                    getInstrIndex(B.Store);
365                           })
366             ->Store;
367 
368     // We're looking for stores after the first forwarding store until the end
369     // of the loop, then from the beginning of the loop until the last
370     // forwarded-to load.  Collect the pointer for the stores.
371     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
372 
373     auto InsertStorePtr = [&](Instruction *I) {
374       if (auto *S = dyn_cast<StoreInst>(I))
375         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
376     };
377     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
378     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
379                   MemInstrs.end(), InsertStorePtr);
380     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
381                   InsertStorePtr);
382 
383     return PtrsWrittenOnFwdingPath;
384   }
385 
386   /// Determine the pointer alias checks to prove that there are no
387   /// intervening stores.
388   SmallVector<RuntimePointerCheck, 4> collectMemchecks(
389       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
390 
391     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
392         findPointersWrittenOnForwardingPath(Candidates);
393 
394     // Collect the pointers of the candidate loads.
395     SmallPtrSet<Value *, 4> CandLoadPtrs;
396     for (const auto &Candidate : Candidates)
397       CandLoadPtrs.insert(Candidate.getLoadPtr());
398 
399     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
400     SmallVector<RuntimePointerCheck, 4> Checks;
401 
402     copy_if(AllChecks, std::back_inserter(Checks),
403             [&](const RuntimePointerCheck &Check) {
404               for (auto PtrIdx1 : Check.first->Members)
405                 for (auto PtrIdx2 : Check.second->Members)
406                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
407                                     CandLoadPtrs))
408                     return true;
409               return false;
410             });
411 
412     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
413                       << "):\n");
414     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
415 
416     return Checks;
417   }
418 
419   /// Perform the transformation for a candidate.
420   void
421   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
422                                   SCEVExpander &SEE) {
423     // loop:
424     //      %x = load %gep_i
425     //         = ... %x
426     //      store %y, %gep_i_plus_1
427     //
428     // =>
429     //
430     // ph:
431     //      %x.initial = load %gep_0
432     // loop:
433     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
434     //      %x = load %gep_i            <---- now dead
435     //         = ... %x.storeforward
436     //      store %y, %gep_i_plus_1
437 
438     Value *Ptr = Cand.Load->getPointerOperand();
439     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
440     auto *PH = L->getLoopPreheader();
441     assert(PH && "Preheader should exist!");
442     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
443                                           PH->getTerminator());
444     Value *Initial =
445         new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial",
446                      /* isVolatile */ false, Cand.Load->getAlign(),
447                      PH->getTerminator()->getIterator());
448 
449     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded");
450     PHI->insertBefore(L->getHeader()->begin());
451     PHI->addIncoming(Initial, PH);
452 
453     Type *LoadType = Initial->getType();
454     Type *StoreType = Cand.Store->getValueOperand()->getType();
455     auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
456     (void)DL;
457 
458     assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
459            "The type sizes should match!");
460 
461     Value *StoreValue = Cand.Store->getValueOperand();
462     if (LoadType != StoreType)
463       StoreValue = CastInst::CreateBitOrPointerCast(StoreValue, LoadType,
464                                                     "store_forward_cast",
465                                                     Cand.Store->getIterator());
466 
467     PHI->addIncoming(StoreValue, L->getLoopLatch());
468 
469     Cand.Load->replaceAllUsesWith(PHI);
470   }
471 
472   /// Top-level driver for each loop: find store->load forwarding
473   /// candidates, add run-time checks and perform transformation.
474   bool processLoop() {
475     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
476                       << "\" checking " << *L << "\n");
477 
478     // Look for store-to-load forwarding cases across the
479     // backedge. E.g.:
480     //
481     // loop:
482     //      %x = load %gep_i
483     //         = ... %x
484     //      store %y, %gep_i_plus_1
485     //
486     // =>
487     //
488     // ph:
489     //      %x.initial = load %gep_0
490     // loop:
491     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
492     //      %x = load %gep_i            <---- now dead
493     //         = ... %x.storeforward
494     //      store %y, %gep_i_plus_1
495 
496     // First start with store->load dependences.
497     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
498     if (StoreToLoadDependences.empty())
499       return false;
500 
501     // Generate an index for each load and store according to the original
502     // program order.  This will be used later.
503     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
504 
505     // To keep things simple for now, remove those where the load is potentially
506     // fed by multiple stores.
507     removeDependencesFromMultipleStores(StoreToLoadDependences);
508     if (StoreToLoadDependences.empty())
509       return false;
510 
511     // Filter the candidates further.
512     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
513     for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
514       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
515 
516       // Make sure that the stored values is available everywhere in the loop in
517       // the next iteration.
518       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
519         continue;
520 
521       // If the load is conditional we can't hoist its 0-iteration instance to
522       // the preheader because that would make it unconditional.  Thus we would
523       // access a memory location that the original loop did not access.
524       if (isLoadConditional(Cand.Load, L))
525         continue;
526 
527       // Check whether the SCEV difference is the same as the induction step,
528       // thus we load the value in the next iteration.
529       if (!Cand.isDependenceDistanceOfOne(PSE, L))
530         continue;
531 
532       assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
533              "Loading from something other than indvar?");
534       assert(
535           isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
536           "Storing to something other than indvar?");
537 
538       Candidates.push_back(Cand);
539       LLVM_DEBUG(
540           dbgs()
541           << Candidates.size()
542           << ". Valid store-to-load forwarding across the loop backedge\n");
543     }
544     if (Candidates.empty())
545       return false;
546 
547     // Check intervening may-alias stores.  These need runtime checks for alias
548     // disambiguation.
549     SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
550 
551     // Too many checks are likely to outweigh the benefits of forwarding.
552     if (Checks.size() > Candidates.size() * CheckPerElim) {
553       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
554       return false;
555     }
556 
557     if (LAI.getPSE().getPredicate().getComplexity() >
558         LoadElimSCEVCheckThreshold) {
559       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
560       return false;
561     }
562 
563     if (!L->isLoopSimplifyForm()) {
564       LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
565       return false;
566     }
567 
568     if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
569       if (LAI.hasConvergentOp()) {
570         LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
571                              "convergent calls\n");
572         return false;
573       }
574 
575       auto *HeaderBB = L->getHeader();
576       auto *F = HeaderBB->getParent();
577       bool OptForSize = F->hasOptSize() ||
578                         llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
579                                                     PGSOQueryType::IRPass);
580       if (OptForSize) {
581         LLVM_DEBUG(
582             dbgs() << "Versioning is needed but not allowed when optimizing "
583                       "for size.\n");
584         return false;
585       }
586 
587       // Point of no-return, start the transformation.  First, version the loop
588       // if necessary.
589 
590       LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
591       LV.versionLoop();
592 
593       // After versioning, some of the candidates' pointers could stop being
594       // SCEVAddRecs. We need to filter them out.
595       auto NoLongerGoodCandidate = [this](
596           const StoreToLoadForwardingCandidate &Cand) {
597         return !isa<SCEVAddRecExpr>(
598                     PSE.getSCEV(Cand.Load->getPointerOperand())) ||
599                !isa<SCEVAddRecExpr>(
600                     PSE.getSCEV(Cand.Store->getPointerOperand()));
601       };
602       llvm::erase_if(Candidates, NoLongerGoodCandidate);
603     }
604 
605     // Next, propagate the value stored by the store to the users of the load.
606     // Also for the first iteration, generate the initial value of the load.
607     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
608                      "storeforward");
609     for (const auto &Cand : Candidates)
610       propagateStoredValueToLoadUsers(Cand, SEE);
611     NumLoopLoadEliminted += Candidates.size();
612 
613     return true;
614   }
615 
616 private:
617   Loop *L;
618 
619   /// Maps the load/store instructions to their index according to
620   /// program order.
621   DenseMap<Instruction *, unsigned> InstOrder;
622 
623   // Analyses used.
624   LoopInfo *LI;
625   const LoopAccessInfo &LAI;
626   DominatorTree *DT;
627   BlockFrequencyInfo *BFI;
628   ProfileSummaryInfo *PSI;
629   PredicatedScalarEvolution PSE;
630 };
631 
632 } // end anonymous namespace
633 
634 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
635                                       DominatorTree &DT,
636                                       BlockFrequencyInfo *BFI,
637                                       ProfileSummaryInfo *PSI,
638                                       ScalarEvolution *SE, AssumptionCache *AC,
639                                       LoopAccessInfoManager &LAIs) {
640   // Build up a worklist of inner-loops to transform to avoid iterator
641   // invalidation.
642   // FIXME: This logic comes from other passes that actually change the loop
643   // nest structure. It isn't clear this is necessary (or useful) for a pass
644   // which merely optimizes the use of loads in a loop.
645   SmallVector<Loop *, 8> Worklist;
646 
647   bool Changed = false;
648 
649   for (Loop *TopLevelLoop : LI)
650     for (Loop *L : depth_first(TopLevelLoop)) {
651       Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
652       // We only handle inner-most loops.
653       if (L->isInnermost())
654         Worklist.push_back(L);
655     }
656 
657   // Now walk the identified inner loops.
658   for (Loop *L : Worklist) {
659     // Match historical behavior
660     if (!L->isRotatedForm() || !L->getExitingBlock())
661       continue;
662     // The actual work is performed by LoadEliminationForLoop.
663     LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
664     Changed |= LEL.processLoop();
665     if (Changed)
666       LAIs.clear();
667   }
668   return Changed;
669 }
670 
671 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
672                                                FunctionAnalysisManager &AM) {
673   auto &LI = AM.getResult<LoopAnalysis>(F);
674   // There are no loops in the function. Return before computing other expensive
675   // analyses.
676   if (LI.empty())
677     return PreservedAnalyses::all();
678   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
679   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
680   auto &AC = AM.getResult<AssumptionAnalysis>(F);
681   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
682   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
683   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
684       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
685   LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
686 
687   bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
688 
689   if (!Changed)
690     return PreservedAnalyses::all();
691 
692   PreservedAnalyses PA;
693   PA.preserve<DominatorTreeAnalysis>();
694   PA.preserve<LoopAnalysis>();
695   return PA;
696 }
697